
Multi-Graph Learning with Positive and Unlabeled Bags

Jia Wu ∗ ‡ Zhibin Hong ∗ Shirui Pan ∗ Xingquan Zhu† Chengqi Zhang ∗ Zhihua Cai‡

Abstract
In this paper, we formulate a new multi-graph learning task
with only positive and unlabeled bags, where labels are
only available for bags but not for individual graphs inside
the bag. This problem setting raises significant challenges
because bag-of-graph setting does not have features to
directly represent graph data, and no negative bags exits
for deriving discriminative classification models. To solve
the challenge, we propose a puMGL learning framework
which relies on two iteratively combined processes for multi-
graph learning: (1) deriving features to represent graphs
for learning; and (2) deriving discriminative models with
only positive and unlabeled graph bags. For the former,
we derive a subgraph scoring criterion to select a set of
informative subgraphs to convert each graph into a feature
space. To handle unlabeled bags, we assign a weight value to
each bag and use the adjusted weight values to select most
promising unlabeled bags as negative bags. A margin graph
pool (MGP), which contains some representative graphs
from positive bags and identified negative bags, is used
for selecting subgraphs and training graph classifiers. The
iterative subgraph scoring, bag weight updating, and MGP
based graph classification forms a closed loop to find optimal
subgraphs and most suitable unlabeled bags for multi-graph
learning. Experiments and comparisons on real-world multi-
graph data demonstrate the algorithm performance.

1 Introduction

Multi-instance learning (MIL), originated from drug
activity prediction [1], is a special learning task where
labels are only available for a bag of instances. The
niche of MIL stems from its capability to accommodate
label ambiguity, with no label required for individual
instances. Such properties have made MIL very suitable
for many real-world applications, such as image retrieval
and text categorization [2]. For example, in content
based image retrieval, an image can be repressed as a
bag and regions inside the images can be represented
as instances. A bag is labeled as positive if any region
inside the image contains objects interesting to users,
e.g. a leopard as shown in Figure 1.

Although MIL has been used for many applications,
existing multi-instance learning algorithms cannot han-
dle complex data objects, and they that instances in-
side each bag are represented as feature vectors (e.g.

∗Centre for Quantum Computation & Intelligent Systems, FEIT,
University of Technology Sydney, Australia {jia.wu@student., zhib-
in.hong@student., shirui.pan@student., chengqi.zhang@ }uts.edu.au.

†Dept. of Computer & Electrical Engineering and Computer
Science, Florida Atlantic University, USA, xzhu3@fau.edu.

‡Dept. of Computer Science, China University of Geosciences,
Wuhan 430073, China, zhcai@cug.edu.cn.

!2 !!!!1

!2 !!!!1

!2 !!!!1

1:

2:

12:

Bag

Image 1

Figure 1: Multi-instance learning for images where each bag
contains a number of regions (i.e. instances).

1:

5:

12:

Bag

#2 Image 1

Image 2

#5 Image 2

Figure 2: Multi-graph learning for images where each bag
contains several regions (i.e. graphs). Each small area in
a region is a superpixel [3]. Regions #2 (image 1) and
#5 (image 2) share a common subgraph structure (two
cyan nodes and two purple nodes) which corresponds to the
animal body. By using a graph to denote each region, an
image is represented as a bag of graphs. A graph is more
powerful to represent the local structures inside the region
than simply representing each region as an instance.

instance-feature format). In reality, many real-world
objects are inherently complicated, where each sample
may contain instances with dependency structures (i.e.
graphs). Such dependency allows relationships between
objects to play important roles [4], but are, unfortunate-
ly, discarded in traditional instance-feature representa-
tions. For example, in Figure 1, region #2, from an
actual image segmentation algorithm, contains mixed
content including “tree”,“glass”, “leopard”. For exist-
ing MIL methods, they will regard the whole region #2
as one instance and use some visual features, such as

217 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

color histogram, to represent the region. This will in-
evitably result in errors in the feature representation
because features can hardly capture the complex con-
tent inside the region. Instead of treating each region
as one single instance, we can use a graph to represent
each region, as shown in Figure 2, where a number of
small areas inside each region form a graph to represen-
t the content and their structural relationships. This
representation not only allows us use fine-grained small
regions to represent image content, it also provides an
effective way to use graph structures to represent rich
semantic information inside the image regions. For ex-
ample, Figure 2 shows that #2 in Image 1 and #5 in
Image 2 share a common graph structure (a graph with
two cyan nodes and two purple nodes) which represent
the leopard body. By using a graph to represent each
region, we can denote each image as a collection (or
a bag) of graphs, where each graph captures the local
structures inside a region which are inherently discarded
in the existing multi-instance representation.

A second major limitation of existing MIL algo-
rithms is they all require both positive and negative
bags to be provided for learning. In reality, it would be
more beneficial if only positive bags are needed to de-
scribe users’ interests. For example, in image retrieval,
during the search process users may click one or multi-
ple images (i.e. bags) which are interesting to them (i.e.
positive bags), but majority images are unchecked. For
unchecked images, they may not contain users’ retrieval
concepts (i.e. negative bags) or users simply overlook
the images. In this case, there is no negative bag but
only positive and unlabeled bags are available.

