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1. Introduction. Let XI, t ~ 0, solve a linear stochastic equation

(1 ) t ~ 0,

where {Y(, t ~ O} is a Levy process (that is a process with independent homogeneous
increments: see, e.g., [1], [2]), Xo is a nonrandom initial value.

We consider here only the stable case, that is when f3 > O. In the literature,
this process is cited as an important example of a different class of random processes:
shot noise processes (see, e.g., [3]), filtered Poisson processes [4], generalized Ornstein-
Uhlenbeck (OU) processes ([5], [6], and [7]); etc.

One of the problems for models of that sort is to determine a distribution, or
moments for the one-sided passage time

Tv = inf{t > 0: x, > b}, b ;» Xu.

Different approaches were used for studying this problem: integral equations (see,
e.g., [1], [101. and [21]); martingale techniques ([7]' [8], and [9]), etc In this paper, we
also apply the martingale technique, namely a special parametric family of martingales
(Theorem 1). Vie find the Laplace transform of To provided that the Levy process 1';
possesses negative jumps only (Theorem 2; under somewhat less general conditions
this result is known from [7] and [8]; see also Remark 3) .
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2 A. NOVIKOV

When the process Yr has positive jumps, the Laplace transform of ti, as well as
its moments, are unknown, except for exponential distribution of positive jumps [10],
or uniform distribution [22] of ones.

In this paper, we prove that the distribution of Tb is exponentially bounded for
all b under the assumption that the process Yr has diffusion component or positive
jumps (Theorem 3). This result is known from [9] under the additional assumption
of finiteness of the mathematical expectation of Yi. Moreover, with the help of the
moment Wald identity (section 4), we derive a lower bound for the expectation £(T/;).
Notice that the moment Wald identity can also be used for deriving asymptotic ex-
pansions of ETb as b --+ 00 (see [22]). In section 5, we use this moment identity for
deriving the moment inequalities for suP/~.,.(Xrl even for an arbitrary stopping time T

provided that Yt obeys one-sided stable distribution, i.e., in the absence of positive
jumps (Theorem 5). The proof of this result uses techniques from [11], where the
moment inequalities for sUPr~.,. IXr I are given for the Gaussian QU-process.

2. An exponential martingale family. We assume that the Levy process Yt

and all other random objects are defined on a probability space (D, F, P) supplied by
a filtration (including the assumption of right-continuity, etc.).

Recall that any Levy process

(2)

where rn and IJ are constants, Wr is a standard Brownian motion, and Z, is a dis-
continuous process with independent homogeneous increments and paths from the
Skorokhod space.

A (unique) solution of equation (1) has the following representation in terms of
stochastic integrals with respect to lVr and Zr:

x, = Xoe-{3r + e-{31 it e(:J8dYs

(3) = ~ + (Xo - m) e-{3t + IJe-(:Jt it e{3s dW + e-{3t it e(:JSdZ
f3 f3 0 s 0 s-

It is well known that the jump component Z, of the Levy process can be represented
in terms of integrals with respect to a Poisson random measure p( dx, ds), (generated
by jumps of Ytl, and a Levy canonical measure of jumps II(dx):

(4) Z/ = l J xI{lxl < 1} [p(dx,ds) -II(dx)ds] + lJ xI{lxl ~ 1}p(dx,ds).

Here I{ .} is an indicator function and the Levy measure II( d:I:) must satisfy the
following condition:

(5) ./ min(x2, 1) II(d:r) < 00.

In what follows we define a class of martingales as a parametric family of "XI"
for the special case when the process Yr obeys all exponential moments:

(6) Ee"Y' = exp {t1/;( u)} < 00 for all u ~ 0,

where, as is well known [1] the cumulant function 1/;(u) has the following represen-
tation:

a
2 J1/; ( u) = m u. + 2 u 2 + (eux - ux I { Ix I< I} - 1) II (dx ) .



