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1. Introduction. Let X;, t 2 0, solve a linear stochastic equation
t
(1) Xt:Xo—ﬁ/ Xsds+Y, t20,
0

where {Y;, t 2 0} is a Lévy process (that is a process with independent homogeneous
inerements; see, e.g., (1], {2]), Xo is a nonrandom initial value.

We consider here only the stable case, that is when 5 > 0. In the literature,
this process is cited as an important example of a different class of random processes:
shot noise processes (see, e.g., [3]), filtered Poisson processes [4], generalized Ornstein-
Uhlenbeck (OU) processes ([5], [6], and [7]); etc.

One of the problems for models of that sort is to determine a distribution, or
moments for the one-sided passage time

7, = inf{t > 0: X; > b}, b > Xy.

Different approaches were used for studying this problem: integral equations (see,
e.g., [11, [10], and [21]); martingale techniques (|7], [8], and [9]). etc. In this paper, we
also apply the martingale technique, namely a special parametric family of martingales
(Theorem 1). We find the Laplace transform of 7, provided that the Lévy process Y;
possesses negative jumps only (Theorem 2; under somewhat less general conditions
this result is known from [7] and [8]; see also Remark 3).
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When the process Y, has positive jumps, the Laplace transform of 7, as well as
its moments, are unknown, except for exponential distribution of positive jumps [10],
or uniform distribution [22] of ones.

In this paper, we prove that the distribution of 7, is exponentially bounded for
all b under the assumption that the process Y; has diffusion component or positive
jumps (Theorem 3). This result is known from [9] under the additional assumption
of finiteness of the mathematical expectation of ¥;. Moreover, with the help of the
moment Wald identity (section 4), we derive a lower bound for the expectation E(7,).
Notice that the moment Wald identity can also be used for deriving asymptotic ex-
pansions of E7, as b — oo (see [22]). In section 5, we use this moment identity for
deriving the moment inequalities for sup, <, (X;) even for an arbitrary stopping time 7
provided that Y; obeys cne-sided stable distribution, i.e., in the absence of positive
jumps (Theorem 5). The proof of this result uses techniques from [11], where the
moment inequalities for sup,<. |X;| are given for the Gaussian OU-process.

2. An exponential martingale family. We assume that the Lévy process Y;
and all other random objects are defined on a probability space (Q2,F, P) supplied by
a filtration {including the assumption of right-continuity, etc.).

Recall that any Lévy process

(2) )/{ :mt—}—aI/Vt +Zt,

where m and o are constants, W, is a standard Brownian motion, and Z, is a dis-
continuous process with independent homogeneous increments and paths from the
Skorokhod space.

A (unique) solution of equation (1) has the following representation in terms of
stochastic integrals with respect to W, and Z;:

‘
X, = Xpe Bt 4 e_m/ e?* dy,
0

8

It is well known that the jump component Z; of the Lévy process can be represented
in terms of integrals with respect to a Poisson random measure p(dz, ds), (generated
by jumps of ¥;), and a Lévy canonical measure of jumps II{dx):

@)z =/U /z[{|.7:| <1} [plde, ds) - TI(dz) ds] +/0t/ml{lz\ > 1) p(dz, ds).

Here I{-} is an indicator function and the Lévy measure I1{dz) must satisfy the
following condition:

t t
(3) = + <X0 - %) e Pt 4 oe’ﬁt/ s dw, + e—‘”/ P dz,.
0 0

(5) / min(2?, 1) {dz) < no.

