Role of androgens in vascular smooth muscle cell calcification

Tania Tsatralis

A thesis submitted in fulfilment of the requirements for the degree of Master of Science

University of Technology, Sydney

University of Technology, Sydney Australia

Submitted May 2012

"I have not failed. I've just found 10,000 ways that won't work"

Thomas Edison

1847 - 1931

Certificate of authorship/originality

I certify that the work of this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Production Note: Signature removed prior to publication.

> > Tania Tsatralis

Acknowledgments

My most heartfelt thanks and eternal gratitude goes to Lucinda McRobb. Thank you for your guidance. Thank you for your endless patience and constant support during what turned out to be a challenging project. I'm grateful that I had the opportunity to work with and learn from you. If I can in any way call myself a descent scientist I owe it to you.

Thank you to my supervisor Alison Heather for many years of support and for encouraging me to do a Masters degree before I even knew I wanted to do one. Thank you to David Van Reyk for all your encouraging words and for all the work you put into proof reading this thesis.

During my candidature I was fortunate to be surrounded by a group of friends, without whose help and support, I never would have made it through with my sanity intact. My biggest thank you goes to Joanne Tan for always making sure I was ok, for always providing much needed encouragement and for answering a million-and-one of my questions every day. I could never have done this without you. Thank you to Kate Shearston for emergency cake runs (read: therapy sessions) to Buzzbur Café and for helping me format this thesis, to Francesca Charlton for making me laugh when I needed it most, to Eleanore Liong for being my lab mum (and the lab clown!) and to Pat Pisansarakit for much needed company and advice during the many, many, many, many, many hours I spent in

iv

the tissue culture lab. Thank you to all members of the Gene Regulation Group, past and present, for making my stay the HRI a memorable one.

Thank you to my mum Hrisoula and my dad Steve, who, never having had access to the educational opportunities so readily available to me, always encouraged me to educate myself and strive for the best. Of course, a new laptop from dad, dinners from mum (delivered to me at home) and "how are you coping" texts form my sister Anastasia from the other side of the globe, cannot go unmentioned.

Table of contents

<u>1.</u> <u>C</u> H	HAPTER 1 - LITERATURE REVIEW	
1.1. (General Introduction	2
1.2.	ARTERIAL CALCIFICATION – TYPES AND CLINICAL SIGNIFICANCE	4
1.2.1.	Monckeberg's Sclerosis	5
1.2.2.	CARDIAC VALVE CALCIFICATION	5
1.2.3.	INTIMAL ATHEROSCLEROTIC CALCIFICATION	6
1.3.	MODELS OF ARTERIAL CALCIFICATION	10
1.3.1.	PASSIVE MODEL OF CALCIFICATION – LOSS OF INHIBITORS	11
1.3.2.	ACTIVE MODEL OF VASCULAR CALCIFICATION – INDUCTION OF BONE FORMATION	13
1.3.3.	VASCULAR SMC ROLE IN THE ACTIVE MODEL OF PLAQUE CALCIFICATION	16
1.4.	REGULATORY INFLUENCES OF VSMC CALCIFICATION	18
1.4.1.	Sex hormone actions	20
1.4.2.	Sex hormone receptors and sex steroid receptor signalling	21
1.4.3.	METABOLIC ACTION OF SEX HORMONES	27
1.4.4.	Sex hormone regulation of bone remodelling	29
1.5.	SEX HORMONES AS A REGULATORY INFLUENCE ON VSMC AND ATHEROSCLEROTIC	
l	PLAQUE CALCIFICATION	35
1.5.1.	Estrogens and atherosclerosis	36
1.5.2.	ANDROGENS AND ATHEROSCLEROSIS	39
1.5.3.	ANDROGEN REGULATION OF ATHEROSCLEROTIC PLAQUE CALCIFICATION	42
<u>2. M</u>	ATERIALS AND METHODS	47
2.1.	REAGENTS AND MATERIALS	47
2.2.	General Methods	50
2.2.1.	In vitro studies	50
2.2.2.	Histochemistry	53
2.2.3.	Assays	53
2.2.4.	Molecular mechanism studies	56

