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Abstract 

Peristaltic flow is a transport mechanism primarily used in the human body to transport fluids. 

This form of transport is characterised by the contraction and relaxation of flexible tubes. Many 

studies have been undertaken to investigate this phenomenon. Factors such as amplitude ratio, 

wave number and the Reynolds number have been studied to identify their effects on peristaltic 

flow. 

In this work, the peristaltic flow of power-law fluids under non-isothermal conditions is 

investigated using the Computation Fluid Dynamics (CFD) methodology. The effect of 

temperature on peristaltic flow will be investigated in various conditions, for example, in 

Newtonian fluid (a special case of power-law fluids), non-Newtonian fluid of power-law type 

and different values of coefficient a1 ( a1 being exponential coefficient of the temperature 

dependent viscosity). 

Pelistaltic flow for possible industrial applications will be considered, with fluid properties thus 

corresponding to those of an oil and a wider range of the Reynolds numbers (1-1 000) than for 

biological applications. Comparison of isothennal versus non-isothermal flow shall also be 

shown. 

Flow will be studied in the reference frame which moves with the wave (the wave frame). In this 

reference frame, the flow becomes steady. Firstly, isothermal flow models are sho\\.TI to produce 

comparable results with previous works from the literature, therefore proving the validity of the 

present computational methodology. These conditions were then applied to non-isothermal 

models. 
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After this confidence has been established, non-isothermal flow is then investigated. This in turn 

affects whole flow field including factors such as change of viscosity and shear stress due to 

temperature change. 

Streamline patterns, velocity profiles and pressure drop per wavelength are presented to show the 

effect of temperature in peristaltic flow. Pressure drop in non-isothermal flow is shown to be 

significantly less than that for isothermal case. Thus, for example, in the case of isothermal 

Newtonian flow, pressure drop per wavelength is 6305.2 Pa with conditions of the Reynolds 

number Re=lO, wave number (a)= 0.25 and amplitude ratio(¢)= 0.5. On the other hand, in the 

case of non-isothermal flow, pressure drop per wavelength becomes 2054.7 Pa with the same 

conditions. 

Influence of te1nperature is then considered in flow of non-Newtonian fluids of the power-law 

type. Consistent flow conditions are modelled to give a reasonable con1parison. It is found that 

Newtonian and shear-thickening fluids are influenced by temperature strongly. However, in the 

case for shear thinning fluid, the effect of temperature is relatively small. Thus, for example, in 

table 5.2 (chapter 5), pressure drop per wavelength in a case for shear thinning fluids is very 

similar, at 49.153 Pa and 55.892 Pa corresponding to viscosity exponential coefficient 

al = -0.034 oc-1and al =0 oc-l respectively. 

The role of coefficient a1 in power-law fluid is clarified in this research. Different values of a1 

are used and the corresponding results presented. They show that a1 has stronger influence on 

the flow at regions adjacent to walls. 

Vorticity patterns are also presented to show the effect of temperature. Especially, for Newtonian 

fluids, temperature affects vorticity differently at the crest and trough sections. 

The effect of temperature on peri static flow in different geometry is shown by streamline patterns, 

pressure drops and velocity profile. The variable, h (the mean distance of the wall frorn the axis 

of symmetry) is utilised to produce a model that shows the effect of the geometry in isothermal 
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flow. After the geometry is changed and resulting effect plotted, non-isothermal flow model is 

considered to prove the presence of thermal effects. The results gained by the models indicate 

that the temperature effect is stronger at the region adjacent to the wall in different geometries 

and the effect of temperature reduced the effect of geometry in pressure drop. 

The above study was carried out in order to simulate realistic peristaltic flow. The addition of 

temperature by modelling non-isothermal flow has been shown to reduce the impact of the 

Reynolds number therefore changing the streamline pattern. This effect has been visualised in a 

number of special fluid applications to give a variety of results. The effects shown visually by 

CFD represent what peristaltic flow in industrial applications could look like. 
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Chapter 1. Introduction 

1.1 Introduction 

Peristaltic flow has been investigated by many studies during the past few decades and most of 

these studies have focused on physiological science. This chapter will briefly introduce the 

previous studies to provide an understanding of the history of peristaltic flow. The problem and 

objectives that are considered in this research will be stated with an outline of the thesis. 

Many studies have investigated the peristaltic flow and factors like amplitude ratio, wave 

number and the Reynolds number have been shown to be important in describing peristaltic flow. 

Most of studies have only focused upon biological applications therefore, in this study, the 

possible use of peristaltic flow in industry with fluids having oil properties and a wide range of 

the Reynolds numbers (from 1-1 000) is investigated. The main objective of this work is to 

investigate the effect of temperature on peristaltic flow. 

Finally, the outline of this research is given in order to present a good understanding for the 

structure and direction of this work. 
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Chapter 1. Introduction 

1.2 Brief history of peristaltic flow study 

Peristalsis is a progressive wave resulting from area contraction and expansion of an 

extensible tube, and propagates a fluid along the length of the tube (Ayukawa et al [11]). As 

it propagates, it has a capability of affecting the motion for the fluid contained in the tube. It 

was described by Bayliss and Starling [ 1] as a type of movement where there is contraction 

and relaxation. 

Yih and Fung [24] speculated that peristalsis may be involved in the vasomotion of small 

blood vessels which change their diameters periodically. 

In 1971, Jaffrin and Shapiro [9] introduced the basic mechanism of a peristaltic pumping 

system. 

Takabatake and Ayukawa [1 9] investigated the effect of the amplitude ratio and the wave 

number, which are determined by the geometry of the peristaltic wave. They also studied that 

the effect of the Reynolds number on peristaltic flow and the velocity and pressure fields were 

obtained and the relationshjp between the pressure rise per wave number were discussed. 

Ayukawa and Takabatake [11] studied the characteristics of a peristaltic flow such as the 

periodicity of the flow pattern and effects of the Reynolds number in range of 0.01-1000. 

Takabatake, Ayukawa and Mori [20] investigated peristaltic reflux, trapping phenomenon and 

pumping efficiency. The effect of the Reynolds number on trapping phenomenon was 

investigated. 
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Chapter 1. Introduction 

Flow structure, pressure and shear stress distribution for zero flow rates were investigated by 

Xiao and Damodaran [23] . The effect of Reynolds number on the conditions of different 

values ofwave number (a =0.01 and a) 0.01) was studied. 

In 2006, the effect of power-law on the peristaltic flow was studied by Hayat and Ali [5]. 

They investigated the distribution of velocity and pressure in three conditions, in Newtonian, 

shear thinning and shear thickening fluids on peristaltic flow. However, their work is for 

isothermal flow only. 

1.3 Problem statements and research objectives 

Peristaltic flow is a primary transport mechanism inherent in many tubular organs of the 

human body, for example, the ureter, the gastro-intestinal tract and the urethra. It is also used 

in material handling systems in industry. The peristaltic pumping system is also used in 

medical applications like the blood pump in which the Reynolds number has a moderately 

high value. Cunently the peristaltic pumping system is one of the n1ost important instnnnents 

to transpo1i rnaterial. 

Many studies have developed the understanding of fluid phenon1enon on peristaltic flow and 

its characteristics. However, the effect of temperature on the peristaltic flow has not been 

fully investigated yet. It is believed that peristaltic flow is deemed to be significantly 

dependent on viscosity. Any change in this property would therefore affect the flow 

characteristics. Since viscosity in turn is often dependent on temperature, any changes in 

thermal condition (for example by viscous heating) can therefore affect peristaltic flow. 

In this work, the effect of temperature on peristaltic flow through an axi-symmetric tube will 

be investigated numerically using a commercial Computational Fluid Dynamics (CFD) 

software package. The fluid is assumed to be of a power-law type whose viscosity is also 

temperature dependent. 
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Chapter 1. Introduction 

The power-law index will cover the range of fluid behaviour, for shear thinning, through 

Newtonian, to shear thickening type. 

Various geometries (characterised by different wave numbers and amplitude ratios) will also 

be considered under both isothermal and non-isothermal conditions. 

1.4 Thesis outline 

In chapter 2, a literature review showing previous studies that have investigated aspects of this 

flow is provided. The backgrounds such as definition of peristaltic flow, the Reynolds number 

and governing equations is introduced to provide an understanding of this flow phenon1enon. 

The governing equations that are used in numerical calculations for modelling and representing 

this flow phenomenon are presented in this chapter along with the relevant boundary conditions. 

Chapter 3 describes the methodology which is utilised in this research. This chapter introduces 

the use of Computation Fluid Dynamics (CFD) to produce a model that simulates isothermal and 

non-isothermal flow. The specific software used in this work is introduced along ·with the 

hardware. The discussion of boundary conditions in the wave frame is shown in this chapter. The 

parameters such as axial velocity, radial velocity, reference pressure and reference te1n.perature 

that have to be applied on the inlet, outlet, wall and axis of symmetry to obtain the steady-flow 

results are introduced. Grid convergence which is a technique to ensure accurate results 

produced in CFD, is also presented. 

Chapter 4 presents the initial steps used to produce an isothermal flow model. Results from this 

model are compared to previous works from the literature and provide a benchmark for future 

investigations. Maximum and minimum velocities with three parameters, amplitude ratios, wave 

numbers and the Reynolds numbers were obtained and compared with the results from Xiao et al 

[23]. Streamline patterns with various values of the Reynolds number were plotted. The effect of 
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Chapter 1. Introduction 

the Reynolds number in condition of a= 0.01 and ¢ = 0.7 were plotted and compared to the 

results from Xiao et al [23]. The dimensionless time mean flow (Q/nh 2c) was also utilised and 

its streamline patterns were plotted. The results for this work are shown in this chapter. 

In Chapter 5, simulations of the effect of temperature on peristaltic flow with various conditions, 

is discussed. The first case for Newtonian fluid with a wide range of the Reynolds number is 

used to show the effect of temperature on peristaltic flow. The effects of temperature on 

Newtonian and non-Newtonian fluids are compared. Additionally in this chapter, the influence 

of viscosity exponential coefficient a1 of in a Newtonian fluid is investigated. The effect of 

temperature on the vorticity in peristaltic flow is numerically found for the conditions of a 

Newtonian and shear thinning fluid. The temperature effect on different geometries is also 

discussed in this chapter. 

Chapter 6 provides the conclusions and recommendations from this work. The results of this 

research are summarised and a comparison of this work with other results are shown. This 

chapter will also provide ideas for further development, better techniques and unsolved problems. 
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2. Literature review 

2.1. Introduction 

This literature review will discuss some previous works by other researchers related to peristaltic 

flow and the current understanding of this phenomenon. Many research groups have studied 

peristaltic flow in different directions .. 

In order to investigate peristaltic flow, the effects of the amplitude ratio, wave number and the 

Reynolds number on peristaltic flow need to be investigated. These factors affect the fluid flow 

properties in the form of velocity, pressure and shear change. The studies of the effects of these 

factors on peristaltic flow are discussed. 
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2.1.1 Peristaltic pumping (Shapiro et al [9] ) 

2.1.1.1) Basic mechanism of peristaltic pumping 

The basic mechanism of a peristaltic pump can be seen below in Figure 2.1 (Shapiro et al [9]). 

(a) 

c c 

Figure 2.1 Conceptual illustration of the basic mechanism in peristaltic pumping. (a) :unsteady flow as 

seen in a laboratory frame, (b) : steady flow as seen in a wave frame (Shapiro et al [9]). 

In Figure 2.1 , (a) in the laboratory frame, shows a long tube closed at both ends, where a 

peristaltic wave of contraction is produced by moving a sliding cuff to the right at speed c. Part 

(b) of the same figure shows a wave frame of reference which moves towards the right with the 

speed c, relative to the laboratory frame; in this wave frame, the waveform appears stationary. 

However, in the wave frame, the walls move towards the left with the speed c, and there is a 

uniform flow of speed - c in the two large cross-sections. The average leftwards velocity in the 

contracted section must exceed c to conserve volume flow of an incompressible fluid. The 

velocity profile in this contraction section must be parabolic, assuming for the moment that the 
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flow is viscous and inertia-free with velocity of -cat the walls. There is pressure drop from 

right to left in the contracted section, due to viscous losses. 

Two conclusions can be drawn from the physics in this example. 

1) Dissipation is an essential feature of peristaltic pumping. Without this viscous effect, the 

flow in the contracted section would have no associated pressure drop. 

2) The fluid in the minimum section (trough) moves opposite to the wave direction as seen 

in the laboratory frame, while the fluid in the enlarged sections moves in the same 

direction as the wave frame (Shapiro et al [9]). 

Figure 2.2 shows the configuration of the peristaltic flow which was utilised in the work 

conducted by Shapiro et al [9]. 

/ c 

--- - -~--
I 

Y,V 

H {X,t) h t 
_j_ - - L-..-x,u 

Figure 2.2 Nomenclature for 2-dimensional periodic sine wave. 

Four important dimensionless parameters are introduced as following, 

a = !!_ A-. £ Re = he a and R = g 
A ' 'f' = h' v ch 

(2.1) 
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2.1.1.2) Parameters of the problem 

Identifying the problem parameters for peristaltic pumping 

There are four dimensionless parameters (Shapiro et al [9]). 

1) The amplitude ratio, ~ = ~ which determine the relative degree of geometric occlusion 
h 

or squeeze. 

2) The wave number, a = ~ , is related to the slope and curvature of the wall. 
A 

3) The Reynolds number, defined as Re = he a, is the correct ratio of inertial to viscous 
v 

terms when inertial effects are relatively small and when peristalsis acts as a pump 

(Shapiro et al [18]). 

4) The dimensionless time-n1ean flow ( f = _Q) for 2 dimensional flow indicates the 
ch 

dimensionless mean-volume flow per unit area. 

The first two (amplitude ratio and wave number) are determined by geometry; the Reynolds 

num her gives partial description of the flow nature and flow rate is often given as imposed 

boundary condition. 

2.1.1.3) Trapping 

Figure 2.3 Streamlines in a wave frame when a trapped bolus exists in the laboratory frame (Shapiro et al 

[9] ) 
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In the wave frame, the streamlines are generally similar in shape to the wall but with lesser 

amplitude as the axis is approached. An interesting exception to this situation is that, under 

certain condition (identified by Shapiro et al [9]) as Q > (2 - ¢); where Q is the time mean 
3 

flow rate and ¢ is amplitude ratio), the central streamline splits to enclose a bolus of fluid 

particles describing closed streamlines in the wave frame. This bolus is centered under the crest 

of the wave as shown in Figure 2.3. 

2.1.2 Numerical Analysis of Two-Dimensional Peristaltic Flow 

(Ayukawa et al [11]) 

An investigation was made to determine the influence of wave amplitude, wave number and the 

Reynolds number on the flow pattern. They presented the characteristics of a peristaltic flow 

such as the periodicity of the flow pattern and effects of the Reynolds number in range of0.01 -

1000. 

2.1.2.1) Periodicity of the tlow pattern 

The periodicity of the flow pattern is judged from the velocity profiles on sections at the crests 

and the troughs. 
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v 

L. 
Trailing end Leading end 

Ulc = 0.2 

(a) Trou~h sections 

(b) Crest sections 

Figure 2.4 Velocity profiles; ¢> = 0.19, a= 0.21, Re=210 and Q = 0 , Dashed lines are profiles when 

a parabolic wave is imposed at leading and trailing ends, solid lines are profiles when a trapezoidal wave 

is imposed (Ayukawa et al [11]) 

Figure 2.4 presents the longitudinal velocity profiles at eleven locations in the laboratory frame. 

The figure shows the trough and the crest sections in the finite region which are gained by 

imposing different velocity profiles (via strean1 function) at inlet. When the velocity profiles on 

the sections at the crest and the trough are compared with the next one, the flow is regarded as 

periodic if the absolute values of different turn out to he smaller than 1 o-6
. 
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The solid curves present the results obtained by imposing a trapezoidal velocity profile at the 

leading and trailing ends, while the dashed curves are the ones obtained for parabolic velocity 

profile. 

The velocity profile imposed at the leading end influences the velocity profiles at the crest and 

the trough sections in the inner part of the flow region but this influence becomes gradually 

weaker as the distance from the leading end increases, becoming negligible after 8 wavelengths. 