In what follows we define a class of martingales as a parametric family of “X,”
for the special case when the process Y; obeys all exponential moments:

(6) Ee*" =exp {ty(u)} <oo  forall w0,

where, as is well known [1] the cumulant function ¥(u) has the following represen-
tation:

Plu) =mu+ %uz +/(e“z —uzI{|z| < 1} - 1) [I(dz).
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Additionally, we suppose that
(7) Elog(l+ Y7 ) <o

(henceforth, a* = max(a,0), a~ = (—a)¥). We shall see that this condition is
sufficient and necessary for finiteness of the following function ¢(u) which will be
used in a definition of martingales below:

8) )= %/Ou v i(v) dv = %(mu—i— %uz + L(u) + ]2(u)>, w0,

where
Ii{u) = /(;uv_l {/(e”uz —vzl{lz| <1} = D)I{z > -1} H(dz)} dv,
I(u) = /Ouv-l U(em )z < —I}H(dm)} do.

By conditions (5) and (6) the integral I;(u) is well defined and finite. It is convenient
to express the integrand in I5(u) as follows:

/ v He" = 1) dv = / yHeTV = 1) dy
0 0
1 —zu
= —/ y 1l -e V) dy - / g1 —e ") dy
0 1

oo

~ EulerGamma — log(—zu) — / vy le7Vdy,

—Tu

where FulerGamma is the Euler constant (in notation of the package Mathemat-
ica [23]):

1 [>]
EulerGamma = / y il —eY)dy — / yle Vdy
0 1

(see also [12, formula 8.367.12]). Therefore,

©  Bw=0- g+ [T yeva] s -nme),
where D = — [[EulerGamma + log(—m)} I{z £ —1}1I(dz). Obviously, (7) provides
the existence of integral [log(—z)I{z £ —1}TI(dzx), so that, by (5), Iz(u) is well
defined and finite if and only if (7) holds true.

For definition of the above-mentioned parametric martingale family we introduce
also the following “martingale” function

oc
H{u,z) = / gue=eWyr=1 gy, u>0.
0

The following simple estimate for an asymptotic limit of the function y(u) will
allow us to find simple conditions for finiteness of the function H(u,z).
LEMMA 1. Let conditions (6) and (7) hold. If

(10) o >0, orI1{(0,00)) > 0, or /|m|I{—1 <z < 0} 1I{dz) = o0,
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then

a i =0

If

(12) s =0, TI((0,00)) = /|z|1{ | < 2 < 0) TI{ds) <

then

(13) lim "S‘) - % <m+ / el{-1<z< O}H(dr)).
Proof. From (8) it follows that

(14) I>(u) = = log(u)II((—n0, —1]) + O(1), u — 00.

By the incquality ¢® — 2I{|z] < 1} = 1 2 2%I{z > 0}/2, we find that

Ii(u) 2 %2/:52]{1 > 0} Il{dx),

and, hence,
2
Bo(u) 2 mu + uI (02 + /mzl{x > 0} H(d:l:)) + O(log(u)).

So, if o > 0 or I1{(0,00)) > 0, then by this lower bound we obtain (11).
Now assume (12). Then

B8 ¢ (u) :mu+/ [/()uw;l—dv} I{~1 < z < 0} TI(dz) + I»(w).

v

By virtue of (14), the integral I»(u) is of the order O(log(u)). Note that for z < 0
aud = > 0 the following incqualities hold:

vT _ .
€ T 1<

0

A

—Z.

v

Taking into account the assumption [ |z[I{-1 < z < 0}II(dz) < oo, the dominated
convergence theorem, and the 1'Hospital rule, we find

lim —/ / dvI{ 1 <2< 0}{(dz) = /|I|]{ 1<z < 0}(dz).

u—oe U

Thus, (13) holds.
If [|2}I{-1 < = < 0}TI(dz) = oo, the same arguments lead to the following
estimate with any € > 0:

lim plw) 5 1 <m+/|x|1{—1<z< —E}H(dﬂ))).

u—oo u - f

Letting here £ — 0, we obtain (11). Lemma 1 is proved.
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Notice that by Lemma 1 the function H({u,z) is finite for any real z if condi-
tion (10) holds or if