MARTINGALES AND FIRST-PASSAGE TIMES 3

Additionally, we suppose that

(7)

(henceforth, (1+ = maxfu.O), a- = (-a)+). We shall see that this condition is
sufficient and necessary for finiteness of the following function <p(u) which will be
used in a definition of martingales below:

(8) u ~ 0,

where

II (u) = ltJ. v-I [!(eVX
- vxI{lxl < I} - 1)1 {x> -I} IJ(dX)] dv,

12(u) = 1u
v-I [!(etX

- I)I{x ~ -I} IJ(dX)] dv.

By conditions (5) and (6) the integral h(u) is well defined and finite. It is convenient
to express the integrand in 12(u) as follows:

[' V-I (e'"'' - 1) dv = 1-:1:11 y-l(e-1I - 1) dy

= -11
y-I(1 - e-1I) dy _i-XU y-I(1 - 10-11) dy

= - EulerGamma - log( -xu) - i:u y-Ie-y dy,

where EuierGnmma is the Euler constant (in notation of the package Mathemat-
ica [23]):

EulerGamma = 11
y-I(1 - e-Y) dy -100

y-Ie-y dy

(see also [12, formula 8.367.12]). Therefore,

(9) h(u) = D - ![log(u) + i:"y-Ie-Y dY] I{x ~ -I} IJ(dx),

where D = - J[EulerGamma + log( -x)] I {x ~ -I} IJ(dx). Obviously, (7) provides
the existence of integral jlog(-x)I{x ~ -1}IJ(dx), so that, by (5), h(u) is well
defined and finite if and only if (7) holds true.

For definition of the above-mentioned parametric martingale family we introduce
also the following "martingale" function

H(I-t,x) = 1°C eux-<p(u)u,..-I du, I-t > o.

The following simple estimate for an asymptotic limit of the function <p(u) will
allow us to find simple conditions for finiteness of the function H(I-t, x).

LEMMA 1. Let conditions (6) and (7) hold. IJ

(10) IT>O, orIJ((O,CXJ)) >0, or j1xII{-I<X<0}IJ(dX)=OO,
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then

(11)
. 'feu,)

lim -- =00.
U--700 11

If

(12) a = 0, TI((O, 00)) = 0, J IxII{ -1 < x < O}TI(dx) < 00,

then

(13) lim <p(u) =~(m+JlxII{-I<X<O}TI(dX)).
1l---'i'OC u. (3

Proof. From (9) it follows that

(14) h(u) = -log(U)TI((-00, -1]) + 0(1), u --+ 00.

By tho inequality eZ - zI{lzl < I} -1::; z2I{z > 0}/2, we find that

and, hence,

13<p(u)::; mu+: (a2 + J x2I{x > O}TI(dX)) + O(log(u)).

So, if a> ° or TI((O, 00)) > 0, then by this lower bound we obtain (11).
Now assume (12). Then

J [1"eV x - v x-I ]
13<p(u)=mu+ 0 v· dv I{-I<x<0}TI(dx)+I2(u).

By virtue of (14), the integral h(u) is of the order O(log(u)). Note that for x < 0
<l11(1 'Il > () the following inequalities hold:

eVX - vx - 1o :£ ~ -x.v -

Taking into account the assumption J Ix II {-I < :1: < O}IT(dx) < 00, the dominated
convergence theorem, and the I'Hospital rule, we find

1 1"J e';:r. - v x - 1 Jlim- . dvI{-1<x<0}TI(dx)= IxII{-1<x<0}TI(d.1:).
1.<-+00 U 0 V

Thus, (13) holds.
If J 1.1:11{-1 < .r. < O}TI(dx) = CXJ, the same arguments lead to the following

estimate with any e > 0:

J!..m
oo

<p~u) ::; ~ (m + J IxII{ -1 < x < -c:} II(dX)).

Letting here e --+ 0, we obtain (11). Lemma 1 is proved.
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Notice that by Lemma 1 the function H(/l,x) is finite for any real x if condi-
tion (10) holds or if

(15) a=O, II((O,oo)) =0, m+ j1xll{-1 <x <O}II(dx) >(3x.

Remark 1. If

(10) a=O, II((O,oo)) =0, m+ /1:[ll{-I<X<O}II(dX)~(3Xo,

then for b > Xo the stopping time Tb = 00.

