Semi-active Control of Structures Using Current-Controlled MR Fluid Damper

Sayed Ahmed Royel

A thesis submitted in fulfilment of the requirements for the degree of Masters of Engineering (Research)

Faculty of Engineering Information Technology School of Electrical, Mechanical & Mechatronic Systems University of Technology, Sydney (UTS), Australia

February 2012

CERTIFICATION OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a similar degree nor has it been submitted as a part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any assistance that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are referenced in the thesis

February 2012 Production Note: Signature removed prior to publication.

Sayed Ahmed Royel

Acknowledgements

At last, I come to my single unedited part of the thesis. It may appear in the first page, but it was actually the last to be written. It is meant to acknowledge all the wonderful people who made it possible for me.

I am greatly thankful and indebted to my supervisor, Associate professor Quang Ha for his kind support, patience and guidance in all aspects of my research activities. It is great having his signature on the front pages! I want to give thanks for all of my caring and supportive teachers like you. Also I cannot thank enough to Professor Bijan Samali for his invaluable support during my candidature here at the University of Technology, Sydney (UTS).

I greatly owe my indebtedness to all the articles authors listed in the bibliography of this thesis.

I would like to thank to my colleague Herman Bin Wahid for his encouragement and useful advice during my candidature. Thanks are also due to all my colleagues, the masters and PhD students in our research group for their kind support and assistance. It is difficult to remind and include every person who directly or indirectly has co-operated in the development of this thesis. I present my excuses but I will ever thank them.

Hi mom & dad, thanks for being patient with me. Finally, I would very much like to acknowledge the patience, love, encouragement and never-ending prayers provided by my family members: my brothers, my sisters.

Abstract

A critical aspect of the design of smart structures for buildings and other civil engineering infrastructure is the reduction of vibrations, deflections and forces induced by external disturbances such as earthquakes, strong winds or heavy dynamic loads. This research work focuses on the design of a second-order sliding mode controller for vibration control using Magneto-rheological fluid (MR) dampers integrated in smart structures to sustain external earthquakes or dynamic loadings. Following comprehensive surveys on structural control and recent earthquakes scenarios around the globe, this work presents an effective control system for suppression of structural vibrations. The advantages of these structures come from the use of semiactive devices for the fail safe operations and low energy consumption.

MR dampers are increasingly employed in structural control applications owing to many feasible advantages for mitigation of dynamic effects caused by external disturbances. However, the control of MR dampers is hindered by their nonlinear force-displacement and hysteresis forcevelocity responses which usually affect controllability. On the other hand, the required yielding force to suppress structural vibrations results from the magnetisation of the fluid particle suspension in the damper housing via the controlled current. To robustly control the dampers' magnetisation current, the sliding mode methodology is adopted. In the context of structural control, a sliding mode controller is an attractive candidate for semiactive control of quakeinduced structures in face of uncertainties.

In most of MR damper controllers developed so far, the damping force is quite often derived as the control signal, while the damper current is obtained via a secondary current-control loop. In this study, the controlled current for MR-dampers is directly generated by using second-order sliding mode controllers with the aims to satisfy the control constraints, retain strong robustness and remove chattering. The higher-order sliding mode idea is to drive to zero not only the sliding function of the state variables but also higher-order time derivatives of the sliding function. The effectiveness of the second-order sliding mode controller is verified, in simulation, on a benchmark three storey building models subject to excitation of various scaled earthquake records.

Contents

Acknowledgements	i
Abstract	o jasai
Contents	iv
List of Figures	viii
List of Tables	xi

1 Introduction

1.1 Motivation	1
1.2 Objective	3
1.3 Contribution of the Thesis	4
1.4 Thesis Layout	5

2 Literature Review

2.1 Introduction	7
2.2 Smart Structures and Materials-Concepts & Theory	8
2.2.1 Smart Structures	8
2.2.2 Smart Materials	9
2.3 Structural Control versus Ductility Demand	10
2.4 Structural Control Concepts	12
2.4.1 Passive, Active, Hybrid, and Semi-active Control	12
2. 4.1.1 Passive Control Systems	13
2.4.1.2 Active Control Systems	20

2.4.1.3 Semi-active Control Systems	21
2.4.1.4 Hybrid Control Systems	30
2.4.2 Type of Control	32
2.5 Control of MR Dampers	32
2.6.1 Sliding Mode Control	33
2.6 Summary	36