(15) =0, I{0,00))=0, m+ / |z|I{-1 < z < 0} II(dz) > Bz.
Remark 1. If
(16) g=0, I{(0,00)) =0, m+/[:L'\]{—1 <z < 0}I(dz) £ BXo,
then for b > Xy the stopping time 7, = <.
Tudeed, the condition II((0.00)) = 0 implies that the process X; does not have

anyv positive jumps at all. So, since the continuous part of X, is not smaller than X;
itself, by (3), (4), and (16) we have the following deterministic upper bound:

IN

t
X, < % + <X0 - %) g At +e_m/ eﬁs{/ml{—l <z < 0}1l(dz)| ds
0

%(m + / lzlI{-1<z< O}H(dz)>

+ <XU - % - % /m]{—l <z < O}H(dm)> e Pt < X,

Thus. under b > Xy we have sup,,; X; < band so 7, = 00.
THEOREM 1. Let conditions (6) and (7) hold. Further, assume (10) or (15) with
z = X, hold. Then

{e—ﬁHtH(#’Xt), t g 0}7 H > Ow

is the martingale.
Proof. Using standard tools of stochastic analysis (see, e.g., [1] or [13]) we obtain
that, under conditions (6) and (7), the following process

(17) Ti(u) = exp {ueﬁLXt - /Vzp(ueﬂs)ds}
0

is @ martingale. The fact that this process is a local martingale can be checked using
representation (3) and the generalized I1t6 formula. The uniform integrability (under
assumption (6)), and, hence, the validity of the martingale property, is a consequence
of the following exponential identity

Eexp{/tf(smn—q,}:l,
0

q zm/otf(S)ds-F%2 /Otf2(5)ds+/ol/ <ef(°)w—f(s)z1{\$l < 1}—1) (dx) ds

where

and f(s) is a bounded deterministic function.
Note that

/I P(uch*) ds = % /‘“6 vlv) dv = p(ue?) - p(u).
<0 ! u

v
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Since E(Z,(u)) = £,(0) = exp{uXy}, from the latter formula it follows that
(18) Eexp{uX;} = exp {U,Xoe_ﬁt + p(u) — (p('u,e'ﬁt)}.

Applying the Fubini theorem and then introducing a new variable z = ue™#, we
obtain

E(H(M,Xt)) — / E(euX:*‘P(u))u#—l du
OOO —-fit -5t
(19) = / erXoe T mpue™) g u-t gy eﬁ‘”H(/,L,XO) < .
4]

The finiteness of the function H(u, Xy) is due to Lemma 1 and conditions (10) or (15)
with r = X,.
By (17), for all s £t we have

E(Z:(u) | Fy) = Zy(u) a.s.

Now, integrating both sides of the above equality with respect to Q(du) =
e~ ¥Wyr=ldy (u > 0), with u > 0, over the interval (0, c0) we obtain

[>9) o0
/ E(Z,(u) | Fs)e #yr=1dy = / Ty(u) e FWur gy
0 0
(20) - e_m“. / euc[’”xs'w('“cﬁs)(ueﬁs)#_l d(ueﬁs) — e—ﬁpsH(u, Xs)
0

Hence, by the Fubini theorem, applied to the left-hand side of (20), we obtain the
required martingale property

E(e™ M H(u, X)) | F) = e P H(u, X,)  as.

Theorem 1 is proved.

Remark 2. The idea of constructing a special parametric martingale family is
not new. A similar method was used in the papers [14] and [15] for boundary crossing
problems related to a Brownian motion, and in the papers [7] and [16] for boundary
crossing problems related to a stable Lévy process.

By the optional stopping theorem and Theorem 1 we have the following identity:
for any stopping time 7 and fixed ¢ < ©

(21) E[c—ﬁumin(v',t) H(#, Xmin(rt))] = H(H’a X())7 > 0,

We apply (21) to derive an explicit formula for the Laplace transform of 7, provided
that the process Y; does not have positive jumps. Before proving this formula we have
to introduce further notation. Set

oc
Hp,z) = / gvr Py gy, w>0,
0

with

B(w) = mu + ":“2 4+ L) -/ {Mg(u) +/°° E;—ydy}l{z < 1} T(dz).