<u>3.</u> E	FFECTS OF TESTOSTERONE ON CALCIFYING BOVINE CORONARY	
A	RTERY SMOOTH MUSCLE CELLS	63
3.1.	INTRODUCTION	64
3.2.	MATERIALS AND METHODS	66
3.2.1.	CALCIFICATION OF BOVINE CORONARY ARTERY SMOOTH MUSCLE CELLS (BCA	SMC)
	66	
3.2.2.	PHARMACOLOGICAL INHIBITION OF T-INDUCED BCASMC CALCIFICATION	67
3.2.3.	DETERMINATION OF VSMC DIFFERENTIATION INTO OSTEOBLAST-LIKE CELLS	67
3.2.4	REAL-TIME PCR ANALYSIS OF CALCIFICATION MARKERS	68
3.2.5	STATISTICAL ANALYSIS	68
3.3.	RESULTS	70
3.3.1	BOVINE MODEL OF CALCIFICATION	70
3.3.2	. β-GP and and rogen regulation of calcification markers	83
3.3.3	. Role of hormone receptor signalling pathways in androgen stimulat	ED
	CALCIFICATION OF BCASMC	95
3.4.	DISCUSSION	106
3.4.1	. β-Glycerophosphate induces calcification in BCASMC	106
3.4.2	ANDROGENS PROMOTE DIFFERENTIATION OF BCASMC INTO CALCIFYING OSTE	OBLAST-
	LIKE CELLS IN VITRO	107
3.4.3	. ESTROGENS DO NOT PROMOTE DIFFERENTIATION OF BCASMC INTO CALCIFYIN	G
	OSTEOBLAST-LIKE CELLS	109
3.4.4	. INVERSE CORRELATION BETWEEN PROLIFERATION AND DIFFERENTIATION AFFE	CTS
	ANDROGEN PROMOTION OF CALCIFICATION	110
3.4.5	. ROLE OF HORMONE RECEPTOR SIGNALLING IN ANDROGEN-INDUCED CALCIFICAT	'ION OF
	BCASMC	112
3.4.6	. REGULATORY ROLES OF AR AND ALP IN ANDROGEN-INDUCED CALCIFICATION C)F
	BCASMC	116
<u>SUM</u>	MARY	119
4. E	EFFECTS OF TESTOSTERONE ON CALCIFYING MURINE ARTERY SM	100TH
N	AUSCLE CELLS	122
4.1.	INTRODUCTION	122

vii

4.2.	MATERIALS AND METHODS	123
4.2.1.	CALCIFICATION OF MOUSE AORTIC SMOOTH MUSCLE CELLS (MASMC)	123
4.2.2.	DETERMINATION OF $VSMC$ differentiation into osteoblast-like cells	123
4.2.3.	PHOSPHO-MAPK SIGNALLING ARRAY	124
4.2.4.	STATISTICAL ANALYSIS	125
4.3.	RESULTS	126
4.3.1.	Treatment of mouse aortic smooth muscle cells (MASMC) with β -	
	GLYCEROPHOSPHATE DOES NOT INDUCE CALCIFICATION	126
4.3.2.	β -glycerophosphate does not induce ALP activity	126
4.3.3.	INORGANIC PHOSPHATE INVARIABLY INDUCES CALCIFICATION IN MASMC ISOLA	ГED
	form 20-week old mice	128
4.3.4.	INORGANIC PHOSPHATE INDUCES CALCIFICATION OF MASMC ISOLATED FROM 4	-WEEK
	OLD MICE IN A TIME AND DOSE-DEPENDENT MANNER	130
4.3.5.	INORGANIC PHOSPHATE DOES NOT REGULATE ALP ACTIVITY IN MASMC	134
4.3.6.	TESTOSTERONE DOES NOT PROMOTE CALCIFICATION IN PI-TREATED MASMC	134
4.3.7.	T DOES NOT REGULATE INDUCTION OF MAPK SIGNALLING CASCADES	140
4.4.	DISCUSSION	145
4.4.1.	PI-INDUCED MODEL OF MASMC CALCIFICATION IS ALP-INDEPENDENT	146
4.4.2.	LACK OF ANDROGEN-INDUCED CALCIFICATION IN THE MASMC MODEL	147
4.4.3.	INFLUENCE OF VASCULAR ORIGINS ON CULTURED MASMC CALCIFICATION	149
4.4.4.	INFLUENCE OF ANIMAL AGE ON CULTURED MASMC CALCIFICATION	151
4.4.5.	ANDROGENS DO NOT REGULATE MAPK SIGNALLING IN PI-INDUCED MODEL OF	
	MASMC CALCIFICATION	152
Summ	ARY	153
<u>5.</u> <u>C</u>	ONCLUSIONS AND FUTURE PERSPECTIVES	155
5.1.	ESTABLISHMENT OF IN VITRO MODELS OF CALCIFICATION	155
5.2.	And rogen regulation of $VSMC$ differentiation into calcifying osteoble	AST-
	LIKE CELLS	156
5.3.	REGULATORY MECHANISMS THAT UNDERLIE ANDROGEN-STIMULATED CALCIFICAT	ION
	159	
5.4.	Future studies	160

viii

List of figures

CHAPTER 1

Figure 1.1 Models of vascular calcification	15
Figure 1.2 Mechanisms of vascular calcification	19
Figure 1.3 Mechanism of sex-hormone action.	23
Figure 1.4 Non genomic sex hormone signalling.	25
Figure 1.5 Metabolic actions of sex hormones	28