The above observations raise a new problem setting
where labels are only available for a bag of graphs and
the learning is based on a limited number of positive
and unlabeled bags. When learning from graph data,
existing methods roughly fall into two categories [5, 6]:
(1) global distance based methods, including graph
kernels, graph embedding, and graph transformation
etc., or (2) local subgraph feature based approaches,
which represent graphs into a vector space for existing
supervised learning methods to derive classification
models. All these graph classification methods require
each graph being explicitly labeled and cannot handle
the proposed bag-of-graph setting where labels are only
available for a bag of graphs. On the other hand,
existing MIL algorithms cannot handle structured data,
such as graphs, and are only applicable to bags with
tabular instance-feature representations.

In summary, the main challenge of our new problem
setting is threefold: (1) Graph representation: finding
informative subgraph features to represent each bag
is crucial for multi-graph learning, mainly because

of the lack of features to represent graph data; (2)
Utilization of unlabeled bags: without having negative
bags, it is very hard, if not impossible, to derive multi-
instance or multi-graph learning models. Some “reliable
negative bags” need to be identified for learning; and
(3) Uncertainty inside positive bags: because genuine
label of each graph inside a positive bag is unknown, we
need effective designs to handle such uncertainty and
accurately identify positive graphs.

Indeed, a straightforward solution (graph-level) to
solve the above problem is to propagate bag label to
each graph inside the bag, so the problem becomes pos-
itive and unlabeled (PU) learning for graph classifica-
tion [7]. This simple approach is ineffective because
not all graphs in a positive bag are positive, so it will
result in a significant amount of label errors. A slight-
ly more intelligent (bag-level) design is to first mine a
set of frequent subgraphs as features to represent all
graphs as instances. Then the problem can be solved
by using PU strategy [8] to first treat all unlabeled bags
as negative bags and train an MI classifier, and iter-
atively refine identified negative bags by using trained
classifiers. This solution is still ineffective because the
selection of subgraph features fails to take unique bag
constraint into consideration, some discriminative sub-
graph features will be missed even though they are not
frequent subgraphs [9].

To solve the above challenges, we propose a puMGL
framework with two alternately and iteratively com-
bined steps, including: (1) deriving features to represent
graph; and (2) deriving discriminative learning models
with only positive and unlabeled graph bags. Experi-
ments on two real-world learning tasks confirm the ef-
fectiveness of the proposed designs.

2 Preliminaries and Problem Statement

Definition 1. Connected Graph: A graph is repre-
sented as G = (V, E,L, l) where V is a set of vertices
V = {v1, · · · , vnv}, E ⊆ V×V is a set of edges, and L is
the set of labels for the vertices and edges. l : V∪E → L
is the function assigning labels to the vertices and edges.
A connected graph is a graph such that there is a path
between any pair of vertices.

Definition 2. Bag: Denote B = {B1, · · · , Bn} a
set with n bags, and Bi is the ith bag, which can be
positive B+

i or unlabeled Bu
i . The collections of positive

and unlabeled bag sets are denoted by B+ and Bu,
respectively. Meanwhile, we use B− to denote the set
of unlabeled bags which are identified as negative bags.

Let Y = [Y1, · · · , Yn] where Yi is the label of
bag Bi. Generally, a positive and a negative bag’s
label can be denoted by Yi = +1 and Yi = −1,

218 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Positiv
e Bags

+

+U
n

la
b

e
le

d
 B

a
g

s
(d)

+

 MGP

(c) Update

conÞdence weights

: Graph
-

-
-

Reliable

 Negative Bags

Optimal
ClassiÞer

g1

g2

gm

S
u

b
g

ra
p

h
 E

x
p

lo
ra

tio
n

(a)

(b)

(e)

Figure 3: A conceptual view of puMGL framework: Given
positive and unlabeled graphs bags, puMGL starts from
assigning a confidence weight for each bag and builds the
initial Margin Graph Pool (MGP). After that a subgraph
feature set will be discovered by using confidence weight
embedding (a) to represent graphs in MGP (b). By training
a classifier from MGP, we can update the confidence weights
for unlabeled bags (c) to help identify some unlabeled bags
as reliable negative bags (d). These reliable negative bags
help build a weighted distribution to measure graphs in
positive and reliable negative bags, respectively. The “most
positive pattern” for positive bags and the “least negative
pattern” for reliable negative bags are selected to update
MGP (e). The iterative process continues, with the objective
of improving the quality of reliable negative bags and the
quality of MGP, until the algorithm converges.

respectively. In a puMGL setting, an unlabeled bag
Bu

i ’s label is denoted by Yi = 0. In addition, we also
use Gi,j (Gj for abbreviation) with its label yi,j (yj
for abbreviation) to denote the jth graph in the bag
Bi = {Gi,1, · · · , Gi,ni}. To tackle unreliable bag labels
in puMGL setting (challenge # 2), we use a weight value
wi to indicate the confidence of each bag Bi’s label. For
a positive bag B+

i , its weight value wi is 1 (because it
is genuinely positive), whereas for an identified negative
bag B−

j , its weight value wj ∈ (0, 1], with a higher wj

value indicating that Bj is more likely being negative.

Definition 3. Subgraph: Let G = (V, E,L, l) and
g = (V ′, E′,L′, l′) being two graphs. g is a subgraph of
G (g ⊆ G), iff there exists an injective function φ :
V ′ → V s.t. (1) ∀v ∈ V ′, l′(v) = l(φ(v)); (2) ∀(u, v) ∈
E′, (φ(u), φ(v)) ∈ E and l′(u, v) = l(φ(u), φ(v)). If g is
a subgraph of G, G is a supergraph of g.