T
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If (7) holds, then, by (9) and (8),

H(p,z) = exp{DF~'} H(p,),

where the constant D is defined above. Notice also that H(y,z) even if (7) fails.
THEOREM 2. Let I1((0,00)) = 0. If

(22) o>0 or m+/|z|[{—1<x<O}H(dz)>ﬂb,

then P{m, < o0} =1 and

H(p, X
Ee'ﬂuﬂ. — _:(_'U”_O_), uw> 0.
H(p,b)

Proof. First we assume that (7) holds and consider identity (21) with 7 = 7,. By
Lemma 1 and (22), |H(u,z)] < 0o, £ b. Under the absence of positive jumps, on
the set {, < t} we have X, = b and, on the set {7 2 t} we have X, £ b for all
t 2 0. Hence, H{t, Xmin(r,,)) S H(1,0) < 0o and, by the Fatou lemma we can pass
to the limit as t — oo under the expectation in the left-hand side of (21). As the
result, we get

Hu, Xo)

, > 0.
H(b) g

(23) E[I{n < co}e P47 =

It is easy to verify, integrating by parts, that

(24) limpH (p,z) =1.
w0

Passing to the limit as g -+ 0 in (23), by the Fatou lemma we get P{7, < o0} = L.
Since

H(U‘7X0) _ H(/L,Xo)
H(Auvb) ﬁ(u,b) '

w >0,

then, by (23) under (7). the statement of Theorem 1 is valid under the imposed
assumption (7). If (7) fails, we may consider the OU-process X which solves (1)
with Y; replaced with truncated Lévy process

YN =mt+oW, + 2V,

where
t
zN = / /a:]{—l < z < 0} [p(dz, ds) — TI(dz) ds]
0
t
+ / /.’L‘I{—]V < a £ -1} p(de, ds).
Jo

Denote by 'rbN the corresponding crossing time of the level b and by I?N(u, z) the
corresponding martingale function. Obviously, Tgv — 7, as. as N 7 oo. Notice
that (7) holds for Y,V and we have

=N
Ee—ﬁ#‘r:fv - M’ >0,
HN(u,b)
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where the function ﬁN(y,z) is defined above. Now it is easy to check that
Alim HM(u.z) = H(u. z) forany z <.
—

Theorem 2 is proved.

Remark 3. In the case when II{dz) = 0 and ¢ > 0 the process X, is Gaussian
and, of course. the result of Theorem 2 for this case is well known (see, e.g.. [17]).
Note also that for this special case it is possible to derive an analytical inversion
of the Laplace transform of 7, based on the representation for the function H(u,z)
in terms of the parabolic cylinder function D_,(—z) which is well studied (see [12,
formula 9.241.2.]).

In the case when II(—00,0) > 0 and ¢ > 0, Theorem 2 is proved by Hadjiev (see
in [7, p. 85, Theorem 2]), where a slightly different parametric martingale family is
used. The case II(—oc,0) > 0 and ¢ = 0 is also discussed in [7] under an additional
condition (see Hypothesis G in [7]).

3. Exponential boundedness of 7,. In this section, we give sufficient condi-
tions, weaker than in {9], for the exponential moments of 7, to be finite. The cxistence
of exponential moments for the first-passage times from interval (a,b):

Top = nf{t > 0: Xy >bor Xy <a}, b> Xy >a,

is established too.
THEOREM 3. Let conditions (10) or (15) with x = b hold. Assume also that

