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Abstract 

Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar 

problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning 

methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting 

of different data patterns in the current domain. To improve the performance of existing transfer learning methods and 

handle the knowledge transfer process in real-world systems, computational intelligence has recently been applied in 

transfer learning. This paper systematically examines computational intelligence-based transfer learning techniques and 

clusters related technique developments into four main categories: a) neural network-based transfer learning; b) 

Bayes-based transfer learning; c) fuzzy transfer learning, and d) applications of computational intelligence-based transfer 

learning. By providing state-of-the-art knowledge, this survey will directly support researchers and practice-based 

professionals to understand the developments in computational intelligence-based transfer learning research and 

applications. 

Keywords: Transfer learning, computational intelligence, neural network, Bayes, fuzzy sets and systems, genetic 

algorithm. 

1. Introduction  

Although machine learning technologies have attracted a remarkable level of attention from researchers in different 

computational fields, most of these technologies work under the common assumption that the training data (source 

domain) and the test data (target domain) have identical feature spaces with underlying distribution. As a result, once the 

feature space or the feature distribution of the test data changes, the prediction models cannot be used and must be rebuilt 

and retrained from scratch using newly-collected training data, which is very expensive and sometimes not practically 

possible. Similarly, since learning-based models need adequate labeled data for training, it is nearly impossible to 

establish a learning-based model for a target domain which has very few labeled data available for supervised learning. If 

we can transfer and exploit the knowledge from an existing similar but not identical source domain with plenty of labeled 

data, however, we can pave the way for construction of the learning-based model for the target domain. In real world 

scenarios, there are many situations in which very few labeled data are available, and collecting new labeled training data 

and forming a particular model are practically impossible.  

Transfer learning has emerged in the computer science literature as a means of transferring knowledge from a source 

domain to a target domain. Unlike traditional machine learning and semi-supervised algorithms [1-4], transfer learning 

considers that the domains of the training data and the test data may be different [5]. Traditional machine learning 

algorithms make predictions on the future data using mathematical models that are trained on previously collected 

labeled or unlabeled training data which is the same as future data [6-8]. Transfer learning, in contrast, allows the 

domains, tasks, and distributions used in training and testing to be different. In the real world, we observe many examples 

of transfer learning. We may find that learning to recognize apples might help us to recognize pears, or learning to play 

the electronic organ may facilitate learning the piano. The study of transfer learning has been inspired by the fact that 
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human beings can utilize previously-acquired knowledge to solve new but similar problems much more quickly and 

effectively. The fundamental motivation for transfer learning in the field of machine learning focuses on the need for 

lifelong machine learning methods that retain and reuse previously learned knowledge. Research on transfer learning has 

been undertaken since 1995 under a variety of names: learning to learn; life-long learning; knowledge transfer; meta 

learning; inductive transfer; knowledge consolidation; context sensitive learning and multi-task learning [9]. In 2005, the 

Broad Agency Announcement of the Defense Advanced Research Projects Agency’s Information Processing Technology 

Office gave a new mission to transfer learning: the ability of a system to recognize and apply knowledge and skills 

learned in previous tasks to novel tasks. In this definition, transfer learning aims to extract the knowledge from one or 

more source tasks and then apply the knowledge to a target task. Traditional machine learning techniques only try to 

learn each task from scratch, while transfer learning techniques try to transfer the knowledge from other tasks and/or 

domains to a target task when the latter has few high-quality training data. 

Several survey papers on transfer learning have been published in the last few years. For example, the paper by [9] 

presented an extensive overview of transfer learning and different categories. However, these papers focus on transfer 

learning techniques and approaches only; none of them discusses how the computational intelligence approach can be 

used in transfer learning. Since the computational intelligence approach has been applied in transfer learning more 

recently and has already demonstrated its advantage, this survey is timely. 

There are three main types of articles being reviewed in this survey: Type 1 — articles on transfer learning 

techniques (including related methods and approaches) and Type 2 — articles on transfer learning using computational 

intelligence techniques. Type 3 — articles on related computational intelligence techniques. The search and selection of 

these articles were performed according to the following five steps: 

Step 1. Publication database identification and determination: The eminent publication databases such as Science 

Direct, ACM Digital Library, IEEE Xplore and SpringerLink, were searched to provide a comprehensive bibliography of 

research papers on transfer learning and transfer learning using computational intelligence. 

Step 2. Type 1 article selection: These papers were selected according to the two criteria: 1) novelty; 2) impact- 

published in high quality (high impact factor) journals, or in conference proceedings or book chapters but with high 

citations
1
. These types of article are mainly used in Section 2.  

Step 3. Preliminary screening of Type 2 articles: The search was first performed based on related keywords of 

computational intelligence in transfer learning.  

Step 4. Result filtering for Type 2 articles: The keywords of the preliminary references were extracted and clustered 

manually. Based on the keywords related to application domain, these papers were divided, using “topic clustering”, into 

four groups: a) Neural Network in transfer learning; b) Bayes in transfer learning; c) fuzzy and genetic algorithm in 

transfer learning and d) application of transfer learning. This article selection process was based on the following criteria: 

1) novelty — published within the last few years; 2) impact — see Step 2; 3) coverage — reported a new or particular 

application domain; 4) typicality — only the most typical methodology and applications were retained.  

Step 5. Type 3 article selection: These papers were selected according to the requirement of Step 4, aiming to 

introduce related concepts of computational intelligence techniques. 

The main contributions of this paper are: 1) it comprehensively and perceptively summarizes research achievements 

on transfer learning from the point of view of applications of computational intelligence, and strategically clusters the 

transfer learning into four computational intelligence application domains; 2) for each computational intelligence 

technique it carefully analyses typical transfer learning frameworks and effectively identifies the specific requirements of 
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computational intelligence techniques in transfer learning. This will directly support researchers and practitioners to 

promote the popularization and application of computational intelligence in transfer learning in different domains; 3) it 

also covers several very new transfer learning techniques with computational intelligence, and reveals their successful 

applications.  