CHAPTER 2

Figure 2.1 Electrogram of total RNA sample form BCASMC. The relative position	ons
of 18S rRNA and 28S rRNA are indicated	_58
Figure 2.2 Virtual gel of total RNA sample from BCASMC. The positions of 18S	
rRNA and 28S rRNA are indicated relative to the RNA ladder	_58
Figure 2.3 Representative standard curve – Serial dilutions of cDNA were	
prepared to produce standard curves for real-time PCR.	_61

CHAPTER 3

Figure 3.1 Calcification of BCASMC in response to β-GP treatment	_71
Figure 3.2 Representative images of Von Kossa stained BCASMC	_74
Figure 3.3 Relative calcium levels in T, DHT and E ₂ -treated BCASMC	_75
Figure 3.4 Calcification of confluent versus sub-confluent BCASMC	_77
Figure 3.5 Time course of ALP induction in β-GP-treated BCASMC	_80
Figure 3.6 ALP activity in T, DHT and E2-treated BCASMC	_81
Figure 3.7 Relative ALP mRNA levels in T, DHT and E ₂ -treated BCASMC	_82
Figure 3.8 Relative MGP expression in T, DHT and E ₂ -treated BCASMC	_85
Figure 3.9 Relative OPN expression in T, DHT and E_2 treated BCASMC	_86
Figure 3.10 Relative BSP expression in T, DHT and E_2 treated BCASMC	_88
Figure 3.11 Relative Collagen I expression in T, DHT and E_2 treated BCASMC _	_89
Figure 3.12 Relative Collagen II expression in T, DHT and E_2 treated BCASMC .	_90
Figure 3.13 Relative OCN expression in T, DHT and E ₂ treated BCASMC	_91

Figure 3.14 Relative Runx2 expression in T, DHT and E₂ treated BCASMC _____ 93 Figure 3.15 Relative Msx2 expression in T, DHT and E₂ treated BCASMC _____ 94 Figure 3.16 Relative calcium quantification in AR inhibited BCASMC _____ 97 Figure 3.17 Relative calcium quantification in ER α and ER β inhibited BCASMC 98 Figure 3.18 Relative calcium quantification in AR inhibited BCASMC _____ 100 Figure 3.19 Relative calcium quantification in ER α and ER β inhibited BCASMC

Figure 3.20 Relative AR expression in T, DHT and E_2 treated BCASMC _____ 104 Figure 3.21 Relative ER α expression in T, DHT and E_2 treated BCASMC _____ 105

CHAPTER 4

Figure 4.1 Representative images of Von Kossa-stained, β -GP-treated MASM	C127
Figure 4.2 Preliminary calcium quantification of Pi-treated MASMC	_ 129
Figure 4.3 Representative images of Von Kossa-stained, Pi-treated MASMC $_$	_ 132
Figure 4.4 Time and dose-dependent increase in Pi-induced calcification in	
MASMC	_ 133
Figure 4.5 Calcium quantification of 1.8 mM Pi-induced MASMC	_ 137
Figure 4.6 Calcium quantification of 2.2 mM Pi-induced MASMC	_ 138
Figure 4.7 Calcium quantification of 2.6 mM Pi-induced MASMC	_ 139
Figure 4.8 Phospho-MAPK Array	_ 142
Figure 4.9 T regulation of pERK2	_ 143
Figure 4.10 T regulation of Akt1	_ 144

LIST OF TABLES

Table 1.1 Types of vascular calcification	_ 4
Table 2.1 List of primer sequences used	60