The regular profiles which are independent of the imposed velocity profiles on the ends are 

observed in the central part of the flow region (91
h and 1Oth wavelength region from the leading 

ends). 

2.1.2.2) Effect of the geometrical shape of the peristaltic wave 

The geometrical shape of the peristaltic wave is governed by two dimensionless parameters, the 

amplitude ratio ( if> = 8 
) the wave number (a = !:_ ). 

h A 

UIC ~ 1 
- C<ltcuta.tion 4--·--·--9< 
--- JoffrJn 

L . 
f 

I
' V/r: .eo: 1 

Figure 2.5 Velocity profiles; if>= 0.4, a = 0.3, Re=0.01 and Q = 0 (Ayukawa et al [11]); 
Reference to Jaffrin is Reference [8] in this work 
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Figure 2.5 presents the profiles ofU and V fore/>= 0.4 and a = 0.3. For the limit in a ~ 0, 

Shapiro et al [18] pointed out that the profile ofU was parabolic at each cross section of the 

channel but the profiles (Ayukawa et al [1 1]) are seen to be slightly deformed from the parabolic 

profiles because of the finite value of a . It is thus seen that a is a significant geometric 

factor which dominates the flow field in the peristaltic channel. 

2.1.2.3) The effect of the Reynolds number 

u 
c 

-0.2 

- 0-4 

... 
' \ 

' \ 

Crellt section 

Trough sectiOn ______________________ ._ ___ ~ 
Figure 2.6 Velocities on the centre axis at the crest and the trough sections for cp = 0.2, a= 0.01and 

Q = 0 (Ayukawa et al [1 1]) 

When Re < l , both velocities on the centre axis at the crest and the trough sections are constant 

independently of the Reynolds number. On the other hand, for Re > 1, the absolute values of 

velocity on the centre axis decrease and asymptotically approach the solution of a potential flow 

as the Reynolds number increases (Ayukawa et al [11]). 
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2.1.3 Numerical study of Two-Dimensional Peristaltic Flow (Takabatake et al 

[19]) 

The influences of amplitude ratio, wave number and Reynolds number on the flow were 

investigated through numerical calculations. The velocity and pressure fields were obtained and 

the relationship between the pressure rise per wave number were discussed. Takabatake et al [19] 

introduced the idea of stagnation points, which are the locations where the direction of flow 

motion is reversed. The dimensionless time-average flow rate ( R = Jl) for 2 dimensional flow in 
ch 

the laboratory frame is defined in this study, Takabatake et al [19]. It indicates the dimensionless 

mean-volume flow per unit area. 

2.1.3.1) Velocity field 

The peristaltic flow has four significant dimensionless parameters, the amplitude ratio ¢ = ~ , 
h 

wave number a = !!_ , the Reynolds number and the dimensionless time-nwan flow ( f = Jl) for 2 
A ch 

dimensional (and axi-symmetric) flow; The amplitude ratio and the wave number are determined 

by the geometry of the peristaltic wave. 
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U/c =O·.S . 
• 

L . 
1·0 

x/A, 

- Q 
Figure 2.7 Longitudinal velocity profiles ¢ =0.4, a=0.2, Re=l, fl.p;., = 0 and £ ( = -) = 0.239 for 2 

ch 

dimensional flow (Takabatake et al [ 19]) 

When the dimensionless time mean flow (£)is zero, the forward-flow region and the retrograde-

flow region equally occupy half of the one wavelength region but in Figure 2. 7, the forward-flow 

region is predominant because of the finite value of the time mean flow. 

In Figure 2.7, two stagnation pointsS1andS2 appear along the axis near the trailing and the 

leading end respectively, separating the central region of a forward flow from two retrograde 

flow regions (\\rhere flow direction is reversed) 

The longitudinal velocity profiles at the sections near the leading stagnation point S2 are shown 

to be defonned slightly from the parabolic profiles because of the effects of fluid inertia and wall 

slope, due respectively to the finite values of Re and a . 
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o-s 
0.3 

u 
c 

0~--~~~~--~~--~--~~ 
0 

Trouch seetion 

Figure 2.8 Velocities on the centre axis at the crest and the trough section for Re=O.Ol and £ ( = 2_) = 0 
ch 

(Takabatake et al [19]) 

Figure 2.8 shows the effects of ¢ and a on the velocities on the axis at the crest and the 

trough. When a is small, velocities on the axis are constant for all values of ¢ (Takabatake et 

al [19]) 

2.1.3.2) Pressure field 

The effects of the Reynolds number on the pressw·e contours were identified in this investigation 

[19]. Figure 2.9 shows the effect of the Reynolds number on pressure distribution along 

peristaltic wall when the dimensionless pressure rise per wavelength ~ P ;, = h 
2

M;._ 
peA-

IS zero 

(where 11p?.. is pressure rise per wavelength). The dimensionless pressure rise per wavelength 

- -
11 P;. at zero time mean flow ( £ = 0) is plotted in Figure 2.1 0. 
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p 

PMAX 

-1·0 0·01 
~I 

1 
10 

0.$330 
0.5462 
0·9412 
8·S09 

Figure 2.9 Pressure distribution along peristaltic wall for </J =0.4, a =0.2, £ ( = Jl) = 0.239 for 2 
ch 

dimensional flow and M ?.. =0; (here pis pressure) (Takabatake et al [19]) 

Pressure distributions along the wall for various values of the Reynolds nmnber were 

investigated. When Re is extremely small, the pressure on the wall is positive at the contracting 

part of the channel and is negative at the expansion part. 

The distribution along the wall is closely antisymmetric about the midsection. As Re increases, 

the positions of the maximum and the minimum pressure move forward (positive x-direction) 

and a nearly symmetrical distribution along the wall is found. 
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2·0 

0·2 

0 

a 

Figure 2.10 Pressure rise per wave number for Re=O.O 1, f ( = Q_) =0 for 2 dimensional flow (Takabatake 
ch 

et al [19]) 

Figure 2.10 (Takabatake et al [19]) shows variation in terms of amplitude ratio and wave number. 

This contribution appears at smaller a as 4> increase. 
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2.1.4 A numerical investigation of peristaltic waves in circular tubes (Xiao et al 

[23]). 

In the work by Xiao et al [23], the computational model developed covered a wide range of 

Reynolds numbers (0.01-100), wave amplitudes (0-0.8) and wavelengths (0.01-0.4). Some 

results pertaining to the distribution of velocity, pressure and shear stress for different peristaltic 

flow conditions characterising flow at moderately higher Reynolds number have been obtained. 

2.1.4.1) Flow structure, pressure, shear stress distribution for zero time mean flow 

Their paper presented computational results pertaining to the Reynolds number effect on the 

flow structure for the case corresponding to the geometric condition of a = 0.0 1. Figure 2.11 

and 2.12 shows the variation of the computed streamlines with the Reynolds number in both the 

wave fnune and laboratory frame for the case of a= 0.01and Q/nch 2 = 0 , if>= 0.2 and¢ = 0.7 

respectively. 
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Laboratory Frame Wave Frame 

I Re=l O I 

~~-
I Re=lOO J 

Figure 2.11 The effect of the Reynolds number on the streamline patterns in the wave frame and 

laboratory frame for a = 0.01, Q/ rrch 2 = 0, ¢; = 0.2 (Xiao et al [23]) 
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Laboratory Fra1ne \\lave Fraine 

Re=l.O 

Re=lOO 

Figure 2.12 The effect of the Reynolds number on the streamline patterns in the wave frame and 

- ; 2 laboratory frame for a = 0.0 1, Q nch = 0, ¢ = 0. 7 (Xiao et al [23]) 

As it can be seen by comparing the two figures( Fig 2.11 and 2.12), the effect of the Reynolds 

number on the flow structure can be seen ; the Reynolds number can be seen to have strong 

effect on the flow pattern where amplitude ratio 4> is larger ; the comparison shown is 

between 4> = 0.2 and ¢> = 0.7 and the stronger effect of the Reynolds number is discovered in the 

case corresponding to ¢> = 0.7 in Figure 2.12 than the case corresponding to ¢> = 0.2 in Figure 

2.11. This result implies that inertial force effect on the peristaltic flow is stronger for the case 

with a larger amplitude ratio. 
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1.5 1.5 

(a) (b) 

Re=IOO 
0.5 0.5 

e. .... 0 "'.1.._.0 
0. 0.4 0.6 

.Q.S -0.5 Re""'.OI 

·1 -1 

·1.5 -1.5 

Figure 2.13 The effect ofthe Reynolds number on the normalised non-dimensional pressure distribution 

for a= 0.01 and Q/nch 2 = O,(a) ¢ = 0.2 (b)¢= 0.7 (Xiao et al [23]) 

The effect of the Reynolds number on the normalised, non-dimensional pressure distribution 

corresponding to flow cases where the amplitude ratio¢= 0.2 and¢= 0.7 respectively is shown 

in Figure 2.13. For ¢ = 0.7, the pressure distribution remains a constant in the central part of 

one wavelength (i.e 0.2<% <0.8) with the sudden rise in p near the two boundaries of the wave 

cycle. Whereas the pressure distribution in the case for¢= 0.2 varies with the %during the 

whole wave cycle and as the Reynolds nurnber increases the maximum non-dimensional 

pressure approaches the middle point of the wave cycle. 
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1 .. 2 ~....., 1.2 
(a) I (b) 

I 
o.e 

I 
0.6 0.8 

-d.tma"$. 
'tl'tmt," 0.4 

I 0.6 

0.2 ! 
I 

0.4 

-0.2 0.2 
R~.01...0.1 

-0.4 -~ 

.o.e 

.0.8 -0.2 
0. 0 . .2 0.4 0.6 08 , ,( 0.0 0.2 0.4 0.6 0.8 

z!'4 m.. 

Figure 2.14 The effect of the Reynolds number on the shear stress distribution for a = 0.01 and 

Q/rcch 2 = O,(a) ¢ = 0.2 (b)¢= 0.7 ( Xiao et al [23]) 

1.0 

The variation of the non-dimensional shear stress ( r /r max ) distribution along the peristaltic wall 

corresponding to the two cases for ¢ = 0.2 and¢= 0.7 are presented respectively. For the range 

of the Reynolds number from 0.01 to 1.0, the effect of the Reynolds number on the shear stress 

distribution i small for both cases although the variation of shear stress is much sharper for 

¢ = 0.2 than ¢ = 0. 7 . 

Both figures present a symmetric feature about the midsection. However, the symmetric feature 

is broken if the Reynolds number increase to 1 0 and 1 00 and the location for the n1inimum shear 

stress n1oves downstream. In the case for¢= 0.7, the symmetry is maintained for the entire 

range with two locations for minimum shear stress appear around 7i = 0.2 and 0.9. 
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2.1.4.2) Reynolds number effect corresponding to the case when a )0.0 1 

In order to study the effect on the flow structure by relaxing the assumption of a = 0.01 , 

computations for cases when a= 0.1 , 0.2 and 0.4 was investigated. 

0 .. 8 - ···-·· ~--- 1.5 

0.6 

0.4 0.5 

0.2 0 

(Uic} 0 (U/e) ..0.5 
mAll! max 

..0.2 -1 

.OA -1.5 

-o.e -2 

-o.s ·2.5 

-1 (a) ..:3 (b) 
-1.2 ·3.5 

0-01 0.1 10 0,01 0.1 
fU Re 

1C 

Figure 2.15 The effect of the Reynolds number on the maximum axial velocity for different wave number 
a . (a) </J = 0.2 (b) <jJ = 0.4 (Xiao et al [23]) 

The effect of the Reynolds nun1ber on the maxjmum. axial velocity in the laboratory frame for 

different values of wave nurnber corresponding to <jJ = 0.2 and ¢ = 0.4 is plotted in Figure 2.15. 

Figure 2.15 shows a similar trend with maximum axial velocity associating with the Reynolds 

number. When Re < 1.0, (U I c )max remains a constant (which is a function of a ) irrespective 

of the Reynolds number. On the other hand, when Re> 1.0, (U I c )max decreases with Reynolds 

number. 
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2.1.5 On mechanism of the peristaltic flow for Power-law fluid (Hayat et al [5]), 

These researchers presented a mathematical model for flow induced by peristaltic waves through 

a deformable tube, considering an incompressible power-law fluid. The main goal of this work 

was the stream function, axial velocity and pressure gradient for power-law fluid. 

2.1.5.1) Pressure drop per wavelength with power-law fluid 

Table 2.1 Pressure drop per wavelength along flow direction M ;.. (in Pa) for different values of 

total flux F (=!L ), wave amplitude 
ch 4> and non-Newtonian parameter m. 

F -1 -2 -3 

¢ 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

m=O 69.46 100.79 164.16 192.34 259.47 393.59 315.22 418.14 623.02 

m=0.2 136.18 242.1 5 493 .62 545.55 866.36 1605.5 1081.5 1672.1 3021.2 

m= -0.2 36.82 44.47 57.97 69.33 81.34 102.61 93 .59 109.02 136.29 

(In this case, m = n- 1 ; n is the power-law index) 

The total flux F is defined in the works ofHayat et al [4, 5] , as non-dimensional volume flow 

rate ( !L ) in the wave frame for their two dimensional model. 
ch 

Table 2.1 presents the value of M ;.. (Pa) for Newtonian, and non-Newtonian, shear thickening 

and shear thinning fluids for different values ofF and¢. It can be seen from Table 2.1, the value 

of M ;.. (Pa) increases as the increase ofF and the amplitude ratio ( 4> ) . 

The value of M ). (Pa) has large magnitude in the case for shear thickening fluid in comparison 

with those of Newtonian and shear thinning fluids . 
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Table 2.2 Axial velocities (u/c) at the center of the cylindrical tube listed for various values of m 

and total flux F (=_!j__) (In this case, m = n-1 ; n is the power-law index) 
ch 

m F=-1 F=-2 F=-3 F=-5 F=-10 

-0.2 -2.75 -6.25 -9.75 -16.75 -34.25 

-0.1 -2.88 -6.66 -10.44 -1 8 -36.88 

0 -3 -7 -11 -19 -39 

0.1 -3.09 -7.27 -11.45 -19.81 -40.72 

0.2 -3.16 -7.50 -11.83 -20.50 -42.16 

In Table 2.2, the axial velocity (u/c) at the center of cylindrical tube is listed for various values of 

m and F. It is evident that an increase in F increases the magnitude of axial velocity for fixed 

values ofm. 

2.1.5.2) The behaviour of axial velocity (u/c) for three values of m 

(In tllis case, m = n-1 ; n is the power-law index) 

-1.5 

-2 
u /c 

-2..5 

.-~ 

--~ . 

-3.5 ...._ __ ...__ __ ........__ __ _:c_ __ ~-----'1 

0 0.2 0.4 O.S 0.8 

-3 

-.1 
u !c 

-5 

~·----...__--~--~--~--~ 
0 0.2 0.4 0.6 

Figure 2.16 Radial distribution of the axial velocity (u/c) for a position with dimensionless tube radius of 

h=1 for three different values ofm when F=-1 (a) and F=-2 (b) (Hayat et al [5]) 

Figure 2.16 a) presents the behaviour of axial velocity (u/c) for three values of m. The axial 

velocity (u/c) for shear thickening fluid near the center of the tube is greater in magnitude as 

compared with Newtonian and shear thinning fluids . 
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Figure 2.16 b) describes that increase of total flux F(=_i_) as the magnitude of axial velocity 
ch 

(u/c) near the center of wall increase for all three values ofm. 

2.1.6.3) The effect of ¢, F and m on dp/ 
/dz 

(In this case, m = n-1 ; n is the power-law index) 
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Figure 2.17 Distribution of the pressure gradient d%z within a wavelength zE [0,2n] for F=-1 and 

¢ = 0.2 (a), F=-2 and ¢ = 0.2 (b) and F=-1 and ¢ = 0.4 (c) (Hayat et al [5]) 
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Figure 2.17 shows the effects of <P ,F (= !L) and m on dp I dz. In figure 2.20 a) dp I dz against z 
ch 

for three different values of m with F=-1 and <P =0.2 is plotted. It is clear from Fig. 2.17 a) that 

smaller values of axial pressure gradient are required to maintain the same flux in the narrow 

part of the tube for shear thinning fluids when compared with Newtonian and shear thickening 

fluids. 