Definition 4. Subgraph Feature Representation:
Denote Sg = {g1, · · · , gs} a subgraph set discovered from
a given graph set. For each graph Gi, we use a subgraph
feature vector xi = [xg1

i , · · · , xgs
i]⊤ to represent Gi in

graph domain, where xgk
i = 1 iff gk is a subgraph of Gi

(i.e. gk ⊆ Gi) and xgk
i = 0 otherwise.

Given a set of bags B containing a number of
positive B+ and unlabeled Bu graph bags, puMGL
learning aims to build a prediction model from B to
accurately predict labels of previously unseen bags.

3 Overall Framework of puMGL Learning

Figure 3 outlines the framework of the proposed puMGL
algorithm with three major steps to solve the key chal-
lenges identified in Section 1: (1) Margin Graph Pool
(MGP): To carry out multi-graph learning with posi-
tive and unlabeled bags only, we propose to use maxi-
mum margin idea [10] to build a positive margin graph
pool (MGP), which consists of “most positive pattern”
from the positive bags and “least negative pattern” from
identified negative bags to help differentiate positive
bags; (2) Subgraph Exploration: For exploring infor-
mative subgraphs from MGP, we employ a confidence
weight embedding strategy (detailed in Section 4.1) as
follows: the confidence weight information is embedded
into the objective function to select an informative sub-
graph set to represent graphs in MGP; and (3) Update
Confidence Weight: To properly identify most neg-
ative bags from unlabeled bags, we assign a confidence
weight for each bag and will update bag weight to find
reliable negative bags. The weight updating ensures
high quality negative bags are identified to form MGP
for further learning.

4 Positive and unlabeled MG Learning

Based on the framework in Figure 3, the main research
problem is twofold: (a) How to identify reliable negative
bags to further build the MGP? and (b) How to evaluate
the usefulness of subgraphs based on graphs in MGP?

The above two problems are closely related to each
other. To build the MGP, the reliable negative bags
need to be identified first. However, prior to that, a set
of subgraph features should have been identified to rep-
resent the graphs. On the other hand, for problem (b),
the evaluation of the usefulness of subgraphs is based
on their performance in differentiating positive vs. neg-
ative graphs. Without a high quality MGP, there is
no way to properly assess the usefulness of subgraphs.
Therefore, we propose the following optimization frame-
work to concurrently identify reliable negative bags and
explore subgraph features.

4.1 Alternating Optimization Framework As-
sume that each bag Bi in training set B is assigned with
a confidence weight wi. The collections of graphs in
MGP are denoted by G = {Ĝ1, · · · , Ĝp} with its size

being p. Each Ĝj in G has a weight ŵj . In our design,
because only one graph is selected from each bag, the
weight confidence of the graph is equal to the weight
confidence value of the bag to which the bag belongs to.
Let Sg denote the complete set of subgraphs discovered
from G. Our optimization aims to find a set of most in-
formative features g, (g ⊆ Sg), based on the confidence

219 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

weight vector ŵ. To this end, we define J (g, ŵ) as an
evaluation function to estimate dependency between the
selected feature set g and the confidence label weights
of the bags as defined in Eq. (4.1), where | · | repre-
sents the cardinality of the set, and m is the number of
subgraphs to be selected from Sg.

(4.1) (g⋆, ŵ⋆) = argmax
g⊆Sg,ŵi∈(0,1]

J (g, ŵ) s.t. |g| ≤ m

Confidence Weight Embedding: To maximize the

evaluation J (g, ŵ), we impose confidence weight em-
bedded constraints to graphs G in MGP as follows: (a)
weight embedded must-link: for any two graphs with the
same labels, they should be close to each other. Mean-
while, because each graph is associated with a confi-
dence weight ŵi, the selected subgraph should ensure
that graphs with similar weights have a high similari-
ty; (b) weight embedded cannot-link: graphs in different
classes should be far away from each other. The small-
er the confidence weight difference between two graphs,
the more distinct the graphs are with respect to the se-
lected subgraphs. In summary, the embedding process
is to utilize confidence weight information to help find
informative subgraphs as features to represent graphs.
Similar assumptions have also been used in the previous
work which handles graphs with labeled and unlabeled
graphs [11].

Based on the above constraints, we derive an eval-
uation criterion for J (g, ŵ) as follows:

J (g, ŵ) =
1

2

∑
i,j

Kg

(
Ĝi, Ĝj

)
Mi,j(4.2)

Where Mi,j embeds confidence weight information (i.e.

ŵ) between two graphs Ĝi and Ĝj in MGP. Kg(Ĝi, Ĝj),
which is defined in Eq. (4.3), denotes distance between
two graphs Ĝi and Ĝj in subgraph feature space based
on the selected subgraph set g.

Accordingly, the problem defined in Eq. (4.2) can
be regarded as a nonlinearly constrained nonconvex
optimization problem. To the best of our knowledge,
there is no direct solution to find its global optimum. In
this paper, we propose an iterative algorithm by using
the alternating optimization to obtain a local optimal
solution. The optimization iteratively updates g and ŵ
in an alternating fashion. In the following part, we will
first show how to optimize the above two subproblems,
and then integrate them to form our puMGL framework.