(25) E(Y, )Y <o forany §e(01)
Then there exists a > 0 such that
Ee"™ < .
Proof. Assuming (6), we shall use an analytical continuation of the martingale

family e = H(u, X;), u > 0, to u € {=5,0) with 6 involved in (25).
For pio e (—4,0), sct

fee)
(26) H(p,z) = / (e¥=¢ _D)utldu  for pe (=6,0).
0
By (10) aud Lemma 1, |H (p,z)] < oc if and only if
1
/ fe(u)| v~ du < oo.
0

Owing o (5) aud (8), for u > —1 we have

/-l
Jo

{(hereafter C is a positive generic constant).
The inequality

1
() wA T du < c+cjf 1L ()] = du
0

(27) 1-e 2 <Csz*.  2>0, §>0,
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provides the following bound:

-1 - pl U (1 _ e-uw)
/ [T(u)]| vt du = / / / — dvI{z £ —1}(dz) v~ du
Jo Jo Jo ;
Cs é ! 144
< 5 |z]°I{z £ ~1}1I(dz) | w* " °du
0
in which the latter integral in the right-hand side is finite for any u € (-4,0),
whereas (25) is equivalent to [ |z|°I{z £ ~1}TI(dz) < o<.
The function H(p,z), g € (=6,0), defined in (26), can be considered as an an-

alytical continuation of H(p.z), ¢ > 0. From (26) (see also (24)) it easily follows
that

(28) limpH(p,z) = 1.
uT0

Just repeating the proof of Theorem 1 with H(u,z), p € (—46,0), we may prove that
the process

e'ﬁ‘”/ (e¥Xr — euXuyyr—le=e(W) gy 4 H(u, Xy) e Pt
0

is a martingale. Then, by the optional stopping theorem for martingales for any
t < 00, we have

- 00
(29) E(f_ﬁll min(T,,t) {/ (cuX,,,;“(.,h,t) _61LXU) ,“‘Il—lc-‘/:('“) d’llv‘f'H(/L, XO)} = H(/;,’ XO)
0
First consider the case II((0,00)) = 0. Since Xyin(r,.) S b and p < 0, obviously,
3 o0
(30) Ee—8nmin(n,.l) {lt/ (eub _ euxu)uu—le—q:(u) du+ pH{p, Xo)} < MH(M Xo)
0
Further, whereas
o0 } oo -
0< / (e¥h — euXoyyr—lem¥ W gy / (€™ — e¥Xo) = le™?M gy < o
0 0
as u — 0 there exists py € (=4, 0) such that for any p € (10, 0)
&0 -
/1/ (€0 — v XoyyplemeW gy > 0.8
0

On account of (28), there is p1 € (o, 0) such that 0.9 < py H(u1, Xp) < 1.1 So, (30)
provides

Ee— b min(7.t) < HIH(#L XO) < 1_1
T fooo(e“b —euXo)ym—le=¢(W dy + py H(wy, Xo) 0.1

This bound is valid for any t 2 0. Hence, by the Fatou lemma, the statement of

Theorem 3 holds true for o = —_ulﬁ.
If TI{(0,00)) > 0, then, choosing a positive constant A with II{((0, A]) > 0, we
introduce the OU-process X;*, generated by the Lévy process YA with positive jumps

truncated by A, and the level crossing time 7/* and notice that 7 2 7,. Applying



10 A NOVIKOV

identity (29) with 7, replaced with 7* and properly defined functions . (u) and

Ha(p, X)), and taking into account X":m (A 1) S b+ Aand p < 0, we get the
2

following bound

oo
Ee—Bu min(rd 1) [#/ (eu(A+b) _ euXu)uu—le—s&A(u) du + /JHA(/J" XO)
0
g /*LHA(/‘L:XO)'

The last part of the proof is similar to that for the case II((0,cc)) = 0.
Theorem 3 is proved.
COROLLARY 1. Let o > 0 or [I{{—oc.o¢)) > 0. Assume

ElY )’ < x for some & > 0.
Then there ezists a > 0 such that

Ee®™ " < o0.