Indeed, the condition II((O. (0)) = 0 implies that. the process XI does not. have
any positive jumps at all. So, since the continuous part of X, is not smaller than XL
itself, by (3), (4), and (16) we have the following deterministic upper bound:

XI ~ 1; + (XU -~) e-(3L + e-(3t l e(3s [j Ixll{ -1 < x < O}II(dX)] ds

= 3 (m + j [xll{ -1 < x < O} II(dX))

(
m 1 j { }) -(3 I ,+ Xu - 73 - 7J 1,1'11 -1 «.« < 0 II(rlx) c ~ Xu·

Thus, under b > Xo we have SUPt>u X, < b and so Tb = 00.

THEOREM 1. Let conditions (6) and (7) hold. Further, assume (10) or (15) with
x = Xo hold. Then

is the martingale.
Proo]. Using standard tools of stochastic analysis (see, e.g., [1] or [13]) we obtain

that, under conditions (6) and (7), the following process

I:t (11) = exp { ue(31x, - 11
'IjJ( ue(3S) dS}(17)

is a martingale. The fact that this process is a local martinqal« can be checked using
representation (3) and the generalized Ito formula. The uniform int.egrability (under
assumption (6)), and, hence, the validity of the martingale property, is a consequence
of the following exponential identity

Eexp {l f(s)dYs - ql} = 1,

where

ql =mlf(S)dS+ a2
2
lf2(S)dS+ l/ (e!(S)X-f(s)xl{lxl < 1}-I)II(d:r)ds

and f (s) is a bounded deterministic function.
Note that
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Since E(~( (11.)) = ~t (0) = exp{ uXo}, from the latter formula it follows that

(18)

Applying the Fubini theorem and then introducing a new variable z
obtain

E(H(p" Xd) = LX) E(eUX,-<p(U)) 11.1"-1 du

(19) = 100
euXue-il'-'I'(ue-il'j 11.1"-1 du = e(3l"tH(p"Xo) < 00.

The finiteness of the function H(p" Xo) is due to Lemma 1 and conditions (10) or (15)
with z = Xo.

By (17), for all s;;;: t we have

Now, integrating both sides of the above equality with respect to Q(du)

e-<p(u)ul'-I du (p, > 0), with p, > 0, over the interval (0, (0) we obtain

100

E(~t(u) I :Fs) c-<p(u)ul'-I du = 100
~s(u) e-:P(U)111'-1 du

(20) = e-(3l's 100

euer's x, -<p(uo"') (ue(:JS)I'-1 d( ue(:JS) = e-(:JI'S H(p" Xs),

Hence, by the Fubini theorem, applied to the left-hand side of (20), we obtain the
required martingale property

Theorem 1 is proved,
Remark 2. The idea of constructing a special parametric martingale family is

not new, A similar method was used in the papers [14] and [15] for boundary crossing
problems related to a Brownian motion, and in the papers [7] and [16] for boundary
crossing problems related to a stable Levy process,

By the optional stopping theorem and Theorem 1 we have the following identity:
for any stopping time T and fixed t < 00

(21) E [,,-(31" l11in(T.t) H(IJ X· .)] H( X)~ r-v mll1(T.t) = /1'1 0, p. > 0,

We apply (21) to derive an explicit formula for the Laplace transform of Tb provided
that the process Yi does not have positive jumps. Before proving this formula we have
to introd 1\(:<: further notation. Set

p, > 0,

with

()'2U2 J [ 100
e:v ](3tp(u)=mu+-4-+h(U)- log(u)+ _xuydy I{x;;;:-I}II(dx).
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If (7) holds, then, by (9) and (8),

H(/-L, x) = exp{D(3-1} H(/-L, x),

where the constant D is defined above. Notice also that H(/-L,x) even if (7) fails.
THEOREM 2. Let IT((O, (0)) = 0. If

(22) u>O or m+ j1xII{-1<X<0}IT(dX»(3b,

then P {Tb < oo} = 1 and

Proof. First we assume that (7) holds and consider identity (21) with T = Tb. By
Lemma 1 and (22), IH(/-L, x)! < 00, x ;;:; b. Under the absence of positive jumps, on
the set {Tb < t} we have XT,. = b and, on the set {Tb ~ t} we have X, ;;:;b for all
t ~ O. Hence, H(jJ.,Xmin(T/"tj);;:; H(jJ.,b) < CXJ and, by the Fatou lemma we can pass
to the limit as t ---7 CXJ under the expectation in the left-hand side of (21). As the
result, we get

(23) jJ. > 0.

