
ANALYTICAL AND NUMERICAL METHODS 

FOR DETECTION OF 

A CHANGE IN DISTRIBUTIONS 

SAOWANIT SUKPARUNGSEE 

A thesis submitted for the degree of 

Doctor of Philosophy 

in Mathematical Sciences 

Departrnent of Mathematical Sciences, Faculty of Science 

University of Technology, Sydney 

December 2008 

Principal Supervisor: Professor Alexander Novikov 

Copyright® by Saowanit Sukparungsee, 2008 



UNIVERSITY OF TECHNOLOGY, SYDNEY 

CERTIFICATE OF AUTHORSHIP /ORIGINALITY 

ii 

Date: Dec 2008 

Author: Saowanit Sukparungsee 

Title: Analytical and Numerical Methods for Detection of a Change 

in Distributions 

Department: Mathematical Sciences 

Degree: Ph.D. Convocation: Mar Year: 2005 

I certify that the work in this thesis has not previously been submitted for 

a degree nor has it been submitted as part of requirements for a degree except 

as fully acknowledged within the text. 

I also certify that the thesis h as been written by me. Any help tha t I have 

received in my research work and the preparation of the thesis itself has been 

acknowledged. In a ddit ion, I certify that all information sources and literature 

used a r e indicated in t he thesis. 

Production Note:

Signature removed prior to publication.



Dedication 

To Dad 8 Mom 

and Family 

iii 



Acknowledgments 

I would like first to express my deepest gratitude to my advisor, Professor Dr. Alexander 

Novikov, for introducing me to the wonderful world of martingales, and for his constant 

support and guidance during my Ph.D. study and thesis preparation. It has been a great 

pleasure to work under his supervision. I would also like to thank, Dr. Nino Kordazakhia 

from Macquarie University for all her support. 

I am very grateful to Professor Dr. Tony Moon, not only for his invaluable guidance 

and support throughout my Ph.D. study at UTS but also for their great care and help 

during my staying in Australia. 

I also wish to express my grateful appreciation to all faculty members in the Depart-

ment of Mathematical Science at UTS, especially Dr. Tim Langtry, Dr. Yakov Zinder and 

Dr. Nicolae Nicorovici. I can never forget their kindness in assisting me with my Ph.D. 

study. The warmth of all the staffs and post-graduate students, in particular Gabrile 

Mititelu here at UTS will live in my heart. 

Special thanks go to Dr. Elvin James Moors, Lectures at the Department of Mathe-

matics, King Mongkut's University of Technology, North Bangkok (KMUTNB), Thailand 

for his careful proof-reading of my thesis and for the helpful suggestions he provided, 

resulting in substantial improvements to the language of my thesis. 

I would like to express my gratitude to the Government of Thailand and the University 

of Technology, Sydney for their financial support during my study at UTS . 

I am also grateful for the generous support from Department of Applied Statistics, 

KMUTNB, Thailand, where I have worked and developed my academic mental. Thank 

for giving me the opportunity to study in Australia. 

Last, but not least, I would like to thank my mom and family, for their unconditional 

love, support and patience. To my special friend, Mus, thank you for being there. Finally, 

I want to dedicate this thesis to my late father, Chanin Sukparungsee, who always called 

me Doctor Kik in his lifetime. 

IV 



Table of Contents 

Table of Contents 

List of Figures 

List of Tables 

List of Notation and Abbreviations 

List of Publications and Conference P r esentations 

Abstract 

1 I ntroduction 
1.1 Formal Setting of Problem . . . . . . . . 
1.2 Research Objectives and Contributions . 
1.3 Scope of Study . 
1.4 Thesis Structure 

2 Statistical Process Control Charts for the Detection of Changes in Pa-
rarneters 
2.1 The Properties of Control Charts 
2.2 Shewhar t Chart . 
2.3 CUSUM Chart 
2.4 EWMA Chart. 
2.5 Discussion ... 

3 Methods for Finding Analytical and Numerical Approximations for ARL 

v 

vii 

viii 

ix 

x 

xi 

1 
2 
4 
5 
6 

7 
7 
9 

10 
11 
13 

and AD 14 
3.1 The Markov Chain Approach 15 
3.2 Integral Equations . . . . 20 
3.3 Monte Carlo Simulations . 
3.4 The Martingale Approach 
3.5 Discussion . . . . . . . . . 

v 

21 
24 
37 



TABLE OF CONTENTS vi 

4 EWMA Chart for Detection of a Change in a Gaussian Distribution 38 
4.1 The Derivation of Closed-form Formulas for Gaussian EWMA . 38 
4.2 Corrected Approximation . . . . . . . . . . . . . . . . . . . . 44 
4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 50 
4.4 Choices of Optimal Parameters of Gaussian EWMA Designs . 55 

5 An Adaptation and Expansion of the Martingale Technique to non-
Gaussian Distributions 58 
5.1 EWMA Chart for Poisson Distribution . 59 
5.2 Numerical Results .. . . ..... .. . 
5.3 Choices of Optimal Parameters of Poisson EWMA Designs 
5.4 EWMA Chart for Bernoulli Distribution .......... . 
5.5 Numerical Results . ... .... .. .. . . ....... . . 
5.6 Choices of Optimal Parameters of Bernoulli EWMA Designs. 

6 Conclusion and Recommendations for Further Research 
6.1 Overall Conclusion . . . . . . . . . . . . 
6.2 Recommendations for Further Research 

62 
65 
68 
71 
72 

75 
75 
76 

A Mathematica® codes for Simulation of Sequentially Stochastic Processes 78 
A. l Gaussian Distribution 79 
A.2 Poisson Distribution . 
A.3 Bernoulli Distribution 

B Mathematica® Codes for Calculation of Closed-form Formulas 
B. l Procedure for obtaining the optimal parameter 

Bibliography 

81 
83 

85 
.. . .. 85 

96 



List of Figures 

1.1 Sample of control chart . 2 

2.1 A typical Shewhart chart 9 

3.1 In-control region divided into n subintervals to form n in-control states of 
the Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

4.1 Comparison of lower-bounds, first approximations and simulations of ARL: 
Gaussian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

4.2 AD2 for different magnitudes of change: two-sided Gaussian case . . . . . . 51 
4.3 Comparison of AD1 simulated by EWMA and by CUSUM for a one-sided 

Gaussian EWMA chart .. . 55 

5. 1. Comparison of lower-bounds, approximations and simulations of ARL1: 
Poisson case . . . . . . . . . . 62 

5.2 Comparison of AD1 simulated by EWMA and by CUSUM for a one-sided 
Poisson EWMA chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

5.3 AD1 for different magnitudes of change: Poisson case . . . . . . . . . . . . . 67 
5.4 Comparison of lower-bounds, upper-bounds, approximations and simula-

tions of ARL1: Bernoulli case . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
5.5 Comparison of AD1 simulated by EvVMA and by CUSUM for a one-sided 

Bernoulli EWMA chart . . . . . . . . . . . . . . . . . . 72 
5.6 AD1 for different magnitudes of change: Bernoulli case . . . . . . . . . . . . 74 

vii 



List of Tables 

4.1 Comparison of numerical results of ARL1 between lower-bounds, first ap-
proximation and MC for one-sided Gaussian EWMA . . . . . . . . . . . . . 4 7 

4.2 Comparison of numerical results of ARL2 between lower-bounds, first ap-
proximation and MC for two-sided Gaussian EWMA . . . . . . . . . . . . . 4 7 

4.3 Comparison of numerical results of AD1 between lower-bounds, first ap-
proximation and MC for one-sided Gaussian EWMA . . . . . . . . . . . . . 48 

4.4 Comparison of numerical results of AD2 between lower-bounds, first ap-
proximation and MC for two-sided Gaussian EWMA . . . . . . . . . . . . . 48 

4.5 Comparison of ARL2 results from our closed-form formulas with other 
methods for two-sided Gaussian EWMA . . . . . . . . . . . . . . . . . . . . 52 

4.6 Comparison of optimal parameter values and AD2 for two-sided Gaussian 
EWMA ........ . ... . .. . ..... . .... . ........ . . . 53 

4. 7 Comparison Monte Carlo simulations of ARL1 and AD1 for one-sided CUSUM 
and EWMA charts: Gaussian case . . . . . . . . . . . . . . . . . . . 54 

4.8 Optimal parameter values and ADi of a one-sided Gaussian EWMA 56 
4.9 Optimal parameter values and AD2 of a two-sided Gaussian EWMA 57 

5.1 Comparison of numerical results of A R L 1 between lower-bounds, fi rst ap-
proximation, second approximation and MC for Poisson EWMA . . . . . . 62 

5.2 Comparison of the numerical ARL1 from the martingale approach with the 
numerical ARL1 from the MCA and Monte Carlo simulations. . . . . . . . 63 

5.3 Comparison Monte Carlo simulations of ARL1 and AD1 for one-sided CUSUM 
and EWMA charts: Poisson case . . . . . . . . . . . . . . . . . . . 

5.4 Optimal parameter values and ADi of a one-sided Poisson EWMA 
5.5 Comparison of numerical results of ARL1 between lower-bounds, upper-

bounds, first approximation, second approximation and MC for Bernoulli 

64 
66 

EWMA . ....... . ... .. ....... . ... . ..... . . .. . . . 70 
5.6 Comparison of the approximations with Monte Carlo simulations for the 

Bernoulli EWMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
5. 7 Comparison Monte Carlo simulations of ARL1 and AD1 for one-sided CUSUM 

and EWMA charts: Bernoulli case . . . . . . . . . . . . . . . . . . . . 72 
5.8 Optimal parameter values and ADi for a one-sided Bernoulli EWMA 73 

viii 



List of Notation and 

Abbreviations 

Notation and abbreviations are used in this thesis are: 

ARL 

AD 

EWMA 

CU SUM 

MCA 

IE 

MC 

H 

e 

T 

x 

<p 

Average Run Length 

Average Delay 

Exponentially Weighted Moving Average 

Cumulative Sum 

Markov Chain Approach 

Integral Equations 

Monte Carlo Simulations 

control limit /boundary 

moment of change-point 

stopping time/ alarm time 

in-control parameter 

out-of-control parameter 

weighted smoothing parameter in EWMA statistic, >. E (0, 1) 

overshoot 

characteristic function 

cumulant generating funct ion (logarithm of the moment generating func-

tion) 

ix 



List of Publications and 

Conference Presentations 

Parts of the work presented in this thesis have been previously published as: 

1. Sukparungsee, Saowanit, & Novikov, Alexander. 2006. On EWMA Procedure for 

Detection of a Change in Observations via Martingale Approach. In Proceedings of 

the KMITL International Conference on Science and Applied Science, 8-10 March, 

Bangkok, Thailand (KSAS 2006). 

2. Sukparungsee, Saowanit, & Novikov, Alexander. 2006. On EWMA Procedure for 

Detection of a Change in Observations via Martingale Approach. KMITL Science 

Journal; An International Jmtrnal of Science and Applied Science, 6(2a): 373-380. 

3. Sukparungsee, Saowanit, & Novikov, Alexander. 2007. Analytical Approximations 

for Average Run Lengths in EWMA Charts in Case of Light-tailed Distributions. In 

Proceedings of International Conference of Mathematical Sciences, 28-29 November, 

Bangi-Putrajaya, Malaysia (ICMS 2007). 

4. Sukparungsee, Saowanit, & Novikov, Alexander. 2008. Analytical Approximations 

for Detection of a Change-Point in Case of Light-tailed Distributions. Journal of 

Quality Measurement and Analysis, 4(2): 49-56. 

x 



Abstract 

This thesis aims to derive analytical approximations and numerical algorithms for analysis 

and design of control charts used for detection of changes in distributions. In particular, we 

present a new analytical approach for evaluating of characteristics of the "Exponentially 

Weighted Moving Average (EWMA)" procedure in the case of Gaussian and non-Gaussian 

distributions with light-tails. 

The main characteristics of a control chart are the mean of false alarm time or, Average 

Run Length (ARL), and the mean of delay for true alarm time or, Average Delay time 

(AD). ARL should be sufficiently large when the process is in-control and AD should 

be small when the process is out-of-control. Traditional methods for numerical evaluation 

ARL and AD are the Monte Carlo simulations (MC), Markov Chain Approach (MCA) and 

Integral Equations method (IE). These methods have the following essential drawbacks: 

the crude MC is very time consuming and difficult to use for finding optimal designs; 

MCA requires matrix inversions and, in general, is slowly convergent; IE requires intensive 

programming even for t he case of Gaussian observat ions. 

In this thesis we develop an approach based on a combination of the martingale tech-

nique and Monte Carlo simulations. With the use of a popular symbolic/numerical soft-

ware Mathematica®, this new approach allows to obtain accurate procedures for finding 

the optimal weights , alarm boundaries and approximations ARL and AD for the case of 

Gaussian observations. :Further, we show that our approach can be used also for non-

Gaussian distributions with light-tails and, in particular, for Poisson and Bernoulli distri-

butions. 

xi 



Chapter 1 

Introduction 

Statistical Process Control (SPC) charts play a vital role in quality improvement and are 

widely used for monitoring, measuring, controlling and improving quality in many fields 

of application. These charts are used to track the performance of output processes , (e.g. 

manufacture etc.) in order to detect a possible change and then bring the specific process 

back to a target value as quickly as possible. 

In 1931 W.A. Shewhart suggested simple SPC charts to use for quali ty control, (see 

e.g. Montgomery (2005)) . SPC charts are now widely used, not only in industry, but also 

in many other areas with real applications, such as : 

• Health care (Frisen, 1992; Hawkins and Olwell, 1998; Hillson et al, 1998) 

·• Epidemiology (Sitter et al., 1990) 

• Clinical Chemistry (Westgard et al., 1977) 

• Bioterrorism (see e.g. Hutwagner et al. , 2003) 

• Finance and Economics (Anderson, 2002; Ergashev, 2003) 

• Computer intrusion detection (see e.g. Ye et al., 2002, 2003) 

• Environmental Sciences (see for detail Basseville and Nikiforov, 1993) 

A major aim of SPC charts is to detect a change in a process as soon as possible, but at 

the same time it would be desirable to have a low rate of false alarms. It is assumed that 

the parameter of an in-control process should be sustained at some specified target value 

but the target value might change at an unknown time point B after which the process is 

out-of-control. A controller observes the process up to an alarm time T (see Figure 1.1) 

before deciding that the process is out-of-control. 

1 



1.1. Formal Setting of Problem 2 

Sequential change-point detection 

1.0 

i 
0.5 

i3 
~ 0.0 1\Ie:n 
~ 

-0.5 

1 6 12 18 24 30 36 42 48 54 60 
a 

Figure 1.1: Sample of control chart 

1.1 Formal Setting of Problem 

Assume that sequential observations 6, 6, ... , are independent random variables with the 

distribution function F(x, a), where a is a parameter. Further suppose that before the 

change-point e the process is "in-control" and the distribution function of ~t is F( x, ao), 

whereas after the change-point ("out-of-control") the di tribution function of ~tis F(x, a), 

where a f= ao : 

\

F(x, ao). 
P(~t < .1:) = 

F(x, a), 

t = 1, 2' .. . ' (} -- 1 
for all ;r; E JR. 

t = e,e+ 1, .. . , 

An alarm time of the "Shewhart" charts is based only on the latest observation, so earlier 

observations are completely disregarded. For this reason these charts are not efficient in 

the monitoring of small changes. 

During the past few decades, two effective alternatives to the Shewhart chart, namely, 

the "Cumulative Sum (CUSUM)" and "Exponential Weighted Moving Average (EWMA)" 

charts have been developed. The CUSUM chart was introduced by Page (1954) (see for 

detail Lucas, 1976; Siegmund, 1985; Pollak , 1985; Srivastava and Wu, 1993) . The EWMA 

chart was initially presented by Roberts (1959) (see also Roberts, 1966; Crowder, 1987; 

Hunter , 1986; Lucas and Saccucci , 1990; Srivastava and Wu, 1997). Both the CUSUM and 

EWMA charts are known to be more sensitive to the detection of small changes compared 

with t he Shew hart chart (because they use all current observations). The CUSUM chart 
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is known to be an efficient (or , at least, asymptotically efficient) tool, but only under some 

settings, (Lorden, 1971; Moustakides, 1986; Shiryaev, 1996). However, EWMA charts are 

inherently simpler and are also believed to be more robust than CUSUM charts. 

The detection of the change-point () is a trade-off between two limitations imposed 

on true alarm and false alarm times. The detection of large changes in the parameter a 

might only require a small number of observations, whereas the detection of small changes 

could require a much larger number of observations. One of the most popular criteria for 

choosing an alarm time (to claim that a process is out-of-control) is the "Average Run 

Length (ARL)"- the expectation of the stopping time given that the process is in-control. 

The ARL should be large enough when the process is in-control state. 

To formalise this setup we use the probability space (0, F , lP'e) and the concept of the 

natural filtration Ft= a{~i' i ~ t} (which is a-algebra generated by the observed process 

~i, { i = 1, 2, ... } ). The distribution lP'e(A) , A E F corresponds to the assumption that the 

change-point happened at time t = B, {B = 1,2, ... ,}. We set()= oo for the case when 

~t has the distribution F(x, a 0) for all t = 1, 2, ... (no change-point), ao is a parameter 

assigned to an "in-control" state. We shall use the symbol Ee (.) for the expectation 

under the distribution lP'e(.) . Any stopping time T is a random t ime such that the event 

{ T > t} E Ft for any t ~ 0. Typically, stopping times for SPC charts have the following 

forms: 

T = inf { t > 0 : Zt > a} or T = inf { t > 0 : Zt > a or Zt < b}, 

where Zt is a statistic generated by ~t, a and bare constants. 

ARL can be defined formally by the following way 

ARL = E 00 (T) = T , 

where T is a given parameter (usually large) and £ 00 ( . ) is the expectation under t he 

distribution "in-control" F(x, ao) . 

Another characteristic of SPC is the "Average Delay (AD)" time which is the expectation 

of the alarm time under the assumption that the change-point occurs at a point () = 1, 

that is 

where E1 (.) is the expectation under the distribution "out-of-control" F( x, a). 
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Note 

AD::; sup Ee(T - e + ll T 2: e). 
e 

4 

Of course, it would be desirable to optimise supEe(T-e+ llT 2: 8) but the latter quantity 
e 

is usually difficult to calculate. One can expect that a SPC chart has a good performance 

if its AD is close to a minimal value. There are also many other criteria for optimality 

discussed in the literature (see e.g. Shiryaev, 1961, 1978, 1996; Lorden, 1971; Moustakides, 

2008). 

ARL and AD are the most popular measures used for comparing the performance 

of different control charts because they are comparatively easy to calculate. Numerical 

methods for the evaluation of ARL and AD have been discussed by many authors (see 

e.g. Barnard, 1959; Bissell, 1969; Woodall, 1983; Lucas and Saccucci, 1990; Gan, 1994; 

Srivastava and Wu, 1993, 1997; Frisen and Sonesson, 2006). 

1.2 Research Objectives and Contributions 

The overall objective of the thesis is related to the problem of using SPC charts for 

sequential detection of changes in distributions. We examine mathematical and statistical 

approaches for obtaining analytical approximations for the characteristics ARL and AD 

using EWMA charts. 

The main aim of this thesis is to obtain analytical approximations for the characteristics 

of EWMA charts. We shall use a martingale relation between the expectations of alarm 

times and overshoots over a barrier for autoregressive processes firstly derived by Novikov 

(1990). Our approach combines the martingale technique with Monte Carlo simulations 

and it has been implemented using Mathematica®. Furthermore, a simple numerical algo-

rithm for finding the optimal parameter values of EWMA chart has been established. The 

results of calculations of characteristics of EWMA chart are compared with other classical 

methods, such as the Markov Chain Approach (MCA) (see Brook and Evans, 1972; Lucas 

and Saccucci, 1990; Champ and Woodall, 1991), Integral Equations (IE) (Crowder, 1987; 

Srivastava and Wu, 1997) and Monte Carlo simulation (MC) (Roberts, 1959). In addition, 

we compare the performance of the EWMA chart with the performance of the CUSUM 

chart. 

In the thesis, we also discuss the problem of detecting changes when the observations 

are from some non-Gaussian distribut ions such as Poisson and Bernoulli distributions. 

The martingale technique can be used to find the exact lower-bound for the expectation 
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of the first alarm time for an EWMA chart and to compare the numerical results for 

EWMA with MC and other approaches. 