4.2 Optimal Subgraph Features In order to de-
rive solutions to find subgraphs as features, we first for-
mally introduce notations as follows:

• X̂ : the matrix using subgraphs Sg to represen-

t all graphs G in MGP, X̂ = [x̂1, · · · , x̂p] =

[fg1 , · · · ,fgs]
⊤ ∈ {0, 1}s×p, where fgk , gk ∈ Sg,

is an indicator vector of subgraph gk with respec-

t to all graphs in G, i.e., fgk = [f Ĝ1
gk

, · · · , f Ĝp
gk]⊤,

where f Ĝi
gk

= 1 iff gk ⊆ Ĝi and f Ĝi
gk

= 0 otherwise.

• A and B: A = {(i, j)|yiyj = 1} denotes the weight
embedded must-link pairwise constraint sets among
G, while B = {(i, j)|yiyj = −1} denotes the weight
embedded cannot-link pairwise constraint sets.

To calculate Mi,j in Eq. (4.2), we adopt a radial
basis kernel function to measure Mi,j = K(ŵi, ŵj).

While Kg(Ĝi, Ĝj) in Eq. (4.2) is defined as

(4.3) Kg =

{
−
∥∥Dgx̂i −Dgx̂j

∥∥2
/|A|, yiyj = 1∥∥Dgx̂i −Dgx̂j

∥∥2
/|B|, yiyj = −1

where Dg = diag(d(g)) is a diagonal matrix indicating
which subgraph features g are selected from Sg to rep-
resent the graphs, d(g)i = I(gi ∈ g) with I(·) being an
indicator function. By using a confidence weight em-
bedded matrix C = [Cij]

p×p, Cij = {−Mi,j/|A|, yiyj =
1; Mi,j/|B|, yiyj = −1; 0, otherwise}, through which
the confidence weight information is embedded in the
matrix C, Eq. (4.2) can be rewritten as follows,

J (g, ŵ) =
1

2

∑
i,j

∥∥Dgx̂i −Dgx̂j

∥∥2
Ci,j

= tr(D⊤
g X̂ (D − C)X̂⊤Dg)

= tr(D⊤
g X̂LX̂⊤Dg)

=
∑

gk∈g
f⊤
gkLfgk

(4.4)

where tr(·) is the trace operator for a matrix, D is a
diagonal matrix generated from C, i.e., Di,i =

∑
j Cij .

And L = [Li,j]
p×p = D − C is a Laplacian matrix.

By denoting the function as z(gk, L) = f⊤
gk
Lfgk , the

problem of maximizing J (g, ŵ) in Eq. (4.1) is equal to
finding a subset of subgraphs that can maximize the
sum of z(gk, L), which can be represented as:

(4.5) max
g

∑
gk∈g

z(gk, L) s.t. g ⊆ Sg, |g| ≤ m.

Definition 5. puScore Criterion: Given B with
positive and unlabeled graph bags, and a confidence
weight embedded matrix C, with L denoting an Lapla-
cian matrix as L = D − C. The informativeness score
of a subgraph gk can be measured by:

(4.6) r(gk) = z(gk, L) = f⊤
gkLfgk

Since the Laplacian matrix L is positive semi-
definite [11], for any subgraph gk, f⊤

gk
Lfgk ≥ 0, i.e.,

r(gk) ≥ 0. In order to find the optimal subgraph
set g which maximizes the criterion defined in Eq.

220 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 1 ESE: Embedding Subgraph Exploration

Require:
G: A graph set in MGP with confidence weight ŵ
min sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Ensure:
g = {g1, · · · , gm}: A set of subgraph features;

1: g = ∅, τ = 0;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gk ← current visited subgraph in DFS tree of G ;
4: if freq(gk) < min sup, then
5: return;
6: C ← Apply ŵ to G and obtain the embedding matrix;
7: r(gk)← Apply C to compute puScore of subgraph gk;
8: if |g| < m or r(gk) > τ , then
9: g← g

∪
gk;

10: if |g| ≥ m, then
11: g← g/argmingi∈g r(gi);
12: τ = mingi∈g r(gi);
13: Depth-first search the subtree rooted from node gk;
14: end while
15: return g;

(4.5), we can calculate puScore of each subgraph in
Sg and sort them in a descending order, i.e., r(g1) ≥
r(g2) · · · ≥ r(gs) and then collect top-m subgraphs
g = {g1, · · · , gm}.
Subgraph Exploration: One straightforward solution
for finding an optimal subgraph set is exhaustive enu-
meration, i.e., enumerate all subgraphs in a graph set
to find the ones with maximum puScore values. Un-
fortunately, the number of subgraphs grows exponen-
tially with respect to the size of graphs in bags, which
makes the exhaustive enumeration approach impractical
for real-world data. To solve the problem, we employ a
Depth-First-Search (DFS) based algorithm gSpan [12]
to iteratively enumerate subgraphs. The key idea of
gSpan is to first assign a unique minimum DFS code to
each graph, and then discover all frequent subgraphs by
a pre-order traversal of the tree.