It is easy to verify, integrating by parts, that

(24)

Passing to the limit as /-L ---7 ° in (23), by the Fatou lemma we get P{Tb < oo} = 1.
Since

H(p,Xo)
H(jJ.,b)

H(/J.,Xo)
H(/-L,b) ,

jJ. > 0,

then, by (23) under (7), the statement of Theorem 1 is valid under the imposed
assumption (7). If (7) fails, we may consider the OU-process X{' which solves (1)
with Yt replaced with truncated Levy process

~N =mt+uWr+Z{',

where

z{' =l j xl {-I < x < O} [p(dx, ds) - IT(dx) ds]

+ .f j :I:i{ -N ;;:;:I: ;;:; -I} p((1:1;, rls).

Denote by T!: the corresponding crossing time of the level b and by jjN (/-L,x) the
corresponding martingale function. Obviously, Tf! ---7 To a.s. as N /' 00. Notice
that (7) holds for ~N and we have

Ee-iJW,:" = jjN(jJ.,Xo)
HN(jJ.,b) ,

jJ. > 0,
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where the function iiN (p, x) is defined above. Now it is easy to check that

for any x:::; b.

Theorem 2 is proved.
Remark 3 In the case when IT(d:;:) == 0 and (J > 0 the process Xt is Gaussian

and. of course. the result of Theorem 2 for this case is well known (see, e.g., [17]).
Note abo that for this special case it is possible to derive all analvt ical inversion
of the Laplace transform of T/) based on the representation for the function H (p, x)
in terms of the parabolic cylinder function D _I' (-x) which is well studied (see [12,
formula 9.241.2.]).

In the case when IT( -00,0) > 0 and (J > 0, Theorem 2 is proved by Hadjiev (see
in [7, p. 85, Theorem 2]), where a slightly different parametric martingale family is
used. The case IT( -00,0) > 0 and (J = 0 is also discussed in [7] under an additional
condition (see Hypothesis G in [7]).

3. Exponential boundedness of Tb' In this section, we give sufficient condi-
tions, weaker than in [9], for the exponential moments of To to be finite. The existence
of exponential moments for the first-passage times from interval (a, b):

rs» = inf{t > 0: X, > b or X, < a}, b > Xu> a,

is est ablished too.
THEOREM 3. Let conditions (10) or (15) with x = b hold. Assume also that

(25) 1m any () E (0,1).

Then there exists 0: > 0 such that

Ee'n" < oc.

Proof. Assuming (6), we shall use an analytical continuation of the martingale
family e -,it H (p, Xtl, p > 0, to J1 E (-0.0) with 0 involved in (25).

For ~( E (-J, 0), set

H(p,x) = l°O(e"X-'P('U) -1)UI1-Idu

I3y (lO) alld Lemma 1, IH(p,:r;)1 < cc if and only if

(26) for pE(-J,O).

11
[<p(u)1 ul'-ldu < 00.

Owing to (5) and (8), for p > -1 we have

(hereafter C is a positive generic constant).
TIl<' iur-quality

(27) z > 0, 0> 0,
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provides the following bound:

/

,1 J' /.11" (1 - eU:!:)112('11.)1'/11,-1 du. = ,dv 1{x ;::;-I} II(d:c) UI'-1 du
. 0 . 0 0 1.

;::; ~/j !Ixl" 1{x ;::;-I} II(dx) 11
UI'-I+O du

in which the latter integral in the right-hand side is finite for any I-' E (-J, 0),
whereas (25) is equivalent to Ilxl"I{x;::; -l}II(dx) < 02.