Proof. Denote v, = inf{t > 0: X; < a} and note that 7,, = min(7,v,) By
Theorem 3, applied to 7, and -y,, the desired result holds.

4. The moment Wald identity. The theorem below generalizes Theorem 2
of [8].

THEOREM 4. Denote T = inf{t 2 0: X, 2 f(t)}, Xo < f(0), where f(t) is a
continuous deterministic function such that sup,zq f(t) = M < co. Let conditions (6)
and (25) hold. Further, assume conditions (10) or (15) with x = M hold.

Then

o0
(31) BET = E/ (e“XT — evXu)y~1em?lM) gy < o
0

Proof. First we shall show that under (10) or (15) with £ = M the process
(32) { / (euXt — guXoyy e (W gy — Bt t > O}
0

is a martingale. Indeed, since {e™## H (1, X,), ¢ 2 0} is the martingale for 4 > 0, we
have

e B ([H(n, X ~ Hlp, Xo)] | F:) + (e ~ 1) H (s, Xo)
(33) = ¢ Ans [H(/L,Xs) - H(/J,,Xo)] +(e7Prs _ 1) H(p, Xo)  as.

Under the conditions of Theorem 4

o0
lim [H(p,z) — H(, Xo)] = / (evr — euXoy =l gy
0

11—0

for any z. if (10} holds, or for any z < M, it (15) holds with = = M. Further, due
to (24), we have

lim (e7P#t — 1) H(p. Xo) = —ft.

u—0
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Applving now the dominated convergence theorem we can interchange the symbols
of the limit as u — 0 and the conditional expectation in the left side of (33). Thus,
passing to the limit as 4 — 0 in both parts of (33) we obtain the martingale prop-
erty (32).

By the optional stopping theorem for martingales we find that

<
(34) FEmin(r,t) = E/ (e mintrny _ guXoy gy mle=e () gy
0
is valid for any stopping time 7 and fixed ¢t < cc.
To complete the proof, it remains only to verify that for computation of “lim; "

in the right-hand side of (34) with 7 = T can be reduced to computation under the
“expectation symbol.” We verify that as follows. By Theorem 3,

(35) ET < .
Further. since (34), with 7 = T, is equivalent to

e 9

SEmin(T,t) = EI{T £ t}/ (e"¥T — v Xy y~lemelW gy 4 gy,

0
where e, = EI{T > t} [[7(e"* — e*¥*)u~le™?(") du. Assume for a moment that
(36) lim e, = 0.

t—oc
Then, by the dominated convergence theorem, (31) holds true.
For a verification of (36), we notice that X, £ M on the set {T > t}. Therefore,

applying (27), we find that

lee| = ‘E]{T >t X, 2 XU}/ (evXr — euXoyylem ) gy
0

o
~ENT >t X, < XU}/ X0 (1 — eulXr = Xodyymlems il gy
0

SP{T>t X, 2 Xo}/ (e¥M — vy~ lem e gy
0
+E{]{T >t, Xy < Xg} Cé/ e Xy 18 gy (X, - Xo)*)é}
0
(87) S CP{T >t} + CB[I{T > t}1X, - Xol*],
where
[ 1oC . .
Ch :/ (e¥M — e‘“X")u_]e_V'(“) du, Co = C(s/ giXogymH8g=wlu) gy
o 0
Set
. t
Y, = oW, +/ /z]{|1‘| < 1} [p(dz, ds) — T(dz) ds],
0

%= / t / aI{la| 2 1} plde,ds).
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Since by (3) and (4),

t it
e?* dY, + e P / e’ 4y,

X = Xo=(87tm— Xo)(1—e Pty +e P /
/0

40

with the help of inequality |a + b+ ¢|® < ]al® + |b]° + ||, 6 € (0,1) we find that
¢

(38) 1% - Xl S m = Xl + R = [ [ el 2 1) ptde, ),
0

where X’L is an OU-process with Xe=0, generated by the square-integrable martin-
gale Y;.
Below, we shall show that for any stopping time 7 and ¢ < 2

(39) Esup|X;|® £ Cs sET/2,

tST

By the property of the stochastic integral (see, e.g., [1] or [13]), for any stopping
time 7 we have

’ § = ; = ¢ 2 T
E/ [ a1 2 1) s, ds) = [ laP1{lel 2 1} @) B,
where, by (6) and (25),
(40) /]z[61{|x] > 1} TI(dz) < oo.