Figure 2.17 b) and c) state that an increase in total flux F (=!L) and amplitude ratio <P results 
ch 

in the increase in dp I dz for all three values of m. 

Their paper presented analytical solutions for the axial velocity (m/s) and axial pressure gradient 

obtained in closed form under long wavelength assumption. The expressions for power-law fluid 

were then compared to the results of Newtonian fluid and the agreement between the results of 

two fluids. Flow analysis is strongly dependent upon F and m. 
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2.2 Background 

2.2.1 Introduction 

This chapter introduces the definition of peristaltic flow and governing equations. Peristaltic 

flow is the flow generated in the fluid contained in a distensible tube when a progressive wave 

travels along the tube's wall. 

The Reynolds number utilised in peristaltic flow has been investigated in previous studies and 

the general Reynolds number and the Reynolds number in peristaltic flow will be introduced. 

Peristaltic flow has a feature of the periodic wave that has situations where the wave is iterated at 

regular intervals. The periodic wave is described in this chapter to provide a better understanding 

of a characteristic peristaltic flow. 

The governing equations, continuity equation, conservation of momentum, balance of energy 

and boundary conditions utilised in numerical calculations are introduced to understand the fluid 

behaviour in peristaltic flow. Power-law fluid shall be introduced to provide the understanding of 

temperature effect on viscosity in this study. 
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2.2.2 Definition of peristaltic flow 

Peristalsis was described by Bayliss and Starling [1] as a type of movement where there 1s 

contraction and relaxation. Peristaltic pumping is well defined by Jaffrin and Shapiro [9]. 

This fundamental mechanical event, called peristalsis, can be described as a composition of a 

wave of contraction rings that propel contents such as foodstuffs. This peristaltic phenomenon is 

exhibited by the oesophagus, stomach, and intestines within animals and humans. The relaxation 

and contraction sequence is generated with intestinal sphincters and specific areas with increased 

muscle tone to control the forward and backward movement of fluids and solids. Contraction is 

followed by relaxation followed by contraction as part of the peristaltic sequence. 

Fig 2.18 shows that the gastrointestinal tract consists of a series of hollow tubes and 

compartments. Peristaltic fluid occurs in digestive organ in a human body. 

Relaxation 
a· est 

Contrll cti on 

= .. • --- - - -- - ·---- - -·-- -- -- - --- - ---

Trough 

Figure 2.18 Movement of fluid by contraction and relaxation sequence 
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2.2.3 Reynolds number 

In peristaltic flow calculations and modelling, the Reynolds number is one of the most important 

parameters used and the effect of the Reynolds number in peristaltic flow has been widely 

studied. A wide range of the Reynolds number is often implemented in order to prove its effect 

on the peristaltic flow when undergoing changes in temperature. 

In general, the Reynolds number is defined as 

R ld b pv s L v s L Inertial force eyno s num er = --=-= -----
1-l v Viscous force 

• Vs -mean fluid velocity, 

• L - characteristic length (equal to diameter (2r) if a cross-section is circular), 

• J.l - dynamic fluid viscosity, 

• v - kinematic fluid viscosity: v = J.l I p, 

• p - fluid density 

In fluid 1nechanics, the Reynolds number is the ratio of inertial forces (vsp) to viscous forces 

(p/ L) and is used to determine whether a flow will be laminar or turbulent. It is the most 

i1nportant dimensionless number in fluid dynamics and provides a criterion to determine 

dynamic similitude. 

At low Reynolds numbers, laminar flow exists where viscous forces are dominant and are 

classified by smooth, constant fluid motion. The opposite to this is when turbulent flow occurs at 

high Reynolds number because inertial forces dominate, producing random eddies, vortices and 

other flow fluctuations. 

The transition between laminar and turbulent flow is often indicated by a critical Reynolds 

number Recrir which depends on the exact flow configuration and must be determined 

experimentally. 
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For fluid flow over a flat plate, the characteristic length is the length of the plate and the 

characteristic velocity is the free stream velocity. In a boundary layer over a flat plate the local 

regime of the flow is determined by the Reynolds number based on the distance measured from 

the leading edge of the plate. In this case, the transition to turbulent flow occurs at a Reynolds 

number of the order of 1 05 or 1 06
. 

In peristaltic flow, the Reynolds number is defined as Re = ( :c )a and should be noted the 

different notation to the previous definition above. This Reynolds number is the correct ratio of 

inertial to viscous term when inertial effects are relatively small. This definition was described 

by Shapiro et al [ 18]. 
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2.2.4 Definition of periodic waves 

A periodic wave has situations in which wave iterated at regular intervals is used in this work. 

The period is the time between successive cycles of a repeating sequence of events. Many 

numerical studies use periodic waves in order to define applications. The length scale, 

wavelength, the time scale and period are used to characterise a periodic wave. 

H 

c 

H (Z,t) h 

z 
Figure 2.19 An example of periodic waves 

H(Z, t ) = h-£cos{?;-cz -ct)} (2.2) 

The term ( 2rc ) is simply called as the wave number determining the scale of the wave and the 
A, 

amplitude,£ , represents the magnitude of maximum value (and minimum) of the position of the 

wall relative to the mean position. 
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2.2.5 Governing equations 

The peristaltic model is in the form of the sine curve which is described in periodic waves. Fluid 

motion is governed by the equations of continuity (mass conservation), conservation of 

momentum and balance of energy equation. The fluid is a temperature dependant power-law 

type. 

These equations in this thesis are used under these specific circumstances: steady, axi-symmetric 

and incompressible. 

2.2.5.1 Power-law fluid 

A power-law fluid is a fluid for which the shear stress is a function of shear rate at the particular 

time, but not dependent upon the history of deformation. 

where: 

K is the flow consistency index 

n is power-law index 

r is the radial coordinate in wave fran1e 

z is the axial coordinate in wave frame 

u is the axial velocity 

v is the radial velocity 

au Ov . h 1 - +-ls t e s 1ear rate or oz 

(2.3) 
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Tis temperature. 

J.to is the zero shear rate viscosity (Kg / (m · s) ). 

a] ( oc-1
) is a coefficient. 

The quantity 

(a r)[au av]n-l (au av) (au av) r == Kp0e 1 
- +- x - +- ~ r == J.le x - +-ar az ar az iff ar az 

(2.4) 

[ 
l n-1 

aT au 8v '' ==Kue( l )_+-j 
r-eff ro ar az (2.5) 

represents an apparent or effective viscosity that is a function of the shear rate. 

If n were to be less than one, the po\ver-]aw predicts that the effective viscosity would decrease 

with an increasing shear rate, requiring a fluid with infinite viscosity at rest and zero viscosity as 

the shear rate approaches infinity. It is named as a shear-thinning fluid that has a lower apparent 

viscosity at higher shear rates. 

If n is equal to 1, the power-law predicts that its shear rate or strain curve is linear and its 

constant of proportionality would be known as the viscosity. The shear stress is directly 

proportional to the shear rate. Water is considered to be Newtonian, because it continues to 

exemplify fluid properties no matter how fast it is stirred or mixed. 

If n is larger than 1, it is called a shear-thickening fluids as apparent viscosity increase at higher 

shear rates. Shear-thickening fluids are rarely encountered. 
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It is known that temperature affects the viscosity of a fluid. Therefore, the effective viscosity 

(2.5) of the fluid will be needed to be considered to demonstrate the effect of temperature on 

peristaltic flow. 

A power-law module (2. 7) for fluid viscosity is used with an exponential dependence on 

temperature for non-isothermal flow. 

T =Viscosity x Shear rate 

·- K ca1r)[ ou 8v]n-I(ou 8v) r- p 0e -+- -+-or oz or oz 

[ ln-1 
• • (alT) au 0v VISCOSity == Kpoe - +-Br BzJ 

au av shear rate == (- + --) ar az 
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2.2.5.2) Conservation of mass 

See Appendix part 1. 

\ 
\ 
\ 
I 
/ 

I 

r 

Figure 2.20 Cylindrical Coordinate for equations below 

The forn1 of the Continuity equation in an incompressible flow is 

_!___~(v,_ r) +_!_ Ove + avz = 0 r ar r ae az in Cylindrical coordinates (2.9) 

It represents that conservation law by equating a net flux over a surface with a loss or gain of 

1naterial within the surface and stats conservation of 1nass. 
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2.2.5.3) Conservation of momentum. 

See Appendix part 2. 

r - component 

(2.10) 

e -component 

( 
8v 8 8v 8 v e iJv 8 v r v e 8v 8 J 1 aP ( 1 a 2 1 or ee arB= J p -+v -+---+--+v- =---- --(r r )+---+--- +pg at r ar r ae r = az r ae r 2 ar r() r ae az () 

(2.11) 

z - component 

( av _ av v 8 av z av _ J aP ( 1 a 1 a r ez ar z- J p -~ +v _z +---+v _ £ =--- --(rr )+---+--£ + pg at r ar r ae z az az r ar rz r ae az z 

(2.12) 
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2.2.5.4) Balance of energy 

An energy balance equation is the direct result of the momentum balance equation. An energy 

balance is a systematic explanation of energy flows and transformations in a system, based on 

the first law of thermodynamics. 

In an incompressible flow, density (p ) is constant. The balance of energy is defined by 

a T a T ve aT aT [1 a a T 1 a 2
T o 2 Tl pC (--+ v --+ ---+ v --) = k --(r --) + ---+ --

P Of r Or r 0 8 z az r Or Or r 2 a e 2 OZ 2 
- ~ 

+ 2 ~ {( aavr, r + [ ! ( ~ v; + v' J r + ( aavz, r } 
+ 11 {(~ + J_~J2 + (~+ ~J2 + [_!_~ + r ~(~]]2} 

oz r a e or oz r a e or r 

(2.13) 

Where, 

• p is the fluid density 

• 11 is dynamic viscosity 

• C P is specific heat 

• k is thermal conductivity 

• Tis temperature. 
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2.2.5.5) Boundary conditions-general consideration 

The boundary is utilized to create the peristalsis motion in order to investigate peristaltic flow 

with the thermal effect in this work. The flow problem at hand is shown graphically in Figure 2.1. 

The flow in the channel is unsteady by a moving boundary in the fixed coordinate frame (Z,R) 

(the laboratory frame). 

c 

R,V 
1 

H (Z,t) h Lz,u 
Figure 2.21 Configuration of peristaltic flow in two-dimensional axi-symmetric tube 

Figure 2.21 shows the propagation of an infirute sine curve wave which travels along the walls of 

an axi-sy1nmetric channel. Equation 2.17 would define peristaltic moving boundary according to 

the periodic wave. In the time-dependent laboratory frame 

Where 

H(Z, t) = h- £ cos( 2n )(Z- ct) 
A 

• t is the time. 

• his the mean distance of the wall from the symmetric axis (m). 

• sis the wave amplitude (m). 

• 'A is the wavelength (m). 

• cis the wave speed (nlls). 
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In the fixed coordinates (Z,R) (the laboratory frame ) the flow in the channel is unsteady with a 

moving boundary as explained above. However, in this work, a new reference frame (z,r) that 

moves with the wave will be used. This is wave frame. The following transformation formulas 

relating the two reference frames are 

z = Z- ct, r = R , u = U- c , v == V (Transformation formula) (2.15) 

In this new reference frame (z,r), the wave frame, the flow will be then steady and travels in the 

negative z-direction at inlet; the boundary will also be time independent (Xiao et al [23] and 

Takabatake et al [19]) 

Here (U, V) and (u,v) identify the velocity component in the laboratory and the wave frame 

respectively. 

The fluid is subjected to a boundary condition formed by the motion of the flexible walls. 

However, the boundary will be steady in a non time dependent status. 

In the wave frame (now time-independent), the shape of peristaltic wall ( r = ry(z)) can be 

represented by : 

ry(z) = h- c cos 27TZ 
It (2.16) 

Horizontal displacement in the laboratory frame is assumed as zero and the fluid velocity 

components on the wall are 

817(z) u == -c v == ---, 
8z (2.17) 

Therefore, the boundary conditions on r = ry(z) for the fluid is derived as 
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81] 2rc& . 2nz 
u==-c v==-==- cs1n--

, 8z A- A- (2.18) 

At the centre line : axi-symmetric conditions are imposed. 
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3.1 Introduction 

Computation Fluid Dynamics (CFD), utilised in this research is a computation tool for 

simulating fluid dynamics. An isothermal flow model was produced using CFD to replicate 

previous studies to demonstrate the validity of CFD applications in chapter 4. A non-isothermal 

flow model will then be utilised to investigate the effect of temperature on peristaltic flow in 

chapter 5. 

This chapter introduces the commercial software package CFD-ACE from the ESI group and its 

model. The solutions with residual reduction of 4 orders of magnitude and those with residual 

reduction of 5 orders of magnitude are compared to show the validation of 4-order convergence. 

The model representing an axi-symmetric steady flow fluid in the wave frame and its boundary 

conditions imposed at inlet, wall, outlet and axis of symmetry are presented. 

In order to obtain accurate data from CFD, grid convergence is used to help ensure that the 

solutions are valid. The newly generated model was simulated repeatedly with different numbers 

of grid points in both cases of isothermal and non-isothermal flow. This process is essential to 

identify an appropriate quantity of grid points in the model. 
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3.2 Computation Fluid Dynamics (CFD) 

Computational Fluid Dynamics, or CFD, uses the commercial software package CFD-ACE from 

the ESI Group to model the flow of fluids through a processing facility. The package is quite 

well known, and its validity is assumed to have been adequate. In addition, results from some 

isothermal cases of this study will be compared with previous work from the literature for 

validity in chapter 4. The numerical scheme is the Finite Volume Method, and the coupled 

system of the governing equations is solved iteratively for the two velocity components, 

temperature and pressure. 

4-order convergence is adapted (iteration residuals decrease by 4 orders of magnitude). This is 

deemed adequate; a comparison of the solutions with residual reduction of 4 orders of magnitude 

and those with residual reduction of 5 orders of magnitude shows very small difference. Table 

3 .1 below shows that there are very small changes between results from 4-order convergence and 

5-order convergence. 

Table 3.1 Con1parison of changes in axial velocity and pressure drop with different numbers of 

order convergence. 

a = 0.25, ¢ = 0.5' a] = -0.034 oc-l (Non-isothe1mal flow) 

Residual decrease 

by 3-orders of magnitude by 4-orders of magnitude by 5-orders of magnitude 

M(Pa) 26.916 26.760 26.707 

u (m/s) -0.224295 -0.224214 -0.224208 

* M (Pa) per wavelength, u (m/s) at located in 6.5 wavelengths from inlet on the centre line 
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3.2.1 Modelling 

@ CD 
r ,v 

I .. 
Z,U 

Figure 3 .1 Computational model of the peristaltic flow. 

The model represents an axi-symmetric steady flow fluid in the wave frame, consisting of 12 

cycles of peristaltic waves. Key dimensions of the flow field are shown in Figure 3.2. 

The boundary conditions in the wave frame are follows: 

• At inlet AB : uniform negative axial velocity u = -c; zero radial velocity v = 0; uniform 

temperature T = 30 oc. This gives a zero flow rate in the laboratory frame. The exception 

is in section 5.2.1.2 where a non-zero flow rate in the laboratory wave is prescribed; then 

a non uniform u-profile will be imposed at the inlet. 

• Along the wall: constant negative axial velocity u = -c; radial velocity is prescribed as 

function of z, v=-
2n& c sin 3nz (see (2.20)); uniform temperature T = 30 oc . 
A A . 

• At outlet OD: unifonn pressure P = 0 (Pa) and ten1perature are imposed , namely P=O 

(gauge) and T = 30 oc . However, the thermal condition here applies only on those 

sections of the boundary where there is inflow; if there is outflow, the constant 

temperature condition will be ignored, and the software calculates the temperature 

instead. 

• h 1. . . d. . . d 1 ou 0 oT 0 d At t e centre 1ne: ax1-symmetnc con 1tions are Impose , name y - = , - = an 

av = o. or 
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All results in this thesis are from the middle part of the flow domain (around section number 7). 

Periodicity has been obtained in this middle part of the flow domain; in other words, flow pattern 

is no longer affected by the velocity profile imposed at the inlet. 

A geometry in CFD software package designed as a form of a sine curve is built corresponding 

to values of a , ljJ . 