The remainder of this paper is structured as follows. In Section 2, the transfer learning techniques are reviewed and 

analyzed. Sections 3 to 5 respectively present the 4 main application domains of transfer learning. Section 6 discusses the 

applications of computational intelligence-based transfer learning methods. Section 7 presents our analysis and main 

findings. 

2. Basic transfer learning techniques 

To understand and analyze the application developments of transfer learning by using computational intelligence, this 

section first reviews the main transfer learning techniques. The notations and definitions that will be used throughout the 

section are introduced. According to the definitions, we then categorize the various settings of transfer learning methods 

that exist in the literature of machine learning.   

Definition 2.1 (Domain) [9] A domain, which is denoted by 𝐷 = *𝜒, 𝑃(𝑋)+, consists of two components:  

(1) Feature space χ; and 

(2) Marginal probability distribution  𝑃(𝑋), where  𝑋 = *𝑥1, … , 𝑥𝑛+ ∈ 𝜒.  

Definition 2.2 (Task) [9] A task, which is denoted by  𝑇 = *𝑌, 𝑓(∙)+, consists of two components:  

(1) A label space 𝑌 = *𝑦1, … , 𝑦𝑚+; and 

(2) An objective predictive function𝑓(∙)which is not observed and is to be learned by pairs *𝑥𝑖 , 𝑦𝑖+. 

The function 𝑓(∙) can be used to predict the corresponding label, 𝑓(𝑥𝑖), of a new instance 𝑥𝑖. From a probabilistic 

viewpoint, 𝑓(𝑥𝑖) can be written as 𝑃(𝑦𝑖|𝑥𝑖). In the bank failure prediction example, which is a binary prediction task, 

𝑦𝑖  can be the label of failed or survived. More specifically, the source domain can be denoted as 

𝐷𝑠 = *(𝑥𝑠1
, 𝑦𝑠1

), … , (𝑥𝑠𝑛
, 𝑦𝑠𝑛

)+ where 𝑥𝑠𝑖
∈ 𝜒𝑠 is the source instance or bank in the bank failure prediction example and 

𝑦𝑠𝑖
∈ 𝑌𝑠  is the corresponding class label which can be failed or survived for bank failure prediction. Similarly, the target 

domain can be denoted as 𝐷𝑡 = *(𝑥𝑡1
, 𝑦𝑡1

), … , (𝑥𝑡𝑛
, 𝑦𝑡𝑛

)+ where 𝑥𝑡 ∈ 𝜒𝑡  is the target instance and 𝑦𝑡𝑖
∈ 𝑌𝑡  is the 

corresponding class label and in most scenarios  𝑡𝑛 ≪ 𝑠𝑛. 

Definition 2.3 (Transfer learning) [9] Given a source domain 𝐷𝑠 and learning task 𝑇𝑠, a target domain 𝐷𝑡  and 

learning task 𝑇𝑡, transfer learning aims to improve the learning of the target predictive function 𝑓𝑡(∙) in 𝐷𝑡  using the 

knowledge in 𝐷𝑠 and 𝑇𝑠 where 𝐷𝑠 ≠ 𝐷𝑡 or 𝑇𝑠 ≠ 𝑇𝑡. 

In the above definition, the condition 𝐷𝑠 ≠ 𝐷𝑡  implies that either 𝜒𝑠 ≠ 𝜒𝑡  or 𝑃𝑠(𝑋) ≠ 𝑃𝑡(𝑋). Similarly, the condition 

𝑇𝑠 ≠ 𝑇𝑡  implies that either 𝑌𝑠 ≠ 𝑌𝑡  or 𝑓𝑠(∙) ≠ 𝑓𝑡(∙). In addition, there are some explicit or implicit relationships 

between the feature spaces of two domains such that we imply that the source domain and target domain are related. It 

should be mentioned that when the target and source domains are the same (𝐷𝑠 = 𝐷𝑡 ) and their learning tasks are also the 

same (𝑇𝑠 = 𝑇𝑡), the learning problem becomes a traditional machine learning problem. 

According to the uniform definition of transfer learning introduced by Definition 2.3, transfer learning techniques can be 

divided into three main categories [9]: 1) Inductive transfer learning, in which the learning task in the target domain is 

different from the target task in the source domain (𝑇𝑠 ≠ 𝑇𝑡); 2) Unsupervised transfer learning which is similar to 

inductive transfer learning but focuses on solving unsupervised learning tasks in the target domain such as clustering, 

dimensionality reduction and density estimation (𝑇𝑠 ≠ 𝑇𝑡); and 3) Transductive transfer learning, in which the learning 

tasks are the same in both domains, while the source and target domains are different (𝑇𝑠 = 𝑇𝑡 , 𝐷𝑠 ≠ 𝐷𝑡 ). In the 

literature, transductive transfer learning, domain adaptation, covariate shift, sample selection bias, transfer learning, 



4 

 

multi-task learning, robust learning, and concept drift are all terms which have been used to handle the related scenarios. 

More specifically, when the method aims to optimize the performance on multiple tasks or domains simultaneously, it is 

considered to be multi-task learning. If it optimizes performance on one domain, given training data that is from a 

different but related domain, it is considered to be transductive transfer learning or domain adaptation. Transfer learning 

and transductive transfer learning have often been used interchangeably with domain adaptation. Concept drift refers to a 

scenario in which data arrives sequentially with changing distribution, and the goal is to predict the next batch given the 

previously-arrived data [10].The goal of robust learning is to build a classifier that is less sensitive to certain types of 

change, such as feature change or deletion in the test data. In addition, unsupervised domain adaptation can be considered 

as a form of semi-supervised learning, but it assumes that the labeled training data and the unlabeled test data are drawn 

from different distributions. The existing techniques and methods, which have thus far been used to handle the domain 

adaptation problem, can be divided into four main classes [11]:  

1) Instance weighting for covariate shift methods which weight samples in the source domain to match the target domain. 