The function H(J.L, z ), J.L E (-J,O), defined in (26), can be considered as an an-
alytical continuation of H(J.L, z ), J.L > O. From (26) (see also (24)) it easily follows
that

(28) limJ.1.H(J.1.,:r)= 1.
/-'10

Just repeating the proof of Theorem 1 with H(J.L, z ), J.1.E (-6,0), we may prove that
the process

e-{3/-,t 100

(e"X' _ e"X,,) ul'-le-",(u) du + H(J.L, Xo) e-{3/,t

is a martingale. Then, by the optional stopping theorem for martingales for any
t < 00, we have

First consider the case II( (0,00)) = O. Since Xmin(n.t) ;::;band J.L < 0, obviously,

Further. whereas

as J.1.-7 0 there exists J.Lo E (-J, 0) such that for any J.LE (1-'0,0)

On account of (28), there is PI E (J.Lo, 0) such that 0.9 < J.1.1H(J.Ll,XO) < 1.1 So, (30)
provides

Ee-{3/-'ll11in(n,t) ~ J.1..1H(J.Ll , Xo) < ~.
- J.Ll IoOO(e"b - eUX,,) u''I -le-'f(") du + f.llH(J.Ll' Xo) 0.1

This bound is valid for any t ;:;;O. Hence, by the Fatou lemma, the statement of
Theorem 3 holds true for 0' = -1-'1/3,

If TI((O, (0)) > 0, then, choosing a positive constant A with TI((O, AJ) > 0, we
introduce the OU-process Xi', generated by the Levy process y/'1 with positive jumps
truncated by A, and the level crossing time Tt and notice that Tt ;:;;Tb. Applying
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identity (29) with To replaced with Tt and properly defined functions ipA(U) and
H/\(!J.,Xu)), and taking into account X'~in(7"t,t) :£ b + A and !J. < 0, we get the
following bound

Ee-fJ/-l Illin(7",: ,t) [!J.l°O (eu{A+b) _ eUXU) u/-l-1e-'PA{U) du + !J.HA(!J.,Xo)]

:£ !J.HA(/l,Xo)

The last part of the proof is similar to that for the case IT((O, (0)) = O.
Theorem 3 is proved.
COROLLARY 1. Let a > 0 or IT( (-00,00)) > O. Assume

for some r5 > O.

Then there exists a > 0 such that

Proof. Denote la = inf{ t > 0: X, < a} and note that Ta,b = mint n, la) By
Theorem 3, applied to Tb and Y«, the desired result holds.

4. The moment Wald identity. The theorem below generalizes Theorem 2
of [8].

THEOREM 4. Denote T = inf{t ~ 0: X, ~ f(t)}, Xo < frO), where j(t) is a
continuous deterministic junction such that SUPtf;Oj(t) = M < 00. Let conditions (6)
and (25) hold. Further, assume conditions (10) or (15) with x = M hold.

Then

(31)

Proof. First we shall show that under (10) or (15) with :r = M the process

(32)

is a martingale. Indeed, since {e-P/-lt H(!J., Xt), t ~ O} is the martingale for /1. > 0, we
have

e-13/-ltE(lH(/l,Xtl- H(/l,Xo)] IF5) + (e-13/-lt -1)H(/l,Xo)

(33) = e-(3/LS [H(p., Xs) - Hip; Xo)] + (e-(3/tS - 1) H(p., Xo) as.

Under the conditions of Theorem 4

for any z , if (10) holds, or for any Z < M, if (IS) holds with :r: = M. Further, due
to (24), we have

lim (e-13/-lt -1)H(!J.,Xo) = -;3t.
/-l->U



MARTINGALES AND FIRST-PASSAGE TIMES 11

Applying now the dominated convergence theorem we can interchange the symbols
of the limit as J1 -t 0 and the conditional expectation in the left side of (33). Thus,
passing to the limit as JL -t 0 in both parts of (33) we obtain the martingale prop-
erty (32).

By the optional stopping theorem for martingales we find that

(34)

is valid for any stopping time T and fixed t < 00.