J\=0.0 2 

~=0 .0 25 

h=0 .005 

Figure 3.2 Dimension for the geometry (unit: m ): a= 0.25 ,l/J = 0.5. 

Figure 3.2 shows the dimensions for the geometry utilised in this research. 

In chapter 4, the companson with isothermal results from the literature is presented. The 

amplitude ratio ljJ and wave nu1nber a are varied but the flow rate (in the laboratory frame) is 

kept constant at zero. 

The flow velocity imposed at the inlet is obtained from the desired value of the Reynolds number 

( Re = ( h: )a ). 
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3.2.2 CFD-ACE applications 

For the implementation of a model simulating peristaltic flow with power-law fluid, two 

modules, Flow and Heat transfer are selected and used. Mathematical equations are used in those 

modules in order to solve problems. A Flow module is used for solving any fluid flow problems, 

pressure field calculations and mass flow calculations. It provides detailed information about the 

flow field such as vector plots, used to depict the magnitude and direction of the flow velocity. 

Streamlines traces can also be provided. 

3.2.2.1 Flow module 

The flow module is a main module which is used in most simulations. The solution of the 

velocity field by solving for the z, rand e momentum equations in cylindrical Coordinate and 

pressure field by solving the pressure correction equation will be obtained by activating the flow 

module. Conservation of mass is implemented by the time rate of change of mass in a control 

volmne. 

3.2.2.2 Heat transfer module 

Heat transfer analysis is performed by the heat transfer module which is an integral part of the 

CFD-ACE-Solver. This module is used for all situations where heat transfer processes n1ay 

affect a significant impact on the final solution. Activating the heat transfer module implies the 

solution of the total enthalpy form of the energy equation. 

1) Thermal Field Calculations 

The heat transfer module is often used for determining the thermal field within a given 

geometry. The energy equation (total enthalpy) can be used to determine the heat transfer 

characteristics of system by solving in the heat transfer module. 
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Two types of wall boundary conditions are available for the heat transfer module. The first 

is for the boundary condition itself and the second is the ability to add a heat source to the 

cells adjacent to the wall boundary condition. 

For the wall boundary condition, the heat transfer modules need to know the method to set the 

heat flux for each cell face on the boundary condition patch. There are various methods to 

specify the information and six methods are available. In this work, only the isothermal 

condition (constant temperature) and axi-symmetric condition (on the axis of symmetry) will be 

used. 

3.2.2.3 Control Panel 

All of the model's physical and numerical settings are made through this panel. The control 

panel consists of various panels such as problem type (PT), model option (MO), volume 

condition (VC) and boundary condition (BC). The control panel is designed to provide an 

environment for problem setup and this chapter will only show the information that is pertinent 

to the current , imulation. Two significant panels within the control panel will be introduced. 

1) Volume Condition (VC) 

The volume condition panel is to set the material properties and source terms on a volume-

by-volume basis. For this study, a 2D grid system is used with every structured face as a 

separate volurne condition. Volume conditions must be activated before volume conditions 

are set. 

-·--

Figure 3.3 Example of structured face and an activated volume condition (red) 
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Fluid properties are set in this panel. Fluid properties have been selected corresponding to 

oil fluid properties which are adopted from Frene [7]. The properties are assumed as 

following. 

Density 

Specific heat capacity 

Thermal conductivity 

Dynamic viscosity 

(a) Density 

(b) r s~~c~at 

p = 860kg I m3 

c = 2000 J / (Kg· °C) 

k = O.l3W /(m·°C) 

J.1 =0.0397 Kgj(m · s) 

......, Constant 

Rho 1860 

-'Constant 

Cp lzooo 

(c) r Thermal Conductivity 

--' Cons~an~------·----~ 
K fo. 13 

kQ/m""3 

J/kg-dgr~ 

W/m-dgrC 

Figure 3.4 Input for density (a), specific heat capacity (b) and thennal conductivity (c) 

In this work, the value of the Reynolds number is defined in the condition of Newtonian 

(n=l) and isothermal flow ( al = 0 oc-1
). 
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-'Power Law 

MuO fo.ll 
-------------------------N · 1 

DOlo 
K 1 

A~l ~~0~034 
A21o A31...,.o ______ ___;;;;.._. __ _ 

A41o 
B (-0----------

kg/m-s 

Figure 3.5 Example of inputs for viscosity properties (where MuO is the zero shear rate viscosity 

( Jlo ), N is power-law index (n), K is the flow consistency index, Al is exponential coefficient of 

temperature dependent viscosity ( a 1 ) and A2, A3,A4 and Bare set as zero in this work. 

2) Boundary Condition (BC) 

The inlet subtype allows specifying the velocity direction, temperature, pressure and the 

total mass flow rate to be applied over the entire boundary patch. The computational 

boundary conditions are set in this panel. In this research, every structured edge is a 

separate boundary condition. 

When the boundary condition (BC) is selected, the boundary condition panel containing 

BC Type and BC Setting appears. 
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Type 

Settings 

Figure 3.6 Illustration of BC type and BC settings inputs (in CFD-ACE terminology, X-direction 

andY -direction are the axial (z) and radial (r) direction respectively in this work) 

In the Figure 3 .6, the type of boundary condition is determined in the BC type section. In 

this work, four types of boundary conditions, inlet, outlet, wall and syrmnetry were 

selected. In the boundary settings, values of velocity, pressure and temperature etc can be 

specified. 

Evaluation Method 

Variable Name Value 

Figure 3.7 Boundary value regions (in CFD-ACE terminology, X-direction is the axial direction, z 
in this work) 
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Figure 3. 7 shows the regions for applying boundary values. All of the boundary value 

regions contain a title that describes the boundary value. The constant option and the 

parametric option can be selected in evaluation method and the constant option ensures 

that every boundary face on the boundary condition patch will have the same constant 

values specified. 

For applying equations of the boundary condition (2.20) for the wall, the parametric input 

panel will be utilized. The parametric input panel is to enter values for parameters which 

are utilized in several inputs for specification of variables such as sine, cosine, tan, time 

and coordinates etc. 

"· Parametric Input , . · _·:~"~ 

lv_2 
;_ ·.-... 

I< -2*3 .141593*0.0025*0.1 

Figure 3.8 Input for the parametric input panel 
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Examples of boundary settings for inlet, outlet, wall and symmetry are shown in the Figure 

3.9. 

(a) 

U J -o:03~~ m/s r V-Direction Velocity 
.....A Constant 

v fo m/s 

(b) 

[ ~owTem_p_e-ra-t-ur-e--------------------~--------~ ..,..., Constant 

T 13o dgrc 

(c) Flow 

Heat 

f 
X-Direction Velocity -----

......A Constant 

U J,..-0-.-03_6_6 ______ mls 

l Y-Direction Velocity 
-'Parametric 

Parametrics J V _2 iJ Define ... 

(d) BC Type 

....J Symmetry 

{External face on Fluid Volume) 

Figure 3.9 Inputs for (a) Inlet, (b) Outlet, (c) Wall and (d) Symmetry (in CFD-ACE terminology, 

X-direction andY-direction are the axial (z) and radial (r) direction respectively in this work) 
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3.2.2.4 CFD-VIEW 

CFD-VIEW is part of a suite of CFDRC (CFD Research Corporation) computer program that 

analyses computational fluid dynamics (CFD). One of the challenges in computational modelling 

is that each simulation generates a large volume of data that must be reduced to extract useful 

information that can be applied to engineering problems. To aid in the data reduction process, 

CFD-VIEW is the 3 D graphical post-processor. 

Figure 3.10 Window of CFD-VIEW 

~114 

Zlltlo!I#U 
r.-IIH 

Z'.!:J1i!I'..JOII4 
7.r.lillolo#ilS 

.. ~~ n-;;~ 
*t~l"''- ZD&ii'I'Wi 
t!\•1\iJ-v b.-~ 
tllleff-llee ZDMI•IIS 

CFD-View supports the data format, the Data Transfer Facility (DTF) that is generated in CFD-

ACE. DTF is a database mechanism that merges all of the codes in the CFD-ACE environment, 

including CFD-VIEW. The DTF allows simulation and problem data to be placed in a single file. 
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3.2.2.5 CFD-GEOM 

CFD-GEOM is a comprehensive interactive geometry and grid generation system for 

computational fluid dynamics analysis. CFD-GEOM offers a fully integrated Non-Uniform 

Rational B-Spline (NURBS) geometry engine with multi-block structured, multi-domain 

unstructured, and multi-element hybrid grid systems. CFD-GEOM is designed for fast intuitive 

geometry and grid creation. 

3.3 Grid Convergence. 

This process, grid convergence, is essential for identifying appropriate quantity of grid points in 

a model in CFD. Grid points are utilised in generating meshes in a model. A best model will be 

obtained from this process. 

Figure 3.11 Grid points and meshes in a CFD model. 

A various number of grid points are applied onto the models. Theses models are simulated with 

the same volume conditions, boundary conditions and geometry. Then pressure change per 

wavelength and velocity are collected in every model. 
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R 

___ ...._ ___ _ z 
Point 2 Point 3 Point 1 
Figure 3.12 Arrangement of points to measure pressure change and velocity 

Two points (1 and 2) are placed at each end of a cycle in order to obtain a value of pressure 

change. Point 3 is placed in order to obtain a value of the velocity at the centre axis of the crest 

section. The values of pressure change and velocity in each model are compared to ascertain grid 

convergence. 
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Grid Convergence in isothermal flow 
350 

...- 300 ctS 
0... ,__.. 
...c 250 ....... 
0> c 
(]) 
(]) 200 
> 
ctS 
3: 150 I...-
(]) 
a. 
a. 100 0 
I...-

"0 
(]) 50 I...-
:::::::1 en 
en 
Q) 0 I...-

0... 64 100 144 196 256 324 400 484 
The number of Grid points applied per wavelength 

Figure 3.13 Comparison of pressure drop (Pa) per wavelength with the number of grids applied in a wave 

cycle (for Newtonian and isothermal flow; Re=l) 

Figure 3.13 shows the comparison of pressure drop (Pa) per wavelength in conditions of 

Newtonian and isothermal f1ow. The pressure drop remains nearly constant in range of 324 - 484 

of grids. 
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Grid convergence in isothermal flow 
0.06 

..- 0.058 en -E -->- 0.056 ....... ·o 
0 
Q) 0.054 > 
co ·x 0.052 <( 

0.05 

0.048 
64 100 144 196 256 324 400 484 
The number of grid points applied per wavelength 

~-----------------------------------------------------------------~ 

Figure 3.14 Comparison of axial velocity (m/s) at point 3 of Figure 3.12 with the number of grids applied 
in a wave cycle (for Newtonian fluid and isothermal flow; Re=1) 

As it can be seen in Figure 3 .14, the velocity profile stays almost unchanged with 400 or more 

grid points used. It is revealed that the rnodel with 400 or 484 grids is adequate to produce 

appropriate results in these conditions, Newtonian fluid and isothermal flovv. 
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..- Grid convergence in non-isothermal flow 
ro 70 a.. .._.. 

.s::: 60 ...... 
0> c 
Q) 

50 Q) 
> ro 
3: 40 
~ 

Q) 
c.. 30 c.. 
0 
~ 

"'0 20 
Q) 
~ 

::::l 
(/) 10 
(/) 
Q) 
~ a.. 0 

64 100 144 196 256 324 
The number of grid points applied per wavelength 

Figure 3.15 Comparison of pressure drop (Pa) per wavelength with the number of grids applied in a wave 

cycle (for Newtonian fluid and non-isothermal flow; Re=l) 

In Figure 3.15, the pressure drop profile decreases significantly in the range of grids between 64 

and 196. However, pressure drop is converged at approximately 24 (Pa) in the range of grids 

between 256 and 324. 
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Grid convergence in non-isothermal flow 

-0.05 
..-
fJ) -E ----
>. -0.1 

-+-' 
"(3 
0 
Q) 

-0.15 > 
ro ·x 

<l:: 
-0.2 

The number of grid points applied per wavelength 

Figure 3.16 Comparison of velocity (tnls) at point 3 of Figure 3.12 with the number of grids applied in a 

wave cycle (for Newtonian fluid and non-isothermal flow; Re=l) 

The velocity profile stays virtually unchanged in the range of grids between 256 and 324. An 

appropriate rnodel is built by applying 324 grid points per a wave cycle in these conditions, 

Newtonian fluid and non-isothermal flow. 

Tern perature change per wave cycle in the condition of non-isothermal flow is to be insignificant 

in tllis study. However, the pressure drop per wave cycle and velocity are affected by the effect 

of temperature. It is revealed that even though temperature was not itself changed significantly 

but it still affects the other factors. 
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4.1 Introduction 

Peristaltic flow has been previously investigated and the study of peristaltic flow has been 

developed during the past few decades. The initial step in this study is to produce an isothermal 

flow model that is comparable to this previous work. This will provide a benchmark that future 

results can be compared to. The results shown in this chapter give comparison between these 

previous works and the newly generated computational model. 

The following discusses various flow properties and how they compare with previous works. 

These include velocity profiles, streamline patterns and the Reynolds number. 

4.2 The max and min axial velocity in simulation results 

A CFD model was produced with an axi-symmetric tube us1ng variables of 

a= 0.01, Re = 0.01 and varying amplitude ratio ( 4> ). This was done in order to provide a 

comparison with data produced by Shapiro et al [ 18] and Xiao et al [23]. The following section 

demonstrates the similarities of maximum and minimum velocities. 
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4.2.1 Results 

Comparison of maximum and minimum velocity 

U/c 

2~---------------------------------------------

1 

\ 
~. 

~ 

Result ofXiao et al [23] 

\ 
\ 

\ 
\ 

0 .. 4 0.8 

Amplitude ratio ( ¢J ) 

•• 
\ 
\ 
\ 

----Analytical results 
(Uic)m· 

---Analytical results 
(Uic)max 

• Caicuiation 
results Ule;min 

a Cai~ ion 
results (Ule}max 

·6~--------------------~----------· ---·· --· -
Figure 4.1 The comparison of the max and min axial velocity in simulation result with a=O.OJ and the 

Reynolds number= 0.01 from the results ofXiao et al [23] and of Shapiro et al [9] (11 and ,IL, compute 

results of Xiao, lines (solid and dashed) from Shapiro, as presented in Xiao ' work, 0 from this 

work). 

For verifying the mechanism, a few standard tests are simulated. An initial test is set at the 

Reynolds number =0.01 and wave number (a=0.01) with various values of amplitude ratio. 

The new computational models was generated with a =0.01 verse ¢J =0.2, 0.4 and 0.6. The wave 

speed (c) was defined by the Reynolds number with mean distance (h) and kinematic viscosity 

( v ) and wave number. 
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Here h = 0.0004167 m 

v =0.000127906 m 2 Is (when a1 is uniform as 0) 

c =-0.307 m Is (for the Reynolds number= 0.01 ) 

Results of Xiao et al [23] Present work 

Maximum Velocity (Uic) 

a =0.01 ¢=0.2 0.66 0.64 
r--

¢=0.4 0.92 0.94 

¢=0.6 1.27 1.31 

Minimum Velocity (Uic) 

a =0.01 ¢=0.2 -0.96 -0.94 

¢ =0.4 -3 .91 -3.45 

Relative difference [%] 

3.03 o/o 

2.17% 

3.15% 

2.08% 

11.76 % 

Table 4. 1 Comparison of Xiao ' s results (maximum and minimum velocity) and the present work 

for Re = 0.01 and (2/ nch 2 = 0 ( (2/ rcch2 = the dimensionless time-average flow rate for axi-

symmetric fl ow) 

For rnaximmn velocity, the present c01nputational model produced 0.65, 0.94 and 1.31 at 

amplitude ratio 0.2, 0.4 and 0.6 respectively and minimum velocity were obtained as -0.94 and -

3.45 at amplitude ratio 0.2 and 0.4 respectively. 

To compare the present work with the result of Xiao et al [23], approximate values of maximum 

and minimun1 velocities at the result of Xiao et al [23] were required. 

As the result of Xiao et al [23] for maximum axial velocity in Figure 4.1 was enlarged, the 

corresponding results produced by Xiao et al [23] at ¢ =0.2, 0.4 and 0.6 can be read off to be 

0.66, 0.92 and 1.27 respectively. (On the other hand, we obtained 0.65, 0.94 and 1.31 at ¢ =0.2, 

0.4 and 0.6 respectively) 

With enlarging the results of Xiao et al [23] for minimum axial velocity in Figure 4.1, the 

corresponding results can be read off to be -0.96 and -3 .91 at ¢ =0.2 and 0.4 respectively. 