The covariate shift scenario might arise in cases where the training data has been biased toward one region of the input 

space or is selected in a non-I.I.D. manner. It is closely related to the idea of sample-selection bias which has long been 

studied in statistics [12] and in recent years it has been explored for machine-learning. Huang et al. [13] proposed a novel 

procedure called Kernel Mean Matching (KMM) to estimate weights on each instance in the source domain, based on the 

goal of making the weighted distribution of the source domain look similar to the distribution of the target domain. 

Sugiyama et al. [14] and Tsuboi et al. [15] proposed a similar idea called the Kullback-Leibler Importance Estimation 

Procedure (KLIEP). Here too the goal is to estimate weights to maximize similarity between the target and 

weight-corrected source distributions. 

2) Self-labeling methods which include unlabeled target domain samples in the training process and initialize their labels 

and then iteratively refine the labels. Self-training has a close relationship with the Expectation Maximization (EM) 

algorithm, which has hard and soft versions. The hard version adds samples with single certain labels while the soft 

version assigns label confidences when fitting the model. Tan et al. [16] modified the relative contributions of the source 

and target domains in EM. They increased the weight on the target data at each iteration, while Dai et al. [17] specified 

the tradeoff between the source and target data terms by estimating KL divergence between the source and target 

distributions, placing more weight on the target data as KL divergence increases. Self-training methods have been applied 

to domain adaptation on Natural Language Processing (NLP) tasks including parsing [18-21]; part-of-speech tagging [22]; 

conversation summarization [23]; entity recognition [22, 24, 25]; sentiment classification [26]; spam detection [22]; 

cross-language document classification [27, 28]; and speech act classification [29]. 

3) Feature representation methods which try to find a new feature representation of the data, either to make the target and 

source distributions look similar, or to find an abstracted representation for domain-specific features. The feature 

representation approaches can be categorized into two classes [11]: (A) Distribution similarity approaches aim explicitly 

to make the source and target domain sample distributions similar, either by penalizing or removing features whose 

statistics vary between domains [24, 30-32] or by learning a feature space projection in which a distribution divergence 

statistic is minimized [33-35]; (B) Latent feature approaches aim to construct new features by analyzing large amounts of 

unlabeled source and target domain data [25, 36-42]. 

4) Cluster-based learning methods rely on the assumption that samples connected by high-density paths are likely to have 

the same label if there is a high density path between them [43]. These methods aim to construct a graph in which the 

labeled and unlabeled samples are the nodes, with the edge weights among samples based on their similarity. Dai et al. 

[17] proposed a co-clustering based algorithm to propagate the label information across domains for document 

classification. Xue et al. [44] proposed a cross-domain text classification algorithm known as TPLSA to integrate labeled 
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and unlabeled data from different but related domains. 

3. Transfer learning using neural network 

Neural Network aims to solve complex non-linear problems using a learning-based method inspired by human brain 

structure and processes. In classical machine learning problems, many studies have demonstrated the superior 

performance of neural network compared to statistical methods. This fact has encouraged many researchers to use neural 

network for transfer learning, particularly in complicated problems. To address the problem in transfer learning, a number 

of neural network-based transfer learning algorithms have been developed in recent years. This section reviews three of 

the principal Neural Network techniques: Deep Neural Network, Multiple Tasks Neural Network, and Radial Basis 

Function Neural Network, and presents their applications in transfer learning. 

3.1. Transfer learning using deep neural network 

Deep neural network is considered to be an intelligent feature extraction module that offers great flexibility in extracting 

high-level features in transfer learning. The prominent characteristic of deep neural network is its multiple hidden layers, 

which can capture the intricate non-linear representations of data. Hubel and Wiesel [45] proposed multi-stage 

Hubel-Wiesel architectures that consist of alternating layers of convolutions and max pooling to extract data features. A 

new model blending the above structure and multiple tasks is proposed for transfer learning [46]. In this model, a target 

task and related tasks are trained together with shared input and hidden layers, and separately output neurons. The model 

is then extended to the case in which each task has multiple output neurons [47]. Likewise, based on the multi-stage 

Hubel-Wiesel architectures, whether shared hidden layers trained by the source task can be reused on a different target 

task is detected. For the target task model, only the last classification layer needs to be retrained, but any layer of the new 

model could be fine-tuned if desired. In this case, the parameters of hidden layers in the source task model act as 

initialization parameters of the new target task model, and this strategy is especially promising for a model in which good 

initialization is very important [48]. As mentioned above, generally all the layers except the last layer are treated as 

feature extractors in a deep neural network. In contrast to this network structure, a new feature extractor structure is 

proposed by Collobert and Weston [49]. Only the first two layers are used to extract features at different levels, such as 

word level and sentence level in Natural Language Processing. Subsequent layers are classical neural network layers 

used for prediction. The Stacked Denoising Autoencoder (SDA) is another structure that is presented in deep neural 

network [50]. The core idea of SDA is that unsupervised learning is used to pre-train each layer, and ultimately all layers 

are fine-tuned in a supervised learning way. Based on the SDA model, different feature transference strategies are 

introduced to target tasks with varying degrees of complexity. The number of layers transferred to the new model 

depends on the high-level or low-level feature representations that are needed. This means if low-level features are 

needed, only the first layer parameters are transferred to the target task [50]. In addition, an interpolating path is 

presented to transfer knowledge from the source task to the target task in a deep neural network. The original high 

dimensional features of the source and target domains are projected to lower dimensional subspaces that lie on the 

Grassman manifold, which presents a way to interpolate smoothly between the source and target domains; thus, a series 

of feature sets is generated on the interpolating path and intermediate feature extractors are formed based on deep neural 

network [51]. Deep neural networks can also combine with other technology to promote the performance of transfer 

learning. Swietojanski, Ghoshal [52] applied restricted Boltzmann machine to pre-train deep neural network, and the 

outputs of the network are used as features for a hidden Markov model. 