To cornplet« the proof, it remains only to verify that for computation of "limt~O()"
in the right-hand side of (34) with T = T can be reduced to computation under the
"expectation symbol." We verify that as follows. By Theorem 3.

(35) ET < 00.

Further. since (34), with T = T, is equivalent to

(36) lim e, = O.
1->00

Then, by the dominated convergence theorem, (31) holds true.
For a verification of (36), we notice that X, ~ M on the set {T > t}. Therefore.

applying (27), we find that

Jetl = IEI{T > i, x, ~Xu} LX (e~X' - e~X") u-1e-;P(U) du

- EI{T > t, x, < Xu} 100

eUX"(l- eU(X,-X,,)) u-le-';:(~) dU[

~ P{T > t., x, ~ Xo} l=(eU!H - eUX")u-1e-<P(U)du

-i- E [I{T > t, x, < Xo} Co 1= e"X"u-1+Oe-CP(U) du ((Xt - Xo)-)"]

(37) ~ C1P{T > t} + C2E[I{T > t}IXt - Xol"],

where

Set

Yt = (J"Wt + [I xI{lxl < I} [p(dx,ds) - II(dx)ds],

/

't /'Y, = :I:! {I:II ~ 1}zJ(lh, 115),
, U '
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Since by (3) and (4),

with the help of inequality la + b + clo ;£ ]alO + IW + le]O, 0 E (0,1) we find that

(38) IXI - Xolo ;£ I,B-lm - Xo]O + li\lo + [J Ixlo I{I:rl ~ 1} p(d.T,ds),

where Xi is an QU-process with Xo = 0, generated by the square-integrable martin-
gale Y:

Below, we shall show that for any stopping time T and 0;£ 2

(39) Esup IXtlO ;£ Co,(JETo/2
i~T

By the property of the stochastic integral (see, e.g., [1] or [13]), for any stopping
time T we have

where, by (u) and (25),

(40) J Ix[OI{lx] ~ 1} II(dx) < 00.

Combining (35), (37), (38), (40), and (39) (inequality(39) will be proved in the sequel),
we conclude that ESUPt~T IXt - xl < CXJ and in turn (36) holds,

To verify (39), we apply the Ito formula to Xl: = e-2f:Jt M'(: with

and find that

X; = [e-2(J5(2Ms_ dAis) + [ e-2(J5 d([M5, 1115] - (111" M5))

+ [f.;I;de-2(J5 +t(o-2 + J x2I{lxl < l}II(dX).

Here, the first and second integral terms are martingales, the third one is negative.
For any bounded stopping time T, these facts provide

So, for 0 ~ 2, (39) is provided by Lenglart's domination principle (see, e.g., [18,
p. 156]).

Theorem 4 is proved.
Rcuun]: 4. Since XTb ~ b, Theorem 4 provides

,BETb ~ /,00 (eub _ e'Ux,,) v.-1e-<P(u) du.
. 0
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Since the condition, given in (6), involves in Theorem 1 and 4, exponentially
distributed, as well as others of such type, positive jumps are excluded from consider-
ation. However. the truncation technique implementation (for large positive jumps)
allows obtaining a lower bound in this case as well. So, instead of (6) we assume

and define the function

1 j'u<p(u) = 3 0 ,,-11;1,(,,) du, u< K

Then. repeating the steps of the proof of Theorem 4, first for the case with truncated
jumps and t hen passing to the limit 2lS the parameter of truncation increases to infinity,
we: obtain t.h« following lower bound

Remark 5. Identity (31) might also be used for creating corresponding bounds
for two-sided stopping times Ta,b. If, for example, Yi is the process with a symmetric
distribution, Xo = 0 and (6) hold, then (34) holds for XI. and (-Xd as well, that is,
for any stopping time T

Hence.

The same approach is used in [11] for the derivation of maximal inequalities for Gaus-
sian OU-process. Since Gaussian OU-process is continuous, from (41), as t --+ IX. it
follows that

5, Maximal inequalities for stable au processes. We consider now a spec-
tral negative stable process Yt (see [1] or [19]) with

(42) u ~ 0, 1 < a ~ 2.