3 Learning from Earthquakes

3.1 Introduction	37
3.2 Pacific Rim	39
3.2 Earthquakes: Characteristic	41
3.2.1 Earthquake Measurement	41
3.2.1.1 Earthquake Intensity	41
3.2.1.2 Earthquake Magnitude	42
3.2.2 Magnitude, Ground motion & Energy	44
3.2.3 Factors Affecting Earthquake Ground motion	45
3.3 Frequency Occurrence of Earthquakes	46
3.4 Two Christchurch Earthquakes-Sequence of 2010-2011	48
3.4.1 The 2010 Christchurch Earthquake	48
3.4.2 The 2011 Christchurch Earthquake	51
3.4.2.1 Strong Ground Motion Records	53
3.4.2.2 Asymmetric Acceleration Waveforms Records	54
3.4.2.3 Comparison of Christchurch 2011 & Previous Earthquakes	54
3.4.3 Previous Canterbury Earthquakes	56
3.5 The 2011 Tohoku Earthquake-Tsunami	57
3.5.1 Previous Earthquakes-Tsunamis, Japan	58
3.5.2 The 2011 Tohoku Tsunami	59
3.5.3 Economic Impacts	60
3.5.4 Acceleration & Velocity Waveforms	62
3.5.5 Comparison of Tohoku Earthquake & Previous Earthquakes	64

3.6	Summary	65	5
-----	---------	----	---

4 Magneto-rheological Damper

4.1 Introduction	66
4.2 MR Fluid Dampers	67
4.3 Types of Friction	72
4.3.1 Hysteresis	72
4.3.2 Coulomb Friction	73
4.3.3 Viscous Friction	73
4.3.4 Stiction	74
4.3.5 Stribeck Effect	74
4.3.6 Stick-slip Motion	75
4.4 Models of MR damper	75
4.4.1 Dynamic Models	76
4.4.1.1 Dahl Model	76
4.4.1.2 LuGre Model	77
4.4.1.3 Bingham Model	77
4.4.1.4 Bouc-Wen Model	80
4.4.1.5 Modified Bouc-Wen Model	82
4.5. Summary	86

5 Structural Control Approaches

5.1 Introduction	87
5.2 A Three Storey Building Structure	88
5.3. An Integrated <i>n</i> -th Storey Building- MR damper System	91
5.4 MR damper Model	94
5.4.1 Static Hysteresis Model	94
5.4.2 Dynamic Friction Model	95
5.5 Controller Design	96

5.6 Summary	102
-------------	-----

6 Result & Discussions

6.1 Introduction	103
6.2 Earthquake Excitation	104
6.3 System Set-up	106
6.3 Evaluation Criteria for the Control Performance/ Analytical Analysis	108
6.4 Controlled Responses	110
6.4.1 SOSM: Dynamic Friction Model	110
6.4.2 SOSM: Static Hysteresis Model	124
6.5 Summary	135

7 Future Work & Conclusion

7.1 Summary	136
7.2 Future Work	137
7.3 Conclusion	138
Appendix A Numerical Values of the Parameters	139
Appendix B Simulink Models	142
References	145

List of Figures

Figures	Page
Figure 1.1 Passive, active & semi-active control system	3
Figure 2.1 Smart structures	8
Figure 2.2 A block diagrammatic view of a smart structure system	9
Figure 2.3 Schematic illustration of ductility demand, base isolation and dynamic	
control	11
Figure 2.4 Classification of structural control devices	13
Figure 2.5 Block diagram of passive control system	14
Figure 2.6 Tuned mass dampers	15
Figure 2.7 Examples of application of tuned mass dampers	16
Figure 2.8 Schematic diagram of TLD & TLCD	17
Figure 2.9 X-plate metallic dampers	18
Figure 2.10 Pall friction damper in a cross-brace	19
Figure 2.10 Pall friction dampers in a single diagonal bracing and chevron bracing,	
inverted	19
Figure 2.12 Examples of application of viscous dampers to bridges	20
Figure 2.13 Block diagram of active control system	21
Figure 2.14 AMD control system	23
Figure 2.15 AMD based control of Kyobashi Seiwa Building	23
Figure 2.16 Block diagram of semi-active control system	24
Figure 2.17 Schematic diagram of variable orifice damper	24
Figure 2.18 First full-scale implementation of smart damping in USA	25
Figure 2.19 Schematic diagram of variable friction damper	26
Figure 2.20 Schematic diagram of tuned liquid column damper	26