Our contribution to the theory of SPC charts can be summarized as follows: 

• We have developed a new analytical tool for determining the ARL and AD for an 

EWMA chart, including cases of Gaussian and some non-Gaussian distributions. 

• We have suggested an algorithm for obtaining approximations for optimal weights 

and alarm boundaries. 

Some results obtained using the suggested technique for Gaussian and some non-Gaussian 

distributions have been published (see Sukparungsee and Novikov, 2006, 2007). 

1.3 Scope of Study 

The scope of the study is: 

1. The martingale technique 

Recall a process M t is a martingale wi th respect to the filtration Ft if EJMtl < oo 

and 

E(M tlFs) = Ms (P - a..s.) , t ~ s. 

The application of martingales to study characteristics of stopping times is ba..sed on 

the martingale stopping t heorem 

E(Mr) = E (M o), 

which is valid for all bounded stopping times (T) (see Chapter 3 for more details). 

2. The simulations and calculations 

Monte Carlo simulations with 106 trials are carried out with Mathematica® and R 

software. Mathematica® is also used for some symbolic computations. 

3. Comparison of numerical results 

The results from our approach are compared with other classical approaches to verify 

that the accuracy of our approach is as good as that of other approaches. Tables 

for optimal parameter values of EWMA designs are provided for observations drawn 

from Gaussian, Poisson and Bernoulli distributions. 
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1.4 Thesis Structure 

The main body of the thesis is organized into the following chapters: 

• In Chapter 2 we review earlier work on the application of SPC charts to the detec-

tion of changes in distributions. The literature on Shewhart, CUSUM and EWMA 

charts and their properties are discussed. 

• In Chapter 3 we describe three standard methods for the numerical evaluation of 

ARL and AD: the Markov Chain Approach, Integral Equations and Monte Carlo 

simulation. In this chapter we also introduce a new analytical approximation, based 

on the so-called the "martingale technique" . 

• In Chapter 4 we present the derivation of closed-form formulas for one and two-

sided Gaussian EWMA charts using the martingale technique. We suggest a cor-

rected approximation and describe the algorithms used for obtaining the numerical 

results. To illustrate an accuracy of the martingale approach, we also compare our 

numerical results with results obtained by MC , MCA and IE methods. We also 

compare the performance of an EWMA chart with the performance of a CUSUM 

chart. 

• In Chap ter 5 we show the martingale technique can be applied to non-Gaussian 

distributions, in particular, t o Poisson and Bernoulli distributions. VVe present the 

derivation of closed-form formulas for those distributions. As in Chapter 4, we 

compare the results from the martingale technique with the results from the other 

approaches. T he performance of an EWMA chart is compared also with that of a 

CUSUM chart. 

• In Chapter 6 we summarize the main contributions of this thesis and suggest topics 

for further research. 

• Appendix A contains codes developed in the Mathematica®. 

• Appendix B presents a numerical algorithm for finding the optimal parameters of 

an EWMA chart. 



Chapter 2 

Statistical Process Control Charts 

for the Detection of Changes in 

Parameters 

Statistical Process Control (SPC) charts are considered as t he most important tools in 

quality control. T he literature about SPC charts is extensive, especially about the problem 

of using SPC charts to detect a change-point in a process. In this chapter, we discuss some 

popular control charts and their basic properties and the criteria used to detect change-

points in Section 2.1 . 

In Section 2.2, we present the traditional control chart, the "Shewhart" chart, for 

independent univariate observations. The Cumulative Sum ( CUSUM) chart and its main 

properties are discussed in Section 2.3. In Section 2.4 we describe the Exponentially 

Moving Weighted Average (EWMA) chart . 

2.1 The Properties of Control Charts 

It is assumed that a parameter value of independent observations of the process under 

control is to be sustained at some specified target value. However, in practice, this value 

can change at an unanticipated t ime, called the change-point time and usually denoted B. 

In this thesis we suppose that the observations 6, 6, ... , are independent random variables 

with a distribution function F(x, o:), where the parameter o: has a value o: = o:o prior 

some change-point t ime () :::; oo (if e = oo, t here is no change) . T he parameter value o:0 

corresponds to an "in-control" state of the process. After t he change-point time(), the new 

7 
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parameter value a corresponds to an "out-of-control" state where a f:. ao. The parameter 

values for in-control state ao and out-of-control state a are assumed to be known. The 

in-control parameter ao could be measured in ·advance based on many observations. The 

out-of-control parameter a is usually unknown but it could be considered as a "target" 

constant which should be selected by practicers. 

A major objective of SPC charts is to respond quickly to a parameter change, but 

not to respond (or, at least , to respond rarely) if the parameter does not change. These 

objectives are, however, in a conflict because sufficient amount of observations must be 

taken after the change-point to confirm that the parameter value has actually changed. 

One of the important characteristics for SPC charts is the Average Run Length ( ARL), 

which is the expectation of an alarm time T required to detect a possible parameter change. 

Let Ee(T) denote the expectation of T under the assumption that the change-point occurs 

at point () ~ oo. We set (} = oo for the case when there is no change in parameter. Then, 

by definition 

(2. la) 

and, usually, one requires to have equality 

ARL=T, (2 .lb) 

where Tis a given number. Another important characteristics of SPC charts is the average 

time of delay that is the quantity 

Ee(T -- () + ljT 2: B) . (2.2) 

Though Equation (2.2) depends on the parameter(), some empirical studies (see e.g. Lucas 

and Saccucci , 1990) have suggested that this dependence is not essential. For this reason, 

and in order to compare our results with other methods, we have assumed that () = 1 in 

Equation (2.2) , and call it Average Delay (AD): AD= E1(T). 

They are many other criteria that have been used for optimality of SPC (see e.g. 

Shiryaev, 1961, 1978; Lorden, 1971) . For example, an asymptotic theory was provided 

in Lorden (1971) and Shiryaev (1996) using a minimax approach. However, ARL and AD 

are still the most popular and commonly used characteristics for evaluating the perfor-

mance of a control chart. These two criteria are used as the basis for the comparison of 
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different charts throughout t his thesis. 

2.2 Shewhart Chart 

Let 6, 6, ... , (t be independent and identically random variables (observations) with the 

mean ( a 0 ) and the variance ( a 2). 

The stopping time of a Shewhart chart is typically defined as a first passage time 

TA=inf{t>O:(t>A1 or (t<A2}. 

The levels A1 and A2 are usually called the upper control limit (UCL) and the lower 

control limit (LCL). Traditionally, 

UCL= A1 = ao +La and LCL = A2 = ao - La, 

where Lis a constant (usually, L = 3 for the case of Gaussian distribution), see Figure 2.1. 

In the case of Shewhart chart, ARL and AD can be easily calculated in terms of 

the error probabilities: the probability of type I error (P1) (the test rejects "true" Ho: 

signal occurs when a point falls outside the control limit though there is no real change 

in parameter) and the probability of type II error (Pu) (the test rejects "true" H1: no 

signal occurs when a point falls outside the control limit when there is a real change in 
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parameter) . The corresponding formulas are 

and 

2.3 CUSUM Chart 

1 
A D = E1 ( T) = ( p ) 1- JI 

10 

The Cumulative Sum (CUSUM) chart was first introduced by Page (1954). Denote the 

standard CUSUM defined by statistics yt with the following recursion: 

where 

yt = max(Yt-1 + q(~t), 0), t = 1, 2, ... , Yo= y, 

dF(x, a) 
q(x) =log dF(x, ao) 

(2.3) 

and it is assumed that the distribution F(x , a) is absolutely continuous with respect to 

the distribution F(x, ao). It F(x, a) is a continuous distribution with a density function 

f (x, a) then d~F(x, a) = f(x, a). One can find many other modifications of CUSUM 

charts in Hawkins and Olwell (1998). 

Example 1. If ~t "' Gaussian( a, a 2 ) then for all x E ( -oo, oo), 

f(x,a) 
q(x) =log[/'( )] . x,ao 

== ~ - ao_ ( x _ a + ao ) . 
a2 ' 2 

Example 2. If ~t "'Poisson( a) then for x = 0, 1, .. . , 

f(x ,a) 
q(x)=log[f( )] x,a0 

a 
= (ao - 0:1) + x log[-]. 

ao 

Example 3. If ~t rv Bernoulli( a), i.e. P(~t = 1) =a= 1-P(~t = 0) then for x = 0 or 1, 

f(x,a) 
q(x)=log[f( )] x,ao 

=log[(~ )x( 1 - a )l-x] 
ao 1 - ao 

a 1-a 1-a 
= x log[(-)+(--)]+ (1 - x) log[--] . 

ao 1 - ao 1 - ao 
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The stopping time of a CUSUM chart is typically defined as a first passage time 

TB= inf{t > 0: yt > B}, 

where B is the control limit. 

CUSUM charts have been discussed in many papers and books (see e.g. Page, 1961; 

Ewan, 1963; Brook and Evans, 1972; Hawkins, 1981; Gan, 1991; Hawkins, 1993; Woodall 

and Adams, 1993; Montgomery, 2005). Hawkins and Olwell (1998) provide a very accurate 

numerical approximation equation for evaluating ARL. 

2.4 EWMA Chart 

The Exponentially Weighted Moving Average (EWMA) chart was introduced by Roberts 

(1959) . Crowder (1987); Lucas and Saccucci (1990); Srivastava and Wu (1993, 1997); 

Frisen (2003); Frisen and Sonesson (2006); Knoth (2007) have given detailed discussions 

and numerical comparisons for characteristics EWMA. The EWMA for the discrete time 

case is defined by statistics Zt as the following recursion: 

Zt = (1 -- A)Zt-1 + Aet , t = 1, 2, .... (2.4) 

The parameter A E (0, 1) is a weight for previous observations and the initial value Zo is 

often assumed to be the target parameter valu 0 c:xo, i.e. it is assumed that Zo = ao. 

The EWMA statistic Zt is a weighted average of all previous observations. A closed-

form representation can be obtained for it by recursion of Equation (2.4). We first substi-

tute for Zt-1 on the right hand side of Equation (2.4) to obtain 

Zt = (1 - A)Zt-1 + Aet 

= (1 - A)[(l - A)Zt-2 + A~t-1] + A~t 
= (1 - A) 2 Zt-2 + A(l - A)et-1 + A~t· 

On continuing to substitute recursively for Zt-j, j = 2, 3, ... , t, we obtain 

t-1 
Zt =A L)l - A)k~t-k + (1 - A)t Z0 . 

k=O 
(2 .5) 

EWMA is sometimes called a Geometric Moving Average (GMA). If the observations ~t 
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are independent random variables with mean ao and variance a 2, then the expectation of 

Zt is 

t- 1 

E (Zt) = .\ L)l - .\)k E(~t- k ) + (1 - .\)t Zo 
k=O 
t-1 

= .\ L (l - .\)kao + (1 - .\) t Z0, (2 .6) 
k=O 

the variance of Zt is 

t-1 

a~t = .\2 L(l - .\) 2kVar(~t-k) 
k=O 

= (2 ~ .\)[l - (1 - .\)2t)a2 , (2.7) 

where we used the equality 

~(1 - >.)2k = A[l - ((1- >.)2)t] = 1- (1 - A)2t .\(2 - A)# 0. 
k=O 1 - (1 - .\)2 .\(2 - .\) ' 

As t increases (t -too) then the term [l - (1 - .\)2t) in Equation (2.7) approaches to one. 

This implies that the variance of Zt will tend to the asymptotic value which is ( 2~A )o-2. 

Therefore, the EWMA control limits can be taken as follows: 

UCL= ao +La\(~~;,--
. 2 ·- >-) 

. ~.\ LCL = ao - La --2 - .\ ' 

where Lis a parameter to be chosen. Note that it is common to use L = 3 to detect the 

"out-of-control" state for the case of Gaussian observations. Set H = La Mas a control 

limit. Note that when >. = 1, t he above equation gives the same limits as the Shewhart 

chart. Without loss of generality, in case of Gaussian observations we will suppose that 

the mean value is zero ( ao = 0) and that the variance is one ( a 2 = 1) . 

If the anticipated shift in the mean value is positive (that is a > 0) , then we take 

the decision that the process is out-of-control when for the first time Zt > H , that is the 

stopping time of an one-sided EWMA chart is 

TH= inf{ t > 0 : Zt > H }. (2.8) 
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If the anticipated shift in the mean could be positive and negative then it is natural to 

t ake t he decision that the process is out-of-control when the first time I Zt I > H that is 

the stopping time of a two-sided EWMA chart is 

{ H = inf{t > 0: IZtl > H}. (2 .9) 

In practice, it is desirable to find a value of t he smoot hing parameter ,\ and an out-of-

control level H such that A D = E 1 ( T) is minimal under constraints (2.1 ). 

2.5 Discussion 

It is well-known that the Shewhart chart is good for the detection of large changes, but it 

is not efficient for detecting small changes. This is because it only takes into account the 

last observation. CUSUM and EWMA charts take into account the previous observations 

and that is a reason why they are essentially more sensitive for the detection of small 

changes. 

CU SUM charts are known to be asymptotic (as T --t oo) optimal under a special 

minimax criterion (Lorden, 1971; Shiryaev, 1996). However, its performance can be inferior 

to EWMA for moderate values of a and T as indicated firstly by Lucas and Saccucci 

(1990). This re ult has been further verified for one-sided EvVMA charts by Srivastava 

and Wu (1993, 1997) for Gaussian distribution and Sukparungsee and Novikov (2007) for 

some non-Gaussian distributions. 

EWMA charts are inherently simpler than CUSUM charts and are also known to be 

more robust than CUSUM (see e.g. Lucas and Saccucci, 1990; Ergashev, 2003; Knoth, 

2007) against occasional outlier and a series correlations in observations. EWMA charts 

are as simple and flexible as CUSUM charts, in addition they can also used to detect 

changes of parameters on either side simultaneously. 



Chapter 3 

Methods for Finding Analytical 

and Numerical Approximations 

for ARL and AD 

Many authors (see Crowder, 1987; Yashchin, 1987; Lucas and Saccucci, 1990; Frisen, 1992; 

Srivastava and Wu, 1997) have extensively studied methods for evaluating of the perfor-

mance of EWMA charts and for finding analyt ical and numerical approximations for the 

characteristics of EWMA charts . There are at ]east three standard methods that have 

been used for developing numerical approximations and for evaluating their performance: 

the Markov Chain Approach (MCA), Integral Equations (IE) and Monte Carlo simulations 

(MC). 

In this chapter we develop a new analytical approach for evaluat ing performance based 

on a martingale technique. The chapter has four sections: 

• Section 3.1 - explains the Markov Chain Approach (MCA) 

• Section 3.2 - introduces the Integral Equations method (IE) 

• Section 3.3 - discusses t he Monte Carlo simulations approach (MC) 

• Section 3.4 - describes the new analytical approach based on the martingale tech-

nique. 

The discussion of the basic theory given in this chapter is based on the following pa-

pers: Liptser and Shiryaev (1977); Siegmund (1985) ; Basseville and Nikiforov (1993); 

14 
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Shiryaev (1995); Gallagher (1996) ; Ross (1996); Borovkov (1999); Vardeman and Jobe 

(1999); Montgomery (2005). 

3.1 The Markov Chain Approach 

The Markov Chain Approach (MCA) is an important and popular technique for evaluating 

ARL. It was Brook and Evans (1972) who first studied the MCA, later Lucas and Saccucci 

(1990) developed the MCA for a continuous Markov Chain. According to this approach, 

to obtain a reasonable accuracy of approximations it is usually necessary to discretise the 

underlying process using a number of steps. As far as we know there are no theoretical 

results about a rate of convergence of this method, however its accuracy can be studied 

by direct comparison with Monte Carlo simulations. 

Definition 1 (Markov processes). A stochastic process Xt, t 

process if for each 

the conditional probability 

1, 2, ... is a Markov 

For a Markov process, the probability for the process to be in a "future" state Xt+s is 

completely determined by the state Xt at the ''presenf' time t . 

3.1.1 The Markov Chain Approach 

Consider a homogeneous Markov process with a finite number of states Xj, j = 1, 2, ... , n, n+ 

1. The change from one state to another in one time step can be expressed by a transition 

probability matrix P = (Pij) whose elements are 

(3.1) 

Chains with a single absorbing state are of special interest to change-point detecting 

control charts. We assume that states Xj, j = 1, 2, ... , n correspond to "in-control" states 

and Xn+l is an "out-of-control" state. If the chain starts in an in-control state Xi we set 
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Ti as the first alarm time that the chain enters the out-of-control state, 

Ti= inf{t > 0: Xt = Xn+d, Xo =Xi, i :Sn. 

Since the values Pij represent probabilities that the process will make a transition from 

state i to state j in one time step, and since the process must make a transition into some 

state, we have the following relations: 

0 :S Pij :S 1, i,j > O; 
n+l 

L Pij = 1, i = 1, 2, .... 
j=l 

Let P denote a matrix of one-step transition probabilities Pij, so that 

IP11 P12 P13 

P21 P22 P23 

P = 

pil Pi2 pi3 

Since "in-control" states have indexes 1, 2, ... , n and "out-·of-control" state is n + 1, matrix 

P can be written in the followjng form: 

p = (R (In - R)ln \ 
o~ 1 } 

where, 

R is the submatrix of transition probabilities (Pi j) for states 1, 2, ... , n, 

In is the unit n * n matrix, 

ln is the unit n * 1 vector (all elements are 1), 

On is zero n * 1 vector. 

The matrix of transition probabilities for k steps contains the transition probabilities 

for moves from one state to another states in k steps , 

where (In - R k) ln is the vector of transition probabilities from states i < n + 1 to the 
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state n + 1 in k steps. Hence, 

P (Ti :S k) = element[(In - R k) I n](i) 

=sum of row (i)(In - R k) 

= p~)T (In - R k) l n, 

17 

(3.2) 

where p~)T is the initial probability vector with 1 at ith position and 0 otherwise. Then, 

Equation (3.2) is used to find the probability that the process starts in the in-control state 

Xi and first goes out-of-control state at time k: 

p (Ti = k) = p h :S k) - p h :S k - 1) 

= p~)T(In - Rk - (In - Rk-1))In 

= p~:)T(Rk-1 - Rk)In . 

We shall use the following result: 
00 00 

Lemma 3 .1.1. If L Rk converges absolutely, then L Rk =(In - R) - 1 . 

k=O k=O 

00 

(3.3) 

Proof. If I: R k converges absolutely then we can multiply each terms of the series by 
k=O 

another matrices and, in partkular, we have the following relation 

00 00 

(In -- R) LRk = )-=(Rk -- Rk+1) 

k=O k=O 

= (I - R) + (R - R 2 ) + .. · 
=I. 

00 00 

Therefore, I: Rk = (In - R) - 1. Remark, the series I: Rk converges absolutely, e.g. 
k=O k=O 

under the condition llRll < 1, where IJRll is the absolute value of the largest eigenvalue of 

R . D 

Theorem 3.1.2. The Average Run Length for the MCA n states with an initial state Xi 

is calculated as fallows: 
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Proof. In order to proof Theorem (3.1.2), we use Equation (3 .3) as follows: 

00 

ARL(n) = L kP(Ti = k) 
k=O 
00 

= L kp~)T(Rk-1 - Rk)ln 
k=O 
00 

k=O 
00 

= LP~)TRkln 
k=O 

= p (i)T(I - R)-11 n n n, (3.4) 

where Lemma 3.1.1 is used to obtain the final equation. D 

One may expect that when n -+ oo, ARL(n) and AD(n) converge to true values ARL 

and AD. However, we fail to find in literature any theoretical results of this type. 

3.1.2 The Procedure for Calculation ARL and AD Using the Markov 

Chain Approach. 