Combining (35), (37), (38), (40), and (39) (inequality(39) will be proved in the scquel),
we conclude that Esup, < {X; — x| < 0o and in turn (36) holds.

To verify (39), we apply the 1td formula to )?f = e P M? with
't
M, = / e’ dv,
Jo
and find that

t t
Xf:/ e 2B (aM,_ dMs)+/ €20 d([M, M) — (M, M)
0 0

t
+/ M2 de‘2ﬁ5+t<o2 +/z21{|m| < 1}H(dm)>.
0

Here, the first and second integral terms are martingales, the third one is negative.
For any bounded stopping time 7, these facts provide

EX2 < E(r) <02 + /:ﬁl{m < 1}H(dg;)>.

So, for 6 = 2, (39) is provided by Lenglart’s domination principle (see, e.g., [18,
p. 156]).
Theorem 4 is proved.
Remark 4. Since X, 2 b, Theoremn 4 provides
00
BEn, 2 / (e — X0y leme ) gy,
Jo



MARTINGALES AND FIRST-PASSAGE TIMES 13

Since the condition, given in (6), involves in Theorem 1 and 4, exponentially
distributed. as well as others of such type, positive jumps are excluded from consider-
ation. However. the truncation technique implementation (for large positive jumps)
allows obtaining a lower bound in this case as well. So, instead of (6) we assume

K =sup {u 20: Ee*"t =exp {ty(u)} < oc} <o
and define the function

1/ )

elu) = —/ v~ i {v) du, u< K.
3 Jo

Then. repeating the steps of the proof of Theorem 4, first for the case with truncated

Jjumps and then passing to the limit as the parameter of truncation increases to infinity,

we obtain the following lower bound

K
BE™ 2 / (e — ev X0y yle¢ W gy,
Ju

Remark 5. Identity (31) might also be used for creating corresponding bounds
for two-sided stopping times 7,5. If, for example, ¥} is the process with a symmetric
distribution, Xy = 0 and (6) hold, then (34) holds for X, and (—X,) as well, that is,
for any stopping time 7

oG
SEmin (,t) = E/ (eF¥Xomnimer 1) u=lem () gy
0
Hence,
x<
(41) BEmin(r,t) = E/ (cosh(uX min(r1)) — Dule ¥ gy,
0

The same approach is used in [11] for the derivation of maximal inequalities for Gaus-
sian OU-process. Since Gaussian OU-process is continuous, from (41), as t — oc. it
follows that

2,2
aTus

48 -

(o]
SET_pp = / (cosh(ub) — 1) ule W dy < o, olu) =
0

5. Maximal inequalities for stable OU processes. We consider now a spec-
tral negative stable process Y; (see [1] or [19]) with

(42) Ee*"? = exp{a™'u"}. vu20, l<al2

This process Y} and, in turn, X, do not have positive jumps. Moreover,
plu) = u®/(a*P).

By (18).

1 — —afty .
Eexp{uX} = exp {uXoe"m + (_e_)“_}

o?g
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If a = 2, Xy = 0, the process X, is Gaussian. Then by [11] the following remarkable
inequality is valid: for any stopping time 7

(43) CiEVIog (11 fr) < \/,EE<m<ax|Xt|) < CoE/Tog (1 + f7),
taT

where Cy 2 % Cy £3.3795.

We prove here an analogue of (43).