(whereas here we obtained -0.94 and -3.45) 
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It can be seen clearly that the results produced by the new computational model are comparable 

with the results produced by Xiao et al [23] and Shapiro et al [18]. The maximum and minimum 

velocities show identical trends and magnitudes. 

The effect of the Reynolds number on the dimensionless velocity (vI) I C max 

2~-----------------------------------------------, 

.. I . 
A- • ' 

~~--
-~-~~~ Re=0.01-0.1 

~--- ·~ n . · 
\, [16 

-1 < 

(U/c)Max 
. ., -..::.. 

-5 

rJ . ., 
&..; ... .- eta 

\ Amplitude ratio ( cp ) 
\ 

\ Re=l.O 

\ 
\ 
\ 

• Mal~t~al results of 
&rt!piro [ 18] 

·~ ~-------------------------------------------------------~ 

Figure 4.2 The effect ofthe Reynolds number on the maximum U velocity (U/c) of axis for a =0.01, 

Q/ rcch 2 = 0 and different values of amplitude ratio from the results of Xiao et al [23] ( Qthe results 

from this work). 

The effect of the Reynolds number is considered. Xiao et al [23] proved the effect of the 

Reynolds number with for a =0.01 and different values of amplitude ratio as Figure 4.2. 
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As the flow and boundary conditions are considered, the maximum axial velocity (U/c) at 

¢ = 0.2 and ¢ = 0.4 with Re=0.1 is obtained as the value of 0.652 and 0.945. 

Results of Xiao et al [23] Present work Relative difference [%] 

Maximum Velocity (U/c) 

a =0.01 ¢=0.2 0.66 0.65 1.52% 

¢=0.4 0.92 0.95 3.26% 

Table 4.2 Comparison of Xiao ' s results and the present work for a =0.01 verse ¢ =0.2, 0.4 and 

0.6 with Reynolds number= 0.1 and .e = 0 

With enlarging Figure 4.2, the corresponding result from Xiao et al [23] at¢ =0.2 and 0.4 can be 

read off to be 0.66 and 0.92 respectively, whereas here we obtained 0.652 and 0.945. The 

agreement is therefore good. 

The Figure 4.2 and the results from this work show a fairly good agreement with the numerical 

results ofXiao et al [23], corresponding to a= 0.01, zero flow rate. 
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4.3 The effect of the Reynolds number on the streamline pattern · 

The next step was to compare the effect of the Reynolds number on a model corresponding 

to¢>= 0.7, a= 0.01. The Reynolds number is defined as Re = (ch)a (Shapiro et al [16] ). It 
v 

represents the ratio of inertial and viscous terms when peristalsis acts as a pump. 

Streamlines are plotted with different value of the Reynolds number in order to compare the 

results ofXiao et al [23]. 

The results obtained are compared with the results of Takabatake et al [20] and Xiao et al [23]. 

This is a standard test problem simulated for the effect of the Reynolds number on the streamline 

patterns in the wave frame. 
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4.3.1 Results 

The comparison of numerical results 

Results of Xiao et al [23] (Wave Frame) Present work 

Re = 0.01 

-- ------ -------------------

Re = 10 

Figure 4.3 The comparison of the effect of the Reynolds number on the streamline patterns in the wave 

frame for a= 0.01, ¢ = 0 .7 and Q/ trch 2 = 0 

With the Reynolds number at 0.01, both results have a circulation at the middle of crest. The 

arrangement of streamlines in the upper side of circulation is denser in both results. However, in 

the present work, a circulation stays higher and is wider in comparison with the result of Xiao et 

al [23]. It can be explained that a less quantity of mesh was possibly utilised in the results of 

Xiao because the streamline in the results of Xiao is angular. 
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With the Reynolds number at 10, new circulation occurs on the top of the crest section and is 

squeezed from the wall and the other circulation at the bottom. The two circulations are created 

and pressed on to the left side of wall. 

Figure 4.3 demonstrates a good comparison between the new computational model and previous 

data. It suggests that in the case of changing the Reynolds number the results from the new 

model is supported. 
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4.4 The effect of the Reynolds number on the streamline patterns for~= 0.6 
nch 

In the paper, 'Peristaltic pumping 1n circular cylindrical tubes: a numerical study of fluid 

transport and its efficiency' J. Fluid Mech [9], the trapping phenomenon is described with a wide 

range of the Reynolds numbers. Trapping phenomenon was theoretically studied by Jaffrin et al 

[14] in a two-dimensional channel flow. Takabatake and Mori [20] studied the flow pattern when 

the trapping occurred at finite Reynolds numbers. The dimensionless time-average flow rate 

( _Q 
2
-) for axi-symmetric flow was defined in their paper where Q is the time-mean rate of 

nch 

volume flow. This ~ indicates the dimensionless mean-volume flow per unit area. 
nch 

The next model that will be produced shall incorporate this new form of inlet boundary condition. 

It shall display a variable inlet flow. A comparison shall be made with this new model. 
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4.4.1 Modification of Inlet condition for the case of ~ = 0.6 
nch 

To apply a same condition ( ~ = 0.6) into CFD-ACE, the parametric option in CFD-ACE on 
nch 

the inlet is used. 

Firstly, the flow rate, q in wave frame is identified. 

The rate of fluid flow in the laboratory frame is given by (Hayat et al [ 4 ]), 

Q = fucz,R,t)dY (4.1) 

Where h is the position of the channel wall, 

The rate of fluid flow in the wave frame is given by 

q = fu(z ,r)dy (4.2) 

With the help of Transformation formula (2.16), the rate of fluid flow in the laboratory frame for 

the 2-dimensional1nodel \vill be 

Q == q +ch (4.3) 

The din1ensionless time-average flow rate .e, in the laboratory fame for axi-symmetric channel is 

defined as follows (from Xiao et al [23]) 

(4.4) 
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c 

R 

z 
Fe 

Figure 4.4 The flow rate q and u profile 

The flow rate q is shown in the Figure 4.4. The flow rate q will be utilised as follows : 

-

_iL =-q-+(1+0.5¢ 2
) 

nh2c ch 2n 

+=+-(1+0.5¢2
) 

rch c rch c 

(4.5) 

(4.6) 

To apply same applications into the in]et, the value of q is needed. The value of+ is indicated 
nh c 

as 0.6 and the amplitude ratio is 0. 7 in tills case. 

Therefore, 

+ = 0.60 - (1 +0.5 *0.7 2
) ~ q = - 0.645xn x0.041667 2 x3 when h = 0.04l667m,c =3m/ s 

nh c 

( Condition for boundary ) 

:. q = - 0.011 m;: (4.7) 

As it can be seen in Figure 4.4, a velocity profile varies in a quadratic across the inlet area. It will 

be expressed as follows 
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u = ar 2 +b 

When r = 0, u would be Fe (Referred to Figure 4.4) 

b =Fe :. u = ar 2 + Fe 

When r =h, u would be c 

c = ah2 +Fe 

c-Fc 
:.a=--2-

h 

(4.8) 

(4.9) 

In this occasion, hand cis given by 0.041667 m and cis- 3 m/srespectively.(cis a condition 

for inlet) Therefore, the invariable a will be defined as a= 1727.97(1- F). 

The u profile varies in a quadratic. The flow rate q will be obtained from the following equation. 

q = [2nru dr 

q = f (1 0857.17(F -l)r 3 -1 8.85Fr] dr 

[ ]
0~]6~ 

q= ±10857.17(F-1)r 4 -18.85Fr 2 

0 

q = [ ± 10857.17(F -1)0.0416674
-

18
;
85 

F0.041667 2
] 

As the value ofq (4.6) implies to (4.12), the value ofF will be obtained as follows 

-0.011 = (0.008181361(F -1)- 0.01636F] 

F =0.3446 

The formula of u velocity profile in inlet can be defined as below. 

u = -113 2. 513r 2 
- 1. 0 3 3 8 
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When c =-3m/ s (Condition for inlet) 

h = 0.041667m 

When the u velocity profile ( 4.14) is applied, the result of the dimensionless time-average flow 

rate ~ is gained. 
rcch 
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4.4.2 Results 

The comparison of numerical results 

Results of Xiao et al [23] (Wave Frame) Present work 

Re = 1 

Re=2 

Figure 4 .5 The effect of the Reynolds number on the streamline patterns in the wave frame for 

-
Q a=O.Ol, ¢=0.7, --2 =0.6 

ll'Ch 

The effect of the Reynolds number (Re) on streamline patterns is shown in Figure 4.5. As Re 

increases fron1 1 to 2, the trapping pheno1nenon, shown as enclosed streamlines, is seen to be 

displaced downstream in the wave frame, here on the left side of the plot. This works results are 

closing aligned with those of Xiao et al [23]. 
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4.5 Summary of isothermal flow 

Maximum and minimum axial velocities are demonstrated in section 4.1. Streamline patterns 

with the effect of the Reynolds number are presented in section 4.3. Finally in this section 4.4, 

the dimensionless time-average flow rate is used and the streamline patterns are plotted. All 

results from figure 4.1 , 4.2, 4.3 and 4.5 suggest that the applications in CFD-ACE are 

reasonable. Therefore, it is suggested that the boundary conditions, volume conditions and 

calculations in CFD-ACE can be assumed to be reasonable results. 
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CHAPTERS 
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Chapter 5. Non isothermal flow 

5.1 Introduction 

The purpose of the previous chapter was to create an isothermal CFD model that replicated 

models from previous studies. This process enabled the creation of a benchmark by which 

variables required in the modelling process could be verified. As the data proved comparable, 

items such as boundary and volume conditions were identified. The newly created isothermal 

models could now be utilised in non-isothermal applications. 

Many variables are considered in order to study the effect of temperature on peristaltic flow in 

this chapter. 

1) The case for Newtonian fluid, with a wide range of Reynolds nutnbers, is used for 

demonstrating the effect of temperature on peristaltic flo-vv. Pressure drop, temperature 

change and velocity profiles are used in investigating this effect. 

2) The cases for non-Newtonian fluid, shear thinning and shear thickening fl.uids are 

considered in investigating the effect of temperature. This fluid condition is determined 

by the value of the power-law index (n). The power-law index (n) has a strong 

relationship with shear rate in power·· law fluid. 

3) The effect of temperature is influenced by the exponential coefficient a1 of viscosity. 

Thus, the effect of a1 on peristaltic flow in Newtonian fluids is investigated in this chapter. 

Three different values of a1 are utilised. 

4) Numerical results for vorticity are obtained for Newtonian and non-Newtonian fluids. 

Results were also obtained for isothermal and non-isothermal flow. Each of these figures 

is compared in order to define the difference. Vorticity has a strong relationship with 

viscosity that is affected by temperatw·e. 
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5) New models were produced with changing a length of h to create different geometries. 

(h: the mean distance of the wall from the symmetric axis). The isothermal flow model 

firstly shows the effect of geometry upon peristaltic flow and the condition for non-

isothermal flow will be added on the isothermal flow model in order to show the effect of 

temperature. The effect of temperature upon different geometries is investigated by 

comparable results produced by the isothermal flow models. The temperature effect will 

be shown in different geometries by streamline patterns, pressure drop and velocity. 
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5.2 Effect of temperature in Newtonian flow for the case when 

a= 0.25, ¢ = 0.5 over a wide range of Reynolds number 

The effect of temperature on peristaltic flow is demonstrated for Newtonian fluid over a wide 

range of Reynolds numbers (1-1000) when a= 0.25, ¢ = 0.5. Pressure drop, temperature change 

and variations of velocity are shown to demonstrate this effect. Flow patterns will be presented 

later, in the section dealing with power-law fluid. The J.imensionless time-average flow rate in 

non-isothermal flow are investigated in this section. 

For isothermal flow, a1 = 0 oc-1 is utilised to produce a result. There is a change in flow patterns 

but without any change in viscosity. This is so because under the condition of isothermal flow, 

viscosity would stay unchanged. 

In the case of non-isothermal flow ( a1 = -0.034 oc-1
), there is a change in flow patterns but with 

change in viscosity because viscosity is expected to change in non-isothermal flow as can be 

seen from Equation (2. 7) below. 

Pressure drop and temperature change are presented in Table 5.1 to show viscosity changes 

under non-isothermal flow. 

A power-law module (2. 7) for fluid viscosity 1s used with an exponential dependence on 

temperature for non-isothermal flow. 

(2.7) 

Where: 

T : temperature ( oc ). 

k -1 - 1 J.lo : 0.11 ( g·m ·s ). 

n : power-law index is 1 
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a] : the exponential coefficient of viscosity is -0.034 oc- l 

Two points are placed at each end side of the wave length as the inlet and outlet. The points 0 

and 1 are placed along the central axis to measure pressure values. The other points, 2 and 3, are 

placed on the wall to measure temperature change (Figure 5.1 ). 

I 
Point 2 Point 3 

r 

Point 0 Point 1 

Figure 5.1 Arrangement of measurement points 

Values of temperature change and pressure drop per wavelength (Table 5.1 and Figure 5.2) 

demonstrate the viscosity change in peristaltic flow with non-isothermal flow. 

The variations of velocity are shown in Figures 5.3 and 5.4 to present the effect of temperature 

on axial velocity ( o/c ) 

Where U : axial velocity in laboratory frame ( '7s ) 

c : wave speed ( '7s ) 

5-5 



Chapter 5. Non isothermal flow 

5.2.1 Results 

The effect of temperature on pressure drop and velocity variation in peristaltic flow 

Isothermal flow 

• 

1 a= 0.25, r/J = 0.5, a!= o °C1 Q/nch 2 = 0 

I Re=1 I Re=5 I Re=10 I Re=SOj Re=100 I Re=500 I Re=1000 

M = PAin 1- PAout o (Pa) 255.12 2133.7 6305.2 105884 388450 8771800 34320000 
- -

!1T = TAout - TAin ( °C) ~0.001 -0.004 -0.008 -0.044 -0.095 -1.314 -3.191 

Non-isothermal flow 

! 

1 a = 0.25, r/J = 0.5 , a! = -0.034 °C1 Q/nch 2 = 0 

II 
Re=1 Re=5 Re=10 Re=50 Re=100 Re=500 Re=1000 

~AP = P,_m_! - P,_ 0 "' _o (Pa) 26.707 617.67 2054.7 61318 245170 6127100 24508000 

!1T = TAout -TAm ( °C) 0 0 0 0 0 0 -0.001 
- . - - == - - "'' ~: === ~: ~= ~= 

Table 5.1 Pressure drop ( M) and Temperature change ( 11T) per wavelength along the flow direction 

with Ne\\1onian fluid 

Table 5.1 shows ternperature change and pressure drop in isothermal flow ( a1 = ooc-1) and non-

isothennal flow ( a1 = -0.034 oc-1
) for a wide range of Reynolds numbers. This table shall 

demonstrate viscosity change in non-isothennal flow. 

With isothem1al flow ( a1 = ooc-1
), a value of temperature change is found for all values of the 

Reynolds number and the value of temperature change increases as the Reynolds number 

increases. The values of pressure drop are higher in comparison with the condition of non-

isothermal flow. 
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However, with non-isothermal flow ( a 1 = -0.034 oc-1
), temperature change is not found in a 

range of Reynolds numbers (1-500) then a small temperature change is found at Re = 1000. The 

values of the pressure drop stays lower in comparison with isothermal flow. 

The variation of pressure drop in isothermal and non-isothermal flow is plotted in Figure 5.2. 

Variation of Pressure drop 
108 ~--~~~~~~~--~--~~~~~--~--~~~~~ 

10 1 ~---~~~~~~~--~--~~~~~--~--~~~~~ 
1 0° 1 01 1 02 1 03 

Reynolds number 

1-<Igure 5.2 Variation of Pressure drop when isothermal flow ( aj = 0 oc--1
) and non-isothermal flow 

( a 1 = -0.034 oc-1
) in a wide range of Reynolds number ( M over wavelength: A =0.02m) 

With isothermal flow ( a 1 = 0 oc-1
), in Figure 5.2, the change in the pressure drop stays higher in 

comparison with non-isothermal flow for all values of the Reynolds number because under the 

condition of isothermal flow, viscosity is constant. Therefore, shear stress is higher at the region 

adjacent to the wall in comparison with non-isothermal flow . 