3.2. Transfer learning using multiple task neural network  

To improve the learning for the target task, multiple task learning (MTL) is proposed. Information contained in other 
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related tasks is used to promote the performance of target task [53]. In multiple task neural network learning, all tasks are 

trained in parallel using the shared input and hidden neurons and separate output neurons depending on different tasks 

[54]. The biggest difference between the MTL here and the MTL in deep neural network is the number of hidden layers. 

Generally, the number of hidden layers in MTL is much smaller than in deep neural networks. In MTL, source tasks as 

auxiliary information help the target task to improve performance. However, due to different relatedness between source 

tasks and the target task, the contributions of source tasks should be distinguished. Therefore, a modified version of 

multitask learning called  MTL is introduced. Based on a measure of relatedness between source tasks and the target 

task,  MTL applies a separate learning rate for each task output neuron [55]. Silver and Mercer [56] presented a task 

rehearsal method (TRM) to transfer knowledge of source tasks to the target task at a functional level. Instead of the 

interrelation between representations of various tasks, the relationship between functions of tasks is the core content in 

their new model. After demonstrating the good performance of  MTL and TRM on synthetic tasks, they were 

practically applied to a series of medical diagnostic tasks [57]. In the MTL model, the output layer consists of a separate 

neuron corresponding to each task, which may lead to redundant outputs and overlapping information. In addition, for the 

continuous tasks, contextual cues must be provided to guide the system to associate an example with a particular task. In 

light of these problems, Silver and Poirier [58] proposed context-sensitive multiple task learning (csMTL) with two 

major differences. To eliminate the redundant outputs and reduce the free parameters, only one neuron is included in the 

output layer. Another difference is reflected in the input layer, which can be divided into two parts. Apart from the set of 

input variables for the tasks, the input layer also contains a set of context inputs that associates each training example 

with a particular task. To verify the effectiveness of csMTL, a set of experiments was designed to detect csMTL and 

MTL neural networks in their ability to transfer knowledge [59]. The above model makes the assumption that each task 

only has one output neuron. Further, csMTL is extended to learn tasks that have multiple output neurons [60]. 

3.3.  Transfer learning using radial basis function neural networks 

Yamauchi [61] considered covariate shift, one category of transfer learning, and incremental learning. Under the 

assumption that incremental learning environments are a subset of covariate shift, a novel incremental learning method is 

presented on the basis of radial basis function neural network. Further, a number of model-selection criteria are set up to 

optimize the network; for example, the information criterion [62] is applied to determine the number of hidden neurons 

[63]. In some literatures, neural network acts as a part of the whole algorithm. Liu et al. [64] applied neural network to 

initialize the weights of labeled data in the source domain. Each instance in the source domain is input into the neural 

network trained by limited target labeled data to gain the contribution degree based on the error value. In addition, the 

neural network is used as pre-processing technique to extract features from high dimensional space to low dimensional 

space [65]. Sometimes, neural network is combined with other intelligent techniques to form an integrated model to 

improve the performance of transfer learning [66]. 

4. Transfer learning using Bayes 

Bayesian techniques refer to methods that are related to statistical inference and are developed based on Bayesian 

theorem. A Bayesian classifier is a probabilistic methodology for solving classification problems. Since probability is a 

useful tool for modeling the uncertainty in the real world and is adequate for quantifying the certainty degree of an 

uncertain truth, Bayesian classifier is popular in the machine learning community. When it comes to the transfer learning 

setting, the distribution of the training data and test data is not identical, so a Bayesian classifier trained on training data 

may not be predictive for the test data. To address this challenging problem, many Bayesian-based transfer learning 

algorithms have been developed in recent years. This section reviews three of the main Bayesian techniques: naïve Bayes 

classifier, Bayesian network and the hierarchical Bayesian model, and illustrates their application within the framework 
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of transfer learning. 

4.1. Transfer learning using Naïve Bayes 

The naïve Bayes classifiers [67] are among the most popular classifiers in real world application. They pose a simple but 

strong assumption that there is independence between each pair of features (attributes) given the class variables. Though 

this assumption is not suitable in most real scenarios, naïve Bayes classifiers have nevertheless been proved to work quite 

well in some complicated applications, especially automatic medical diagnosis [68], spam filtering [69] and text 

categorization [70], in which they may even outperform more advanced algorithms, such as support vector machine, or 

random forests. Normally, the probabilistic model for a classifier is 

𝑝(𝐶|𝐹1, ⋯ , 𝐹𝑛) =  
𝑝(𝐶)𝑝(𝐹1,⋯,𝐹𝑛|𝐶)

𝑝(𝐹1,⋯,𝐹𝑛)
                                                             (1) 

where 𝑝(𝐶|𝐹1, ⋯ , 𝐹𝑛) indicates a posteriori probability of class variable C, conditional on feature variables F1 through 

Fn. Since 𝑝(𝐹1, ⋯ , 𝐹𝑛) has no relation with the class variable and the value of Fi (i = 1,..,n) is observable, the above 

equation can be expressed as 

𝑝(𝐶|𝐹1, ⋯ , 𝐹𝑛) ∝ 𝑝(𝐶)𝑝(𝐹1, ⋯ , 𝐹𝑛|𝐶)                                                        (2) 

Under the independence assumption adopted by naïve Bayes classifier, which means  

𝑝(𝐶|𝐹1, ⋯ , 𝐹𝑛) ∝ 𝑝(𝐶) ∏ 𝑝(𝐹𝑖|𝐶)𝑛
𝑖=1                                                                   (3) 

From equation (3) we find that a prediction made by a classifier depends on the prior probability of the class variable and 

the product of the likelihood of each feature variable given a specific class variable. To estimate each feature’s 

distribution, it is necessary to make parameter estimation, assuming a predefined distribution (i.e., multinomial 

distribution or multivariate Bernoulli distribution) or generating a non-parametric model for a feature that comes from 

training data. However, if the test data (new-domain data) follow a different distribution from the training data 

(old-domain data), we cannot obtain an accurate feature distribution estimation for the new-domain data based on the 

parameter learned from the old-domain data, which leads to bad prediction performance in the result. Estimating the 

feature distribution for new-domain unlabeled data limits the application of the naïve Bayes classifier in the transfer 

learning setting. 