THEOREM 5. Let (42) hold and X, solve (1) with Xy 2 0. Then for any stopping
time 7 and allp > 0

B[ (10g(1 + 57))"0 /)] < B[ (sup x,)’]

i,§‘r
(44) <a,+ CPE[(log(l + ,&))”“‘”“)],

where positive constants ap, ¢y, and C, do not depend on 7.

For the proof of inequality (43), Graversen and Peskir [11] apply Wald’s moment
identity with the formula for E7 being similar to (41). Here, we apply identity (34)
which is the one-sided analog of the above-mentioned formula from [11]. We also use
the following simple consequence of Lenglart’s domination principle.

LEMMA 2. Let Q, be a nonnegative, right continuous process and let Ay be an
increasing continuous process, Ay = 0. Assume that for all bounded stopping times 7

(45) EQ, S EA..

Then for all p > 0 and for all bounded stopping times T there exist constants c,
and Cy, such that

(46) E({log (1+sup Qt)]p) < ¢y + CyE([log(1 + A)JP).

tgf

Proof. By Lenglart’s principle, for any increasing continuous function H(x) with
H(0) = 0, (45) provides

(47) B(sup H(Q)) S B(H(4,)),

th

where

>
H(z) = z/ ;dH(s) + 2H(z).
Set H(z) = (log (1 + z))?, 2 0. By I'Hospital’s rule, lim,_,o H(z) = 0 and

im =2 [ Lan(s) =
% H(7) /‘,, 5 () =0.
Hence, lim,_, o [H(z)/H(z)] = 2 and there are constants ¢p and C, such that H(z) <
¢y + CpH(z). Therefore, (46) is implied by (47) with H(z) = (log (1 + 2))".

Proof of Theorem 5. Denote X = sup,<, X;. In the absence of positive jumps
for X, the process X} is increasing and continuous. Then, (34) provides the following
inequality as valid for any bounded stopping times 7

BET <E / (eux; _ cuxu)u—le_uu/(azﬂ) du = E(G(X:) _ G'(Xo)),
Jo
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where
o - ”
G(y) = / (e¥¥ — 1) u~te ¥ /(@) gy,
0

Heuce, (45) is valid for Q, = ft and A; = G(X;) — G(z) the continuous increasing
process, Ag = 0. By Lemma 2,

E[(log(1 +67))"" 7] < ¢ + B[ (log [1 + G(X;) - G(X0)]))" 7).

Thus, the lower bound in (44) will be held, if the inequality log(1 + G(y)) £ C) +
Coy®/te=1} 4 > 0 is valid. The latter bound readily follows from the well-known
asymptotic relation:

(48) G(y) = exp {Cay®/ @D (1 +0(1)},  y-r o0

(see, e.g., [20, Chap. 3, Exercise 7.3]). The boundedness requirement for stopping
time 7 is easily removed by applying the localization technique.

The upper bound (44) is derived with the help of (34) which, jointly with an
obvious equality e* = er’ —1+e %, for any bounded stopping time T gives

E(G(X}) £ G(X,) + BET + E/ (1- e X7 )y le™¥"/(0%8) gy
9]
Since

E / 00(1 — e XYyl /@) gy S B(XT) / T et gy
0 0

and EX. £ |Xg|/8 + CET (see, also the proof of Theorem 4), we find the following
estimate:

E(G(X})) € ¢+ CEr.

Thus, (45) is valid with 4, = ¢ + Ct and Q; = G(X,"), where Q, is a nonnegative
right-continuous process. By Lemma 2,

E[(log (1+G(X))"" ] £ 6 + GB|(logl1 + )" 7]
aud it remains only to notice that (48) provides the following bound:

C+log(1+G(y)) Z Cy*/==D y>o.

Theorem 5 is proved.
Remark 6. For o = 2 and Xy = 0, the application of (44) to max,<, X; and
max, <. {—X;) leads to (43) without specification of the constants ¢, and Cj,.
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