Assume t hat the allowed values for t he variable being controlled are bounded by H L from 

below and by Hu from above. The interval (HL , Hu) is the in-control region and values 

outside this interval are the out-of-control region as shown in F igure 3.1. The procedure 

for obtaining two-sided ARL using a Markov Chain Approach has the following steps: 

• Divide the interval between lower-bound and upper-bound for in-control parameter 

values (HL , Hu) into n subintervals which are used as t hen in-cont rol states of a 

Markov Chain. Denote the midpoints of these subintervals as mi , i = 1, 2, .. , n 

• Calculate a lower Li and upper Ui bound of the ith subinterval as follows : 

Li = H L + ( i - 1) (Hu - H L) ' 
n 

(3 .5) 

U H i(Hu - HL) 
i= L+ , 

n 
(3 .6) 

and the midpoint mi of the ith subinterval is then 

(3.7) 
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SubintuYill 

~ 

r I I I I I I I I I I I H 

t t t t t 
H +(Hu-HL) HL+~Hu-HL) 

L 2n 2n 

Lo«1tion of l\hdpowt 

T\\o-sided case 

Figure 3.1: In-control region divided into n subintervals to form n in-control states of the 
Markov Chain 

• Construct the matrix R , where each element Pij is the transition probability of going 

from ith subinterval ( ith state of Markov Chain) to lh subinterval in one step for 

i,j = {l, 2, .. , n} by substituting Equation (3.5), Equation (3.6) and Equation (3.7) 

into Equation (3.1) . As an example, suppose that the EWMA statistic at time t-1, 

i.e., Zt-l, is in the ith subinterval. Then, according to the MCA we assume that Zt- l 

is equal to the midpoint of the ith subinterval and obtain the following transition 

probabilities 

Pij = P(Lj < Zt < U:1IZt-1 =mi) 

P(H (j - l)(Hu - lh) H j(Hu -- HL)) = L + < Zt < L + -----
n n 

_ P(H (j - l)(Hu - HL) (. ')(H (2i - l)(Hu - HL)) '(Z) - L+ < 1-A L+-------- +A t 
n 2n 

H j(Hu-HL)) < L+--·----
n 

Hu -- HL 
=P(H L+ ,,\ (2(j - l)-(1->.)(2i - l))<Zt 2n 

Hu-Ih 
< HL + 2n,,\ (2j - (1 - >.) (2i - 1)) 

Hu- HL Pi1· = F(HL + ,,\ (2j - (1 - >.)(2i -· 1))) · 2n 
Hu- HL - F(HL + ,,\ (2(j - 1) - (1 - >.)(2i - 1)) ), 2n 

where F( ·) is the cumulative distribution function. 

• Construct the vector p with length n = [O, 0, 0, .. . , 1, 0, ... , 0, OJ. The number of states 
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must be odd so that there is a unique middle value. 

• Calculate ARL(n) by using Equation (3.4) . 

Note that the approximation ARL(n) for the case of one-sided EWMA can be calculated 

in a similar manner to the case of the two-sided EWMA by subst ituting HL with zero . 

Then the result is 

Pi · = F ( H u (2j - (1 - ,\)(2i - 1))) - F ( H u (2(j - 1) - (1 - ,\)(2i - 1))). 
J 2n>. 2n ,\ 

3.2 Integral Equations 

Crowder (1987) derived an Integral Equation for the ARL of an EWMA chart and showed 

that the ARL can be expressed in terms of a Fredholm Integral Equation of the second 

kind. Waldmann (1986) obtained an Integral Equation for the EWMA chart by the method 

of Page (1954). Srivastava and Wu (1993) followed a similar method to develop int egral 

equations for a continuous-time model. Srivastava and Wu (1997) also showed that some 

adjustments had to be made to the Integral Equations for a discrete-time model to correct 

for the possible overshoot of the boundary. For the discrete-time model, approximations 

for ARL and AD can be found by solving the Integral Equations numerically. 

Consider an EWMA chart where 6, 6, ... are independent random variables with a 

continuous distribution with a probability density .f (y) . Assume that the lower-bound and 

upper-bound for the variables ~t, t = 1, 2, . .. are HL =-Hand Hu= H, correspondingly. 

Let L( u) be the ARL of the EWMA chart with initial EWMA .'tatistic Z0 = u (i.e, 

L( u) = E 00 (TH)). If an EWMA sequence begins at u, there are two possible cases where 

it will be after a single observation, 6. First, if 6 is in the out-of-control region, i.e. 

((1 - ,\)u + >.6 < -H or (1 - ,\)u + ,\6 > H), that means the signal is out-of-control 

and therefore the run length is 1. 

Second, if 6 is in the in-control region, i.e. (-H < (1 - >.)u + ,\6 < H), then one 

observation will have been run and on average L((l - >.)u + >.6) more observations will 

be produced before a signal is given. This can be expressed in the form 

L(u) = (l _ P[- H - ~ - A)u < {I< H - ( ~ - A)u]) 

H-(1-A)u 

+ f H- (~- A )u (1 + L((l - A)u + Ay))J(y)dy 
A 
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H-(I-.>..)u 

L(u) = 1 + f H- (:- >)u L(( l - .\)u + .\y)J(y)dy . 
.>.. 

Setting (1 - ,\)u + ,\y = z , we obtain 

(3.8) 

where/(-) denotes the probability density function of ~t· 

A similar approach (to that one used to obtain Equation (3.8)) can be used to derive 

an integral equation for an AD. It is assumed that the out-of-control signal occurs when 

IZt - a l > H for some constant H. Denote L(u , a) as t he AD of the EWMA chart , given 

that t he parameter of change is equal to a and that t he initial EWMA is Z0 = u, (i .e 

L( u, a) = E1 (TH)). T he analog of Equation (3 .8) is the Fredholm Integral Equation of the 

second kind (see for example, Wieringa, 1999). 

3.3 Monte Carlo Simulations 

Simulation studies can be used when exact analytical formulas are not available. In this 

thesis, the simulation technique has been used to examine the performance of the EWMA 

chart and to estimate boundary overshoots. The Mathematica® code for simulations for 

ARL and AD for both one-sided and two-sided EWMA charts are given in Appendix A. 

The code includes also the case of CUSUM. 

The MC method is based on the Law of Large Numbers (LLN). The simplest version 

of LLN is the following: 

Theorem 3 .3 .1. (Weak Law of Large Numbers (WLLN)). Let X1, X2, ... , Xn be indepen-

dent random variables with finite expected value E(Xi) = µ and finite variance V(Xi) = 
<J2. Let Sn = X 1 + X 2 -I- .. . + Xn · 

Then f or any E > 0, 

equivalently, 

Let 

I Sn P ( - - µI ~ E) -+ 0 as n -+ oo, 
n 

P (I Sn - µI < c)-+ 1 
n 

as n-+ oo. 

n 
I:(Xi - µ) 
i= l 

~n =----yln,<J 
<f>(x ) = ~ jx exp{-x

2 
}dx . 

y 27r 2 
-oo 
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Theorem 3.3 .2. (Central Limit Theorem (CLT)). Let X1, X2 , ... , Xn be a sequence of 

i.i.d random variables such that E (Xi) = µ, E (Xl) < oo and Var(Xi) = a 2 > 0. Then 

d 
~n --t ~ "V N(O , 1) 

or, equivalently, fo r all x E ( - oo, oo) 

P(~n :S x) --t <I> (x). 

Suppose X is a random variable and we need to evaluate 

J = E[g(X)], 

where g(X) is a given function. To estimate J we need to generate a sequence of inde-

pendent random variables X1, X2 , ... , Xn, such that P(Xi :S x) = P(X :S x) and then 

according to WLLN we have 

To estimate an accuracy of the approximation, we assume 

Var(g(X)) := a 2 (g) < oo, 

and note 
·var(Jn) = Var(g(X)) = 0"2(9). 

n n 

Then, applying CLT we have the convergence (Jn - J)-jn ~ N(O, a 2(g)). In particular, 

it implies that 

IJ - JI< 3a(g) 
n - Vn 

with probability approximately equal to 0.997... (for large n) . The constant a2 (g) is 

usually unknown but it also can be estimated using WLLN: 
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3.3.1 Control Variates 

The method of control variates is one of the most widely used variance reduction techniques 

for MC. Suppose we want to evaluate J = Eg(X), where 

1 n 
Jn= - L g(Xi)· 

n 
i=l 

This estimator for J is consistent that is Jn & E[g(X)], unbiased that is EJn = E[g(X)] 

and it is asymptotic normal that is 

- a(g) 
P{IJn - JI < x Vn} -t 2<I>(x) - 1, 

where we suppose that a2 (g) = Var[g(X)] < oo. 

A control variate is a function q(X) such that the expectation Q = Eq(X) is known. 
n 

Consider the estimator Qn = ~ I: q(Xi) and another estimator for J in the form 
i=l 

In= Jn - a(Qn - Q), 

where a is a parameter which can be chosen to minimise the variance of In. 

Set a 2 (q) = Var[q(X)] and assume that a·2 (q) < oo. Then by WLLN, 

Var(ln) = Var(g(X) - aq(X)) = 0"
2 (g - aq) 

n n 

and so by CLT 
- a(g-aq) 

P{IJn - JI < X Vn } -t 2<I>(x) - 1, 

where 

a2 (g - aq) = Var(g(X) - aq(X)) 

= Var(g(X)) + a2Var(q(X)) - 2aCov(g(X), q(X)). 

Therefore, the estimator In is also consistent, unbiased and asymptotic normal for any 

value a. 

The variance a 2 (g - aq) is a quadratic function of the parameter a and we may choose 



3.4. The Martingale Approach 

value a to minimise the variance a 2 (g - aq). The optimal a is 

Cov(g()(),q()()) 
a*= a2(q) 

and the corresponding optimal variance is 

2 ( _ * ) _ 2 ( ) _ (Cov(g()()), q()()) 2 
_ 2( )(l _ 2 ) a g a q - a g a 2 (q) - a g Pg ,q , 

where the correlation coefficient p9 ,q is 

Cov(g()(),q()()) 
Pg ,q = Ja2(g)a-2(q) 

24 

Note that if Jp9 ,ql is near to 1 then the variance a 2 (g - a*q) may be much smaller than 

the variance a 2 (q). That is why we can potentially reduce the variance of MC estimator 

in several times. 

The quality of a control variate q depends on the correlation between g and q. In 

practice it is not likely that one would know the optimal value a* but it can be estimated 

from Monte Carlo simulations. Using )(i we can evaluate 9i = g()(i) and Qi = q()(i), then 

c'Ov(g()()' q()()) 

a* c'Ov(g()(), q()()) 
"2 aq 

Jn - a*_!_ t(Qi - Q) 
n 

i=l 

Concerning other methods for variance reduction see e.g. Borovkov (2003). 

3.4 The Martingale Approach 

In this section we show how to exploit a martingale technique to obtain closed-form re-

lations for the expectations of stopping times of first order autoregressive processes. We 

start with some general definitions and notation from stochastic analysis. 
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3.4.1 Martingales and Stopping times 

We shall always assume that we have given a probability space (D, F , JP) and there is a 

sequence of o--algebras Ft E F such that 

Fs E Ft for t 2: s. 

The sequence of o--algebras {Ft} is called a filtration (or history, or information available 

to the moment t = 0, 1, ... ). Typically, one may consider Ft as a collection of all (mea-

surable) events generated by an underlying observed stochastic processes Xt, t = 0, 1, .... 

For the latter case we use notation: 

A random process yt is adapted to Ft if yt is Ft-measurable for any t = 0, 1, .... 

Definition 2. A process Mt, 0 ~ t < oo is called a martingale with respect to filtration 

Ft if 

E(IMtl) < oo, (3 .9) 

and 

(3 .10) 

Definition 3 (Stopping time). A stopping time T is a nonnegative-integer-'Valued ran-

dom variable s1J,ch the event { T S: t} E Ft for any t 2: 0. 

Further it will be convenient to use notation M(Ft, JP) for the class of all martingales 

on the filtered probability space (n, Ft, F , JP). 

Proposition 3.4.1. If Mt E M(Ft, JP) then 

E(Mt) = E(Mo), (3.11) 

E(Ms) = E(E(MtlFs)) = E(Jv1 t) = ... = E(Mo). 

Theorem 3.4.2 (Martingale Stopping Theorem). If Mt E M(Ft, JP) , t 2: 0, then for 

any stopping time T 

Xt := Mmin(r,t) E M(Ft, JP) 
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and hence for any fixed t 2: 0 

E(Mmin(r,t)) = E(Mo). (3.12) 

Further we describe some results from the papers of Novikov (1990) and Novikov 

and Kordzakhia (2007) on martingales and stopping times for first order autoregressive 

processes (AR( 1)). 

We define an AR(l) sequence as a solution of the recursive equation 

yt = ,BYt-1 + rJt, t = 1, 2, ... , Yo = y, (3.13) 

where rJt is a sequence of independent identically distributed random variables (innovation) 

and ,B are nonrandom constants, 0 < ,B < 1. 

Note that the equation for the EWMA statistic denoted by Zt coincides with Equa-

tion (3.13) for yt if ,B is replaced by 1 - >. and the independent random variables rJt are 

replaced by A~t· 

The solution of Equation (3.13) has the following representation fort= 1, 2, ... , 

t-1 

yt = ,sty+ L ,akrJt- k . (3 .14) 
k=O 

Here we d scribe some martingales related to AR(l) sequences jn the case when the 

innovation 1Jt has a distribution with a light right tail (see .Propositions 3A.4 and 3.4.5 

below). In Theorem 3.4.10 we prove a martingale identity (the analog of classical Wald 's 

identity for random walks) and show how to use it to obtain bounds for the expectation 

of the first passage time 

Ta = inf { t > 0 : yt > a}, a 2: y, 

where we assume inf{0} = oo and so Ta= oo on the set {supt~o yt <a}. 

Below we always consider martingales with respect to the natural filtration Ft 

a-{Yo,Yi, ... , Yt}. 

First, consider a martingale Mt of the form 

(3.15) 
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where a deterministic function qv(Y) depends on a parameter v, the variable y takes values 

from the domain D of yt. Note that , typically, D = (-oo, oo) . Under the assumption that 

Mt has a finite expectation, by definition of martingales 

E[MtlFt-1] = Mt-1 - a.s. 

which with Equation (3.15) is equivalent to the equation 

Here T/t is independent of Ft-1 and Yt-1 may take any value from the domain D of yt. 

Therefore, the function Qv(Y) should be a solution of the equation 

(3.16) 

Similar, if a martingale Mt has the form 

M t = Q(yt) - t, (3.17) 

where Q(y) is a deterministic function, then we obtain another equation 

EQ({Jy + TJ1) = Q(y) + 1, y E D . (3.18) 

Martingales of the form (3.15) and (3.17) have already been discussed in Novikov (1990); 

Novikov and Ergashev (1993) under the assumptions 

Eeum < oo for 0 :S u < oo (3.19) 

and 

E ITJ1I < 00. (3.20) 

Here we will also use the assumption (3.19) but will consider a relax condition (3.20) 

assuming only the existence of the logarithmic moment Elog(l+J1711) (see Proposition 3.4.4 

and 3.4.5 below) or moments of order o > 0 (see Proposition 3.4.6). 

Denote the cumulant function of T/1 as follows 

'ljJ ( u) = log Ee tt7Ji , 0 :S u < oo. 
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It is well known that if 'lfJ(u) is finite then it is a convex differentiable function for u > 0 

(see e.g. Borovkov, 1973) , 'l/J(O) = 0. In view of Equation (3.14) we have for any u E [O , oo) 

t - 1 

E euYt = exp{jJty + L 'lfJ(jJku) }. 
k=O 

If ET/t = m is finite then 'l/J ( u) = m u + o( u) as u ---+ 0. This fact implies that the partial 
t 

sums I: 'lfJ (jJku) converge to a finite limit , say, ¢(u) for any u ~ 0 as t ---+ oo: 
k=O 

t 00 L 'lfJ(jJku)---+ ¢ (u) = L 'lfJ(jJku). 
k=O k=O 

(3.21) 

Note that under assumption (3.19) we may have1 E(TJt) = oo or, equivalently, 'l/J' (O) = 

-oo. Under the latter condition there exists uo > 0 such that 'l/J(u) < 0 for u E (0, uo) . 

It implies 'lfJ (jJku) < 0 for all u E (O,uo) and for all u ~ uo and k > log(u/uo)/Iog(l/jJ) . 
00 

Therefore, the series I: 'lfJ(jJku) converges to a finite value or diverges to -oo for all u > 0. 
k=O 

We now show that this series converges under the Vervaat condition 

E log( l + 1771 I) < oo . (3 .22) 

Lemma 3 .4.3 . Let conditions (3. 19) and (3 .22) hold. Then the function 

00 

¢(u) = L 'lfJ(jJku) 
k=O 

is differentiable fo r u > 0, 

00 

¢( u) = lim log EeuYt = log Eeue , 8 4-~ fJk'T/k+l 
t---...oo L__, 

k=O 

and 

¢(u) =¢(/Ju)+ 'lfJ(u ) , 0 ~ u < oo. (3 .23) 

Proof. Accordingly to the results of Vervaat (1979), under condition (3.22) the process yt 

converges in distribution as t ---+ oo: 
d 

yt ---+ 8 ' (3.24) 
1 x- = ma:x(-x, 0) , x+ = ma,-x (x , 0) 



3.4. The Martingale Approach 

where 8 is a finite random variable. By Equation (3.14) we obtain 

where 

t-1 

Yt=/3ty + L /3kT/k+l ~ e, 
k=O 

00 

d "' k e = ~ f3 T/k+1· 
k=O 

00 00 

Note that since 2.:: {3k7Jk+I = {3 2.:: 13k-lT/k+l + 7]1 we have 
k=O k=l 
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(3 .25) 

(3.26) 

where in the right-hand side (RHS) random variables 8 and T/1 are assumed to be inde-

pendent. 

Replacing T/k by 7J"k, we obtain from Equation (3.24) and (3.25) as t --* oo 

t 00 L !3k77k+I ·~ L f3k77;+1. 
k=O k=O 

By the Lebesgue dominated convergence theorem this implies for any u > 0 

t-1 t t 
Since 2: /3krJt-k 4 I: ,(Jk1Jk ~ - I: f3k77k we obtain that 

k=O k=l k=l 

t ~ {3k ~ r~k -

L u 6 T/k -u w t-J T/k 
lim inf '¢({3ku) = lim inf log Ee k=o ~ log Ee k=o > -oo 

t--+oo t-+oo 
k=O 

and, hence, Equation (3.21) holds under condition (3.22) . 

Thus, we have shown that for any u E [O, oo) the function 

¢(u) = lim EeuYt =log Eeue 
t--+oo 

is finite. It is a differentiable function because it is a cumulant function of a finite random 

variable. Furthermore, in view of Equation (3 .26) <f>(u) satisfies Equation (3.23). D 
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If E'f}t = m is finite then E8 = 1":._~ and as u---+ 0 

mu 
</>(u) = --{J + o(u). 1-

We shall often use the following condition 

with some real v (to be specified) and any y E D. 

A simple sufficient condition for validity of condition (3 .28) is 

lim ¢( u) = oo. 
U-+00 U 
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(3.27) 

(3 .28) 

(3.29) 

Note that if the innovation 'r/t is bounded from above then Equation (3.29) does not hold 

(see Lemma 3.4.3 below) but still condition (3.28) could hold for y E D. 

Set 

(3.30) 

Proposition 3.4.4. Let v > 0, conditions (3 .19), (3.22) and condition (3.28) with v > 0 

hold. Then 

1'3vt l\'v('/t) . t ' l 1v. I• 'l8 a mar ,1.nga e. (3.31) 

Proof The function Nv(Y) is finite due the imposed conditions. Now we are going to 

verify that Equation (3 .16) holds for qv(Y) = Nv(y). By Fubinni's theorem we have 

ENv(f3y + 7)1) = fo00 

exp{ u{Jy + ,P(u) - ¢(u)}u"-1du 

and (with use of Equation (3.23)) 

Thus, we have shown that the function Nv(Y) is a solution of Equation (3 .16) and hence 

the process {Jvt Nv (yt) is a martingale. D 
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Set 

H(y) = u-1 (euy - l)e-¢(u)du. 1 100 

log(l/ {3) 0 

Proposition 3.4.5. Let conditions (3.19), (3.22) and (3.28) with v = 0 hold. Then 

H(Yt) - t is a martingale. (3.32) 

Proof. The function H(y) is finite due the imposed conditions. By Fubinni's theorem 

E[H({Jy + 7]1)] = u- 1 (eu,6y+¢(u) - l)e-¢(u)du, 1 100 

log(l/ {3) 0 
(3.33) 

where the RHS is finite if for some uo > 0 

f, 00 

u - 1 Jeu,6y+¢(u) - 1Je-¢(u)du < 00 

UQ 
(3.34) 

and luo u-'leufly+,P(u) - lle-¢(u)du < oo. (3 .35) 

The integral _r:;: in Equation (3 .34) is finite for any 1to > 0 due to Equation (3.28) with 

v = O; the integral J0u
0 in Equation (3.35) is finite if and only if 

(3.36) 

If E17t :.-= m is finite then in view of Equation (3.27), obviously, condition (3.36) holds. If 

E'17t- = oo then there exists uo > 0 such that ¢( u) :::; 0 for u E [O, uo]. This fact together 

with Lemma 3.4.3 lead to the following estimates 

:::; const. + E log(l + 11111). 