Algorithm 1 lists the proposed subgraph feature ex-
ploration approach, which starts with an empty feature
set g and the minimum puScore τ = 0. The algorithm
continuously enumerates subgraphs by recursively visit-
ing the DFS code tree in gSpan. If a subgraph gk is not
frequent, both gk and its subtree will be pruned (lines
4-5). Otherwise, we calculate gk’s puScore value r(gk)
using the confidence weight embedded matrix C (line 6).
If r(gk) is larger than τ which is the minimum puScore of
the current set g, or g has less than m subgraphs (i.e. g
is not full), gk is added to the subgraph set g (lines 8-9).
If the size of g exceeds the predefined value m, we need
to remove one subgraph with the least discriminative

power (lines 10-11). After that, the minimum puScore
of gi ∈ g (i.e. mingi∈g r(gi)) will be used to update the
threshold τ (line 12). Finally, the depth-first search will
continue by following the children of gk (line 13), until
the subgraph mining process is completed.

4.3 Confidence Weight Optimization Following
the above process, we can obtain an optimal subgraph
set g. After that, we will solve the second subproblem:
optimize the confidence weight ŵ for MGP. The opti-
mization can be approximated by building a classifier
from MGP using obtained subgraph features, and uti-
lizing the classifier to predict class labels of unlabeled
bags. In the following, we first explain the construc-
tion of MGP, and then introduce detailed process for
updating optimal bag confidence weight values.

Margin Graph Pool (MGP): The main purpose of
building MGP is to identify some “most positive pat-
terns” from positive bags and “least negative pattern-
s” from reliable negative bags, so MGP can help build
classifiers to differentiate positive vs. negative bags for
learning. This also provides solutions to tackle unreli-
able bag labels obtained from unlabeled bags.

The construction of MGP is motivated by the
margin principle, which states that samples close to the
decision boundary play critical roles in improving the
performance of the underlying classifier. In proposed
puMGL, we assign a confidence weight wi to each
bag, so it can help identify unlabeled bags which
are most likely being negative as “reliable negative
bags” and then extract most positive patterns from
positive bags and least negative patterns from identified
negative bags to form MGP. According to the multi-
graph setting, a negative bag does not contain positive
graphs, and graphs in negative bags can have very
general distributions. So we use a weighted Kernel
Density Estimator [13] (WKDE) to model distributions
of negative graphs in reliable negative bags as follows.

(4.7) ρ(x|X−) =
1∑
i n

−
i

∑
i,j

K(wxx, wix
−
i,j)

where wx denotes weight of the bag to which the graph
x belongs to, and x−

i,j denotes the subgraph feature
representation of the jth graph in the ith reliable
negative bag. n−

i denotes the size of ith reliable negative
bag, and an isotropic Gaussian kernel K is used to
measure to the similarity between two graphs under
the feature representation by using g. The collection of
the subgraph feature vectors for all graphs in reliable
negative bags B− is denoted by X−. Depending on
whether the underlying bag is positive or is identified as
negative, the “most positive pattern” or “least negative

221 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 2 CWO: Confidence Weight Optimization

Require:
B = B+ ∪Bu: An graph bag data set;
g: subgraph features; G: A graph set inMGP;

Ensure:
ŵ: A set of confidence weight for MGP;
// Unlabeled Bag Weight Optimization:

1: X̂ ← Apply g to G to obtain subgraph feature vectors.
2: H ← Apply X̂ to build the classifier.
3: for each bag Bi in Bu do
4: for each graph Gi,j in Bi do
5: xi,j ← Apply g to Gi,j to obtain its feature vector.
6: pi,j ← Apply H to xi,j and estimate probability;
7: end for
8: wi ←

∑ni
j pi,j/ni;

9: end for
// MGP Weight Optimization:

10: B− ← Apply w to Bu to form reliable negative bag set.
11: D ← Generate a distribution from B− via Eq. (4.7).
12: ŵ← Apply D to B+, B− and update G via Eq. (4.8).
13: return ŵ;

pattern” xρ
i in MGP can be obtained by Eq.(4.8).

(4.8) xρ
i = arg min

xi,j∈Xi,j=1,··· ,ni

ρ(xi,j |X−)

where Xi is the subgraph feature vectors for the ith bag
in B under the given subgraph set g.

Confidence Weight Updating: Presumably the
quality of the initial subgraph features is unsatisfactory,
but can be improved iteratively. After we build the clas-
sifier based on MGP, we reevaluate each unlabeled bag
including those previously identified as negative bags,
because some of them may be false negatives due to
the ineffectiveness of the subgraphs used previously. If
an improved set of subgraphs with a better quality are
discovered, we will use these features to help identify
unlabeled bags which are likely being negative. Be-
cause positive graph bags are initially given in the data
set with confidence 1.0, we only update the confidence
weight of unlabeled bag to indicate their likelihood of
being an negative bag. Any classifier which can output
probability estimation is sufficient for this purpose.

Assume pi,j denotes the probability of a graph Gi,j

in bag Bu
i being classified as a negative graph, we

can calculate the confidence weight for each bag using
wi =

∑ni

j pi,j/ni, which also helps update confidence
weights w for all unlabeled bags. At last, the bags
in unlabeled set with high confidence weights will be
selected as reliable negative bag set (which has the same
number of bags as B+) and are further used to build
the MGP. In this case, the collection of each weight
ŵi for each graph in MGP will be used as the optimal
ŵ. Algorithm 2 outlines the detailed confidence weight

Algorithm 3 puMGL: PU Multi-Graph Learning

Require:
B = B+ ∪Bu: An graph bag data set;
min sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Ensure:
The target class label yt of a test bag Bt.
// Training Phase:

1: Set the labels of the unlabeled bags Bu
j to be -1;

2: G ← Initialize MGP G by randomly selecting one graph
(ŵi = 1) from each Bi ∈ B+ and similarly for each Bj ∈
Bu under the same amount (ŵj ∈ (0, 1], randomly);

3: while not convergence for ŵ do
// Optimal Subgraph Features:

4: g← ESE(m,min sup,G, ŵ); //Algorithm 1
5: G ← Apply g to represent the graphs in MGP G.