On the other hand, with non-isothermal flow ( a 1 = -0.034 oc-'), the change in the pressure is 

lower because viscosity decreases by the action of viscous heating around the wall. Shear stress 

decreases at the region adjacent to the wall with decreasing viscosity. Low wall shear stress 

yields less resistance to the fl ow, that results in a lower pressure drop. 
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It can be explained that temperature change is utilised to reduce viscosity under the condition of 

non-isothermal flow. Therefore, as viscosity decreases, pressure drop decreases in this condition. 

Figures 5.3 and 5.4 shows the effect of temperature on velocity on the crest and trough section 

respectively. These figures will indicate how velocity will be changed in non-isothermal flow 

model. 

'T I 
1.5 

0:/ 1 A 0.5 

(J 
1 5 1.3 0.3 ~ 0 1 :; 

-0.5 rlh 1 5 1.3 0.3 
--Re1 .. -0.5 --Re1 -1 ·--Re 10 

Re 100 -- Re 10 
-1 Re 100 -1.5 

rlh 
-2 -1.5 

Figure 5.3 Velocity profile on the crest section in a, = 0 oc-1 (left) and a 1 = - 0.034 oc-1 (right) 

Figure 5.3 shows the variation of the velocity profile (the laboratory frame o/c ) along the 

central axi~ at the crest section with Reynolds number (Re )= 1-100. 

With isothermal flow, the velocity profiles vary at the cross section of the crest with Reynolds 

number 1 - 100. As the Reynolds number increases, the velocity profiles change and the 

maximum velocity becomes higher and moves to the wall (% = 1.5 ). 

With non-isothermal flow, the velocity profiles become a similar profile of Re=lOO. As the 

Reynolds number increases, the velocity profiles are unchanged and the maximum velocity stays 

unchanged and does not move. 
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0 , 
0.25 0.2 0 5 0.4 0.3 0.25 0.2 0 

-1 -0.5 

rlh rlh 
-2 -1 

--Re1 
-3 utc1.5 

-- Re 10 (J :s Re 100 -4 -2 

-5 -- Re 10 -2 .5 

Re 100 ...- '.~ .'----
-6 -3 "--- / 

-7 -3 .5 

Figure 5.4 Velocity profile on the trough section in a
1 

= 0 oc-1 (left) and a
1 

= - 0.034 oc-1 (right) 

In isothermal flow, as the Reynolds number increases, each model produces different velocity 

profiles. An increase in the flow rate ( c: the wave speed) yields an increase in the Reynolds 

number, ( Re = ( h: )a). As increases occur in the Reynolds number, the flow patterns also 

change. This case shows the effect of the Reynolds number in isothermal flow. 

On the other hand, in non-isothermal flow, as the Reynolds nurnber increases, velocity profiles 

stay virtually unchanged and the effect of the Reynolds number is not shown. 

It can be concluded that temperature has influenced the flow property for viscosity and any 

change in viscosity reduced the effect of Reynolds number on peristatic flow in the both crest 

and trough section. 
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The effect of temperature on the dimensionless time-average rate of volume flow 

Q/ llf12
C = 0.5 

Isothermal flow 

Q/llh 2c=0.6 
Isothermal flow 

Non-isothermal flow 

Non-isothermal flow 

Figure 5.5 Comparison of the streamline patterns with different value ofQ/llh 2c for the case 

whena
1 
=0 oc--t (left) andai =--0.034 oc- 1 (right) in Re=lO 

The dimensionless time-average flow rate 1s one of the important parameters to control 

peristaltic flow. In chapter 4, a model was produced demonstrating the dimensionless time-

average rate of volume flow Q_j Tlh 2c . In this section, the condition of non-isothermal flow ( a 1 =-

0.034 oc- t) is employed to show the effect of temperature on this model whenQ/7lh 2c = 0.5, 0.6 . 

With isothermal flow ( a 1 =0 oc- 1
), Figure 5.5 shows streamline patterns with different values of 

dimensionless time-average rate of volume flow Q_j llh 2 c for the case Re=lO. The streamline 

pattern is similar with the results of Takabatake et al [20] and Xiao et al [23] . As the value of 

dimensionless time-average rate of volume flow Q_j lli1 2 c increases, the streamline pattern is 

changed in the case of isothermal tlow ( al =0 oc- 1
). 
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With non-isothermal flow ( a1 =-0.034 oc-1
), the streamline patterns is changed by the effect of 

temperature. However, as the value of dimensionless time-average rate of volume flow increases, 

the streamline patterns stay unchanged. A circulation is located at the middle of the crest and 

seen to settle on the upper side of crest. 

It is revealed that allowing for temperature effect (with a] =-0.034 oc-1) significantly altered the 

flow pattern in comparison with isothermal case. On the other hand, allowing for temperature 

effect also reduces significantly (here, virtually removes) the dependence of the flow pattern on 

flow rate. 

5-11 



Chapter 5. Non isothermal flow 

5.3 The effect of temperature on power-law fluids. 

Hayat et al [5] studied peristaltic flow for power-law fluids in 2006. They used two dimensional 

models which are formulated based upon the fundamental equations of mass conservation and 

momentum. 

In this present work, an axi-symmetric flow model of power-law type for non-isothetmal and 

non-Newtonian fluids is used. Thus, an additional balance-of-energy equation with the 

constitutive equation for power-law fluids will be employed. 

Isothermal situations will be considered while the power-law index (n) is varied to cover the 

range of fluid property for shear thinning ( n < 1 ), through Newtonian fluid ( n=1) to shear 

thickening ( n > 1 ). This would show the influence on the items of interest like flow patten1s and 

pressure variation. Then the condition of non-isothermal flow is added on the models to show the 

effect of temperature. 

Figures 5.6, 5.7 and 5.8 show the effect of temperature on flow patterns with three values of the 

power-law index (0.5 , 1 and 2) for isothermal and non-isothern1al conditions. The figures reveal 

that temperature variations cause changes in viscosity as well as flow patterns. 
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5.3.1 Results 

The effect of temperature on streamline pattern in shear thinning fluid ( n=O.S ) 

Isothermal flow 

Re = 1 

Re = 10 

Re = 100 

: Non-isothermal flow 

Figure 5.6 Comparison of the variation of streamline in shear thinning fluid (in the wave frame) for the 

case when a, = 0 oc- l (left) and al = -0.034 oc- l (right) with i2! Jreh 2 = 0 

Figure 5.6 shows streamline patterns (in wave frame) In a shear thinning fluid for different 

values of the Reynolds number. 

In isothermal flow, as the Reynolds number increases from 1 to 10, the flow pattern is changed. 

As the Reynolds number increases further fro tn 10 to 100, the flow pattern is also changed but 
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this further change is only a slight change. With the power-law index (n( 1), viscosity becomes 

smaller as shear rate increases. The flow patterns stay unchanged when the Reynolds number is 

high. 

In non-isothermal flow, as the Reynolds number increases, flow patterns are virtually unchanged. 

Viscosity stays lower because the condition of non-isothermal flow is employed. Low viscosity 

effect leads to small change in flow patterns. 
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The effect of temperature on streamline pattern in Newtonian fluid ( n = 1 ) 

Isothermal flow Non-isothermal flow 

Re = 1 

Re 10 

Re = 100 

Re=1000 

Figure 5.7 Comparison of the variation of streamline in Newtonian fluid (in the wave frame) for the case 

when a, = 0 oc- t (left) and a, = -0.034 oc- t (right) with ill JrCh 2 = 0 
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In this case, for a Newtonian fluid, the effect of temperature is shown by streamline patterns 

(wave frame) along a range of Reynolds numbers ( 1-1000 ). With isothermal flow, no 

recirculation is presented at the low Reynolds number Re=l. As Re increases to 10, then to 100, 

a recirculation region is seen to develop and grow. Furthermore, this recirculation moves 

upstream against the flow direction (in wave frame) . As Re increases further from 100 to 1000, 

the side of the recirculation increases slightly but its location tends to settle at about the crest 

section. 

With non-isothermal case, on the other hand, the flow pattern does not change significantly as 

the Reynolds number increases. Specifically, a recirculation develops very early at the low Re=1 

but both the recirculation's shape and location, which is at the crest section, stay virtually 

unchanged as Re increases to the quite high value of 1000. 
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The effect of temperature on streamline pattern in shear thickening fluid ( n=2 ) 

Isothermal flow Non-isothermal flow 

Re = 1 

Re = 10 

Re = 100 

Figure 5.8 Comparison of the variation of streamline in shear thickening fluid (in the wave frame) for the 

case when a, = 0 oc- l (left) and a! = -0.034 oc- ' (right) with (!/ 1reh 2 = 0 

Figure 5.8 show streamline patterns in a shear thickening fl uid ( n ) 1) for isothermal and non-

isothermal flow. Generally, under this condition of shear thickening fluid, an increase in flow 

rates yields increases in the shear stress and viscosity is expected to increase by an increase ]n 

the shear stress. Therefore, as the value of the Reynolds number (flow rate) increases, the also 

viscosity increases. 
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According to the definition of the Reynolds number, Re = ( h: )a, the Reynolds number can not 

be changed because viscosity ( v) increases with an increase in a value of c (the wave speed 

'%). 

With isothermal flow, as the Reynolds number increases, the flow pattern is unchanged. No 

circulation is found for all values of the Reynolds number. 

With non-isothermal flow, the flow pattern is changed with decreasing viscosity. A large 

circulation is located at the middle of crest and smaller circulation is located and deformed to the 

top of crest. However, as the Reynolds number increases, the flow patterns stay virtually 

unchanged. 

It is concluded that temperature change yields decreasing viscosity in non-isothern1al flow. 

However, as the Reynolds number increases, viscosity increases significantly. Therefore, the 

flow patterns are not changed by the Reynolds number even if the effect of temperature yields 

decrease in viscosity. 
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Pressure drop and temperature change in power-law index (n) for isothermal and non-

isothermal flow 

Pressure drop and temperature change are shown in Table 5.2 for the cases of non-Newtonian 

and Newtonian fluids when Re=l. The Table 5.2 and Figure 5.9 show the change in the pressure 

drop for power-law index (n) with the conditions of non-isothermal and isothermal flow. 

I n 0.5 n 1 n 2 
I 

a! = -0.034 oc-1 M =PAin _!- PAout_O ( Pa) 20.617 21.408 62.124 

~T = T},out- TAin ( °C) 0 0 0 

- I n 0.5 n 1 n 2 
I r =0 oc-1 M =PAin_!- PAout _o ( Pa) 41 .612 255.124 24868.4 

~T=TAout -T).m(°C) 0 0.001 0.092 I 
Table 5.2 Comparison of Pressure drop( M) and Temperature change ( ~T) along flow direction in 

Newtonian and non-Newtonian fluid for the case of Re=l with Q/ rcch 2 = 0 

In the case for a shear thinning fluid, ~P is 20.617 Pa for a1 =-0.034 oc-1 and 41.612 Pa fora1 = 0 

oc-1 The difference is 20.995 Pa. 

In the case for a Newtonian fluid, ~p is 21.408 (Pa) for a1 =-0.034 oc-1 and 255.124 Pa fora1 = 0 

oc-1• The difference is 233.716 Pa. 

In the case for a shear thickening fluid, ~P is 62.124 Pa for a1 =-0.034 oc-1and 24868.4 Pa 

for a 1 = 0 oc-1• The difference is 24806.276 Pa. 

An increase in power-law index (n) yields an increase in the value of the pressure drop in both 

isothermal and non-isothermal flow. However, with non-isothermal flow, the pressure drop 

decreases vvith decreasing viscosity in these three cases (shear thinning, Newtonian and shear 

thickening). 
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Temperature change is not shown in the case for shear thinning fluid ( n ( 1) because in this 

condition, shear stress could be significantly small so that this fluid property can not yield a 

decrease in viscosity around the wall for isothermal and non-isothermal flow. 

Therefore, the case for a shear thinning fluid has significantly similar values of the pressure drop 

for isothermal and non-isothermal flow in comparison to the other cases, Newtonian and shear 

thickening fluid. 

Change in Pressure drop along power law index (n) 
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./ 

-·---

-

-
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0.5 1.5 2 

Power lavv index (n) 

Figure 5.9 Change in Pressure drop (Pa) along Power-law index when Re= 1 ( M Over vVavelength : 
A=0.02m) 

As Hayat et al [5] studied in 2006, M per wavelength increases as the power-law index 

increases in isothermal flow. It can be seen in Figure 5.9, that in an isothermal flow, as an the 

power-law index increases, M per wavelength also increases. 

However, the change in the pressure drop against the power-law index is reduced by the effect of 

temperature in non-isothermal flow. According to Figure 5.9, the slope for isothermal flow is 

sharp but the slope for non-isothermal flow is gentle. Specially, with shear thickening fluid, the 

pressure drop is dramatically reduced by the effect of temperature. 
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5.4 The effect of exponential coefficient a1 of viscosity on peristaltic flow for 

Newtonian fluid . 

In the previous section, the effect of temperature on velocity field with Newtonian and non-

Newtonian fluids is investigated when a1 = -0.034 oc-1• In this section, three different values (0 , 

-0.02 and -0.04 oc-1
) are utilised to investigate the influence of a1 with a Newtonian fluid by 

plotting streamline patterns, velocity profiles and the pressure drop .. 

The effective viscosity is defined as: 

[ J
n- 1 

aT au 0v 
Jleff == KJ1oe I - +-ar az 

All tenns are defined in previous chapters. 

(2 .7) 

In the case of a Newtonian fluid (n= l), the effective viscosity (2.7) is reduced 

to f.l eff == KJ.1oea1
T . The effective viscosity (2.7) would decrease with increase in absolute 

values of a1 as a1 is negative in this work. This change in viscosity would be expected to change 

the flow patten1s. 
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5.4.1 Results 

Streamline patterns and velocity variations for different values of a1 when Re=l 

Wave frame 

a -0 oc-l 1-

al = --0.04 oc- l 

Figure 5.10 Comparison of streamline in different values of a1 = 0 oc - 1 (Top), a1 = - 0.02 oc- t (Left) 

and a1 = -0.04 oc- 1 (Right) with Re=l and Q/ Jreh 2 = 0 

Figure 5.10 presents streamline patterns produced by three different values of exponential 

coefficient a 1 of viscosity. 

As an absolute value of a 1 increases, a circulation develops with decreasing viscosity. The 

isothermal flow ( a 1 = 0 oc- 1
) produces no circulation at the crest section. However, as an 

absolute value of a, increases from 0 to -0.04 oc- l' the circulation develops and the circulation 

at the middle of crest grows. In the cases for a 1 = -0.02 oc- t and a 1 = -0.04 oc- 1
. , the circulation 

is shown at the middle of crest. This fact indicates an increase in an absolute value of a, yields 

decrease in viscosity. 
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Figure 5.11 and 5.12 shows the variation of the velocity profile along the dimensionless mean 

distance (~) of wall in the crest and trough section respectively. These velocity variations will 

prove the effect of a1 on velocity. The region where the effect of a1 is strong can be indicated. 

The variation of velocity profile in the crest section for Newtonian fluid 

1.5 

0.5 -a1=-0.02 
(.) 

::; - a1=-0.04 

0 
a1=0 

..... ~ 

-0.5 

-1 

-1.5 

---____________________ ___) 

Figure 5.1 I the variation of ve]ocity profile in the crest section with different va]ues of a
1 

when Re=l 

As an absolute value of a! increases from 0 to -0.02 oc-' then -0.02 oc-1 to -0.04 oc-1
, the velocity 

at the region adjacent to the wall ( ~ = 1.5) becomes higher. 

This result proves that as an absolute value of a
1 

increases, viscosity decreases. Furthern1ore, 

this phenomenon is strong at the region adjacent to the wall ( ~ = 1.5 ). 
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The variation of velocity prof ile in the trough section for Newtonian fluid 

0.35 0.3 0.25 0.2 0.15 0.1 0.05 

-1 r/h 

-2 

-3 
-a1=-0.02 

u 
:3 - a1=-0.04 

-4 t a1=0 

-5 

-6 

-7 

Figure 5.12 the variation of velocity profile in the trough section with different values of a
1 

when Re= 1 

In Figure 5.12, under the condition of non-isothermal flow ( a 1 = - 0.02 and a 1 = - 0.04 oc-1
), the 

velocity profiles dramatically increase at around wall ( ~ ) 0.4) because of decreasing viscosity. 