To adapt the naïve Bayes classifier from the training data to the test data, [17] proposed a novel naïve Bayes transfer 

learning (NBTL) classification algorithm for text categorization. NBTL first trains a naïve Bayes classifier on the training 

data and applies the learned classifier on the test data to obtain a pseudo label for the test data during learning, thereby 

providing an initial model estimation for the test data under target distribution. The Expectation-Maximization (EM) 

algorithm is then applied in iteration to find a local optimal model only for fitting the target distribution, meaning that the 

naïve Bayes classifier trained on the training data is adapted to the test data. To measure the difference between the 

different distributions, KL divergence is used to estimate a trade-off parameter in the NBTL model, and the experiment 

results show that the performance of NBTL increases when the distribution between the training data and the test data is 

significantly different. The main disadvantage of NBTL lies in the fact that the influence of new-domain specific features 

is ignored. Instead of treating both old-domain and new-domain data equally, an adaptive naïve Bayes is proposed in [16]. 

It uses a weighted EM algorithm to dynamically increase the importance of new-domain data and decrease the weight of 

old data, while at the same time emphasizing the usage of both generalizable features drawn from the old-domain data 

and all the features from the new-domain data for tackling the cross-domain sentiment classification problem. Roy and 

Kaelbling [71] developed an alternative method of transferring the naïve Bayes classifier. They first partition the dataset 

into a number of clusters, such that the data for each cluster for all tasks has the same distribution. Then they train one 

classifier for each partition; all classifiers are then combined using a Dirichlet process. 

In addition to text classification, [72] developed a transfer naïve Bayes (TNB) algorithm to predict cross-company 



8 

 

software defects. The implementation can be summarized in three steps: it first collects maximum and minimum value 

vectors of the target feature from test data, then each feature of a training sample is compared with the corresponding part 

of those two vectors to calculate the number of similar attributes and the weight of that training instance is computed 

through a gravitational analogy. After obtaining all the weights for the training data, a prediction model can be built with 

those weighted training data to classify the test dataset.  

4.2.  Transfer learning using Bayesian network 

Assuming total independence between features is not applicable for many real world problems, because the occurrence of 

an event may arise as the result of a number of relevant factors. In other words, there are correlations between features in 

a decision region and the Bayesian network is a suitable representation to this fact. A Bayesian network is a graphical 

model that encodes probabilistic relationships among variables of interest. It consists of two components: (1) a directed 

acyclic graph (DAG), which contains nodes and arcs. In particular, the nodes can be observed quantities, latent variables, 

or unknown parameters, while the directed arcs reflect conditional dependencies among variables, and (2) conditional 

probability tables (CPTs), which record local probability distributions associated with each node. Bayesian networks 

have four distinct advantages when compared to other data mining methods, namely, the ability to handle incomplete 

datasets, to discover causal relationships hidden in the data, to incorporate both domain knowledge and data into one 

model, and to avoid data over-fitting [73].  

In a simple case, the graphical model of a Bayesian network can be constructed by the prior knowledge of an expert. 

However in some complex applications, the definition of “network” is difficult for humans, so it is necessary to learn the 

network structure and parameters of the local distributions from data [74]. To learn a Bayesian network from data, one 

needs to consider two important phases: structure learning and parameter learning, respectively. The former relates to the 

learning of a graphical model from data, while the latter deals with the evaluation of condition probability distribution for 

each variable given the model. To our knowledge, most works focus on structure learning by leveraging previous data, 

and less effort is expended on parameter learning. 

When the training data in a task is scarce, learning a reliable Bayesian network is difficult; therefore transfer learning can 

help improve the robustness of learned networks through exploiting data from related tasks or knowledge from domain 

experts. In [75], the authors extended the Bayesian network learning from a single domain (task) to multiple domains 

(tasks). In this case, instead of learning a structure in isolation, the relationships between tasks should be taken into 

account. Similar to the multi-task learning scenario, multiple Bayesian network structures are jointly built from multiple 

related datasets. To make learning efficient, the parameters of Bayesian networks from related tasks are assumed to be 

independent. The prior is defined in such a way that it penalizes structures that are different from one another. A score 

and search approach is then performed on the space of multiple Bayesian networks to find the best structures, in 

particular, by defining a suitable search space and devising a branch and bound procedure that enables efficient moves in 

this search space. In contrast to learning optimal models simultaneously for different tasks, [76] proposed learning 

models from auxiliary tasks to improve related tasks. In this paper, without giving sufficient data for independence test, a 

PC-TL algorithm is developed with consideration of both the confidence of the independence tests and the similarity of 

the auxiliary tasks to the target task in a combined function. An example that uses transfer learning to strengthen the 

quality of learned Bayesian networks through the use of an inductive bias may also be found in [77]. The main limitation 

of such multi-task network structure learning algorithms lies in the assumption that all pairs of tasks are equally related, 

which violates the truth that different pairs of tasks can differ in their degree of relatedness. As a result, Oyen and Lane 

[78] relaxed this assumption by adding a task relatedness metric, which explicitly controls the amount of information 

sharing between tasks, into a learning objective to incorporate domain knowledge about task-relatedness. Experimental 

results show that leveraging domain knowledge produces models that are both robust and in accordance with a domain 
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expert’s objective. Recently, Oyen and Lane [79] pointed out that it is more appropriate to estimate a posterior 

distribution over multiple learned Bayesian networks rather than a single posteriori. In their paper, the authors proposed 

the incorporation of structure bias into order-conditional network discovery algorithms to extend network discovery in 

individual Bayesian network learning [80, 81] for transfer network learning. 