// Confidence Weight Optimization:
6: ŵ← CWO(B,g,G); //Algorithm 2
7: end while
8: g∗ ← g; ŵ∗ ← ŵ; // Optimal subgraphs and weights.

// Test Phase:
9: H∗ ← Apply g∗ and ŵ∗ to G to build the classifier.

10: xt,i ← Apply g∗ to each Gt,i in Bt to obtain its vector.
11: Yt ← Apply H∗ to each xt,i to predict its bag label;
12: return Yt;

optimization process which includes two iterative parts:
(1) unlabeled bag weight optimization, and (2) MGP
weight optimization.

4.4 puMGL Algorithm Algorithm 3 lists detailed
procedures of the proposed puMGL framework. At the
first step, puMGL sets all unlabeled bags to have label
-1, with their weight wj being a random value within
(0, 1]. The algorithm initializes the graphs G in MGP by
randomly selecting one graph from each positive bag B+

i

and uses the same approach to select the same number
of graphs from all B−

j ∈ Bu (lines 1-2).
During the first while loop, puMGL selects initial

subgraph features using Algorithm 1 (line 4), because
the initial graphs in MGP have no feature representa-
tion. At this stage, the quality of initial subgraphs is not
optimal because the initial MGP consists of randomly
selected graphs. With the help of subgraph features,
we can re-represent the MGP to build classifiers in fea-
ture space, which will be used to evaluate all graphs in
unlabeled bags. After that, puMGL updates the confi-
dence weight w for MGP by using Algorithm 2 (line 8).
By using “optimize subgraph feature” and “optimize
confidence weight” in an iterative way, we can obtain
optimal subgraphs g∗ and confidence weights ŵ∗ at the
same time, until the confidence weight ŵ for MGP be-
comes stable. At the test phase, all graphs Gt,i in test
bag Bt are transferred into a feature vector by using g∗,

222 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

and are predicted by the classifier H∗ to obtain their la-
bels yt by using multi-graph constraints: a test bag is
classified as positive if any graph inside is classified as
positive, and negative otherwise (lines 9-11).

5 Experiments

5.1 Experimental Settings To evaluate the effec-
tiveness of puMGL, we use F-score, which combines
precision P and recall R: 2 × P × R/(P + R), to mea-
sure the performance of PU learning [7, 8]. In addition,
LibSVM, which has been popularly used for probability
estimation [14], is employed as the classifier in puMGL.
For benchmark data sets used in the experiments, 30%
of bags are randomly selected as testing set in each run,
with the remaining bags being used as training set. Un-
less specified otherwise, the default value of r is 0.4,
the number of selected subgraph features is 60, and the
minimum support threshold min sup = 8% for Online
Product Review data (Sect. 5.3) and min sup = 3%
for content-based image retrieval (Sect. 5.4). Moreover,
all results are based on the average performance over 10
repetitions and all experiments are conducted on a Lin-
ux cluster node with an Intel(R) Xeon(R) @3.33GHZ
CPU and 3GB fixed memory.

5.2 Baseline Methods Because there is no existing
method to solve the proposed problem, for comparison
purposes we implement the following baseline approach-
es from bag- and graph-level perspectives. The former
directly employ PU learning [8] at the bag levels, and
the latter propagates bag label to graphs and transfer
puMGL as a generic PU graph learning problem (puGL)
which can be solved by an existing method [7].

Bag-level approaches: A set of (Top-m) frequent
subgraphs is firstly mined to represent graphs. So the
problem becomes PU multi-instance learning (puMIL),
which still has no known solution but can be solved in
a naive way. As a baseline, puMIL directly builds MI
classifiers by treating unlabeled bags as negative bags.
Moreover, a “spy” mechanism, which has shown good
performance on text documents [8], is used in puMIL
(Adding spies to the unlabeled set allows algorithm un-
derstand the characteristics of unknown positive bags in
the unlabeled set). In summary, puMIL first random-
ly samples a set of positive bags as “spies”, and marks
them as unlabeled bags, then uses the MILR [15] to ob-
tain a set of reliable negative bags from the unlabeled
bag set. After that, it runs MISVM [10] iteratively on
the positive set and reliable negative set until converges.

Graph-level approaches: This method directly prop-
agates bag labels to graphs inside each positive bag with
graphs in unlabeled bags remaining unlabeled. As a re-

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8
(A) Online Product Review

The percentage of positive bags r

F
−

S
co

re

puMGL
puMIL
puGL

20 40 60 80 100
0.6

0.62

0.64

0.66

0.68

0.7

0.72
(B) Online Product Review

The # of subgraph features m

F
−

S
co

re

puMGL
puMIL
puGL

Figure 4: F-score comparisons on Online Product Review
w.r.t different r values (A) and # of subgraphs m (B).

sult, the problem is converted to a puGL task [7]. More
specifically, puGL first derives an evaluation criterion
based on Hilbert-Schmidt Independence Criterion [16]
to estimate the dependency between subgraph features
and class labels based on a set of estimated negative
graphs. Then puGL devises an integrated framework to
evaluate the usefulness of subgraph features based on
positive and unlabeled graphs. A test bag is predicted
as positive if one or more graphs in the bag is predicted
as positive, and negative otherwise.