Since the velocity profile is fully developed, velocity is constant in the range ( ~ ( 0.4 ). 

On the other hand, in isothermal flow ( a
1 

= 0 oc-1 
), a whole cross section is affected by wall 

motion. Therefore, the velocity is changed along whole cross section. 

It can be explained that as an absolute value of a 1 increases, viscosity becomes lower near the 

wall. This low viscosity enables the change in velocity. 
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1~ 1 a,= o a, =-0.02 oc-l a, =-0.04 oc-l 

I f\J'=P,,n_l -PAour _o( Pa) 1255.12 44.558 39.33 

Table 5.3 Comparison of Pressure drop( M) in a wavelength between a1 = -0.02 oc-1 and a1 = -0.04 

oc-1 with Newtonian fluid for the case ofRe=l with Q/ nch 2 = 0 

The Table 5.3 shows the pressure drop per wavelength for cases of a1 = 0 , a1 = -0.02 oc-1 and 

a1 = -0.04 oc-1. As it can be seen, as absolute value of a1 increases, pressure drop decreases 

with decreasing viscosity. 
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5.5 Vorticity patterns and pressure contour in non-isothermal flow with 

Newtonian fluid and shear thinning fluid when Re=l 

In fluid dynamics, vorticity can be defined as the rotation of the fluid velocity. It 1s also 

considered as the circulation per unit area at a point in a fluid flow field. 

To prove vorticity patterns in non-isothermal flow, isothermal flow shall be compared because 

viscosity is unchanged; however, it is changed in the condition of a non-isothermal flow. As the 

power-law index (n) has a strong relationship with viscosity, vorticity patterns in Newtonian 

(n= 1) versus shear thinning fluids (n<l) shall be shown. 

This is shown through vorticity patterns and pressure distribution in Newtonian and shear 

thinning fluids. As viscosity decreases by the effect of temperature, higher values of vorticity 

would be expected at the region adjacent to the wall in non-isothermal flow. 

According to Equation 2.6, in shear thinning fluid, as the shear stress is significantly small, a 

change in viscosity is not expected. Therefore, vorticity would be expected to stay unchanged. 
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5.5.1 Results 

Vorticity contour and vorticity variations for Newtonian and shear thinning fluids when 

Re=l 

Figure 5.12 and Figure 5.13 show the vorticity patterns for Newtonian and shear thinning fluids 

respectively. Figures 5.14 and 5.15 present vorticity profiles at the central axis of the crest and 

trough section respectively. By these figures, the region where vorticity is mostly shown can be 

investigated for both cases, isothermal and non-isothermal flow. 

Wave frame 

n = 1 (Newtonian fluid) 

a
1 

= -0.034 oc-1 (Non-isothermal flow) a
1 

= 0 oc-1 (Isothermal flow) 

Figure 5.13 Comparison of the variation of vorticity in non-isothermal and isothermal flow with 

Newtonian fluid when Re=l with Q/ Jreh 2 = 0 

As obtained in the previous section, the effect of a1 is strong at the region adjacent to the wall. 

With isothermal flow ( a 1 = -0.034 oc-1
), as it can be seen in Figure 5.13, the change in vorticity 

is found mostly at the region adjacent to wall. 

On the other hand, with isothermal flow ( a
1 

= ooc-1
), vorticity is mostly found around the region 

of the trough section. Vorticity can be detected also at the crest section but it is very small. 

In the Figure 5.14, vorticity patterns in non-isothermal and isothermal flow are plotted with shear 

thinning fluid. 
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Wave frame 

n=0.5 (shear thinning fluid) 

, __ 

Non-isothermal flow a
1 

= -0.034 oc-1 Isothermal flow a1 = 0 oc-1 

Figure 5.14 Comparison of the variation of vorticity for shear thinning fluid when Re= 1 with 

Q/Jreh 2 = 0 

Vorticity patterns stay unchanged even if the condition of non-isothermal flow ( a1 = -0.034 oc-1
) 

is employed; this agrees with the expectation as viscous effect becomes smaller with shear 

thinning fluids. Therefore, this result agrees with the result in Figure 5.6 which shows streamline 

patterns for a shear thinning fluid. 
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Vorticity Profile in the Crest section 
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Figure 5.15 The comparison of vorticity profile between isothermal and non-isothermal flow in the crest 

section with Newtonian fluid when Re= 1 (r: radial direction) 

Figure 5.15 shows the vorticity profile at the central axjs of the crest section for isothermal and 

non-isothern1al flow. With isothern1al flow, vorticity increases slowly across the whole cross 

section. On the other hand, vorticity increases dramatically at the region adjacent to the wall 

( r ) 6.5xl0-3 m). 

This phenomenon den1onstrates that viscosity for non-isothermal flow around the wall is much 

smaller in comparison with that for isothermal flow . 
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Vorticity profile in the trough section 
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Figure 5.16 The comparison of vort icity profile between isothermal and non-isothermal flow in the trough 

section with the condition of Newtonian fluid when Re= 1 (r: radial direction) 

Vorticity profiles in Figure 5.16 are similar to the results in Figure 5.15. The vorticity increases 

considerably at the region (r =2xl o-1 m) with non-isothermal flow. On the other hand, vorticity 

increases slightly in isothennal flow. 
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Pressure contour for Newtonian and shear thinning fluid when Re=l 

Pressure contour 

n=0.5 (shear thinning fluid) 

Isothermal flow a
1 

= 0 oc-t Non-isothermal a 1 = - 0.034 oc - t 

n= l (Newtonian fluid) 

Isothermal flow a 1 = 0 oc- t Non-isothermal a 1 = -0.034 oc- 1 

Figure 5.17 Pressure contour for the condition of isothermal and non-i sothermal flow with 

i2! Jreh 2 = 0 

With regards to Table 5.2, the effect of temperature has not occurred in the conditions for a shear 

thinning fluid . Therefore, in Figure 5.17, pressure contours and colour for a shear thinning fluid 

is not changed when the condition of non-isothermal flow is employed. 

In the case for a Newtonian fluid (n=l), colour for pressure contour in non-isothermal flow is 

changed when the condition of non-isothermal flow is employed. 
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5.6 The effect of temperature on different geometries with non-isothermal 

flow in Newtonian flu id. 

In the previous sections, the effects of temperature on peristaltic flow with various conditions in 

the same geometry corresponding to a= 0.25, ¢ = 0.5 were investigated. Kyozo et al [11] 

studied the effect of the amplitude ratio ( ¢ = ~ ) and wave number ( a = !!_ ) on peristaltic 
h A 

isothermal flow. The intent of the investigation in this section is to study the effect of 

temperature on different geometries that affect peristaltic flow. 

c 

R,V 

h 

__l- -- l ___ z,u 
TJ 

Figure 5.18 Configuration of peristaltic flow in two-dimensional axi-symmetric tube 

Figure 5.18 shows the configuration of peristaltic flow. The variable, h (the mean distance of the 

wall from the symmetric axis) is varied to show the effect of the geometry in isothermal flow. 

Utilising the three values of h 0.0045m, 0.004m and 0.0035m, the corresponding wave nun1bers 

are 0.225, 0.2 and 0.175 . With san1e h values, amplitude ratios are 0.556, 0.625 and 0.714 

respectively. 

In an isothermal flow, in Figures 5.19, 5.20, 5.21 and 5.23, the effect of the geometry is shown 

by their velocity profiles, the streamline pattern and the pressure drop. 
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In a non-isothermal flow in Figures 5.19, 5.20, 5.22 and 5.23 , the effect of temperature on 

different geometries is also presented. 
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5.6.1 Results 

The streamline patterns in different geometries for isothermal and non-isothermal flow 

when Re=lO (with Newtonian fluid, n=l) 

Isothermal flow I Non-isothermal flow 

Wave number(!!_ )=0.225, Amplitude ratio(~ )=0.556 
A h 

( h=0.0045 m) 

h . . £ 06 5 Wave number(- )=0.2, Amplitude ratio(-)= . 2 A h 
( h=0.004 Ill) 

Wave number(!!_ )=0.175, Amplitude ratio(~ )=0.714 A · h ( h=0.0035 m) 

Figure 5.19 Comparison of the variation of streamline in different geometry (in the wave frame) for the 

case when al = 0 oc- t (left) and al = -0.034 oc- t (right) with f2! Jreh 2 = 0 

In the case of an isothermal flow, the decrease in the value of h yields a change in streamline 

patterns. While the value of h decreases 0.0045 m to 0.004 m, two circulations are clearly 

developed and visualised by the effect of geon1etry then the circulations ' location and shape stay 

unchanged as the value of h decreases 0.004 m to 0.0035 m. 
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With non-isothermal flow , the decrease in the value of h does not change streamline patterns. A 

circulation 's location tends to settle at the crest section and the flow pattern is slightly changed 

but the change is considerably small. 

The pressure drop and velocity profiles in different geometries for isothermal and non-

isothermal flow 

Figure 5.20 shows the pressure drop in isothermal flow and non-isothermal flow with different 

geometries. 
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0.175 -Figure 5.20 Change in pressure drop per wavelength in the three different geometries with the case of 

isothermal and non-isothermal flow when n= 1 (Newtonian fluid) 

As it can be seen in Figure 5.20, the decrease in the value of h yields the increase in the pressure 

drop in isothermal and non-isothermal flow. However, the values of the pressure drop in 

isothennal flow stay higher for all wave numbers. In non-isothermal flow, the values of the 

pressure drop have reduced with decreasing viscosity. 
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Comparison of velocity profile in the crest section 
When the mean radius ( h ) vary for isothermal flow 
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0.3 

Figure 5.21 Comparison of velocity profile in the three geometries with the case of isothermal flow in the 

crest section (Newtonian fluid) 

In Figures 5.21 and 5.22, with the effect of wave number (a) on the velocity on the axis, the 

velocity decreases when the wave number (a) increases from 0.175 to 0.225 at the crest section. 

Figure 5.23 indicates that as the wave number increases from 0.175 to 0.225, the absolute value 

of velocity ( o/c) increases at the trough section . These results concur with the results from 

T akabatake et al [ 19]. 

For isothermal flow, as h varies resulting in changing wave number and amplitude ratio, the 

profile ( o/c) at the crest section is essentially unchanged near the wall ( r/ h ) 1.2 ) in the figure 

5.20. 
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Figure 5.22 for non-isothermal flow shows substantial variation of o/c in this section. 
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Comparison of velocity profile in the crest section 
When the mean radius ( h) vary for non isothermal flow 
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Figure 5.22 Comparison of velocity profile in the three geometries with the case of non-

isothermal flow in the crest section (Newtonian flow) 

Velocity profiles vary in the whole region because viscosity decreases significantly near the wall 

(r/h > 1.4 ). 

The maxjmum velocity for the isothermal case is found at about r/h = 1.1. ·whereas for the non-

isothermal case, the 1naxirnum velocity occurs at about r/h. =1.4. It can be concluded that the 

boundary layer near the wall could be developed earlier ( r/ h ) 1.4) because viscosity decreases 

by the effect of temperature. 

It can be explained that with decreasing viscosity, the velocity at the region adjacent to wall is 

influenced and velocity profiles vary by the effect of temperature. 
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Comparison of velocity profile in the trough section 
When the mean radius ( h ) vary for isothermal flow 
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When the mean radius ( h ) vary for non isothermal flow 
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Figure 5.23 Comparison of velocity profile in the three geometries with the cases of isothermal flow (left) 

and non-isothermal flow (right) in the trough section (Newtonian flow) 

In Figure 5.23, under the conditions of a non-isothermal flow, the maximum velocity in each 

model is found at the region adjacent to the wall. Velocity is virtually unchanged since the 

maximum velocity occurs. 

On the other hand, in an isothermal flow , the velocity in each model increases constantly. 

Therefore, the velocity increases until the central axis (r/h=O). 
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5.6 Summary of non-isothermal flow 

The results in Figure 5.2 indicate that a pressure drop was influenced by thermal effects. The 

effect of temperature on the velocity field with a Newtonian fluid was demonstrated with the 

results of Figures 5.3 and 5 .4. It is concluded that temperature change yields decreasing 

viscosities under the condition of non-isothermal flow. Therefore, the pressure drop decreases. 

The dimensionless time-average flow with non-isothermal flow was investigated and the results 

were plotted in Figure 5.5. The result shows the effects of the dimensionless time-average flow 

was reduced by the effect of temperature. 

In this research, the effect of temperature on non Newtonian fluids is investigated. It is observed 

that the effect of temperature on peristaltic flow reduces the pressure drop in wavelength in the 

cases of shear thickening and Newtonian fluids. However, under the condition of a shear 

thinning fluid, the effect of temperature was not shown. In a non-Newtonian fluid, as with shear 

thinning and shear thickening flujds , the effect of Reynolds number is not shown in isothermal 

and non-isothermal flow. 

The effect of a1 on peristaltic flow was investigated. As the absolute value of a 1 increases, 

viscosity decreases and the result in Figures 5.11 and 5.12 showed that this effect was stronger at 

the region adjacent to the wall. 

Vorticity patterns and pressure distributions are plotted in Figures 5.13, 5.14 and 5.15. Vorticity 

is powerful in the conditions that viscosities is low. Figures 5.15 and 5.16 demonstrate the 

existence of a relationship between viscosity and vorticity. The effect of temperature for the 

vorticity on peristaltic flow is powerful at the region adjacent to wall as the viscosity decreases. 

Figure 5.19 showed the variation of streamline patterns produced by isothermal and non-

isothermal flow models to show the effect of temperature on different geometries. The 

streamline patterns were produced firstly by isothermal flow to show the effect of geometry. A 

non-isothermal flow model produced streamline patterns to show the effect of temperature in 

different geometries. The results in Figure 5.19 indicated that the effect of temperature reduced 

the effect of geometry for streamline patterns and the pressure drop. Figures 5.20, 5.21 and 5.22 
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showed the effect of temperature influenced velocities at the region adjacent to the wall 1n 

different geometries. 
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Chapter 6. Conclusion and recommendation 

6.1 Conclusion. 

Peristaltic flow and its parameters have been studied by a number of authors for quite some 

time (Shapiro et al [18]). The peristaltic flow with power-law fluids has been investigated more 

recently, for example, by Hayat and Ali [5] in 2006. However, the peristaltic flow under non-

isothermal conditions has not been investigated until present work, especially for non-

Newtonian fluid of the power-law type. 

This work presents axi-symmetric peristaltic flow in circular tubes with the effect of 

temperature in various conditions to provide a possible use in industry. Numerical results in 

this research are used for an investigation of the effect of temperature on peristaltic flow. 

Comparison with isothermal flow has been made. 

The computational fluid Dynamic (CFD) software package CFD-ACE of the ESI group has 

been used for the numerical solution. The coupled system of non-linear governing equations to 

be solved are those of conservation of mass, momentum and energy. Constitutive relation 

appropriate for non-isothermal, power-law fluids has been used. 

Incompressible fluid flow in axi-symmetric configuration has been assumed. The software 

package solves for the main parameters consisting of 2 velocity con1ponents (in axial and radial 

direction respectively), pressure and temperature, iteratively. 

An isothermal flow model is produced and results are compared to previous work in the 

literature. In the case of isothermal flow, velocity profiles and streamline patterns on peristaltic 

flow are shown to agree well with previous studies (Xiao et al [23] , Shapiro et al [18] and 

Takabatake et at [20]). It is shown in this work that non-isothermal flow can be very different 

to isothem1al flow (Xiao et al [23]). 

The comparison of the maximum and minimum axial velocity (U/c) at the Reynolds number = 

0.01 is presented. The new computation model is in agreement with the results produced by 

Xiao et al [23] and Shapiro et al [ 18]. The effect of Reynolds number (Re=O. 01-0.1) on the 

maximum U velocity (U/c) is considered to show a fairly good agreement with Xiao et al [23]. 
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The new computational model produced in this research achieved a good agreement with the 

results of Xiao et al [23]. This is revealed by comparing the effect of the Reynolds number on 

the streamline patterns in wave frame at a= 0.01 <P = 0.7 and ~ =0. 
rcch 

The dimensionless time-average flow rate ( ~ ) was considered in order to prove validation 
rcch-

of the computation model produced in this study. Again, the results produced by present 

computational model are in good agreement with the results of Takabatake et al [20] and Xiao 

et al [23]. 