Thus, we have shown that integrals in Equation (3.34) and (3.35) are finite and therefore 
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the RHS of Equation (3.33) can be now written (with use of Equation (3.23)) as follows: 

roo -1 (euf3y-</>(f3u) - euy-</>(u)) 
E[H((Jy + 1Jt)] = H(y) +Jo u log(l/(3) du. 

To satisfy Equation (3.18) we need to show that the last integral equals to 1. In fact, this 

type of integrals is well known; it is called the Frullani 's integral. It equals really to 1 if it 

is absolutely convergent and the function ¢(u) is continuous (the latter is, of course, true). 

The absolute convergence can be checked similarly to the verifications of Equation (3.34) 

and (3 .35) as it had been done above. 

Proposition 3.4.6. Let condition (3.22) hold, 

Then as u--+ oo 

Proof. We have 

with 

P { 1JI = N} = p = 1 - P { 7]1 S 0} > 0. 

uN 
¢(u) = --(3 + o(u). 1-

'lf;(u) = log(Ee'1t7J1 ) = uN-g(u) 

g( u) = - log[ EI { 7]1 SO} exp{ u(171 --- N)} + p] ~ 0. 

Note 
g'(u) = __ EJ{171 S 0}(171 - N) exp{u(171 - N)} --+ 0 

E I {'T/1 SO} exp{ u(771 - N)} + p 

In view of Equation (3.38) we have 

~ k uN ¢(u) = ~ 'lf;((J u) = '1.--=-;J - ll(u), 
k=O 

where 
00 

ll(u) := L g((Jku) ~ 0, 0 Su< oo. 
k=O 

as u--+ oo. 

D 

(3.37) 

(3.38) 

(3 .39) 

The function 6.( u) is differentiable and concave since by Lemma 3.4.3 the function ¢( u) 

is differentiable and convex. 0 bviously, 

6.(u) = 6.((Ju) + g(u), 0 Su< oo. (3.40) 
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From concavity of ~(u) it follows that the derivative ~t(u) is non-increasing. It certainly 

has a lower-bound (as ~(u) 2'.: 0) and therefore there exists a finite limit 

lim ~'(u) =A. 
U-+CXJ 

Applying L'Hospit ale's rule we have 

A= lim ~ (u) = lim ~(f3u) + g(u) = f3A + lim g(u). 
u-+oo U u-+oo U u-+oo U 

As lim g(u) = lim g'(u) = 0, we obtain that A= f3A and therefore A= 0. 
u-+oo u u-+oo 

Proposition 3.4.6 is proved . D 

In Novikov and Kordzakhia (2007), it is shown that under some mild assumptions on 

the left tail of 'T}i, the distribution of Ta is exponentially bounded. 

Theorem 3.4. 7. Let a > 0, conditions (3.41) hold with some 6 E (0, 1) and 

P{rJ1 > a(l - {3)} > 0. (3.41) 

Then there exists a > 0 such that 

Theorem 3.4.8. Let a> 0, conditions (3.22) and (3.41) hold. Then 

E(Ta ) < 00 . 

Proof. We use Proposition 3.4.6 and the fact that the first passage time Ta of AR(l) with 

a truncated innovation is greater than the original one (without truncation). 

Let N > a(l - {3) > 0 such that P { 'T/l > N} > 0 and let Ta is the stopping time for 

AR(l) processes generated by the innovation with the property 

P { r71 = N} = p = 1 - P { r71 ~ 0} > 0. 

Then by Lemma 3.4.3 the corresponding cumulant function ¢(u) = ~~ + o('u) as u -too. 

By Proposition 3.4.5 
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where Y-ra/\t ~ f3a + N. It implies 

ET a/\ t < 1 f00 

u- 1 ( eu(,6a+N) - eUY)e - /!{3 (u)+o(u) du = const. < 00. 
- log(l//3) }0 

Lemma 3.4.9. (Fatou's Lemma) Let Ji , f2 , ... is a sequence of non-negative measurable 

functions defined on a measurable space (S, L,, µ). Then the integral over S of the lower 

limit of ft is less than or equal to the lower limit of the integral over S off ft 

r lim inf ftdµ ~ lim inf r ftdµ. 
} S t-+oo t-+oo } S 

To apply the lemma 3.4.9. We note that lim (Ta/\ t) = lim Ta and 
t-+oo t-+oo 

ET a ~ E lim (Ta /\ t) ::; lim E( Ta /\ t) ::; const . < oo 
t-+oo t-+oo 

The proof is completed. 0 

Now we prove a general martingale identity which can be used for derivation of bounds 

and asymptotic for E(Ta)· 

Theorem 3.4.10. Let conditions (3.22) and (3.28) with v = 0 hold. If E( Ta) < oo then 

(3.42) 

Proof. By Proposition 3.4.5 and the Martingale Stopping Theorem (3.4.2) we have for any 

t = 1, 2, ... , 

E(T /\ t) = EH(Y ) - H(y) = E u-1(euY'Ta/\t - euY)e-<f>(u)du 1 100 

a ' Ta/\t log(l//3) 0 . 

Since lim E( Ta/\ t) = E(Ta) and 
t-+oo 

1°"' u-1 (Ee"YraAt - e"Y)e-¢(u)du =El( Ta::; t) 1°"' u-1 (e"Yra - e"Y)e-<f>(u)du (3.43) 

+EI( Ta > t) 1°"' u-1(e"Yt - e"Y)e-<f>(u)du, (3.44) 

where the first term in RHS is a monotonic function oft. Therefore, we need only to show 

a convergence as t -t oo to zero for the latter integral term. Note that yt ::; a on the set 
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{Ta > t} and this implies the following upper-bound 

because P( Ta > t) ~ 0 and the last integral is finite due to the imposed conditions. 

To show that the lower-bound for the second integral term in the RHS of Equa-

tion (3.43) t ends also to zero as t ~ oo , we note 

EI(ra > t) l"° u - 1 (euy - euYt) e-¢(u)du '.O P(ra > t) lo"° u - 1 (euy - l)e- ¢(u)du 

+ EI(ra > t) lo"° u-1(1 - e-uY,-)e- ¢(u)du . 

The first integral in the RHS converges, obviously, to zero. 

Note that in view of Equation (3.14) 

t- 1 

Yi- ~ {Jtx- + L {3k17;_k := Zt, t = 1, 2, ... , 
k=O 

where z,, is a AR(l) process with innovation sequence rJ"k, Zo = x-. 

Since 

where J1
00 

1L-1e-<P(u)du is finite by condition (3.28) with v = 0, we need only to verify that 

Note 

The firs t t erm in t he RHS here tends, obviously, to zero. For the second term we have 
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Since 
t t 

log(Zt + 1) ::; log(l + y- + L TJ"k) ::; log(l + y-) + L log(l + TJ"k) 
k=l k=l 

T a 

and by the Wald identity E( ~ log(l + TJ"k)) = E(log(l + TJ!))ETa < oo, we obtain due to 
k=l 

the Lebesgue dominated convergence theorem that as t---+ oo 

EI( Ta> t) log(Zt + 1) :S El(Ta > t ) log(Zra + 1)---+ 0. 

Now combining all estimates obtained above we complete the proof. D 

In Theorem 3.4.8 can be used for obtaining bounds and asymptotic of ETa. Since the 

overshoot 

Xa = Yra - a 

is always nonnegative, under the assumption of Theorem 3.4.10 we obtain the following 

lower-bound 

(3.45) 

The upper-bound can be obtained wit h use of truncation (if the original innovation is not 

bounded) of the innovation sequence {TJk} from above by a constant, say, H. For the latter 

case, noting that Yra s; {3a + H , we obtain that 

where the funct ion ¢(u) is the corresponding cumulant of the limit distribution of the 

AR(l) sequence Yt with the truncated innovation. 

We will demonstrate below that the lower-bound Equation (3.45) produces a quite rea-

sonable numerical approximation when the parameter a is not large (see on Figure 4.l(a)) . 

In any case, this lower-bound could be use to control accuracy of Monte Carlo approxi-

mat ions. 

One also can use the martingale closed-form relation (3.42) to construct a control 

variable to reduce the variance of Monte Carlo simulation for Ta· Indeed, the expectat ion 

of t he of the random variable 
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where 

is known because accordingly to Theorem 3.4.8 and 3.4.10 

Besides, we can expect that (=Ta - Q(Y7J and Ta are very correlated random variables 

because the term Q(Y7J = Q(a+xH) where the overshoot XH seems to be not dependent 

on Ta · At least we know that for random walks (i.e when /3 = 1) the overshoot XH and Ta 

are asymptotically independent for a ----+ oo (see Siegmund, 1985). We plan to develop a 

methodology based on this consideration in a future research. 

3.5 Discussion 

Even though MCA, IE and MC are the popular standard approaches for determining the 

performance of EWMA charts, they face various limitations of calculation. 

The MC is simple to program but it is usually very time consuming to run and difficult 

to use for optimisation. The MCA is considered as the most popular technique (Lucas and 

Saccucci, 1990). It is based on the use of matrix inversions for approximating a Markov 

Chain. However, there are no analytical results on the accuracy of this method. The IE 

is the most advanced method but it requires intensive programming or special software to 

implement, even for a Gaussian distribution. 

In this chapter, new analytical approximations based on the martingale technique have 

been developed for evaluating the performance of an EWMA chart. This technique can be 

applied to Gaussian distribution and to non-Gaussian light-tailed distributions, all it will 

be shown in more detail in Chapters 4 and 5. Additionally, the closed-form formulas can 

be used not only to evaluate the performance of EWMA but also to find optimal design 

parameters of EWMA chart. 



Chapter 4 

EWMA Chart for Detection of a 

C hange in a Gaussian Distribution 

In this chapter , using the martingale t echnique, we derive analytical lower-bounds, closed-

form expressions and approximations for characteristics of EWMA charts for the case of 

Gaussian distribution. Besides, we develop a new method for obtaining approximations 

for characteristics of EWMA which combines t he martingale technique with Monte Carlo 

simulations. 

This chapter has four sections. In Section 4.1 we derive closed-form formulas and ana-

lytical lower--bounds for ARL and AD for both one-sided and two-sided Gaussian EWMA 

charts. In Section 4.2 a correction term is introduced to the formulas to make the approx-

imation more accurate. In Section 4.3 we present numerical results and make comparison 

of our results with other standard methods, such as the Markov Chain Approach, Integral 

Equat ions and Monte Carlo simulat ions. Some examples with tables of opt imal parameter 

values for one-sided and two-sided Gaussian EWMA designs are presented in Sect ion 4.4. 

4.1 The Derivation of Closed-form Formulas for Gaussian 

EW MA 

4 .1.1 Expectation of first passage times for one-sided Gaussian EWMA 

Here we use notations from Chapter 2 and apply some results from Chapter 3 to EWMA 

statistics . 

38 
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Recall that the EWMA procedure is defined by the following recursion: 

Zt = (1 - >..)Zt-1 +>..et , t = 1, 2, ... , Zo = z, 

where >.. E (0, 1) is a weighting factor. 

Set 

Eeeu>.~t := eu1/Je(u) < oo for any u E (0, oo), 

( 4.1) 

where e = 00 ("in-control" case for all time) or e = 1 ("out-of-control" case for all time) 

and let 
00 

<pe(u) = L ?/Je((l - >..)ku). (4.2) 
k=O 

Now make the further assumptions that et has the Gaussian distribution, ~t rv N(a , a 2 ). 

Then we obtain 

Indeed, since for the case under consideration 

then 

00 

<pe(u) =I: 1f;e((l -- ,\)ku) 
k=O 

= f )a( (1 - >. )k >.u) + ~ <72( (1 - >.)2k >.2u2)] 
k=O 

a>..u 1 >..2a 2u2 
-1 ---(1--->..-) + 2 ( 1 - (1 - >..)2) 

It is usually supposed (without loss of generality) that E00 (~t) = ao = 0. Here we also use 

this assumption and therefore, we have 

>..u2a2 
'Poo(u) = (4 - 2>..)' 

>..u2a2 
<p1(u) = ua + (4 _ 2>..). 

Consider now the case of one-sided Gaussian EWMA which is based on the first passage 
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time 

TH = inf { t > 0 : Zt > H}, 

assuming that H > z = 0. Then, accordingly to Theorems 3.4.8 and 3.4.10 (conditions of 

these theorems hold trivially) the following identity hold: 

E ( ) _ 1 {
00 

-IE ( uZrH _ 1) -cpo(u)d 
e TH - I ln(l - -\)I Jo u ..J() e e u. (4.3) 

In particular, it means that 

and 

Note that the overshoot 

is always a nonnegative random variable. Using the inequality 

E (euZrH) > enH 
() - ' 

we obtain the following exact lower-bounds 

( 4.4) 

and 

(4.5) 

Consider now the case of two-sided Gaussian EWMA chart, assuming again that a 0 = 0 

and Zo = 0, (these are typical assumptions). For two-sided case the alarm time is usually 

consider in the following form 

/H = inf{t > 0: IZtl > H}. 
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To find proper closed-form relations for A RL2 = E00 (T'H) and AD2 = Ei (rH) we note 

that accordingly to Proposition 3.4.5 the process 

i.e. H(Zt) - t is a martingale with respect to the filtration Ft and the distribution IP'e . 

Recall that we assume that a = 0 in case B = oo. Due to the symmetry of Gaussian 

distribution with zero mean (recall, we would like to find ARL2 = E00 (rH )) we note the 

process 

Since any linear combinations of martingales is a martingale we can conclude that also 

the process 

H(Zt) + H(-Zt) - 2t 1 ( 00 
_ 1 _ h 2 

2 = I ln(l - A)I Jo u (cosh(uZt) - l)e 4
-

2>-du - t E M(Ft,IP'00 ), 

where cosh(x ) = ex +2e-x . 

Set 

Then in view of Equation ( 4.6) by t he Martingale Stopping T heorem for any t > 0, 

(4.6) 

Now due to Lemma Fatou and mononicity (or, repeat ing considerations which lead to 

Theorems 3.4.8 and 3.4.10) we can conclude that 

(4.7) 

Since 
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we obtain the following lower-bound 

1 roo Au 2 

ARL2 2: Q(H) = I ln(l _ A)I Jo u- 1 (cosh(uH) - l) e- 4-2Adu. (4.8) 

To find an approximat ion for AD2 we still can use the fact t hat t he processes 

which implies t hat 

Using the symbol of an indicator function I {A} we obtain 

To study A D 2 we may assume (without loss of generality) the shift is positive, i.e. 

E1(6 ) = a > 0. Then the process Zt has a positive drift up (to the upper level H ) 

and therefore the probability of crossing the upper level P(Z'YH > H) should be close to 

one and correspondingly the probability of crossing the lower-bound P(Z'YH < -H) should 

be close to zero (at least, for not very small o} Beside, neglecting by the overshoots we 

have 

I{Z'YH > H}(e11
·Z-rH -· 1) 2: I{Z"Yu > H}(e-nH -· 1) 

and 

Note that the factor (euH - 1) could be very high for not too small uH. The presented 

considerations motivate the following approximation: 

where XH = Z'YH - H is the overshoot over the upper level H . Since the overshoot is 

nonnegat ive we get the approximate lower-bound 

> - 1 uH -ua--u-1 l oo A 2 
AD2 ~ I ln(l _ A)I 

0 
u (e - l) e 4- 2Adu. (4.9) 
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The closed-form formulas presented above can be expressed in the terms of standard 

special functions , for instance , Hypergeometric and Gamma functions , and easily computed 

numerically using the Mathematica® package. Alternatively, one could use numerical 

integration methods (Simpson rules, Gauss-Legendre quadratures etc.) which are also 

available in Mathematica® . 

The closed-form formula for ARL1 can be expressed in t erms of the function 

l
oo (euz - 1) 2 

J [z, p] := e - pu du, 
0 u p = 4 - 2.,\ . (4.10) 

With use of Mat hemat ica® we found t he following expressions for this function in terms 

of hypergeometric funct ions 

f [z, p] = -(1 ) (2p7rErfi(-z-) + z2HypergeometricPDF [{l , l }, {~ , 2}, z
2

]) 
4 p 2fo 2 4p 

1 z 2 3 z2 

= 4(p) (2p7rErfi( 2y'p) + z 1F1 ( 2, 2; 4), (4 .11) 

where Erfi ( z) is the imaginary error function Erf( iz) / i and 1 F1 is a hypergeometric 

function. 

The closed-form formula of AD1 of the one-sided EWMA depends on the sizes of the 

change in the parameter a . Let 

1 100 / uz 1) · le - - -au- u 2 Gf a , z, p] = ------ . -----e P dn . 
- ln ll - .Al 0 u 

(4.12) 

The integral term in Equation (4.12) can be rewritten as follows: 

l
oo euz - 1 2 l oo 2 (euze-ua - 1 + 1 - e - ua) 
---e-au- pu du = e - pu du 

0 u 0 u 

l oo eu(z - a ) - 1 2 l oo ( e -au - 1) 2 
= e-pu d'u - e - pu du 

0 u 0 u 

and so 

G[a , z, p] = f [z - a, p] - f [-a , p]. 

The closed-form formula for ARL2 can be expressed in terms of the function 

f J [z, p] := u- 1(cosh(uz) - l) e-pu du= -(f[z , p] - f[- z, p]) . 100 
2 1 

0 2 
( 4.13) 

Below we find another represent ing for the functjon ff [z, p] in terms of simple power 
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series. We use the Taylor series 

00 2n 
cosh(x) - 1 = ~ (~n)!. 

Then substituting x = uz, we obtain 

cosh(uz) - 1 = ~ f (uz) 2n = f z2n u2n-1. 
u u n=l (2n)! n=l (2n)! 

Hence, the function f f[z, p] can be written in the form: 

100 oo z2n 2 

f f[z, p] = L--u2n-le-P1
L du 

O n=l (2n)! 

oo 2n 100 = L-z- 'lJ,2n-le-pu2 du. 
(2n)! 0 n=l 

( 4.14) 

The last integral can be transformed into a Gamma function by the substitution t = pu2 : 

u e u=- t e t=- n = . 100 2n- 1 -pu2d 1 100 n-1 -td 1 r( ) (n - l)! 
O 2~ o 2~ ~n 

Consequently, we obtain 
oo z2n(n - l)! 

f f[z, p) = ~ (2n)!pn . 

4.2 Corrected Approximation 

The closed-form formulas include the overshoot XIJ = ZrH - H whose distribution is, 

generally speaking, unknown. Neglecting by overshoot, we obtained the explicit lower-

bounds for ARL1 and AD1 which are easy to calculate but it may be not an accurate 

approximation. Here we provide some considerations about how to find a correction term 

to improve the accuracy. 

Recall that the process EWMA is governed by the following equation, 

Zt = (1 - .X)Zt-1 + .A~t, Zo = z. 

Setting Zt = ~ we obtain 

Zt = (1 - .X)Zt-1 + ~t, Zo = z/ A (4.15) 
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and, consequently, the alarm time is 

- H 
TH = inf { t > 0 : Zt > ~}. 

45 

If ,,\ is close to zero (that is typical for applications in detection small changes) then Zt is 
t 

close to a random walk St = L ~k, with i.i.d. increments ~t· 
k=l 

Based on these considerations we suggest to use the following approximation 

t 
where XH is the overshoot of the random walk St = L ~k over level lf:. This leads to the 

k=l 
following approximation 

and, correspondingly, for u 2:: 0 

Note that due Jensen inequality Eee>..uxH 2:: e>.uEIJXH and also due to Taylor expansion 

ex= 1 + x + o(x): x --r 0, we have for,,\ --r 0, 

This leads to the next approximation 

For the cases when the level If: is high (i.e. for small .A) we can use the following well-known 

result from theory of random walks (see e.g. Siegmund, 1985). 

t 
Theorem 4.2.1. Let St = L ~k , Tb = inf{t > 0 : St > b}, the distribution of ~t be 

k=l 
non-lattice, E~k =a 2:: 0, 0 < El~kl 2 < oo. Then there exists limit 

lim E(Srb - b) = C. 
b--+oo 

The analytical calculation of the constant C could be a hard problem. Note that the 
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constant C depends on a= E(6) . Under the assumption El~kl 3 < oo the constant C can 

be represented in the following form 

(4.16) 

where T+ = inf{t > 0 : St> O}, ST+ is the so-called positive ladder variable of a random 

walk St. If ~t is nonnegative then ST+ = 6. 