5.3 Online Product Recommendation This data
set is downloaded from Stanford Network Dataset Col-
lection (http://snap.stanford.edu/data/). The beer re-
view dataset Beers contains numerous beer related user
reviews. Each review is associated with some attributes
such as product ID, reviewer ID, review score (rating of
the product varying from 1 to 5), and detailed text de-
scriptions [17]. If the average score over all the reviews
for the product is greater or equal to 4, we believe that
one or more key properties (e.g. “affordability” and
“durability”) of the product may receive very positive
reviews. On the other hand, the customer may be not
interested in this product, if all of the review scores
are less than 4. Our goal is to recommend good prod-
ucts to users based on the review text. For each review
report, we use fuzzy cognitive map (E-FCM) [18] to for-
m a graph representation with each node in the graph
denoting one keyword and edges representing correla-
tions between keywords. Similar graph representation
approach can be found in our previous work [19].

In our experiments, all edges whose correlation val-
ues less than a certain threshold (0.006) are discarded.
We choose 600 beer products, each of which containing
1 to 10 reviews, to form 300 interesting positive bags
with 1756 graphs (average score ≥ 4) and 300 products
(bags) with 1528 graphs (score< 4) as unlabeled bags.
To validate the performance of puMGL with respect
to different sizes of positive bags, we randomly select
r× 100% interesting products (varying from 0.1 to 0.7)
as positive bags, and combine remaining products and

223 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.65

0.7

0.75

0.8

0.85

(A) Corel Region based Image

The percentage of positive bags r

F
−

S
co

re

puMGL
puMIL
puGL

20 40 60 80 100

0.65

0.7

0.75

0.8
(B) Corel Region based Image

The # of subgraph features m

F
−

S
co

re

puMGL
puMIL
puGL

Figure 5: F-score comparisons on Corel Image w.r.t.
different r values (A) and different # of subgraphs m (B).

all other products/bags as unlabeled bag set.
Figure 4(A) reports the results with respect to d-

ifferent r values, which show that puGL is inferior to
puMIL when r is smaller than 0.3. However, for large r
values, puGL achieves better performance than puMIL,
this is possibly because a large number of positive bags
can provide sufficient information to help discover sub-
graphs with good discriminative power, which may al-
so include those infrequent subgraph features compared
with puMIL merely using static subgraph frequency.
Meanwhile, puMGL clearly outperforms all baselines,
especially when only a small portion of positive bags
are labeled (i.e. r ≤ 0.2). This suggests that puMGL
is effective over a wide range of percentage of labeled
positive bags. Besides, we also test the effectiveness of
puMGL by varying the number of selected subgraphs
from 20 to 100. The results in Figure 4(B) show that
puMGL consistently outperforms baselines.

5.4 Region-based Image Retrieval In this sec-
tion, we report puMGL’s performance for content based
image retrieval. The original images from Corel data set
[20] are preprocessed and segmented using VLFeat Sys-
tem (http://www.vlfeat.org/). In this case, each image
is considered as a bag with each region (or a segment)
inside the image denoting a graph. For each region, we
use a state-of-the-art superpixel based approach, Simple
Linear Iterative Clustering (SLIC) [3], to form a graph
representation with each node denoting one superpixel
and edges representing adjacency between superpixel-
s. Specifically, each region outputs a set of superpixels,
with each of which being labeled with the RGB-color
histogram within each corresponding superpixel. We
use 16 bins per channel, which yields 4096-dimensional
histograms. In order to reduce the quantity of nodes in
each region, a clustering method is employed to label
superpixels. By doing so, each superpixel corresponds a
cluster, with adjacent superpixels being linked through
an edge. A multi-graph representation example for im-
age from the database is shown in Figure 2.

To build positive bags, we use category “Cats”,

which consists of “Tiger”, “Lion” and “Leopard”, as
positive bags (300 bags with 2679 graphs) and randomly
draw 300 images of other animals to form unlabeled
bags with 2668 graphs (i.e. regions). To validate the
performance of puMGL w.r.t. different sizes of positive
bags, we randomly select r × 100% “Cats” images
(r ∈ [0.1, 0.7]) as positive bags, and combine remaining
“Cats” images and all other images as unlabeled bags.

The results in Figures 5(A) and 5(B) show the
performance of puMGL compared to the baselines w.r.t.
different r and m values. From Figure 5(A), puMGL
archives a much better performance than puGL and
puMIL. We further notice that the F-score will increase
when the r increases. This is quite natural because a
larger number of positive examples provide more useful
information to help represent graph bags. Similarly, the
classification quality usually improves when the number
of selected subgraphs features m increases, as shown
in Figure 5(B). This is due to the fact that a larger
number of selected subgraph features can provide more
structure information to support learning. Although
puGL and puMIL achieve comparable performance with
the increasing m values, they cannot reach the best
performance achievable by the proposed puMGL.