Figure 2.21 Schematic diagram of controllable fluid damper	27
Figure 2.22: MR damper installation on the Dongting Lake Bridge China	28
Figure 2.23: Base-isolated building installed with 40-ton MR fluid damper	29
Figure 2 24: Semi-active hydraulic damper	29
Figure 2.25: Yokohama Landmark Tower and HMD	30
Figure 2.26 Schematic diagram of passive active & hybrid mass damper system	31
Figure 2.27 Schematic diagram of structural control problem	33
Figure 2.28 Second order sliding mode on the line	34
rigure 2.28 Second order shalling mode on the intermeters.	54
Figure 3.1 The Pacific Ring of Fire	39
Figure 3.2 New Zealand plate boundaries	40
Figure 3.3 Massive earthquake since 1900 on the world seismicity man	40
Figure 3.4 Man and fault plane diagram	46
Figure 3.5 Example of liquefaction & flooding	40
Figure 3.6 Example of fault surface break	50
Figure 3.7 Example of demograd bridge & building. Christoburgh corthqueles 2010	50
Eigure 3.2 8 Democrat buildings. Christehurgh authemotes 2011	50
Figure 3.8 Damaged buildings, Christenurch earthquake 2011	52
Figure 3.9 Near-field velocity waveforms for several past earthquakes	53
Figure 3.10 Acceleration response spectra of record in Fig 3.9	54
Figure 3.11 Acceleration waveforms of large amplitude vertical records	55
Figure 3.12 A history of large earthquakes	58
Figure 3.13 Tsunami	60
Figure 3.14 Damaged residential area, Tohoku earthquake 2011	62
Figure 3.15 Acceleration waveforms & velocity waveforms	63
Figure 3.16 Velocity waveforms & Velocity response spectrum	65
Figure 4.1 Orientation of the iron particles without and with a magnetic field	67
Figure 4.2 MR fluid damper	68
Figure 4.3 Large scale 20-ton MR damper	69
Figure 4.4 Schematic diagram of MR damper	69
Figure 4.5 Example of hysteric behaviour	72

Figure 4.6 Coulomb friction model	73
Figure 4.7 Viscous friction	73
Figure 4.8 Viscous friction	74
Figure 4.9 Stribeck effect	74
Figure 4.10 Model of stick slip motion	75
Figure 4.11 Friction force versus displacement	77
Figure 4.12 Bingham model	79
Figure 4.13 Response of the Bingham model	79
Figure 4.14 Extended Bingham model of MR damper	80
Figure 4.15 Bouc-Wen model of MR damper	81
Figure 4.16 Modified Bouc-Wen model of MR damper	83
Figure 5.1 Deflected three storey building structure	88
Figure 5.2 An isolated FMD of a three storey building structure	89
Figure 5.3 A schematic of a <i>n</i> -storey building-MR damper system	93
Figure 5.4 Damper differential configuration	95
Figure 5.5 Block diagram of anti windup scheme	101
Figure 6.1 Earthquake excitations (scaled down)	105
Figure 6.2 Kobe responses (Dynamic model)	114
Figure 6.3 Northridge responses	117
Figure 6.4 El-Centro responses	119
Figure 6.5 Hachinohe responses	122
Figure 6.6 Kobe responses (Static hysteresis model)	128
Figure 6.7 Hachinohe responses	130
Figure 6.8 Random excitation responses	132
Figure 6.9 Sinusoidal excitation responses	134

List of Tables

Tables

Page

Table 3.1 Notable earthquakes 2001-2011, M _w >6.0	38
Table 3.2 Magnitude versus Ground motion & Energy	45
Table 3.3 Number of earthquakes worldwide for 2001-2011	47
Table 3.4 Frequency of occurrence of earthquakes	48
Table 3.5 Comparatives earthquake statistics	55
Table 3.6 Previous Canterbury earthquakes	56
Table 3.7 Estimated costs from great Japan earthquake-tsunami	61
Table 3.8 The 2011 Tohoku earthquake & 1995 Kobe Earthquake	64
Table 4.1 Typical MR and ER fluid properties	71
Table 4.2 MR damper modelling approaches	84
Table 6.1 Comparisons of the evaluation ratios	123
Table 6.2 Comparisons of the evaluation ratios	135
Table A2.1 Parameters for the MR damper model	140