Remark 1. If the distribution of ~t is lattice (e.g. Poisson and Bernoulli distribution) 

then the statement of Theorem (4.2.1) still holds but Equation (4.16) is different {see 

Lorden, 1971; Siegmund, 1985). 

The monograph of Siegmund (1985) and the papers of Lotov (1996); Chang and Peres 

(1997) contain a lot of results concerning properties of limiting distribution of P(STb - b > 
x) as b ----"* oo for the case of Gaussian random walk. In particular, it is know that if 

~t r-v N(O , 1) then 
((1/2) c = - tn= = 0.5826 .. . , 

y 27r 
( 4.17) 

where ( (x) is t he Riemann zeta function (see details in Siegmund , 1985; Chang and Peres, 

1997). 

Summarising the above considerations we suggest for the case ~t r-v N(O , 1) to use the 

as the formula 

(4.18) 

where C = 0.5826 for a= 0 or when a is close to zero. 

The closed-form formulas for one-sided Gaussian EWMA : 

(4.19) 

(4.20) 

The closed-form formulas for two-sided Gaussian EWMA: 

(4.21) 

( 4.22) 

Note that similar approximations are often used in many other problems of sequential 

analysis, Siegmund (see e.g. 1985). The theoretical justification of such approximation 
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is a very hard problem and , of course, t he value C = 0.5826 should be used only as a 

"first approximation". A more accurate approximation can be obtained with Monte Carlo 

simulations and fitting with the non-linear least-square methods. The first approximation 

of the overshoot produces usually is a good approximation for small ,.\. A comparison of 

numerical results with lower-bounds, MC and first approximation with C = 0.5826 for 

Gaussian distribution in case,.\= 0.01 is presented in Table 4.1 for one-sided EWMA case 

and Table 4. 2 for two-sided EWMA case. 

Table 4.1: Comparison of numerical results of ARL1 between lower-bounds, first approx-
imation and MC for one-sided Gaussian EWMA 

H Lower- First MC H Lower- First MC 
bounds Approx. bounds Approx. 

Eq. ( 4.4) (ARL1) Eq. ( 4.4) (ARL1) 
.01 18.643 30.572 30.43±.02 .11 497.890 566.79 566.82±.18 
.02 39.667 53.207 54.03±.03 .12 622.579 711.02 711.29±.22 
.03 63.573 79.076 79.06±.04 .13 783.206 898.62 898.98±.28 
.04 90.999 108.92 109.85±.05 .14 993.616 1146.83 1147.60±.36 
.05 122.771 143. 70 143.42±.06 .15 1274.05 1481.07 1482. 73±.46 
.06 159.961 184.67 185.47±.07 .16 1654.52 1939.40 1940.59±.60 
.07 203.986 233.51 233.54±.08 .17 2180.26 2579.61 2576.85±.80 
.08 256.735 292.47 291.21±.10 .18 2920.43 3490.93 3510.04±1.09 
.09 320.757 364.59 363.38±.12 .19 3982.44 4813.22 4748.67±1.32 
.10 399.536 454.08 456.97±.15 .20 5535.84 6769.30 6770.32±1.65 -- --

One could see that values of the first approximation are close to MC results for both 

one-sided and two-sided Gaussian EWMA chart. Plots of ARL1 a!1d ARL2 are shown on 

Figure 4.1 (a) and 4.1 (b), respectively. 

Table 4.2: Comparison of numerical results of ARL2 between lower-bounds, first approx-
imation and MC for two-sided Gaussian EWMA 

H Lower- First MC H Lower- First MC 
bounds Approx. bounds Approx. 

Eq. (4.8) (ARL2) Eq. (4.8) (ARL2) 
.01 0.993 2.50 2.78±.006 .11 188.319 220.77 221.20±.06 
.02 4.013 6.754 7.00±.002 .12 247.229 289.57 289.50±.08 
.03 9.183 13.27 13.49±.003 .13 324.301 380.24 380.00±.11 
.04 16.718 22.33 22.55±.006 .14 426.439 501.39 501.39±.15 
.05 26.946 34.33 34.66±.009 .15 563.746 665.71 664.81±.20 
.06 40.336 49.85 50.31±.01 .16 751.22 892.22 891.89±.26 
.07 57.537 69.67 70.10±.02 .17 1011.46 1209.81 1208.41±.36 
.08 79.445 94.86 95.24±.03 .18 1379.03 1663.09 1662.54±.50 
.09 107.295 126.93 127.38±.03 .19 1907.63 2321.99 2326.09±. 71 
.10 142.793 167.93 168.61±.05 .20 2682.03 3297.95 3301.43±.94 
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Figure 4.1 : Comparison of lower-bounds, first approximations and simulations of ARL: 
Gaussian case 

To approximate AD, we also use the value C = 0.5826 as a "first approximation" when 

A is small (e.g. A= 0.01 and 0.04). Some results of numerical calculation for the case of 

out-of-control parameter with a = 0.5 are presented in Table 4.3 for one-sided case and 

Table 4.4 for two-sided case. 

Table 4.3: Comparison of numerical results of AD1 between lower-bounds, first approxi-
mation and MC for one-sided Gaussian EWMA 

-~--H·-- Lower-bounds -r-F'irst Approx-: -------
IVIC 

Eq. ( 4.5) (AD1) 
0.10 21.67 23.09 23.32±.003 

0.01 0.15 34.52 36.12 36.41±.004 
0.20 49.20 51.06 51.2'7±.006 
0.10 5.020 6.34 6.62±.002 

0.04 0.15 7.940 9.42 9.71±.002 
0.20 11.22 I 12.89 13.17±.003 

--

Table 4.4: Comparison of numerical results of AD2 between lower-bounds, first approxi-
mation and MC for two-sided Gaussian EWMA 

A H Lower-bounds First Approx. MC 
Eq. ( 4.9) (AD2) 

0.10 21.67 23.09 23.37±.003 
0.01 0.15 34.52 36.12 36.39±.004 

0.20 49.20 51.06 51.33±.006 
0.10 5.020 6.34 6.19± .001 

0.04 0.15 7.940 9.42 9.56±.002 
0.20 11.22 12.89 13.15±.003 
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As mentioned earlier, to get a better accuracy results we will use a combination of MC 

and the analytical closed-form formulas . The algorithm for obtaining numerical charts of 

optimal set of parameters~ and fI for approximating ARL and AD is discussed below. 

4.2.1 Algorithm for Obtaining Numerical Approximations for ARL and 

AD 

Recall that our goal is to find optimal parameters (~ , H) for EWMA under conditions 

ARL ~ T, AD ~ min. 

We have shown above that both ARL and AD for the one-sided and two-sided testing 

can be approximated with a function Qe(H +.AC) where B = oo (for "in-control" case) 

or () = 1 (for "out-of-control" case). The function Qe(z) when () = oo for the one-sided 

and two-sided case are given in Equation ( 4.19) and Equation ( 4.21), and when () = 1 for 

the one-sided and two-sided cases are given in Equation ( 4.20) and Equation ( 4.22). Now 

using the notation Qe(z) we can describe our algorithm (which could be used for Gaussian 

and non-Gaussian cases) for obtaining numerical approximation for ARL and AD. 

The algorithm has four steps as follows: 

1. For given T and out-of-control parameter a use Equation (4.18) with the constant 

C from Equation ( 4.16) as an initial approxfrnation. Find a '~first approximation" 

p,*, H *) fo r the optimal parameters that minimise AD* (e.g. use Mathematica® 

command "FindRoot " as inverse function of..\ = ..\(H) and "Findlvfinimun" as a 

minim al A D*, see code on Appendix B). 

2. Simulate EWMA with(..\*, H*) to find the corresponding "true " ARL. 

3. Find an improved approximation for the constant C from the equation Qe(H +.AC) = 
ARL with "ARL" from Step 2 (again use "FindRoot" for as inverse function C = 

C(.A* , H*)) . 

4. Repeat Step 1 with the value of the constant C obtained from Step 3. We then 

obtain a "second approximation" (~ , H) for the set of optimal parameters under the 

constraint ARL = T. 

We illustrate here the steps discussed above for the following example. For example, we 

would like to design a two-sided Gaussian EWMA chart to detection a parameter change 
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a = 0.5 for given a 0 = 0 and T = 500. Then, according to algorithm described above we 

have the following steps 

1. For given T = 500 and a= 0.5, an initial approximation for (A*, H*) is found from 

the closed-form formulas with the constant C = 0.5826 for the case of Gaussian obser-

vations (see code in Appendix B). The values obtained for the "first approximations" 

are: (A* = 0.047025, H* = 0.403263) and the minimal AD2 is AD2 = 28.4774. 

2. A simulation is carried out (with 106 repeats) for the pair of parameter values (A* = 

0.047025, H * = 0.403263) from Step 1. From this simulation we obtain the "true" 

value ARL2 = 510.395 corresponding to these parameter values. 

3. The information from Steps 1 and 2 can be used to find an approximate value 

for the constant C corresponding to the value ARL2 = 510.395 from the equation 

Qe (H + AC) = ARL2. The new value obtained is C = 0.610832. 

4. Step 1 is repeated to find a second approximation for (~, H) with the constant 

C = 0.610832 under the constraint T = 500. Then the values (0.047025 ,0.401954) 

are obtained as the "second approximation" . 

F inally, one could check the accuracy of t he approximat ion with simulations. The simula-

tion results obtained are AD2 = 28. 7215 and ARL2 = 500.922. The percentage difference 

between the approximations and the simulations for the case under consideration is 0.85, 

less than 13. 

4. 3 Numerical Results 

4 .3.1 Comparison of analytical approximations with simulations and 

other methodologies 

Here we compare results obtained by our approach with those ones from the Markov 

Chain Approach, the Integral Equations approach and the Monte Carlo simulations. For 

the Markov Chain Approach we used the results of (Crowder (1987); Lucas and Saccucci 

(1990) ), and for the Integral Equations approach the results of (Brook and Evans, 1972; 

Srivastava and Wu, 1997). We have carried out our own Monte Carlo simulations. Ta-

ble 4.5 gives a comparison of the numerical results for the lower-bound from Equation ( 4.8), 

the closed-form formula from Equation ( 4. 7) and the approximations of Crowder (1987) 

and Lucas and Saccucci (1990), and from the Monte Carlo simulations. The numbers in 
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the table are percentage differences between values from t he different methods. It can 

be seen that the percentage differences between our approximations and the Monte Carlo 

simulations do not exceed three percent (which seems to be reasonable for most applica-

tions). To find the constant C for our method we have always used our approximation 

combined with the Monte Carlo simulation. This corresponds to our suggestion of the 

value for the constant C for the case of a Gaussian distribution in Equation (4.16) . For 

comparison, when ,\ = 0.01, L = 2.0, the obtained value for the constant C = 0.583 from 

Equation ( 4.16) compared with the value of C = 0.5826 for the case of a random walk 

Equation ( 4.17). 

Table 4.6 shows a comparison of the optimal parameters ,\, H and AD2 for EWMA 

charts obtained from our approach with the optimal parameter values obtained by Lucas 

and Saccucci (1990) and Srivastava and Wu (1997). One of the main advantage of our 

approach is that we easily produces a curve for approximated values of AD and then a 

minimum point of AD can be found visually or numerically. These curves of approximated 

AD2 for a = 0.5, 1.0 and 2.0 and T = 500, 1000 and 5000 are shown in Figure 4.2. 
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Figure 4.2: AD2 for different magnitudes of change: two-sided Gaussian case 



Table 4.5: Comparison of ARL2 results from our closed-form formulas with other methods for two-sided Gaussian EWMA 

,\ L I c I Lower-Bounds Closed-form Lucas& Crowder I Monte Carlo Percent 
I martingale by Saccucci 106 trials Difference 

I I using Eq. ( 4.8) using Eq. ( 4. 7) 1990 1987 I 
I (1) (2) (3) (4) (5) (2) and (5) 

1.0 I 59.28 71.67 - 60.11 71.9[0.06] a -0.32 
0.01 2.0 o.583 I 447.91 526.98 - 453.13 527.02[0.49] -0.01 

3.0 I 4236.14 5282.0 - - 5288.46[5.14] -0.12 
i.o I 19.56 27.07 - 26.43 27.37[0.02] -1.11 
2.0 I I 147.79 196.46 - 192.16 196.46[0.18] 0.00 

0.03 2.437 0.5891 363.0 499.21 500 486.9 499.33[0.48] -0.02 
2.989 I I 1357.79 1999.31 2000 1939.4 2000.00[1.98] -0.03 
3.00 I I 1397.76 2061.38 - - 2062.34[2.04] -0.05 
1.0 I I 11.61 17.65 - 17.12 17.89[0.02] -1.36 

0.05 2 0 I I 87.76 127.33 - 123.75 127.36[0.12] -0.02 
2.615 I 0.597 I 321.05 500.29 500 483.34 499.45[0.49] 0.17 

3.0 I 830.02 1381.99 - 1379.35 1379.39[1.36] 0.19 
1.0 

0.6041 

8.21 13.45 I - 13.31 13. 70[0.0l] -1.86 

0.07 2.0 62.03 96.78 I - - 96.78[0.09] 0.00 
2.015 63.89 99.81 100 98.81 99. 83 [ 0. 09] -0.02 

3.0 586.66 1080.97 - 1065.81 1075.61 [l.06] 0.50 
1.0 3.67 10.18 - 10.10 10.43[0.01] -2.46 
2.0 27.70 73.18 I - 72.58 73.20[0.07] -0.03 

0.10 3.0 0.613 404.09 848.40 - - 841.95[0.83] 0.76 
3.058 471.80 1006.31 1000 998.65 998.01 [0.99] 0.82 
3.283 888.47 2018.41 2000 1993.13 1994.56[1.98] 1.18 

0the standard deviation 
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Table 4.6: Comparison of optimal parameter values and AD2 for two-sided Gaussian EWMA 

O'. Methods 
c 

Martingales 
0.611 

0.5 MCA°' 
I IE b 

MC 

LO I 
Martingales 

0.62 MCA 
IE 

MC 
I J\fartingales 

0.686 
2.0 MCA 

IE 
MC 

a I 
Martingales 

0.586 I MCA 0.5 
IE 

MC 
Martingales 

0.607 MCA 1.0 
IE 

MC 
Martingales 

0.655 
2.0 MCA 

IE 
MC 

aMarkov Chain Approach by Lucas & Saccucci (1990) 
blntegro Equations method by Srivastava & Wu (1997) 

T = 500 

A + L 
I 
I 

0.047 2.59 I 
I 

0.05 2.616 I 
0.04 2.614 I 

0.047 2.59 I 
I 

0.135 2.885 I 
I 
I 

0.13 I 2.883 I 
0.11 2.981 I 

I 
I 

0.135 2.885 l 
0.93 3.o5s ! 
0.36 :3.046 I 
0.34 I 3.141 I 

I 
I 

0.393 _L 3.055 I 
I 

T := 2000 
0.035 3.037 l 
0.03 3.029 I 

I 
I 

0.03 3.061 I 
I 

0.035 I 
3.037 I 

0.106 3.294 i 
0.11 3.30 I 

I I 
0.08 3.394 I 

I 
! 
I 

0.106 3.294 ! 
o.317 I 3.445 I 
o.30 I 3.475 i 
0.28 3.462 i 

I 

0.317 I 3.445 ! 

T= 1000 
AD2 c A L AD2 
28.48 0.041 2.839 33.98 0.536 28.7 0.04 2.817 34.3 
28.4 0.03 2.845 33.7 

28.72±.06 0.041 2.839 34.56±.06 
9.91 0.135 3.102 9.88 0.6 10.2 0.11 3.087 11.7 
9.60 0.09 3.194 11.1 

10.2±.02 0.135 3.102 10.18±.02 
3.18 

0.669 0.351 3.254 3.56 
3.51 0.33 3.247 3.90 
2.9 0.31 3.355 3.30 

3.52±.005 0.351 3.254 3.91±.006 
T = 5000 

39.70 
0.546 0.029 3.311 47.53 

40.1 0.03 3.299 47.7 
39.3 0.02 3.328 47.1 

40.08±.07 0.029 3.311 48.21±.11 
13.21 

0.578 0.092 3.553 14.92 
13.2 0.09 3.538 15.2 
12.6 0.07 3.643 14.7 

13.21±.02 0.092 3.553 15.27±.03 
4.30 0.626 0.282 3.696 4.48 
4.29 0.27 3.682 4.81 
3.70 0.25 3.805 4.30 

4.30±.006 0.282 3.696 4.85±.01 
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4.3.2 Comparison of the performance of EWMA with CUSUM devel-

oped from Monte Carlo methods: Gaussian case 

A comparison of t he performance of EWMA and CUSUM chart s is shown in Table 4.7. 

This t able contains numerical values for the corresponding simulat ion results (with 106 

sample trajectories) for the set of optimal parameters (.\ = 0.0454, il = 0.3924) and 

C = 0.5721 when T = 1000 and a parameter change a = 1. The table also includes ARL 

and AD for CUSUM for simulations (with 106 trials) and the boundary A = 4.68. Both 

CUSUM and EWMA are optimized for T = 1000 and a = 1. Of course, at this point 

AD1 = 11.52, EWMA is inferior than CUSUM but for values a less than a = 1, AD 

of EWMA is better than CUSUM. Figure 4.3 shows that the performance of EWMA is 

superior to CUSUM for small changes while CUSUM performs better than EWMA for 

moderate changes. 

Table 4.7: Comparison Monte Carlo simulations of ARL1 and AD1 for one-sided CUSUM 
and EWMA charts: Gaussian case 

a CU SUM EWMA 
(A= 4.68) (.A = 0.0454, H = 0.3924) 

0 1010.79±.32 1013.41±.32 
0.1 773.88±.14 280.67±.08 
0.2 199.83±.04 113.86±.03 
0.3 90.99±.02 61.22±.014 
0.4 52.12±.009 39.56±.008 
0.5 34.23±.006 28.59±.005 
0.6 24.30±.004 22.18±.004 
0.7 18.39±.003 18.02±.003 

I 
0.8 14.49:1: .002 15.19±.002 
0.9 11.76±.002 13.12±.002 
1.0 9.74±.002 11.52±.001 
1.5 4.90±.001 7.26±.0006 
2.0 3.09±.0004 5.34±.0004 
3.0 1.70±.0003 3.59±.0002 
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EWMA v.s. CUSUM - Gaussian case 
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Figure 4.3: Comparison of AD 1 simulated by EWMA and by CUSUM for a one-sided 
Gaussian EWMA chart 

4.4 Choices of Optimal Parameters of Gaussian EWMA De-

sign s 

In this section, we present numerical results for values of the optimal parameters -\, H 

and AD* of EWMA for both one-sided and two-sided cases in case 'T = 500, 1000, 2000 

and 5000. Table 4.8 contains results for the one-sided Gaussian EWMA chart and in 

Table 4.9 for the two-sided Gaussian EWMA chart. The results are presented for a range 

of parameter changes a from 0.1 to 2.0. The .\ values are in the range 0.01 < ,\ < 0.45 

and the desired in-control ARL value was set at 500, 1000, 2000 and 5000. 