Thus, it can be concluded that the present computational results of peristaltic flow are trust-

worthy and reliable. 

After this confidence has been established, non-isothermal peristaltic flow is considered. 

Firstly, the effect of temperature on the U velocity profiles in the case for Newtonian fluid is 

examined. The obtained figures shovv that temperature reduces viscosity, as expected. Velocity 

profile (o/c) in central axis at crest and trough sections is also presented to show effect of 

temperature on the flow field. 

The effect of temperature on pressure drop per 'vavelength is investigated. Pressure drop is 

shown with respect to change in Reynolds number. As the value of Reynolds number increases, 

the change in pressure drop increases. It is shown that with non-isothermal flow, change in 

pressure drop with respect to Reynolds number becomes smaller. 

In the case for isothermal flow, the fom1s of velocity profiles (o/c) vary with different values 

of Reynolds number. On the other hand, for the case of non-isothermal flow, the velocity 

profiles become nearly a single curve for all Reynolds-number values up to Re=lOO. 

It is concluded that under the condition of non-isothermal flow, viscosity decreases by the 

action of viscous heating around wall. As a result, the decrease in viscosity causes decrease in 
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shear stress which yields less pressure drop. The decreasing viscosity reduced the effect of the 

Reynolds number. 

The following results can be drawn about the effect of temperature on streamline patterns in 

peristaltic flow with three different conditions which are shear thinning, Newtonian, and shear 

thickening fluid. 

1) The case for shear thinning fluid seems to be not influenced by temperature. Streamline 

patterns were transformed by temperature when Reynolds nmnber = 1. The effect of 

temperature was insignificant with Reynolds number 10 and 100. When Reynolds 

number increases from 1 to 10, the streamline pattern was changed in the case for 

isothermal flow. However, the effect of Reynolds number was negligible in the case for 

non-isothermal flow. 

2) In this case for Newtonian fluid, the effect of temperature is stronger than in the case 

for shear thinning fluid. Streamline patterns were dramatically transformed by 

temperature with increasing Reynolds number 1-100. The effect of Reynolds number is 

strong for isothermal flow but the effect is reduced by temperature. The streamline 

patterns were changed with increase of Reynolds number in the case for isothermal 

flow. The case for non-isothermal flow shows a single fonn of the strearr1line pattern as 

Reynolds nu1nber varies. 

3) The streamline patterns for shear thickening fluid are influenced by temperature but 

they are not significantly influenced by Reynolds number (in both isothermal and non-

isothermal flow). In the range of Reynolds number 1-100, the streamline patterns are 

changed by temperature. I-Iowever, the streamline patterns were virtually unchanged 

with increase of Reynolds number. 

It can be revealed that under the condition of shear thinning fluid, shear stress is significantly 

small as a result of viscosity decreasing with shear rate. Therefore, viscosity stays low even if 

the condition of non-isothermal flow is employed. 
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With isothermal shear-thickening fluid, as the wave speed increases, higher shear rate is 

expected. This results in the viscosity becoming higher. However, since the Reynolds number 

is defined as 

Re = ( h: )a , where v being the kinematic viscosity and c the wave speed 

the increasing values of both c and v thus tend to cancel out, resulting in the effective value of 

Re changing very little. This results in Re (as defined above) having little influence on the flow 

field. This applies to both isothermal and non-isothermal flows. On the other hand, temperature 

affect viscosity without the compensating effect in the Re expression. As a result, a1 has been 

shown to affect the flow pattern significantly. 

Therefore, the effect of Reynolds number was not shown in both isothermal and non-

isothermal flow. When non-isothermal flow is employed, flow patterns were changed with 

decreasing viscosity. However, as Reynolds number increases, flow patterns stay unchanged in 

this condition of shear thickening fluid. 

It was observed that a higher absolute value of coefficient a1 has a larger influence on velocity 

at the region adjacent to wall. Therefore, as an absolute value of exponential coefficient a1 of 

viscosity increases, viscosity decreases. 

Effect of temperature on vorticity distribution has also been presented. Under the condition of 

non-isothermal flow, vorticity is mostly shown at the region adjacent to wall because viscosity 

is low by the efiect of temperature in Newtonian fluid. Vorticity distribution in shear thinning 

fluid is also presented. In this case, vorticity patterns stayed unchanged because shear rate stays 

very low; in other word, temperature plays an insignificant role in flow of shear-thinning fluids 

considered here. 

The effect of temperature on different geometry is shown by streamline patterns, pressure drop 

and velocity profile. With isothermal flow, as values of h decrease, the profile ( o/c) at the 

crest section is essentially unchanged near the wall ( r / h ) 1.2 ). On the other hand, with non-

isothermal flow, velocity profiles vary in the whole region because viscosity decreases 
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6.2 Recommendation 

The non-isothermal flow model with various conditions is considered in investigating the effect 

of temperature and the results fairly meet the objectives. However, there are still many ways 

for this study could be extended. 

This study utilised the method for steady flow which is the flow travels to negative x-direction 

in the wave frame. Even though this method has been developed and its applications are 

verified by many studies since 1969, it would be quite revealing if the results are presented in 

the laboratory frame, and thus unsteady flow configuration, as well. This, however, is only a 

mathematical change of reference frames. 

In this work, investigation was performed by many different conditions. A wide value of 

amplitude ratios and wave numbers would be recommended for the next development. 

Three values of power-la\v index (n == 0.5, 1, 2) and 1:\vo values of exponential coefficient a1 of 

viscosity ( a1 =-~ --0.02 and a1 = --0.04 oc-1) are utilised in this work A higher quantity of power-

law index and exponential coefficient a1 of viscosity would be desirable. 

Only one type of fluid properties is used and investigated for proving the effect of temperature 

on peristaltic flow. The fluid properties are very important to determine fluid behaviour. 

Therefore, many different fluid properties should be utilised to prove the possible use in 

industry. 

Other ranges of values of parameter like amplitude ratio, flow rate, Reynolds number would 

provide a wider coverage of useful configurations. Furthermore, viscoelastic fluids and multi-

phase fluids (for example, mixture of solid and liquids) would provide extension of this work 

to many other practical applications. 
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Part 1. Conservation of mass ( Continuity equation ) referred from [25] 

The conservation of mass is a basic principle of science and engineering. The continuity 

equation expresses the basic principle in a particularly convenient form for the analysis of 

materials processing operations. 

The conservation of mass can be derived from this expression. 

Rate of change of mass in ~ V =Rate of mass convected into ~ V - Rate of mass convected out 

of ~v 

Expressed mathematically this is 

fu:fly& ~ = fly&[(pvJi x -(pvJ ix+L\x ]+ Llx&[(pvy)l y -(pvy)l y+dJ 

+ fu:fly[cpvz)lz -(pvz )lz+Az ] 
(2-1) 

ap I a a a J ----- V +- V +- · V Lead to a -- l ~ (p X) ~ (p y) a (p z) t OX uy' Z (2-2) 

It will be expressed more succinctly as 

ap af = -'\1 •(pv), (2-3) 

where v is velocity vector. 
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Part 2. Conservation of momentum ( Navier-Stokes equation) 

Navier-stokes equation is derived from the equation below 

---+ ---+ ---+ ---+ a ---+ 
LF= fpv(v.n)dA+- fpvdV 

A at v (1-1) 

The each side of equations above is divided by a stationary differential volume element. 

---+ 
lim LF 

L1x~ y ~ ·--j. 0 
L1x~y~ 

---+ ---+ ---+ a f ---+ f p v ( v . n )dA - p v dV 
A atV --------------+------------

Llx~y&- (1-2) 

Total Forces, according to coordinate X,Y and Z are derived as below. 
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----+-------· 

Figure 6.1 Diagram of flux in volume 

• I 
I 
I 

~ 

pvv I y y +L1y 

'f.F: =(uxxl-uxxlx+&)~y&+(ryxly -ryxly+Ll)&Llz+(rzxlz -rzxlz+&)&~y 

+(J1x- I1x+L\x )~yL\z + gxp&L\yL\z 
(1-3) 

2.~ ==(a.YI-o-YYI )&L\z+(rxyl -Txyl )L\y&+(rzyl' -rzyl )&L\v 
J y+l\y x x+L\x z z+Llz 

+ ( d - ~ )&& + gyp&~y& 
l iy 1 iy+L\y 

(1-4) 

I.F ==(u 1-a I )&L\,;+(r I -r I )L\,;L\z+(r I-n; I )&L\z z zz zz z+L\z :!' xz x xz x+L\x / · yz y "'.!' yz y+.L\y 

+ (J1z- I1z+Llz)&L\y + gzpL\xL\yL\z 
(1-5) 
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. au ar x ar ap lim LFx ==- xx - Y - zx --+gxp 
Llx~y~--+O Llx~y~ ax ay az ax ( 1-6) 

1. "'F au yy ar xy ar zy ap 
lffi LJ == - - - --+ g p 

L1x~y~--+O L1x~yZz ay ax az ay y ( 1-7) 

The momentum flux is described as below 

____, ____, ____, fp v( v .n)dA _ 
Lll"~y&" (1-9) 

(p; Vxll - P; Vx )Llyfu 
x+Llx x + __ ___;y_+--=~Y ___ ~Y __ _ 

---+ 

(p vvY 

AxL\y& 

z+~ z 
+---~~------~----

(1-9) 

[ 
a ---+ a ---+ a ---+ J 

== -(p v vx) + -(p v v ) + --(p v vz) ax ay y az (1-1 0) 

A-4 



Appendix 

(1-11) 

As a concerning the continuity equation, the equation 3 would be reduced as ( 4) 

aP [a a a ] - ==- -(pv ) +-(pv ) +-(pv ) . . . at ax X ay y az z ....... . . Continuity equation 

---+ ---+ ---+ 
---+ aP a v a v a v 

==-v-+p v -+v -+v-at X ax y ay z az (1-12) 

J ---+ ---+ ---+ ---+ ---+ ---+ 
p v ( v . n )dA_ ---+ ap a v a v a v 

lim --=------==-v-+p v -+v -+v-
L\x~yAz---+0 Ax~ y & at X ax y ay Z az (1-13) 

af-+ a - -? - pvdV -pv&~1)~ -+ at v _ at ~ a -+ a v -+ a p -----==-pv-p-+v-
L\x~y~ &~y~ at at at 

(1-14) 
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( 
au XX ar yx ar ZX ap J - - - --+g p ax 8y az ax X 

~ 

lim IF= 
~~y&~O~~y& (

- Ocr yy _ Or xy _ Or zy _ OP + g PJ 
ay ax az 8y y 

( au zz ar xz ar yz ap J - - - --+g p az ax 8y az z 

(1-15) 

J ~~~ ~ ~ ~ 

p v( v. n )dA ~ aP a v a v a v 
lim -"--------v-+p v -+v -+v-

~~y&~O Ax~y& - at x ax y ay z az (1-16) 

a f ~ - pvdV ~ 
at av ~ap 

lim v == p-+ v-
L1xL1y&~o tixL1y& at at (1-17) 

+- lim 

a f -----) - pvdV 
at v 

-~ 

LF 
-----) - --) ~ 

Jpv(v.n)dA 

fu:L\y&~O 

The Stokes viscosity law would apply into the Navier-Stoke equation above and the equation 

will be transfom1ed as 

~ 

Dvx ap a 2 ~ av 
p = pgx -----(- pV V) + V(p-) + V(uVvx) (1_19) Dt ax ax 3 ax 
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----+ 
Dvy ap a 2 ----+ av 

P ==pg ----(-pV'v)+V'(p-)+V'(pV'v) (1-20) Dt y ay ay 3 ay y 

----+ 
Dv~ ap a 2 ----+ av 

p-L- ==pgz ----(-p\lv)+V'(p-)+\l(p\lvz) (1-21) 
Dt az az 3 az 

----+ 

In compressible flow, as \7 V == 0 , the equation (1-21) will be reduced as 

----+ 
Dv ----+ ----+ 

p- == - \lp + p\12 v+ p g 
Dt 

A-7 

(1-22) 



Appendix 

Part 3. Conservation of energy 

. 
E corxi, y + dy E adv,y+ dy 

vV r r 
~------- ,dy 

I . 
E cond,x --....- I 
. 

Lx.v.E.~ .. I 
I 
I 
I 
I 

· -------_j 
x,y d"( 

r r 
E cond, y E adv, y 

--------i....- E cond, x + dx 

-~._E adv, x+ dx 

Figure 6.2 Differential control volume ( dx • dy) for energy conservation in two-dimensional flow of a 
viscous fluid with heat transfer. 

If potential energy effects are treated as work done by the body forces, the energy per unit mass 

of the fluid includes the thermal inten1al energy e and the kinetic energy, V 2/2, where 

V 2 = vx 2 + v /. Accordingly, thermal and kinetic energy are advected with the bulk fluid 

n1otion across the control surfaces, and for the x-direction, the net rate at which this energy 

enters the control volume is 

(1-23) 

Energy is also transferred across the control surface by molecular processes. There may be two 

contributions: that due to conduction and energy transfer due to the diffusion of species A and 

B. However, it is only in chemically reacting flows that species diffusion strongly influences 
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thermal conditions. Hence the effect is neglected in this development. For the conduction 

process, the net transfer of energy into the control volume is 

(1-24) 

Where; 

X and Y : the x and y component of body force per unit volume of fluid respectively 

p : the density of fluid 

k : thermal conductivity 

T : temperature 

Energy may also be transferred to and from the fluid in the control volume by work 

interactions involving the body and surface forces. The net rate at vvhich work is done on the 

fluid by forces in the x-direction may be expressed as 

· a a W ner = (Xvx)dxdy + -[(cr u- P}vx ]dxdy + -(r yx Vx }ixdy ax ay (1-25) 

The first terrn on the right-hand side of Equation (1-25) represents the work done by the body 

force, and the remaining terms account for the net work done by the pressure and viscous 

forces. 

Using Equations (1-23) through (1-25), as well as analogous equations for they-direction, the 

energy conservation requirement may be expressed as 

- ~ (Pv ) - ~ (Pv ) + ~ (cr v + r v ) + ~ (r v + o- v ) + q. = 0 ox X 8y y ax UX xyy 8y yxx yyy 
(1 -26) 
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Where q is the rate at which thermal energy is generated per unit volume. This expression 

provides a general form of the energy conservation requirement for flow of a viscous fluid with 

heat transfer. 

Because Equation (1-26) represents conservation ofkinetic and thermal internal energy, it is 

rarely used in solving heat transfer problems. Instead, a more convenient form, which is termed 

the thermal energy equation, is obtained by the continuity equation by u, v respectively and 

subtracting the results from Equation 1-26. After considerable manipulation, it follows that [2] 

pv -+ pv - =- k- +- k- - p -+-1+ pC!>-rq ae ae a ( aT J a ( aT) ( 8v x 8v y \ , • 
X0x yay 0x 0x 8y 0y 0x ay) (1-27) 

where the tem1, p(aujax + 8v/ 8y), represents a reversible conversion between mechanical work 

and thermal energy, and pC!> , the viscous dissipation, is defined as 

(1-28) 

The first tem1 on the right-hand side of Equation (1-28) originates from the viscous shear 

stresses, and the remaining terms arise from the viscous normal stresses. Collectively, the terms 

account for the rate at which mechanical work is irreversibly converted to thermal energy due 

to viscous effects in the fluid. 

If the fluid is incompressible, Equations (1 -27) and (1 -28) may be simplified by substituting 

~ 

continuity equation ( \7 V == 0 ). Moreover, with de= CvdT and Cv = C P for an 

incompressible fluid, the thermal energy equation may then be expressed as 

( aT aT) a ( aTJ a ( aT) {(8vx 8vy J
2 

[(8vx )
2 

(8vy J
2

]} • pC v -+v - = - k - +- k- + f-1 -+- + 2 - + - +q 
p x0x y 0y ax 0x 0y 8y 8y ax ax 0y 
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