5.5 Effectiveness of MGP in puMGL To further
illustrate the effectiveness of puMGL for building MGP
and validate whether MGP indeed contains highly qual-
ity samples, we report some “most positive patterns” in
MGP, which include the common pattern (i.e. subgraph
with high puScore) as shown in the first row of Figure
6. The samples (i.e. regions) selected from the four
images all correspond to a part of the leopard, which
share a common pattern (i.e. common local structures).
This suggests that MGP is able to find the key region
of the object for training multi-graph classifiers. Mean-
while, our experiments also notice that not all regions in
MGP are highly representative (i.e. the selected region-
s might be less “positive” compared to other regions).
This is due to the fact that the surrounding environ-
ment sometimes can affect the results, as demonstrated
in the second row of Figure 6.

6 Conclusions

In this paper, we investigated a new multi-graph learn-
ing task with only positive and unlabeled bags, where
a bag contains a number of graphs, and labels are on-
ly available for positive bags. This problem setting is
significantly more challenging than traditional multi-
instance learning because no feature representation is
immediately available to represent graphs in each bags,
and furthermore, no negative bags are available for de-
riving discriminative models. To address the challenge,

224 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Figure 6: Examples of “most positive patterns” obtained by MGP. Taking the image on left corner for example, the region
#5 is selected as “most positive pattern” according to MGP strategy in Section 4.3. The selected regions in MGP further
help find the optimal common pattern g (i.e. subgraph with high puScore), under the graph representation G for the first
row. The second row shows some examples, where selected regions are relatively less “positive” compared to other regions.

we proposed an optimization framework to iteratively
explore subgraph features and then evaluate unlabeled
graphs to build a margin graph pool to help train multi-
graph classifiers. The iterative subgraph exploration
and unlabeled graph bag updating will ensure that the
whole process can find high quality subgraph features
and most probable negative bags for graph bag classi-
fication. Experiments and comparisons on real-world
tasks show that the proposed puMGL approach signifi-
cantly outperforms baselines.

Acknowledgment

The work was supported by the Key Project of the
Natural Science Foundation of Hubei Province, China
(Grant No. 2013CFA004), and the National Scholarship
for Building High Level Universities, China Scholarship
Council (No. 201206410056).

References

[1] T. Dietterich., R. Lathrop, and T. Lozano-Pérez,
“Solving the multiple instance problem with axis-
parallel rectangles,” Artif. Intell., vol. 89, 1997.

[2] Z. Zhou, M. Zhang, S. Huang, and Y. Li, “Multi-
instance multi-label learning,” Artif. Intell., vol. 176,
pp. 2291–2320, 2012.

[3] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Ssstrunk, “Slic superpixels compared to state-
of-the-art superpixel methods,” IEEE Trans. Pattern
Anal. Mach. Intell., pp. 2274–2282, 2012.

[4] J. Tang, T. Wang, Q. Lu, J. Wang, and W. Li,
“A wikipedia based semantic graph model for topic
tracking in blogosphere,” in IJCAI, 2011.

[5] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream
classification using labelled and unlabeled graphs,” in
ICDE, 2013, pp. 398–409.

[6] D. Surian, Y. Tian, D. Lo, H. Cheng, and E.-P. Lim,
“Predicting project outcome leveraging socio-technical
network patterns,” in CSMR, 2013, pp. 47–56.

[7] Y. Zhao, X. Kong, and P. S. Yu, “Positive and
unlabeled learning for graph classification,” in ICDM,
2011, pp. 962–971.

[8] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu,
“Building text classifiers using positive and unlabeled
examples,” in ICDM, 2003, pp. 179–186.

[9] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining
significant graph patterns by leap search,” in SIGMOD,
2008, pp. 433–444.

[10] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Sup-
port vector machines for multiple-instance learning,”
in NIPS, 2003, pp. 561–568.

[11] X. Kong and P. Yu, “Semi-supervised feature selection
for graph classification,” in KDD, 2010, pp. 793–802.

[12] X. Yan and J. Han, “gspan: Graph-based substructure
pattern mining,” in ICDM, 2002, pp. 721–724.

[13] Z. Fu, A. Robles-Kelly, and J. Zhou, “Milis: Multiple
instance learning with instance selection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, pp. 958–977, 2011.

[14] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability
estimates for multi-class classification by pairwise cou-
pling,” J. Mach. Learn. Res., vol. 5, 2004.

[15] S. Ray and M. Craven, “Supervised versus multiple
instance learning: an empirical comparison,” in ICML,
2005, pp. 697–704.

[16] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf,
“Measuring statistical dependence with hilbert-
schmidt norms,” in ALT, 2005, pp. 63–77.

[17] J. J. McAuley and J. Leskovec, “From amateurs to
connoisseurs: modeling the evolution of user expertise
through online reviews,” in WWW, 2013, pp. 897–908.

[18] X. Luo, Z.X., J. Yu, and X. Chen, “Building associa-
tion link network for semantic link on web resources,”
IEEE Trans. Autom. Sci. Eng., vol. 8, 2011.

[19] J. Wu, X. Zhu, C. Zhang, and Z. Cai, “Multi-instnace
multi-graph dual embedding learning,” in ICDM, 2013,
pp. 827–836.

[20] J. Li and J. Z. Wang, “Real-time computerized anno-
tation of pictures,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, pp. 985–1002, 2008.

225 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

8/
15

 to
 1

10
.1

74
.1

31
.2

04
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