Table 4.8: Optimal parameter values and ADi' of a one-sided Gaussian EWMA 

T Q .A fJ 6 ADi MC T .A fJ 6 
0.1 0.0095 0.1033 0.2469 132.13 138.8±.37 0.0014 0.0205 0.2517 
0.2 0.0095 0.1082 0.1913 65.46 68.61 ± .20 

I 
0.0014 0.0205 0.2517 

0.3 0.0217 0.2092 0.1587 43.35 46.59±.09 0.0180 0.2093 0.5748 
0.4 0.0315 0.2744 0.1792 30.57 33.02±.06 I 0.0313 0.3065 0.5820 
0.5 0.0454 0.383 0.234 22.85 24.93±.05 0.0454 0.3924 0.5721 

500 0.6 0.0682 0.4717 0.3115 17.79 19.37±.04 1000 0.0608 0.4722 0.5946 
0.7 0.0877 0.5542 0.3699 14.30 15.49±.03 0.0775 0.5496 0.6048 
0.8 0.1083 0.6308 0.4350 11.77 12.67±.02 0.0954 0.6257 0.6068 
0.9 0.130 0.7056 0.4804 9.89 10.6±.01 0.1145 0.700 0.6176 
1.0 0.153 0.777 0.5250 8.43 9.01±.01 0.135 0.7742 0.6227 
1.5 0.283 1.1323 0.6450 4.48 4.82±.008 0.2505 1.1409 0.6186 
2.0 0.446 1.523 0.709 2.79 3.15±.005 0.3925 1.5090 0.6840 
0.1 0.0053 0.0996 0.6688 280.39 277.96±.06 0.0016 0.0503 0.4064 
0.2 0.0079 0.1348 0.6454 122.30 121.72±.02 0.0077 0.1612 0.531 
0.3 0.0174 0.2352 0.6214 71.20 

I 
71 .05±.01 0.0149 0.2467 0.550 

0.4 0.0280 0.3205 0.6082 47.14 47.12±.08 0.0236 0.3277 0.565 
0.5 0.040 0.4010 0.6133 33.80 I 33.81±.06 0.0337 0.4067 0.564 

2000 0.6 0.0534 0.4780 0.6044 25.57 I 25.76±.04 5000 0.0452 0.4833 0.579 
0.7 0.0681 0.5557 0.6093 20.11 I 20.31±.03 0.0578 0.5591 0.584 
0.8 0.0840 0.6315 0.6020 16.28 I 16.55± .02 0.0717 0.6343 0.581 
0.9 0.1010 0.7052 0.6080 13.48 I 13.79±.02 0.0865 0.7077 0.588 I 1.0 0.1191 0.7792 0.6047 11.37 

I 
11.96±.01 0.1024 0.7810 0.593 

1.5 0.2238 1.1351 0.6422 5.82 6.12± .01 0.1952 1.1583 0.516 
2.0 0.351 1.5010 0.6692 3.56 3.90±.005 0.3080 1.4990 0.636 

ADi 
151.92 
75.71 
56.73 
38.63 
28.19 
21.60 
17.15 
13.99 
11 .66 
9.88 
5.14 
3.17 

403.99 
165.32 
91.50 
58.93 
41.49 
30.99 
24.13 
19.38 
15.94 
13.37 
6.73 
4.08 

MC 
156.07±.39 
71 .87±.14 
57.23±.11 
38.83±.07 
28.62±.05 
21.87±.04 
17.47±.03 
14.27±.02 
11.99±.02 
10.17±.01 
5.52±.008 
3.52±.006 

405.93±.74 
166.38±.3 
95.06±.16 
59.33±.1 

41.91±.07 
31.32±.05 
24.54±.04 
19.69±.04 
16.29±.03 
13.73±.03 
7.27±.02 
4.45± .01 
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Table 4.9: Optimal parameter values and AD2 of a two-sided Gaussian EWMA 

T Q .A H c AD2 MC T >: iI 6 
0.1 0.0039 0.0667 0.6151 216.73 218.61±.52 0.0033 0.0722 0.61 28 
0.2 0.0114 0.1532 0.6290 98.26 98.15±.21 0.0099 0.1620 0.5919 
0.3 0.0215 0.2399 0.6088 58.27 58.57±.12 0.0185 0.2473 0.5510 
0.4 0.0334 0.3227 0.6107 39.22 39.40± .07 0.0288 0.3292 0.5408 
0.5 0.0470 0.4020 0.6108 28.48 28.72±.06 0.0407 0.4089 0.5362 

500 0.6 0.0621 0.4798 0.6085 21.76 21.95±.05 0.0539 0.4866 0.5428 
0.7 0.0786 0.5557 0.6124 17.24 17.47±.04 1000 0.0686 0.5618 0.5634 
0.8 0.0964 0.6309 0.6109 14.05 14.27±.03 0.0844 0.6365 0.5727 
0.9 0.1154 0.7038 0.6215 11 .70 11.94±.03 0.1014 0.7096 0. 5858 
1.0 0.1354 0.7774 0.6197 9.91 10.2± .02 0.1194 0.7817 0.5994 
1.5 0.2511 1.1362 0.6471 5.15 5.47± .02 0.2240 1.1378 0.6355 
2.0 0.3929 1.5103 0.6859 3.17 3.52± .01 0.3512 1.5019 0.6690 
0.1 0.0028 0.0785 0.5897 393.07 392.81±.78 0.0024 0.0845 0.3914 
0. 2 0.0085 0.1670 0.5104 156.91 155,82±.32 0.0069 0.1687 0.5174 
0.3 0.0159 0.2492 0.5851 87.07 87.50±.15 0.0132 0.2504 0.5204 
0.4 0.0249 0.3295 0.5809 56.25 56.66±.09 0.0208 0.3299 0.5309 
0.5 0.0354 0.4077 0.5860 39.70 40.08±.07 0.0299 0.4077 0.5456 

2000 0.6 0.0472 0.4842 0.5950 29.71 30.04±.05 5000 
0.0402 0.4844 0.5503 

0.7 0.0603 0.5597 0.5963 23 .17 23.48±.04 0.0516 0.5602 0.5522 
0.8 0.0746 0.6342 0.5993 18.64 18.97±.03 0.0641 0.6350 0.5562 
0.9 0.0899 0.7079 0.6014 15.35 15.70±.02 0.0777 0.7085 0.5664 
1.0 0.1063 0.7805 0.6066 13.21 13.21± .02 0.0922 0.7811 0.5777 
1.5 0.2017 1.1377 0.6274 6.83 6.83±.01 0.1776 1.1394 0.6012 
2.0 0.3176 1.4968 0.6554 4.30 4.30±.006 0.2818 1.4966 0.6255 

AD2 
296.55 
126.07 
72.17 
47.51 
33.97 
25.66 
20.17 
16.32 
13.50 
11.39 
5.82 
3.56 

542.85 
201.17 
107.86 
68.27 
47.53 
35.21 
27.24 
21.77 
17.84 
14.92 
7.42 
4.47 

MC 
296.47± .65 
127.09±.25 
73.04±.14 
48.30±.09 
34.56±.06 
26.16±.05 
20.59± .04 
16.70±.03 
13.87±.02 
11.73±.01 
6.13±.009 
3.91±.005 

543.8±1.04 
201.77± .5 
108.7±.26 
69.06±.16 
48.21±.11 
35.79±.08 
27.79±.06 
22.23±.05 
18.26±.04 
15.27±.03 
7.79±.02 
4.84±.01 
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Chapter 5 

An Adaptation and Expansion of 

the Martingale Technique to 

non-Gaussian Distributions 

A common assumption used to determine statistical properties is that the individual ob-

servations are from a Gaussian distribution. However, in real applications the process 

characteristics are frequently non-Gaussian. A well-known example is data from processes 

where qualitative/ attribute observations are made in quality control measurements. In 

these quality control measurements, the random variable ~t is the "number of defects 

produced" or "the fraction of defects per unit produced" . If the number of defects is 

considered, then often the Poisson distribut ion is the appropriat e distribution. Gan (1990) 

and Borror et al. (1998) have st ressed the importance of the change-point problem for the 

Poisson distribution in their work on counting defects or nonconformities in manufacturing 

processes. Another important application has been discussed by Frisen (1992) who studied 

the number of incidences of adverse health events in patients under surveillance. Woodall 

(1997) has provided a listing of the control charts that have been used for attribute/count 

observations. 

In this chapter, we present analytical and numerical approximations for the EWMA 

characteristics for observations from Poisson and Bernoulli distributions. We derive the 

closed-form formulas for ARL and AD using the martingale techniques. The numeri-

cal results obtained from the martingale formulas are compared with numerical results 

obtained from other approaches including Monte Carlo simulations. Typically, observa-

tions modelled by Poisson and Bernoulli distributions are tested in practice for one-sided 
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alternatives, by this reason we do not examine two-sided charts. 

5.1 EWMA Chart for Poisson Distribution 

The performance of EWMA for a Poisson distribution has been studied by Gan (1990) 

and Borror et al. (1998). Gan (1990) studied the performance using the Markov Chain 

Approach and introduced three modified version of EWMA. Borror et al. (1998) studied 

t he performance using the Markov Chain Approach and compared the results obtained 

with Monte Carlo simulations. 

In this chapter using the martingale technique we derive closed-form represented for 

ARL and AD for Poisson EWMA chart. We assume that 6, 6 , ... , ~t are independent 

P oisson random variables that follow t he change-point model: 

~t Poisson(ao), t = 1, 2, ... , () - 1 

Pois son( a), t = B, () + 1, ... , , a > a o 

5 .1.1 Expectation of first passage times for one-sided Poisson EW MA 

Our derivation of the approximations for ARL and AD is similar to the derivat ion of 

approximations for a Gaussian distribution given in Section 4.1. For non-Gaussian dis-

tributions, such as Poisson and Bernoulli, the functions <po(u) defined in Equation (4.2), 

cannot be found in explicit form. However, the series given in Equation (5.2) is quickly 

convergent and so Ee( TH) in Equation ( 4.3) can be quickly calculated numerically with 

use of numerical integration (e.g. with the command Nlntegrate in the Mathematica® 

software) . 

Recall, the EWMA statistic can be expressed in the recursive form 

Zt = (1 - .X)Zt-1 + A~t, Zo = z, 

and the stopping time 

TH= inf{t > 0 : Z t > H} . 

Recall, we have t he general closed-form presentation 

(5 .1) 
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where e = 00 ("in-control" process) or e = 1 ("out-of-control" process) and the function 

00 

'Pe(u) = -uao + L 'l/ie((l - >·Yu). (5.2) 
k=O 

If ~t are independent random variables with Poisson distribution with rate a then 

Without loss of generality, we assume that E00 (~t) = a 0 . Then we obtain 

00 

'Poo(u) = -uao + ao L(eu(l-.X)k.x - 1) (5.3) 
k=O 

and 

00 

'fJ1(u) = - uao +a L(eu(l-.X)k,\ - 1). (5.4) 
k=O 

Subst ituting Equation (5.3) and (5.4) into Equation (5.1) we obtain closed-form expres-

sions an one-sided ARL1 and AD1 Poisson EWMA. Without loss of generality, the initial 

value is usually assumed to be Zo = 0. 

In particular, we obtain 

and 

a > ao. 

Similar to the Gaussian case (Equation ( 4.19) and ( 4.20)) we recommend to use Equa-

tion ( 4.16) to find an initial approximation for the overshoot for the Poisson EWMA. 

Note that if ~t ~ Poisson(a = 1), then 

E(a) 
2E(~t) = 1. 

Then, we also use Equation ( 4.18) for obtaining closed-form formulas: 

(5.5) 
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The closed-form formulas for one-sided Poisson EWMA: 

00 k 

ARL1 = E (TH) "' u- 1 E (eu(H+e>..) - l)e k=o du (5.6) 
1 loo uao-ao 2:::: eu(l-.>.) .>. -1 

oo - I ln ( 1 - A) I o oo ' 
(5.7) 

where a> ao. 

As discussed earlier, the overshoot is a nonnegative random variable XH = Z7 H - H. 

If the overshoot is neglected , we obtain the exact lower-bounds: 

00 k 1 loo uao-ao 2:::: eu(l-.>.) .>.-1 
ARL1 > u- 1(euH - l)e k=o du - I ln ( 1 - A) I o 

(5.8) 

and 

(5.9) 

On Table 5.1, we present the numerical results for ARL1 when in-control parameter a0 = 1 

and varieties of boundary H. Note that the "first approximation" (with an overshoot from 

Equation (5.5)) is not closed to the results of MC (see on Figure 5.l(a)). Our goal is to 

fit the analytical formula by using the nonlinear least-square method with MC results. 

For example, we use only three points (first, middle and last points) of MC results and 

fitting those points with a.naly ical formula then we obtain the approximation of constant 

C = 0.4912. After improved an approximation of the overshoot, we obtain the "second 

approximation" which the numerical results get much better than the first approximation 

compared with the results of MC. In addition, the results are almost as good as with MC 

is demonstrated on Figure 5 .1 (b). 
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Table 5.1: Comparison of numerical results of ARL1 between lower-bounds, first approx-
imation, second approximation and MC for Poisson EWMA 

H Lower- First Second MC 
bounds Approx. Approx. 

Eq. (5.8) (ARL1) c = 0.4912 
1.02 363.27 386.32 374.33 382.03±.05 
1.04 412.61 442.85 427.02 436.64±.06 
1.06 477.95 519.11 497.43 509.31±.08 
1.08 567.88 626.30 595.32 609.08±.11 
1.10 697.13 784.07 737.66 758.49±.15 
1.12 892.14 1028.32 955.11 984.76±.22 
1.14 1202.28 1427.70 1305.64 1344.01±.33 
1.16 1724.06 2119.52 1903.86 1950. 70±.51 
1.18 2655.14 3391.66 2987.15 3034.67±.84 
1.20 4419.93 5877.53 5071.40 5022.87±1.09 

Lo..er -.Bound 

5000 

·•· 
4000 

~ 3000 

zooo 

1000 

l.OZ5 l . OS l.075 l.l l.ll$ 1.1$ l . 175 l.Z 
H L._ _______________ _ 

(a) before adjusted an overshoot (b) after adjusted an overshoot 

Figure 5.1: Comparison of lower-bounds, approximations and simulations of ARL1: Pois-
son case 

5.2 Numerical Results 

5.2.1 Comparison of analytical approximations with simulations and 

other methodologies 

The numerical result s for ARL and AD using the martingale approximations are compared 

with numerical results from the Markov Chain Approach and Monte Carlo simulations 

in Table 5.2. The percentage error between the approximations and the simulations is 

presented in the last column. Note that the errors decrease when L and ,\ are increased. 



Table 5.2: Comparison of the numerical ARL1 from the martingale approach with the numerical ARL1 from the MCA and Monte Carlo 
simulations. 

,,\ L c 
1 

0.01 2 0.3933 
3 
1 

0.03 2 0.6495 
3 
1 

0.05 2 0.78181 
3 
1 

0.07 2 0.8619 
3 
1 

0.10 2 0.9419 
3 

an=500 
bNo. of rounds= 106 

cbetween martingale approach and Monte Carlo 
dStandard deviations are shown in parentheses 

Lower-Bound Corrected 
Lower-Bound 

198.37 I 216.82 
913.35 I 998.57 

6038.19 6847.70 
63.25 80.76 
277.30 354.09 

1604.76 -+ 2237.54 
36.71 I 53.04 
156.08 225.62 
834 .69 I 1364.35 
25.47 I 40.68 

105.82 I 169.10 
533.95 I 988.70 
17.15 I 30.99 

I 69.30 
I 

125.36 
327.08 703.65 

ARL by ARL by Percentage 
MCA a Monte Carlob Differencec 
256.66 235.65[0.27) a -7.99 
1035.57 1054. 7[0.33) -5.63 
6854.96 6841.09[2.16) 0.09 

86.25 86.12[0.03) -6.56 
378.18 368.63(0.12] -3.97 
2493.93 2235.61[O.70) 0.06 

55.02 54.65[0.02) -2.93 
I 234.86 229.94[0.07) -1.91 
I 1455.8 1363. 73[0.43) 0.06 
I 39.59 39. 72[0.0l] 2.4 
I 170.82 169.04[0.05) 0.04 
I 1030.92 988. 77[0.31] -0.007 

I 30.19 30.34(0.01] 2.14 
I 122.49 122. 75[0.04) 2.12 
I 721.78 704.05[2.24) -0.05 
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5.2.2 Comparison of the performance of EWMA with CUSUM devel-

oped from Monte Carlo methods: Poisson case 

We used the set of optimal parameter values found with the martingale approximations 

and have also compared the performance of EWMA and CUSUM using Monte Carlo 
- -simulations. Table 5.3 shows the numerical results for a optimal choice >. = 0.0373, H = 

0.3678 and C = 0.859 with in-control parameter ao = 1 and fixed T = 1000. Although 

CUSUM is usually considered as competitive with EWMA, the results in Table 5.3 show 

that CUSUM performance could be inferior to EWMA for moderate values of change in 

a as shown on Figure 5.2. 

For given T = 1000 and in-control parameter ao = 1, small changes can be detected 

better from an EWMA chart than from a CUSUM chart. 

Table 5.3: Comparison Monte Carlo simulations of ARL1 and A D1 for one-sided CUSUM 
and EWMA charts: Poisson case 

a CU SUM EWMA 
(A= 4.11) (>. = 0.0373, H = 0.3678) 

1.0 992. 11± .31 983.08± .29 
1. 1 671.55±.13 259.58±.08 
1.2 179. 19± .04 ll0.76± .03 
1.3 84.28±.02 62.29±.01 
1.4 50.19±.01 41.74±.009 
1.5 34.05±.007 30.90±.006 
LG 24.87±.005 24.34±.004 
1.7 19.17±.004 20.01±.003 
1.8 15.42:!:.003 17.07±.003 

I 1.9 12.94±.003 14.'17±.002 
2.0 10.95±.002 13.10±.002 
2.5 6.03~±:.001 8.37±.001 

I 
3.0 4.16±.0008 6.22±.001 
4.0 2.59±.0005 4.22±.001 
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Figure 5.2: Comparison of AD1 simulated by EWMA and by CUSUM for a one-sided 
Poisson EWMA chart 

5.3 Choices of Optimal Parameters of Poisson EWMA De-

signs 

Using the martingale approach, we can easily find the approximation for optimal pa-

rameters (.\,if) of E"WMA designs. The parameter values for approximated optimal 

EWMA designs for values of 'T = 500, 1000, 2000 and 5000, magnitudes of change a = 
1.1, 1.3, 1.5, 1.7, 1.9: 2.0, 2.5, 3.0 and in-control parameter a = 1 are shown in Table 5.4. 

This table gives values for the optimal pairs of parameters (,\, H)i the corresponding cor-

rected. constant C and the minimal AD* for each size of changes. Figure 5.3 shows the 

curves of optimal AD when fixed in-control T = 500, 1000 and 5000 and magnitudes of 

change a = 1.5, 2 and 3. 
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Table 5.4: Optimal parameter values and ADt of a one-sided Poisson EWMA 

ARL a ,\ H c ADt MC 
1.1 0.0096 0.102 0.7926 132.98 133.82±.036 
1.3 0.0213 0.204 0.8123 44.72 45.18±.009 
1.5 0.0385 0.323 0.8606 24.35 24.73±.005 

500 
1.7 0.0677 0.489 0.9043 15.79 16.24±.003 
1.9 0.0973 0.634 0.9461 11.30 11.76±.002 
2.0 0.1124 0.703 0.9712 9.796 10.23±.002 
2.5 0.1930 1.113 1.0263 5.61 6.08±.001 
3.0 0.2863 1.371 1.2170 3.75 4.15±.0008 
1.1 0.0070 0.1024 0.6543 198.16 199.8±.051 
1.3 0.0164 0.2027 0.8353 58.84 59.25±.011 
1.5 0.0373 0.3678 0.8599 30.39 30.9±.006 

1000 
1.7 0.0610 0.5170 0.9069 19.17 19.26±.004 
1.9 0.0863 0.6562 0.9437 13.48 13.93±.003 
2.0 0.0995 0.7226 0.9704 11.62 12.02±.002 
2.5 0.1696 1.0395 1.0973 6.52 6.97±.001 
3.0 0.2480 1.3631 1.1847 4.32 4.17±.001 
1.1 0.0055 0.1048 0.1170 280.78 282.97±.068 
1.3 0.0152 0.2246 0.8231 74.44 74.83±.014 
1.5 0.0334 0.3842 0.8551 36.75 37.35±.007 

2000 
1.7 0.0538 0.5286 0.9032 22.68 23.17±.004 
1.9 0.0761 0.6654 0.9421 15.74 16. 18± .003 
2.0 0.0878 0.7315 0.9627 

I 
13.50 13.92±.002 

2.5 0.1501 1.0448 1.0868 7.46 7.89±.001 
3.0 0.2187 1.3589 1. 1588 4.90 5.56±.001 -----·---1 .c-,--0.0044 ___ 

I 0.1128 0.7571 551.84 552.27± .087 
1.3 0.0132 0.2393 0.8013 9t3.40 97.3±.018 
1.5 0.0282 0.3918 0.8310 45.50 46.29±.008 

5000 
1.7 0.0456 0.5337 0.8867 27.46 27.89:1-_:.005 
1.9 0.0648 0.6698 0.9204 18.80 19.26±.003 
2.0 0.0750 0.7400 0.9529 I 16.04 16.49±.003 I 2.5 0. 1294 1.0481 1.0499 

I 
8.71 

I 
9.19±.002 

3.0 0.1887 1.3595 1.1052 5.67 6.13± .001 
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Figure 5.3: AD1 for different magnit udes of change: Poisson case 

67 

0 . 5 



5.4. EWMA Chart for Bernoulli Distribution 68 

5.4 EWMA Chart for Bernoulli Distribution 

5.4.1 The derivation of the closed-form formulas for the Bernoulli EWMA 

In this section, we consider the EWMA procedure for a Bernoulli distribution. Somerville 

et al. ( 2002) have recommended to use the Bernoulli EWMA for detecting changes in 

binary attribute observations, i.e. observations with two results "failure" (0) or "success" 

(1) with probability of success (a). 