This process }~ and, in turn, X, do not have positive jumps. Mcreover ,

By (18).
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If a = 2, Xo = 0, the process XI is Gaussian. Then by [11] the following remarkable
inequality is valid: for any stopping time T

where C1 ;; ~, C2 ~ 3.3795.
We prove here an analogue of (43).
TlmoHEM 5. Let (42) hold and X, solve (1) with Xu;; O. Then fOT any stopping

time T and all p > 0

c1'E [( 10g(1 + 137))1'(1-1/0)] ~ E [( ~~~ x,Y]
(44) ~ a1' + C1'E[(log(l + ./37))1'(J-l/0)],

where positive constants ap,cp, and C1' do not depend on T.

For the proof of inequality (43), Graversen and Peskir [11] apply Wald's moment
identity with the formula for ET being similar to (41). Here, we apply identity (34)
which is the one-sided analog of the above-mentioned formula from [11]. We also use
the following simple consequence of Lenglart's domination principle.

LEMMA 2. Let Qt lie a notmequtis)«, right continuous process and let At be an
increosinq continuous process, Au = O. Assume that for all bounded stopping times T

(45)

Then for all p > 0 and for all bounded stopping times T there exist constants Cn

and Cp such that

(46)

Proo]. By Louglart.'s principle, for any increasing continuous function H (:1:) with
H(O) = 0, (45) provides

(47)

where
(00 1

H(x) = x Jx ; dH(s) + 2H(x).

Set H (x) = (log (1 + x))p, x ;; O. By I'Hospital's rule, limx--7o H(x) = 0 and

x 1001
lim H( ) - dH(s) = O.

x--too X x S

Hence, limx--7cc[H(x)/H(x)] = 2 and there are constants cp and Cp such that H(x) ~
cp + CpH(x). Therefore, (46) is implied by (47) with H(x) = (log (1 + x))p.

Proof of Theorem 5. Denote X; = SUPS~I XS' In the absence of positive jumps
for Xt, the process X; is increasing and continuous. Then, (34) provides the following
inequality as valid for any bounded stopping times T

{jET ~ E /.00 (e"x~ _ e"x,,) 11.-1e-"" /(0',8) flu = E( G(X;) - G(Xo)),
. ()
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where

Hence, (45) is valid for Qt = {3f and At = G(Xt) - G(:I:) the continuous increasing
process, Au = O. By Lemma 2,

E[( log(l + {3TW(l-I/c»] ~ cp + CpE[ (log [1 + G(X;) - G(XO)])P(l-I/C»].

Thus, the lower bound in (44) will be held, if the inequality log(l + G(y)) ~ CI +
C2y"/(O-I), Y > 0 is valid. The latter bound readily follows from the well-known
asymptotic relation:

(48) G(y) = exp {CoyO/(O-l)(l + 0(1))}, y-HXJ

(see. e.g., [20, Chap. 3, Exercise 7.3]). The boundedness requirement for stopping
time T is easily removed by applying the localization technique.

The upper bound (44) is derived with the help of (34) which, jointly with an
obvious equality eX = eX' - 1 + e-x- , for any bounded stopping time T gives

Since

E 100
(1 - e-UX;) u-Ie-u,,/(02/3) du ~ E(X;) 100

e-U" /(0
2
/3) du

and EX; ~ IXo 1/{3+ CET (see, also the proof of Theorem 4), we find the following
estimate:

E(G(X;:t-)) ~ c + CET.

Thus, (45) is valid with At = c + Ct and Qt = G(Xn, where Qt is a nonnegative
right-continuous process. By Lemma 2,

awl it remains only to notice that (48) provides the following bound:

C + 10g(1 + G(y)) ~ cya/(rr-I), Y> O.

Theorem 5 is proved.
Rem.1L7·k G. For Q = 2 and Xu = 0, the application of (44) to maxt;:;.,. Xt and

maxt;:;.,.( -Xt) leads to (43) without specification of the constants cp and Cpo
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