102

Abbreviations

ALP	Alkaline phosphatase
AP-1	Activating protein-1
AR	Androgen receptor
ART	Androgen replacement therapy
β-GP	β-Glycerophosphate
BCASMC	Bovine coronary artery cells
BMP	Bone matrix protein
BSP	Bone sialoprotein
Ca	Calcium
Cbfa1	Core-binding factor alpha-1
CPA	Cyproterone
CVC	Calcifying vascular cells
CVD	Cardiovascular disease
Dex	Dexamethasone
DHT	5a-dihydrotestosterone
\mathbb{E}_2	17-β-estradiol
EC	Endothelial cells
ECM	Extra-cellular matrix
ERK1/2	Extracellular signal-related kinase 1/2
ERSD	End-stage renal disease
ERα	Estrogen receptor-a
ERβ	Estrogen receptor-β
FBS	Foetal bovine serum
GPR30	G-protein coupled receptor 30
HASMC	Human aortic smooth muscle cells
HDL	High-density lipoprotein
HDL-C	High-density lipoprotein cholesterol
HERS	Heart and Estrogen/Progestin Replacement Study
HF	Hydroxyflutamide
HRT	Hormone replacement therapy
Hsp	Heat shock proteins
IL-6	Interleukin-6
JNK	c-Jun N-terminal kinase
LDL	Low-density lipoprotein
LDL-C	Low-density lipoprotein cholesterol
MAPK	Mitogen-activated protein kinase
MASMC	Mouse artery smooth muscle cells
MGP	Matrix-Gla protein
MMP	Matrix metalloproteinases
MPP	MPP dihydrochloride hydrate
Msx2	Msh homebox-2
NFĸB	Nuclear factor κΒ
NO	Nitric oxide
OPG	Osteoprotegerin
OPN	Osteopontin
Osx	Osterix

Pi	Inorganic phosphate
PI3K/Akt	Phosphoinositide-3 kinase
PHTPP	Phenyl-bis triflouromethyl pyrazole pyrimidin
POCS	Polycystic ovary syndrome
PPi	Inorganic pyrophosphate
RANKL	Receptor activator of nuclear ĸB ligand
Runx2	Runt-related transcription factor
SRE	Steroid response element
SMC	Smooth muscle cells
Т	Testosterone
TBP	TATA box-binding protein
(TNF)α	Tumour necrosis factor-α
VSMC	Vascular smooth muscle cells
WHI	Women's Health Initiative
WHI-CACS	Women's Health Initiative Coronary-Artery Calcium Study

Abstract

Calcification is a common feature of advanced atherosclerotic lesions and is a clinically significant predictor of cardiovascular events. Coronary calcification is more prevalent in men than age-matched women. However, atherosclerotic calcification increases in postmenopausal women, who present with lower levels of estrogen, suggesting that sex hormones play a critical role in its pathogenesis and progression. This has implications for hormone therapy treatment that is used to treat age-related conditions such as osteoporosis and menopause Extensive observational studies into estrogen replacement therapy have revealed that postmenopausal women treated with estrogen exhibit less extensive atherosclerotic calcification. The effects of androgens on atherosclerotic calcification have, however, received little attention and consequently its mechanisms remain poorly understood. This study therefore explored the effects of androgens on atherosclerotic calcification.

In vitro studies postulate vascular smooth muscle cell (VSMC) differentiation into mineralising osteoblast-like cells as a key mediator of atherosclerotic calcification. Given the gender disparity in atherosclerotic calcification we hypothesised that androgens promote differentiation of VSMC into mineralising osteoblast-like cells. Therefore, the aims of this study were to 1) examine the effects of androgens in vascular smooth muscle cell differentiation and calcification and 2) elucidate the molecular mechanisms of androgen action in this process, using phosphate-induced bovine and murine *in vitro* models of calcification.

This study demonstrated that co-treatment of bovine coronary artery smooth muscle cells (BCASMC) with phosphate and testosterone (T) and dihydrotestosterone (DHT) promoted calcification. Investigation of the molecular mechanisms underlying calcification in the bovine model revealed T-stimulated calcification was estrogen receptor (ER) driven. DHT, however, mediated its effects via the androgen receptor (AR). Further investigation of molecular mechanisms showed DHT regulated ALP activity whereas T did not. T,

xiii

therefore, promoted calcification in an ER-driven, ALP independent pathway in contrast to DHT, which mediated its effects via an AR-driven, ALP dependent pathway.

A primary mouse cell-based calcification model was also established. In contrast to the bovine model, it was found that T and DHT treatment did not promote calcification in the murine model. The lack of androgen promotion of calcification in this model was associated with the absence of ALP activity. The conclusion drawn from the bovine model, of a mechanistic role for ALP in the DHT/AR driven mineralisation but not for T-driven mineralisation, suggested that in the murine cells an ER pathway is not functioning.

In conclusion, the studies presented in this thesis demonstrate that T and DHT promote differentiation of vascular smooth muscle cells into osteoblast-like cells capable of mineralisation. T and DHT mediate calcification via alternative pathways that can involve AR and ERs. A potential mechanistic role for ALP in DHT/AR-driven mineralisation has been established.