Here we assume that 6, 6, ... , ~t are independent Bernoulli random variables and 

~t Bernoull-i(ao), t = 1, 2, ... , B - 1 

't Bernoulli( a), t = B, B + 1, ... , a> ao. 

5.4.2 Expectation of first passage times for one-sided Bernoulli EWMA 

If ~t are independent random variables with outcome 0 and 1 such that the probability of 

"success" P('t = 1) =a then 

'l/Je(u) = Iog(aeu,\ + (1 - a)) 

and 
00 

<.pe(u) = -uao +log 11 (ae(u(l->.)k>.) + (1 -- a)), (5 .10) 
lc=O 

where 

00 

<f!oo(u ) = --uao +log II (aoe(u(I - >. )k>. ) + (1 - ao )) , 
k=O 
00 

<p1(u) = - uao +log II (ae(u(I->.)k>.) + (1 - a)) . 
k=O 

Substituting those expressions into Equation ( 4.3) , we obtain 

1 loo Ee(euZrH - l)euao 
Ee( TH)= 00 du. 

I ln(l - .\)I o u TI (ae(u(I->.)k>.) + (1 _a)) 
(5.11) 

k=O 

In particular, 
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and 

We also use considerations which lead to Equation ( 4.18) to obtain approximations for an 

overshoot. Note that if ~t f'-J Berno'Ulli(a), then 

C = E(S';+) = E(~l) 
2E(Sr+) 2E(~t) 

a 1 
2a 2 

(5.12) 

The closed-form formulas for one-sided Bernoulli EWMA: 

(5.13) 

(5.14) 

If the overshoot is neglected then we obtain exact lower-bounds: 

- 1 r)Q (euH - l)euao 

ARL1 ~ T ln(l= A)! Jo ~ fi (<>oe(u(I-A)k/•) + (1 - <>o)) du (5.15) 
k=O 

and 

1 loo (eitH - l)euao 
AD1 ~ 1 ( ) I 00 du. 

1 ln 1 - ). o u TI (ae(u(l->.)k>.) + (1 - a)) 
(5.16) 

k=O 

For the case of Bernoulli distribution, ~t :S 1 and therefore we have also an upper-bound 

(5.17) 

since Zt = (1 - >.)Zt-1 + A~t and always Zt-1 < H for t = TH. 

The accuracy of these lower-bounds and upper-bounds are reasonable for small,\, (i.e. 

). = 0.01). The numerical results of approximations ARL1 , lower-bounds and upper-

bounds are presented on Table 5.5 with in-control parameter a 0 = 0.01 and including 

the "first approximation" with constant C from Equation (5.12) and MC. However, the 

accuracy of the first approximation differs significantly from MC. The closed-form formulas 
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for ARL and AD presented above contain an overshoot. To get more accurate numerical 

approximations, we suggest to use a combination of MC and a martingale closed-from 

formula applying a nonlinear fitting as Poisson case. We then obtain the constant C = 

0.3279 for evaluating a "second approximation" see Figure 5.4(a) and 5.4(b) below. The 

second approximation is more certainly accurate approximations. 

Table 5.5: Comparison of numerical results of ARL1 between lower-bounds, upper-bounds, 
first approximation, second approximation and MC for Bernoulli EWMA 

H Lower- Upper-
bounds bounds 

Eq. (5.15) Eq. (5.17) 
0.011 288.22 1371.05 
0.012 338.39 1617.19 
0.013 396.05 1914.14 
0.014 462.64 2274.12 
0.015 539.96 2712.58 
0.016 630.20 3249.11 
0.017 736.05 3908.62 
0.018 860.88 4722.93 
0.019 1008.84 5732.80 
0.020 1185.12 6990.55 
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Figure 5.4: Comparison of lower-bounds, upper-bounds, approximations and simulations 
of A RL1 : Bernoulli case 
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5.5 Numerical Results 

5.5.1 Comparison of analytical approximations with Monte Carlo sim-

ulations 

We have numerically calculated based on the closed-form formulas suggested above and 

compared these values with the results obtained from MC. The accuracy of the approach 

is confirmed by the simulations (see Table 5.6) . 

Table 5.6: Comparison of the approximations with Monte Carlo simulations for the 
Bernoulli EWMA 

a T = 500 
,\ H c ADt MC 

0.10 .0057 .0132 .3252 56.27 51.20±.001 I 
0.15 .0241 .0545 .3132 30.39 3o. 11±.001 I 
0.20 .0356 .0761 .3065 19.31 19.44±.004 
0.30 .0834 .1539 .2985 10.62 11.31±.002 

a T = 1000 
0.10 .0057 .0191 .3187 83.25 83.97±.012 
0.15 .0210 .0598 .2951 39.16 39.97±.009 
0.20 .0396 .0993 .2913 23.97 23.65±.005 
0.30 .0777 .1677 .2845 12.71 12.94±.002 

5.5.2 Comparison of the performance of EWMA with CUSUM devel-

oped from Monte Carlo methods: Bernoulli case 

We have also compared the EWMA characteristics with CUSUM for the Bernoulli dis-

tribution. Table 5.7 shows some numerical results for ARL and AD for a variety of 

out-of-control values a for the optimal parameter values of .:\ = 0.0209, iI = 0.0598 and 

C = 0.2951 with in-control parameter value ao = 0.05 and fixed T = 1000. Figure 5.5 

shows a comparison of AD values for EWMA and CUSUM. The numerical results give 

similar results to those obtained for the Gaussian and Poisson distributions. The optimal 

EWMA charts perform slightly better than CUSUM for the detection of a small change 

in parameter. 
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Table 5.7: Comparison Monte Carlo simulations of ARL1 and AD1 for one-sided CUSUM 
and EWMA charts: Bernoulli case 

CT CU SUM EWMA 
(A= 4.718) (A= 0.0209,Ji = 0.0598) 

0.05 1008.25±.31 1007.96±.32 
0.06 486.18±.15 462.83±.14 
0.08 178.18±.05 170.38±.05 
0.10 96.73±.02 92.40±.02 
0.12 63.93±.01 61.66±.01 
0.14 47.50±.009 45.48±.01 
0.15 42.10±.008 40.08±.009 
0.16 37.69±.007 35.87±.007 
0.18 31.34±.004 29.60±.006 
0.20 26.72±.002 20.28±.003 
0.30 15.34±.001 14.41±.002 
0.40 10.62±.001 10.23±.001 

EWMA v.s. CUSUM - Bernoulli case 

1200 -,..---~~~~--~~~~~~~~~~-~-. 

1000 ~-\ t 
BOO----- t 

~ 600 --\----------------r-------
400 1- ---\.--------+------------
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Figure 5.5: Comparison of AD1 simulated by EWMA and by CUSUM for a one-sided 
Bernoulli EWMA chart 

5.6 Choices of Optimal Parameters of Bernoulli EWMA De-

signs 

Table 5.8 contains approximations for optimal values of parameters (~, H) when obser-

vations are from a Bernoulli distribution. The values were calculated numerically for the 

one-sided EWMA case from Equation (5.13) and Equation (5.14). These optimal val-

ues were obtained by minimising AD values when fixed ARL values of 500, 1000, 2000 

and 5000, in-control parameter a 0 = 0.05 and the sizes of parameter change, CT = 
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0.1, 0.15, 0.18, 0.22 , 0.24, 0.25 , 0.30. The numerical results from the martingale technique 

approximations are as good as the results from the Monte Carlo simulations. The sug-

gested algorithms can be easily used to create curves of AD for a range of magnitudes of 

change as shown in Figure 5. 6. 

Table 5.8: Optimal parameter values and AD i for a one-sided Bernoulli EWMA 

A RL a ,\ H c A Di MC 
0.10 0.0057 0.0132 0.3252 56.27 57.2±.014 
0.15 0.0073 0.0176 0.3225 28.60 29.01±.006 
0.18 0.0089 0.0216 0.3178 22.14 22 .55± .005 

500 0.20 0.0356 0.0761 0.3065 19.31 19.44±.004 
0.22 0.0461 0.0947 0.3042 16.72 17. 11±.004 
0.24 0.0557 0.1109 0.2991 14.69 15.22±.003 
0.25 0.0604 0.1185 0.2987 13.83 14.33±.003 
0.30 0.0834 0.1539 0.2985 10.62 11.31±.002 
0.10 0.0057 0.0191 0.3187 83.25 83.97±.012 
0.15 0.0209 0.0598 0.2951 39.16 40.09±.008 
0.18 0.0209 0.0845 0.2899 28.56 29.27±.006 

1000 0.20 0.0323 0.0993 0.2913 23 .97 23.65±.005 
0.22 0.047 0.1135 0.2897 20.54 21 .05±.004 
0.24 0.0545 0.1274 0.2884 17.89 18.19±.004 
0.25 0.0583 0 . 1 ~)41 0.2908 16.79 17.03±.004 
0.30 0.0777 0.1677 0.2845 12.7 12.9±.002 
0.10 0.0022 0.0105 0.2854 110.72 112.35±.02 
0.15 0.0211 0.0706 0.2757 48.48 49.61±.009 
0.18 0.0301 0.0925 0.2752 34.66 35.33±.007 

2000 
0.20 0.0:363 0.1064 0.2767 28.82 29.57±.006 

I 
0.22 0.0427 0.1201 0.2778 24.51 25.15±.005 
0.24 0.0491 0.1334 0.2793 21.22 21.9±.004 I 

0.25 0.0524 0.1401 0.2775 19.85 20.47±.004 
0.30 0.0695 0.1725 0.2815 14.86 15.23±.003 
0. 10 0.0069 0.037 0.2538 154.45 157.82±.03 
0.15 0.0183 0.0752 0.2383 61.44 63.5± .013 
0. 18 0.0257 0.0964 0.2410 43.08 44.7±.009 

5000 0.20 0.0310 0.101 0.2483 35.49 36.7±.007 
0.22 0.0364 0.1233 0.2529 29.96 31.06±.006 

I 
0.24 0.0419 0.1366 0.2523 25.77 26.62±.005 
0.25 0.0447 0.1432 0.2522 24.04 24.81±.005 
0.30 0.0594 0.1751 0.2631 17.79 18.23±.003 
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Figure 5.6: AD1 for different magnitudes of change: Bernoulli case 



Chapter 6 

Conclusion and Recommendations 

for Further Research 

6.1 Overall Conclusion 

Statistical Process Control (SPC) charts are widely used to detect changes in parameters 

that show a process with a random component has gone from an "in-control" state to an 

"out-of-control" state. The control charts should not signal that a process is out-of-control 

when it is still in-control, but they should quickly signal when a process goes out-of-control. 

Two measures that are commonly used to analyse the performance of control charts are 

the Average Run Length ( ARL) and the Average Delay (AD). The ARL is a measure 

of the average number of observations that will occur before an in-control process falsely 

gives an out-of-control signal. Therefore to reduce the number of false out-of-control 

signals a sufficiently large ARL is required. The AD is a measure of the average number 

of observations that will occur before an out-of-control process correctly gives an out-of-

control signal. Therefore to reduce the time that the process is out-of-control, a small AD 

is required. The ARL and AD are therefore two conflicting criteria that must be balanced 

to give an optimal design of control chart. 

In this thesis , we discussed SPC charts for cases of small and moderate changes in 

parameters. Two effective types of charts that have been used to detect small and moderate 

parameter changes are Exponentially Weighted Moving Average (EWMA) and Cumulative 

Sum ( CUSUM) charts. We have demonstrated that the EWMA chart is easy to implement 

and calculate with a martingale technique. For EWMA charts until now we have no 

optimal theorem but we have shown by computer simulations that the performance of 
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EWMA chart is superior to a CUSUM chart. 

In this thesis, a martingale technique has been used to obtain analytical approximations 

for ARL and AD for EWMA charts. We have shown that our martingale approximations 

are easy to program and calculate. Further, we compare an accuracy of our approxima-

tions with other approaches by using the percentage difference. The approximations also 

produce accurate results and reduce the computational time for finding optimal EWMA 

designs compared with other standard methods such as Markov Chain Approach (MCA), 

Integral Equations (IE) and Monte Carlo simulations methods. The limitation of the 

tradition methods have the some following crucial drawbacks: MCA, of course, requires 

many matrix inversions; IE requires a lot of programming and diverges under some con-

ditions; MC requires a large numbers of trajectories, in particular for finding an optimal 

parameter values of EWMA designs. In addition, we have shown that the martingale 

approach can be adopted and expanded to non-Gaussian distributions such as the Poisson 

and Bernoulli distributions . We have also developed algorithms written in Mathematica® 

programs that we have used to obtain optimal numerical values for parameters for optimal 

EWMA designs for both Gaussian and some non-Gaussian distributions. 

6 .2 Recommendations for Further Research 

In this thesis we have discussed some applications of the martingale method to the per-

formance analysis of control charts. However, there are further applications that can be 

made. Some possible areas of fut ure applications are as follows : 

• The use of the martingale technique for determining the characteristics of EWMA 

charts when several variables may be monitored and even controlled. This is so-called 

Multivariate EWMA charts (MEWMA) . 

• In this thesis , we have assumed that observations are i.i.d. random variables. How-

ever , in real applications they could be serially-correlat ed observations such as in 

AR(l), M A(l ) et c. Serially-correlated data is always assumed in finance and in-

surance. The martingale technique could be used to analyse this serially-correlated 

data. 

• We suggest to develop a software based on our analytical formulas in which the input 

parameters could be easily changed by the user, e.g., from the keyboard or through 

a GUI type dialogue box. 



6.2. Recommendations for Further Research 77 

• The overshoot distribution is known only for the case of the Exponential distribu-

tion. The distribution of the overshoot has rarely been studied in the literature. 

Knowledge of the overshoot distribution would improve the accuracy of the over-

shoot correction to the values of the ARL and AD. 



Appendix A 

Mathematica® codes for 

Simulation of Sequentially 

Stochastic Processes 

The appendix gives all of the Mathematica® codes used for simulation of the expectation 

of the first exit time of EWMA. The results from the Monte Carlo simulation are obtained 

by taking an average of the first exit times for a large number of trials. 

Input requirement 

In order to get the ARL and AD values from Monte Carlo and the EWMA martingale 

approximations the following input is required: 

• smoothing parameter >. E ( 0, 1) 

• intensity parameters of the distribution of ~t given ao (in-control) 

o shift parameter a, a > ao 

• initial value of Zo of process Zt 

• value of boundary, H > Zo 

• number of trials, n 

Output 

The output of the simulation program gives an expectation of the first exit time (or ARL) 

and an expectation of average delay time (AD) from the process Zt for discrete finite 

times. 
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A.1 Gaussian Distribution 

A.1.1 EWMA simulation 

l. ARL for one-sided EWMA 
11 EWMA-ARLlsided" 

< <Statistics'ContinuousDistributions' 

Clear[gaus, Z,j, .A, n]; n = 10A6;). = 0.01; H = 1; 

gaus[-]:=Random[NormalDistribution[ao, l]]; SeedR.andomO; tO = TimeUsed0; 

X = O;j = O; 

Do[ 

{For[i = 1; Z = 0, Z < H , i++, Z = Z(l - .A)+ .Agaus[O]], 

j = j + i - 1, X = X + (i - 1)"2}, {k, 1, n}]; 

T = N[j/n] 
Sqrt((X/n -TA2)/n] 

TimeUsedO - to 

2. ARL for two-sided EWMA 
11 EWMA-ARL2sided" 

Clear[gaus, Z,j, )., n]; n = 10A6; ;\ = 0.01; H = 1; 

gaus[ao-]:=Random(Norma1Distribution[a0 , 1]]; Seed.Random0; tO = TimeUsedQ; 

X = O;j = O; 

Do[ 

{For[i = 1; Z = 0, Abs[Z] < H , i++, Z = Z(I - .-\) + .-\gaus(O]], 

j = j + i-1,X = X + (i-- l)A2}, {k, l,n}); 

T = Nfj/n] 
Sqrt[(X/n -TA2)/n] 

TimeUsedO -to 

3. AD for one-sided and two-sided EWMA 
11EWMA-AD 11 

Clear[gaus, Z,j, .A, n]; n = 10"6; .A= 0.01; H = l; 

gaus[a_):=Random[NormalDistribution[a, 1]]; SeedRandomO; tO = TimeUsed0; 

X = O;j = O; 

Do[ 

{For[i = 1; Z = 0, Z < H , i++, Z = Z(l - ).) + ).gaus[0.5]], 
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j = j + i-1,X = X + (i-1)"2}, {k, 1,n}]; 

AD= N[j/n] 

Sqrt((X/n - AD"2)/n] 

TimeUsedD - tO 

A.1.2 CUSUM simulation 

1. ARL for one-sided CUSUM 
11 CUSUM 11 

< <Statistics'ContinuousDistributions' 

Clear[gaus, X, Y, j]; A = 4.68; n = 10"6; ao = O; a = 0.5; 

gaus[ao-]:=Random[NormalDistribution[ao]]; SeedRandomQ; tO = TimeUsed0; 

X =O;j=O; 

Do[ 

{For[i = l; Y = 0, Y <A, i++, Y = Max[O, Y + (°'~f0 )(gaus - ( 0 1;°'0 ))]], 

j = j + i - 1, X = X + (i - 1)"2}, {k, 1, n}]; 

T = N[j/n] 

Sqrt[(X/n - T"2)/n] 

TimeUsedO - tO 

2. AD for two-sided CUSUM 

"CUSUMn 

< <Statistics'ContinuousDistributions' 

Clear[gaus, X, Y, j]; A = 4.68; n = 10"6; ao = O; a: = 0.5; 

gaus[a_]:=Random[NormalDistribution[o:]]; SeedRandomD; tO = TimeUsed0; 

X = O;j = O; 

Do[ 

{For[i = 1; Y = 0, Y <A, i++, Y = Max[O, Y + ( 0~:f0 )(gaus - (°'-t;°'0 ))]], 

j = j + i-1,X = X + (i-1)"2}, {k , l,n}]; 

AD= N[j/n] 

Sqrt[(X/n - AD"2)/n] 
TimeUsedD - tO 
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A.2 Poisson Distribution 

A.2.1 EWMA simulation 

1. ARL for one-sided EWMA 
11 EWMA-ARLlsided 11 

< <Statistics'DiscreteDistributions' 

Clear[pois, Z,j, A, n, T]; n = 10"6; A= 0.01; H = 1; 

pois[o:o-]:=Random[PoissonDistribution[o:o]]; SeedRandomO; tO = TimeUsed0; 

Z = O;j = O; 

Do 

[{For[i = 1; Z = 0, Z < H , i++, Z = Z(l - A)+ A(pois[l] - 1)], 

j = j + i -1,X = X + (i-1)"2}, {k, 1,n}]; 

T = N[j/n] 
Sqrt[(X/n -T"2)/n] 

TimeUsedO - tO 

2. AD for one-sided and two-sided EWMA 
11 EWMA-AD 11 

Clear[pois, Z, j, ..\, n, T]; n = 10"6; A= 0.01; H = 1; 

pois(o:_]:=Random[PoissonDistribution[o:]]; SeedRandomO; tO = TimeUsed0; 

Z == O;j = O; 

Do 

[{For[i = l; Z = 0, Z < H , i++, Z = Z(l - A) + A(pois[l.5] - 1)], 

j = j + i-1,X = X + (i-1)"2}, {k, 1,n}]; 

AD= N[j/n] 

Sqrt[(X/n -AD"2)/n] 