Given a Bayesian network structure, the work of parameter learning is to estimate the conditional probability tables 

(CPTs) for each node given the combination of its parent’s nodes. If we have data from all tasks, then we can directly 

estimate the CPTs from data. However in some cases we only have models from related tasks and need to estimate the 

CPT for the target task. In [76], two novel aggregation methods were defined. The first calculates a weighted average of 

the probabilities from the data of the auxiliary tasks based on the confidence of the probability estimated from the 

auxiliary tasks and the similarity with the target estimates. This average is then combined with the target probability 

estimate, weighted by a factor that depends on its similarity to the target probability. The second method works similarly, 

but the average of probabilities is obtained from those closer to the target rather than from all the data of the auxiliary 

tasks. In addition, the average is combined to the target estimate with a confidence factor, which is based on the amount 

of data. 

4.3.  Transfer learning using hierarchical Bayesian model 

Hierarchical Bayesian models are considered to be a particular type of Bayesian network and are used when the data are 

structured in groups. This hierarchical model can represent and reason about knowledge at multiple levels of abstraction, 

therefore a hierarchical Bayesian model provides a unified framework to explain both how abstract knowledge is used for 

induction and how abstract knowledge can be acquired.  

In considering the problem of multi-task learning, Wilson et al. [82] used a hierarchical Bayesian infinite mixture model 

to model the distribution over multiple Markov Decision Processes (MDPs) such that the characteristics of new 

environments can be quickly inferred based on the learned distribution as an informed prior. This idea is extended to 

solve the problem of sequential decision-making tasks [83]. Yang et al. [84] combined all the tasks in a single RBF 

network and defined a novel Bayesian multi-task learning model for non-linear regression. Meanwhile, Raykar et al. [85] 

presented a novel Bayesian multiple instance learning (MIL) algorithm, which performs feature selection and classifier 

construction simultaneously. The results show that the proposed method is more accurate and effective when a smaller set 

of useful features is selected. 

In reference to the domain adaptation problem, a novel hierarchical Bayesian domain adaptation model was developed 

based on the use of a hierarchical Bayes prior [86]. In the proposed model, several parameters are set to each feature in 

each domain, and top level parameters are proposed on the upper level such that the Gaussian prior over the parameter 

values in each domain is now centered around these top level parameters instead of around zero, while the zero-mean 

Gaussian prior is placed over the top level parameters. At the same time, Wood and Teh [87] designed a doubly 

hierarchical Pitman-Yor process language model, in which the bottom layer utilizes multiple hierarchical Pitman-Yor 

process language models to represent a number of domains while the top layer is responsible for sharing the statistical 

strength. A more special case is considered in [88], where only a single example from a new category is provided; thus, it 

is more difficult to estimate the variance and similarity metric for categorizing an object in this case. It is possible with 

this model to encode priors for new classes into super-categories. Following the inference of the sub-category to which 

the novel category belongs, the model can estimate not only the mean of the new category but also an appropriate 

similarity metric based on parameters inherited from the super-category. 

5. Transfer learning using fuzzy system and genetic algorithm  

Imprecision, approximation, vagueness and ambiguity of information are driven by the variability encountered when 
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trying to learn an activity with little information. There is a clear co-dependency on the level of certainty in any learning 

activity and the amount of information that is available, and problems with little information, can have a high degree of 

uncertainty. 

This is why couple of researches appears very recently to apply fuzzy techniques into transfer learning. The use of fuzzy 

logic allows for the incorporation of approximation and a greater expressiveness of the uncertainty within the knowledge 

transfer. Zadeh [89] introduced the concept of fuzzy sets which he later expanded on by introducing further aspects of 

Fuzzy Logic, including fuzzy rules in [90]. The two primary elements within fuzzy logic, the linguistic variable and the 

fuzzy if-then rule, are able to mimic the human ability to capture imprecision and uncertainty within knowledge transfer. 

Fuzzy logic forms a major component of the published Fuzzy Transfer Learning techniques. Behbood et al. [91, 92] 

developed a fuzzy-based transductive transfer learning for long term bank failure prediction in which the distribution of 

data in the source domain differs from that in the target domain. They applied three classical predictors, Neural Network, 

Support Vector Machine and Fuzzy Neural Network, to predict the initial labels for samples in the target domain, then 

attempted to refine the labels using fuzzy similarity measures. The authors subsequently improved the performance of the 

fuzzy refinement domain adaptation method [93] by developing a novel fuzzy measure to simultaneously take account of 

the similarity and dissimilarity in the refinement process. The proposed method has been applied to text categorization 

and bank failure prediction. The experimental results demonstrated the superior performance of the proposed method 

compared to popular classical transductive transfer learning methods. Using fuzzy techniques in similarity measurement 

and label production, the authors revealed the advantage of fuzzy logic in knowledge transfer where the target domain 

lacks critical information and involves uncertainty and vagueness. Shell and Coupland domains [94, 95] proposed a 

framework of fuzzy transfer learning to form a prediction model in intelligent environments. To address the issues of 

modeling environments in the presence of uncertainty and noise, they introduced a fuzzy logic-based transfer learning 

that enables the absorption of the inherent uncertainty and dynamic nature of transfer knowledge in intelligent 

environments. They created a transferable fuzzy inference system using labeled data in the source domain, then adapted 

and applied the resultant rule base to predict the labels for samples in the target domain. The source rules were adjusted 

and adapted to the target domain using the Euclidean distance measure. The proposed method was examined in two 

simulated intelligent environments. The experimental results demonstrated the superior performance of fuzzy transfer 

learning compared to classical prediction models; however the method has not been compared with transfer learning 

methods. Deng et al. [96] proposed the generalized hidden-mapping ridge regression (GHRR) method to train various 

types of classical intelligence models, including neural networks, fuzzy logic systems and kernel methods. The 

knowledge-leverage based transfer learning mechanism is integrated with GHRR to realize the inductive transfer learning 

method called transfer GHRR (TGHRR). Since the information from the induced knowledge is much clearer and more 

concise than the information from the data in the source domain, it is more convenient to control and balance the 

similarity and difference of data distributions between the source and target domains. The proposed GHRR and TGHRR 

algorithms have been evaluated experimentally by performing regression and classification on synthetic and real world 

datasets. The results demonstrated that the performance of TGHRR is competitive with or even superior to existing 

state-of-the-art inductive transfer learning algorithms.   