TimeUsedO - tO 

A.2.2 CUSUM simulation 

1. ARL for one-sided CUSUM 
11 CUSUM 11 

< <Statistics'DiscreteDistributions' 
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Clear[pois, X, Y, j]; b = 4.1; n = 10"6; ao = 1; a= 1.5; cc= Log[a/a0]; aa =-a:+ o:0 ; 

pois[o:o-] :=Random[PoissonDistribution[ao]]; SeedRandomD; tO = TimeUsedO; 
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X = O;j = O; 

Do[ 

{For[i = 1; Y = 0, Y < b, i++, Y = Max[O, Y +(-a+ ao) + pois(Log[a/ao])]], 

j = j + i - 1, X = X + (i - 1)"2}, {k, 1, n}]; 

T = N[j/n] 
Sqrt[(X/n -T"2)/n] 

TimeUsedO - tO 

2. AD for one-sided CUSUM 
11 CUSUM 11 

< <Statistics'DiscreteDistributions' 
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Clear[pois X Y J·]· b - 4 1· n - 10"6· ao - 1· a - 1 5· cc - Log[a/o:o]· aa - -a+ ao· ,, ,, - ., - ,- , - . ,- ,- ' 
pois[a-] :=Random[PoissonDistribution[a]]; SeedRandomO; tO = TimeUsed0; 

X = O;j = O; 

Do[ 

{For[i = 1; Y = 0, Y < b , i++, Y = Max[O, Y +(-a+ ao) + pois(Log[a/ao])]], 

j = j + i - 1, X = X + (i-1)"2},{k, 1,n}]; 

AD= N[j/n] 
Sqrt[(X/n -AD"2)/n] 

TimeUsedQ - tO 
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A.3 Bernoulli Distribution 

A.3.1 EWMA simulation 

1. ARL for one-sided EWMA with 
11 EWMA-ARLlsided 11 

< <Statistics'DiscreteDistri butions' 

Clear[ber,Z,j,.X,n,T];n = 10"6;.X = O.Ol;H = l;no = 0.05; 

ber:=ff[RandomO > (1- no), 1, O]; SeedRandomO; tO = TimeUsed0; 

Z= O;j = O; 

Do 

[{For[i = 1; Z = 0, Z < H , i++, Z = Z(l - .X) + .X{ber - no)], 

j = j + i -1, X = X + (i -1)"2}, {k, 1, n}]; 

T = Nfj/n] 

Sqrt[(X/n -T"2)/n] 

TimeUsedO - tO 

2. AD for one-sided and two-sided EWMA 
11EWMA-AD 11 

Clear[ber, Z,j, .X, n, T]; n = 10"6; .X = 0.01; H = 1; n = 0.15; 

ber:=If[Ra.ndomO > (1 ·-a:), l,OJ;SeedRandomO;tO = TimeUsedQ; 

Z=O;j=O; 

Do 

[{For[i = 1; Z = 0, Z < H, i++, Z = Z(l - .X) + .X(ber- no)L 

j = j + i-1, X = X + (i -1)"2}, {k, 1, n}]; 

AD= Nfj/n] 

Sqrt[(X/n -AD"2)/n] 

TimeUsed0 - tO 

A.3.2 CUSUM simulation 

1. ARL for one-sided CUSUM 
11 CUSUM 11 

< <Statistics'DiscreteDistributions' 

Clear[ber, X, }~ j]; b = 3.66; n = 10"6; no = 0.05; n = 0.15; 

ber:=If[RandomO > (1 - no), 1, O]; SeedRandomO; tO = TimeUsed0; 
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X = O;j = O; 

Do[ 

{For[i = 1; Y = 0, Y < b , i++, Y = Max[O, Y + berLog[(~ + t:~~) + (1-ber)Log 11_=-~]]], 
j = j + i -1, X = X + (i - 1)"2}, {k, 1, n}]; 

T = N[j/n] 
Sqrt[(X/n -T"2)/n] 

TimeUsedO - to 

2. AD for one-sided CUSUM 
11 CUSUM 11 

< <Statistics'DiscreteDistributions' 

Clear[ber, X, Y,j]; b = 3.66; n = 10"6; a 0 = 0.05; a= 0.15; 

ber:=If[RandomO > (1- a), 1,0];SeedRandomO;tO = TimeUsed0; 

X=O;j=O; 

Do[ 

{For[i = 1; Y = 0, Y < b, i++, Y = Max[O, Y + Log[ber(~ - l-=-:a) + 11:_:-~]]], 
j = j + i-1,X = X + (i-1)"2}, {k, 1,n}]; 

AD= N[j/n] 
Sqrt[(X/n -AD"2)/n] 

TimeUsedD - tO 



Appendix B 

Mathematica® Codes for 

Calculation of Closed-form 

Formulas 

B.1 Procedure for obtaining the optimal parameter 

These are the procedures for obtaining the optimal parameters (A*, H*) from the martin-

gale closed-form formulas for the Gaussian, Poisson and Bernoulli distributions. 

B.1.1 Calculation codes for the case of one-side Gaussian EWMA chart 

Step 1: "Initial approximation" 

Clear(,\, b, c, a, T, QQ, FF, H]; T = 500; ao = O; a = 0.5; c = 0.583; 

QQ[H_, ,\_, c_, a_]:= - Nintegrate[(Exp[u(H + ,\c)] - 1)/u 

Exp[-ua - (.Au"2)/(4(1 - .A/2))], {u, 0, oo }]/Log[l - ,\]; 

myinv[,\_]:=H /.(FindRoot[QQ[H, ,\, c, O] == T, {H, 0.1, 3}]); 

FF(,\_):= - Nintegrate((Exp[u(myinv(,\] + ,\c)] -1)/u 

Exp[-au - (,\u"2)/(4(1- ,\/2))], {u, 0, oo}]/Log[l - ,\); 

Plot[FF[,\], { ,\, 0.01, 0.3}] 

FM= FindMinimum[FF[,\], {,\, 0.1, 1}] 

AD = First[FM] 

ww = ,\/.Last[FM] 

bb = myinv[ww] 
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26 

25 . 5 

25 

24 . 5 

24 

23. 5 

Initial approximation 

{22.8468, {A ~ 0.0496229}} 

22.8468 

0.0496229 

0.365274 

Step 2: < <Statistics'ContinuousDistributions' 
11 Monte Carlo check l 11 

Clear[gaus, Y,j, ,\, n]; n = 10"5; alf = ww; 

gaus[m-]:=Random[NormalDistribution[ao, 1]]; SeedRandomO; tO = TimeUsedO; 

X =O;j =0; 

Do[{For[i = 1; Z = 0, Z < bb , i++, Y = Y(l - ,\) + ,\gaus[O]], 

j = j + i - 1, X = X + (i - 1)"2}, {k, 1, n}]; 

newT = N[j/n] 
TimeUsedO - tO 

Monte Carlo check 1 

402. 135 

0.0148 

1693.72 

Step 3: "Second approximation" 

newc = c/.(FindRoot[QQ[bb, ww, c, OJ== newT, {c, .1, .7}]) 

newH = H / .(FindRoot[QQ[H, ww, newc, O] == T, {H, .1, 2}]) 

0.240828 

0.382254 

"Corrected AD by closed-form martingale" 

a =0.5; 
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.A=ww; 

-Nlntegrate[(Exp[u{newH + wwnewc)] - 1)/u 

Exp[-au - 4(~~~/2)], {u, 0.001, 1000}]/Log[l - .A] 

Corrected AD 

22.8468 

Step 4: "Final check MC for AD" 

Clear[gaus, Z,j, .A, n]; n = 1QA5; .A= ww; 

gaus[a_]:=Random[NormalDistribution[a, 1]]; SeedRandomO; tO = TimeUsed0; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - .A)+ .Agaus[l]], 

j = j + i -1, X = X + {i - l)A2}, {k, 1, n}); 

AD= N[.j/n] 

Sqrt[(X/n - AD"2)/n] 

TimeUsedO - tO 

24.9532 

0.055 

93.813 

11 Final check MC for ARL" 

Clear[gaus, Z,j, .A, n]; n = loA5; .A= ww; 

gaus[ao-]:=Random[Norma.lDistribution[ao, 1]]; SeedRandomO; tO = TimeUsedQ; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - .A)+ .Agaus[O]], 

j = j + i-1,X = X + (i-1)"2}, {k, 1,n}]; 

T = N[.j/n] 

Sqrt[(X/n -T"2)/n] 
TimeUsedO - tO 

484.8 

0.0156 

1523.91 
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B .1. 2 Calculation codes for the case of two-sided Gaussian EWMA chart 

Step 1: "Initial approximation" 

AD 
47 .5 

45 
42.5 

40 
37.5 

35 
32.5 

Clear[ A, b, c, a, T, QQ, FF, H]; T = 500; ao = O; a= 0.5; c = 0.583; 

QQ[H_, A_, c_, a_]:= - Nintegrate[(Cosh[u(H +Ac)] -1)/u 

Exp[-ua - (Au"2)/(4(1 - A/2))], {u, 0, oo }]/Log[l - A]; 

myinv[A-]:=H/.(FindRoot[QQ[H, A, c, O] == T, {H, 0.1, 3}]); 

FF[A-]:= - Nintegrate[(Exp[u(myinv[A] +Ac)] - 1)/u 

Exp[-au - (Au"2)/(4(1 - A/2))], {u, 0, oo }]/Log[l - A]; 

Plot[FF[A], {A, 0.01, 0.3}] 

FM= Find.Minimum[FF[A], {A,0.1, 1}] 

AD = First[FM] 

ww = A/.Last[FM] 

bb = myinv[ww] 

~------'--~~~~-A 

'--~~~~~~·~~ 

Initial approximation 

{28.4774, {A --t 0.047025}} 

28.4774 

0.0470249 

0.403263 

Step 2: < <Statistics'ContinuousDistributions' 

"Monte Carlo check l 11 

Clear[gaus, Y,j, A, n]; n = 10"5; alf = ww; 

gaus[m_] :=Random[NormalDistribution[ao, 1 ]] ; SeedRandomD; tO = TimeUsedO; 

X = O;j = O; 

Do[{For[i = l; Z = 0, Abs[Z] < bb , i++, Y = Y{l - A)+ Agaus[O]], 

j = j + i - 1, X = X + (i - 1)"2}, {k, 1, n}]; 

newT = N[.i/n] 

TimeUsed0 - tO 
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Monte Carlo check 1 

510.395 

0.0148 

1693.72 

Step 3: "Second approximation" 

newc = c/.(FindRoot[QQ[bb, ww, c, O] == new'l\ {c, .1, .7}]) 

newH = H/.(FindRoot[QQ[H, ww,newc,O] == T, {H, .1, 2}]) 

0.610832 

0.401954 

"Corrected AD by closed-form martingale" 

a=0.5; 

A=ww; 

-Nlntegrate[(Exp[u(newH + wwnewc)] -1)/u 

Exp[-o:u - 4(~~~/2)], { u, 0.001, 1000}]/Log[l - ..\] 

Corrected AD 

28.4774 

Step 4: "Final check MC for AD 11 

Clear[gaus, Z,j, ,\, n]; n = HY'5; A= ww; 

gaus[a_.]:=Random[Norma.lDistribution[a, 1]]; SeedRandomQ; tO = TimeUsed0; 

X = O;j =0; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - ,\) + ,\gaus(l]], 

j =j +i-1,X = X + {i-1)"2},{k,1,n}]; 

AD= Nfj/n] 

Sqrt[(X/n -AD"2)/n] 

TimeUsedO -to 

28.7215 

0.055 

93.813 

"Final check MC for ARL" 

Clear[gaus, Z,j, ,\, n]; n = 10"5; ,\ = ww; 

gaus[ao-]:=Random[NormalDistribution[ao, 1]]; SeedRandomO; tO = TimeUsed0; 
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X = O;j = O; 

Do[{For[i = 1; Z = 0, Abs[Z] < newH , i++, Z = Z(l - ,\) + ,\gaus[O]], 

j = j + i-1,X = X + (i-1)"2}, {k, 1, n}]; 

T = N[j/n] 

Sqrt[(X/n -T"2)/n] 

TimeUsedO - to 
500.922 

0.1559 

1633.61 

B .1.3 Calculation codes for the case of Poisson EWMA chart 

Step 1: "Initial approximation" 

ze 

Z 6 

Clear[.A,b,C,ao,a,T,QQ,FF,H];T = 500;ao = l;a = l.5 ;C = 1; 

QQ[H_, ,\_, C_, ao-]:= - 1/Log[l - a]Nintegrate[(Exp[u(H +.AC)] - 1)/u 

Exp[u - aoSum[(Exp[u.A(l - .A)"k] - 1), {k, 0, oo }]], { u, 0, oo }] 

myinv[.A-]:= H/.(FindRoot[QQ[H, ,\, C, 1] == T, {H, 0.1, 5}]) ; 

FF(,\_]:= - 1/Log[l - .X]Nlntegrate[(Exp(u(myinv[.A] + .AC)] - l)/u 

Exp(u - a Sum[(Exp(u,\(1 - .X)"k] - 1), {k, 0, oo }]], { u, 0, oo }] 

Plot[FF[.A], {A, 0.01, 0.5}] 

FM= FindMinimum[FF(A], {.A, 0.01, 0.5}] 

AD = First[FM] 

ww = .X/.Last[FM] 

bb = myinv[ww] 

0.05 O.l. O.l.S 0 .Z 0 . Z5 0.:1 

Init ial approximation 

{24.3544, {a ~ 0.0384861}} 

24.3544 

0.0384861 
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0.317569 

Step 2: < <Statistics'DiscreteDistributions' 
11 Monte Carlo check 111 

Clear[pois, Z, j, A, n]; n = 10"6; A = ww; 

pois[o:o-] :=Random[PoissonDistribution[o:o]]; SeedRandomD; tO = TimeUsedO; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < bb, i++, Z = Z(l - A)+ A(pois[l] -1)], 

j = j + i-1,X = X + (i-1)"2}, {k, 1,n}]; 

newT = N[j / n] 
TimeUsedO - tO 

Monte Carlo check 1 

468.1903 

0.0162 

1693.72 

Step 3: "Second approximation" 

newC = C /.(FindRoot[QQ[bb, ww, C, l] == newT, { C, .5, 2.0}]) 

newH = H /.(FindRoot[QQ[H , ww,newC, l] == T, {H,0.1, 0.5}]) 

Seco 1d approximation 

0.860551 

0.322935 

11 Corrected AD by closed-form martingale" 

0: = 1.5; 

.X=ww; 

-1/Log[l - A]Nlntegrate[(Exp[u(newH + AilewC)] - l)/u 

Exp[u - o:Sum[(Exp[uA(l - A)"k] - 1), {k, 0, oo }]], { u, 0, oo }] 

Corrected AD 

24.3544 

Step 4: "Final check MC for AD" 

< <Statistics'DiscreteDistributions' 

Clear[pois, Z,j, A, n, AD]; n = 10"6; A= ww; 

pois(o:_]:=Random[PoissonDistribution(o:]]; SeedRandomO; tO = TimeUsed0; 
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X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - ,\) + ,\(pois[l.5] - 1)], 

j = j + i-1,X = X + (i-1)"2}, {k, 1, n}]; 

AD= Nfj/n] 

Sqrt[((X/n) - (AD"2))/n] 

TimeUsedO -to 

Final check MC for AD 

24.72947 

0.00553 

153.578 

"Final check MC for ARL 11 

Clear[pois, Y,j, alf, n]; n = 10"6; ,\ = ww; 

pois[o:o-] :=Random[PoissonDistribution[o:o]]; SeedRandomO; tO = TimeUsedO; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - ,\) + ,\(pois[l] - 1)], 

j = j + i -1,X = X + (i-1)"2}, {k, 1, n}]; 

T = Nfj/n] 

Sqrt[((X/n) - (T"2))/n] 

TimeUsed0 - tO 

Final check MC for ARL 

497.876 

0.157827 

8144.75 

B.1.4 Calculation codes for the case of Bernoulli EWMA chart 

Step 1: 11 Initial approximation" 

Clear[a, ..\, C, o:o, a, T, QQ, FF, H]; T = 500; C = 0.5; o:o = 0.05; o: = 0.25; 

QQ[H_, ,\_, C_, o:o-]:= - 1/Log[l - ..\] 

(Nlntegrate[(Exp[(H + ..\C)u] - l)Exp[uao]/u 
00 

1/ Il (o:oExp[..\u(l - ..\)"k] + (1- o:o)), {u,0, 1}] 
k=O 

+Nlntegrate[(Exp[(H + ..\C)u] - l)Exp[uo:o]/u 
00 

1/ Il (o:oExp(..\u(l - ..\)"k] + (1- o:o)), {u, 1, oo}]); 
k=O 
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l'l 

1 6 

15 

myinv[.A_]:=H /.(FindRoot[QQ[H, .\, C, ao] == T, {H, 0.01, 0.2}]); 

FF[.\_]:= - 1/Log[l - .X] 

(Nlntegrate[(Exp[(myinv[.X] + .\C)u] - l)Exp[uao]/u 
00 

1/ Il (aExp[au(l - a)"k] + (1- a)), {u, 0.001, 1}] 
k=O 

+Nlntegrate[(Exp[(myinv[.X] + .\C)u] - 1) Exp[uao]/u 
00 

1/ Il (aExp[.Xu(l - .X)"k] + (1- a)), {u, 1, oo}]); 
k=O 

Plot[FF[.X], {.\, .01, .5}] 

FM= FindMinimum[FF[.X], {.\, .01, .5}] 

AD = First[FM] 

ww = .\/ .Last[FM] 

bb = myinv[ww] 

O . .l 0.2 0. 3 0.4 0.5 

Initial approximation 

{13.8289, {a -+ 0.0603573}} 

13.8289 

0.0603573 

0. 106329 

Step 2: < <Statistics'DiscreteDistributions' 

"Monte Carlo check 1 11 

Clear[ber, Z,j, .\, n]; n = 10"6; ,\ = ww; 

ber:=If[RandomO > 0.95, 1, O]; SeedRandomO; tO = TimeUsedO; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < bb , i++, Z = Z(l - .\)+.\(her - 0.05)], 

j = j + i -1,X = X + (i-1)"2}, {k, 1, n}]; 

newT = N[j/n] 

Sqrt[(X/n - newT"2)/n] 

TimeUsed0 - tO 
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Monte Carlo check 1 

329.843 

0.104195 

299.016 

Step 3: "Second approximation" 

newC = C/.(FindRoot[QQ[bb, ww, C,ao] == newT, {C, .1, .7}]) 

newH = H /.(FindRoot[QQ[H, ww, newC, pO] == T, { H, .01, 0.5}]) 

Second approximation 

0.298388 

0.118498 

0 .0603573 

"Corrected AD by closed-form martingale0 

a = 0.15; A = ww; 

-1/Log[l - a] 

(Nlntegrate[(Exp((H + AfiewC)u] - l)Exp[uao]/u 
00 

1/ Il (aExp(Au(l - A)Ak] + (1- a)), {u, 0.001, 1}) 
k=O 

+Nlntegrate[(Exp[(H + AnewC)u] - l)Exp(uao]/u 
00 

1/ Il (aExp(;\u(l -A)Ak] + (1- a)), {u, l,oo}]) 
k=O 

Corrected AD 

13.8289 

Step 4: "Final check MC for AD" 

Clear[ber, Y, j, A, n]; n = 1QA6; A = ww; 

ber:=li[RandomU > 0.75, 1, O]; SeedRandomO; tO = TimeUsed0; 

X=O;j=O; 

Do({For[i = 1; Z = 0, Z < newH , i++, Z = Z(l - A) + A(her - 0.05)], 

j = j + i -1, X = X -t- (i - l)A2}, {k, 1, n}]; 

AD= N[j/n] 

Sqrt[(X/n -ADA2)/n] 

TimeUsedU - tO 

Final check MC for AD 

14.4024 
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0.00303116 

14.016 

"Final check MC for ARL 11 

Clear[ber, Z, j, A, n]; n = 1QA6; A= ww; 

ber:=ff[RandomO > 0.95, 1, O]; SeedRandomO; tO = TimeUsed0; 

X = O;j = O; 

Do[{For[i = 1; Z = 0, Z < newH , i++, Z = Z{l - A) + A{her - 0.05)], 

j = j + i - 1, X = X + (i - l)A2}, {k, 1, n}]; 

T = Nfj/n] 

Sqrt[(X/n - TA2)/n] 

TimeUsedO - tO 

Final check MC for ARL 

494.776 

0.156512 

449.828 
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