Genetic algorithm is an evolutionary method that simulates the process of natural selection to solve mainly optimization 

and search problems. This method uses techniques inspired by natural evolution such as inheritance, mutation, selection 

and crossover. Koçer and Arslan [97] introduced the use of genetic algorithm and transfer learning by extending a 

previously constructed algorithm. Their approach was to extend the transfer learning method of producing a translation 

function. This process allows for differing value functions that have been learnt to be mapped from source to target tasks. 

The authors incorporated the use of a set of policies originally constructed by a genetic algorithm to form the initial 
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population for training the target task. They showed that the transfer of inter-task mappings can reduce the time required 

to learn a second, more complex task. 

6. Applications of transfer learning 

Transfer learning approaches with the support of computational intelligence methods such as neural network, Bayesian 

network, and fuzzy logic have been applied in real-world applications. These applications largely fall into the following 

five categories: 1) Nature language processing; 2) Computer vision; 3) Biology; 4) Finance; and 5) Business 

management. 

6.1. Nature language processing  

Nature language processing (NLP), which can be regarded as the study of human languages, is proposed to make natural 

language processing interpretable by computers. In general, there are numerous sub-learning tasks in NLP fields, such as 

text-based learning problems (e.g., text classification or non-topical text analysis), language knowledge understanding, 

etc.  

For text related analysis, i.e., exploring the useful information from a given document, the learning problem of how to 

label the text documents across different distributions was addressed [17]. In this setting, the labeled training samples 

shared different distributions from the unlabeled test data. Accordingly, a novel transfer-learning algorithm based on an 

Expectation-Maximization based Naive Bayes model was proposed for further learning, which has demonstrated the best 

performance on three different types of data sets. Moreover, considering that most existing transfer learning methods 

assume that features and labels are numeric, and lack the ability to handle the uncertainty property, Behbood et al. [98] 

proposed a Fuzzy Domain Adaptation (FDA) approach and carried out an investigation of its applicability to text 

classification. In addition, for sentiment classification, which is a key challenge in non-topical text analysis, transfer 

learning technique is also applicable, such as adapting naïve Bayes to domain adaptation for sentiment analysis by fully 

utilizing the information from both the old-domain and unlabeled new-domain data sets [16]. 

Furthermore, the transfer learning approach can be used to deal with language knowledge understanding problems. For 

speech recognition, for example, Swietojanski et al. [52] exploited untranscribed acoustic data to the target languages in a 

deep neural network on unsupervised cross-lingual knowledge transfer. Similarly, Huang et al. [47] dealt with the 

cross-language knowledge transfer learning tasks by a shared-hidden-layer multi-lingual deep neural network. 

6.2. Computer vision and image processing  

The computer vision applied to transfer learning using computational intelligence includes methods for acquiring, 

processing, analysing, and understanding images, especially in high-dimensional data from the real world, for producing 

numerical or symbolic information. In this section, we summarize computer visual applications for camera images 

processing, from digits to letters processing, and video processing. 

In early camera image applications based on computational intelligent transfer learning, all approaches used a database of 

camera images of different objects, each of which had a distinct color or size and was used for vision learning, such as 

ALVINN-like road-following vision recognition [54]. One challenge in image object recognition is that the distributions 

of the training images and test images are different. Thus, Chopra et al. [51] argued that in the representation learning 

camp for images, existing deep learning approaches could not encode the distributional shift between the source and 

target domains. To this end, the authors proposed a novel transfer deep learning method for object recognition which 

allows the application of deep learning for domain adaptation. Camera images were also used to solve robotics problems. 

A visual object tracking routine, which recognizes and tracks the marker in real time, challenged robot researchers [99, 

100] that robot-mounted camera [54] was employed for task mappings, e.g. RoboCup soccer Keepaway [101]. Recently, 
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image learning has mainly been used for human facial recognition, e.g., gender and ethnicity recognition based on facial 

appearance [46], emotional facial appearance recognition derived from synthetic images of neutral faces to that of 

corresponding images of angry, happy and sad faces [60], age estimations from face images [65], and gaze gesture 

recognition by eye tracking devices and eye gaze technologies [94]. Knowledge transfer between different handwritten 

character recognition tasks [48] is another kind of application of transfer learning in computer vision. Kandaswamy et al. 

[50] trained a neural network to classify Latin digits (specific source problem) and reused it to classify a lowercase letters 

(different but related target problem) without having to train it from scratch. In the empirical analysis, the authors used 

the proposed neural network to transfer knowledge from Arabic digits to Latin digits as well. Authors [50] also 

considered a problem of classifying images of English lowercase a-to-z by reusing fine-tuned features of English 

handwritten digits 0-to-9. 

By applying salient feature detection and tracking in videos to simulate fixations and smooth pursuit in human vision, 

Zou et al. [102] successfully implemented an unsupervised learning algorithm in a self-taught learning setting. With 

concrete recognition, features learned from natural videos do not only apply to still images, but also give competitive 

results on a number of object recognition benchmarks. 

6.3. Biology 

Transfer learning has been applied to biology fields, including medical problems, biological modeling designs, ecology 

issues, and so on. In applications related to medical issues, Caruana [54] suggested using multi-task learning in artificial 

neural networks, and proposed an inductive transfer learning approach for pneumonia risk prediction. A life-long 

inductive learning approach [56] retained task knowledge in a representational form and transferred knowledge in 

another form of virtual examples on three heart disease domains, through a neural network-based multi-task learning 

algorithm. They also put forward another type of sequential inductive transfer model for a medical diagnostics task, i.e., 

coronary artery disease diagnosis [57]. Recently, Oyen and Lane [79] argued that existing transfer learning methods for 

Bayesian networks focus on a single posteriori estimation, and that in doing so, other models may be ignored. To this end, 

they proposed a transfer multi-Bayesian Networks model for whole-brain neuroimaging. 

From the aspect of biological modeling designs, e.g., robot bionics, Celiberto Jr et al. [66] combined three artificial 

intelligence techniques, case-based reasoning, heuristically accelerated reinforcement learning and neural networks, in a 

transfer learning problem. They then proposed a novel model called L3 to speed up the reinforcement learning 

framework for a set of empirical evaluations between two domains (the Acrobot and the Robocup 3D). Another important 

biology domain, ecology, has attracted the attention of researchers into transfer learning. For instance, Niculescu-Mizil 

and Caruana [75] proposed a multi-task Bayesian network structure learning (i.e., inductive transfer) to re-evaluate the 

performance of ALARM (a logical alarm reduction mechanism) and to handle a real bird ecology problem in North 

America. 

6.4. Finance 

Another application area of transfer learning is finance, such as in the area of car insurance risk estimations and financial 

early warning systems. Niculescu-Mizil and Caruana [75] presented an inductive transfer learning approach, which 

jointly learns multiple Bayesian network structures instead of adaptive probabilistic networks from multiple related data 

sets. The authors examined the proposed method using car insurance risk estimation networks. It is worth noticing that 

the works on intelligent financial warning systems and long term prediction in banking ecosystems [91-93] are the first 

systematic studies to apply transfer learning approaches using fuzzy logic techniques of computational intelligence to 

real-world financial applications to exploit the knowledge of the banking system, e.g., transferring the information from 

one country to establish a prediction model in another country. 
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6.5. Business management 

Transfer learning using computational intelligence has been applied in business management. For instance, Roy and 

Kaelbling [71] proposed an efficient Bayesian task-level transfer learning to tackle the user’s behavior in the meeting 

domain. Jin and Sun [103] indicated that traditional neural network methods for traffic flow forecasting are based on a 

single task which cannot utilize information from other tasks. To address this challenge, multi-task based neural network 

is proposed to transfer knowledge to deal with traffic flow forecasting. Luis, Sucar and Morales [76] proposed the use of 

a novel transfer Bayesian network learning framework, including structure and parameter learning, to handle a product 

manufacture process issue. Recently, Ma et al. [72] studied the cross-company software defect prediction scenario in 

which the source and target data sets come from different companies, and proposed a novel transfer naive Bayes as the 

solution. A dynamic model for intelligent environments has been proposed to make use of the data from different feature 

spaces and domains [94, 104], with a novel fuzzy transfer learning process.  

7. Comprehensive analysis and findings  

In this paper, we have reviewed current trends of computational intelligence-based transfer learning and their applications. 

According to the review, computational intelligence techniques used in transfer learning can be classified into three main 

groups: Neural Network, Bayes and Fuzzy Logic, and Genetic Algorithm. The number of reviewed transfer learning 

papers for each computational intelligence technique in each application domain is summarized and presented in Table 1. 

From the summary of transfer learning, it is concluded that transfer learning with the use computational intelligence, as 

an emerging research topic, starts playing an important role in almost all kinds of application. Of the computational 

intelligence methods, neural network has been extensively used for transfer learning, mainly in computer vision and 

image processing domain. The main reason why neural network has been widely used in transfer learning is that it 

doesn’t have I.I.D. assumption on data while almost all stochastic techniques have. It can also be identified that 

Fuzzy-based transfer learning techniques have played an increasingly important role in recent applications particularly 

finance. Since many real world applications have noisy and uncertainty in data, researchers take fuzzy systems into 

account for transfer learning more and more. 

 

Table 1. Summary of transfer learning techniques in each application domain 

Techniques 

Domains 
Artificial Neural Networks Bayes Fuzzy logic No. of listed references 

Natural language processing 2 2 1 5 

Computer vision & image processing 11 0 1 12 

Biology 4 2 0 6 

Finance 0 1 3 4 

Business management 1 3 2 6 

Total 17 7 6 30 

 

In the future, several important research challenges in the field of computational intelligence-based transfer 

learning need to be addressed. First, the computational complexity is a crucial issue in computational 

intelligence-based transfer learning. Almost, all reviewed studies have focused on accuracy as a measurement 

for model performance. However, comparing with the statistical transfer learning methods, computational 

intelligence techniques usually gain more computational complexity which should be handled. In addition, 

how to avoid negative transfer is an open problem which is not only in the classical transfer learning but also 
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in computational intelligence-based transfer learning. The transferability among source and target domains 

needs to be studied profoundly and a comprehensive and accurate transferability measures to be implemented 

that can guarantee the negative learning will not happens. Moreover, almost all reviewed studies have 

assumed that the feature spaces between the source and target domains are the same. However, in many 

applications, which we wish to transfer knowledge among domains, this assumption cannot be held. This type 

of transfer learning which is referred as the heterogeneous transfer learning has not been addressed in 

computational intelligence-based transfer learning literature. Finally, so far the computational intelligence 

techniques are applied for small scale transfer learning problems. Nonetheless, in the era of big data, there are 

many interesting applications such as social network analysis and web-based recommender systems that can 

exploit transfer learning and computational intelligence techniques. The capability of computational 

intelligence to handle non-I.I.D. noisy data can pave the way to use these techniques in big scale real world 

applications.    

Two important features of this paper clearly distinguish it from other survey papers in the transfer learning 

area: Firstly, It targets the development of transfer learning methods that use computational intelligence. 

Secondly, It systematically examines the applications of transfer learning that are integrated with 

computational intelligence. 

We believe that this paper can provide researchers and practical professionals with state-of-the-art knowledge 

on transfer learning with computational intelligence and give guidelines about how to develop and apply 

transfer learning in different domains to support users in various decision activities.  
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