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Abstract. We obtain fundamental solutions for PDEs of the
form ut = σxγuxx + f(x)ux −µxru by showing that if the symme-
try group of the PDE is nontrivial, it contains a standard integral
transform of the fundamental solution. We show that in this case,
the problem of finding a fundamental solution can be reduced to
inverting a Laplace transform or some other classical transform.

1. Introduction

In this paper we show how to compute fundamental solutions for
every partial differential equation (PDE) of the form

ut = σxγuxx + f(x)ux − µxru, (1.1)

which possesses a sufficiently large symmetry group. These PDEs are
important in financial mathematics and other areas. We extend a tech-
nique due to Craddock and Platen [CP04], who studied the γ = 1, µ = 0
case. Their method reduces the problem to the evaluation of a single
inverse Laplace transform, which is given as an explicit function of the
drift f . Such a method has many benefits. For example, it is quite di-
rect since it does not require changes of variables or the solution of an
ordinary differential equation, and it may be implemented numerically.

Craddock and Platen’s analysis relies upon an apparent curiosity.
Namely, that for a large class of PDEs, one of the multipliers (see
Section 2), in the Lie point symmetry group is the Laplace transform
of the fundamental solution. This approach is however incomplete, as
Craddock and Platen were not able to handle every class of PDE they
studied. We give the complete solution to the problem.

It turns out that what Craddock and Platen discovered is a special
case of a more general phenomenon. We prove that for at least one
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of the vector fields in the sl2 part of the Lie symmetry algebra, the
multiplier of the symmetry, or a slight modification of the multiplier, is
always a classical integral transform of the fundamental solution of the
PDE. We show that Laplace transforms of the fundamental solutions
arise naturally, as do other classical transforms, such as the Whittaker
and Hankel transforms. A priori, it is not at all obvious that this should
be true. This curious fact suggests a connection between Lie symmetry
analysis and harmonic analysis, which should be investigated further.

The method also yields a quite elementary derivation of the so called
heat kernel on the Heisenberg group. Most derivations of this heat
kernel are far from elementary. See for example Gaveau, [Gav77] and
Jorgensen and Klink [JK88]. We reduce the problem to inverting a
Laplace transform. In fact we will recover more than just the heat
kernel. We obtain a family of solutions containing the heat kernel.

2. Lie Symmetries as Integral Transforms

For the theory of Lie symmetries we refer to Olver’s book [Olv93].
For simplicity we consider only a single linear equation

ut = P (x, u(n)), x ∈ Ω ⊆ R, (2.1)

with independent variables x and t and dependent variable u. Here u(n)

denotes u and its first n derivatives in x. The essence of Lie’s method
is that we look for vector fields of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (2.2)

which generate one parameter groups preserving solutions of the given
PDE. Since every PDE of the form (2.1) has time translation symme-
tries as well as an infinite dimensional Lie algebra of symmetries which
comes from the superposition of solutions, we call them trivial symme-
tries. When we refer to the dimension of a Lie symmetry algebra, we
mean the dimension of the algebra excluding the infinite dimensional
ideal generated by superposition of solutions.

We denote by ũǫ = ρ(exp ǫv)u(x, t) the action on solutions generated
by v. Typically we have

ρ(exp ǫv)u(x, t) = σ(x, t; ǫ)u (a1(x, t; ǫ), a2(x, t; ǫ)) , (2.3)

for some functions σ, a1 and a2. We call σ the multiplier and a1 and a2

the change of variables of the symmetry.
Now suppose that (2.1) has a fundamental solution p(t, x, y). Then

the function

u(x, t) =

∫

Ω

f(y)p(t, x, y)dy, (2.4)

solves the initial value problem for (2.1) with appropriate initial data
u(x, 0) = f(x).

The idea is to connect the solutions (2.3) and (2.4). We take a
stationary (time independent) solution u = u0(x). So in this case
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ρ(exp ǫv)u0(x) = σ(x, t; ǫ)u0 (a1(x, t; ǫ)) . (2.5)

Setting t = 0 and using (2.4) suggests the relation
∫

Ω

σ(y, 0; ǫ)u0(a1(y, 0; ǫ)p(t, x, y)dy = σ(x, t; ǫ)u0 (a1(x, t; ǫ)) . (2.6)

Since σ and a1 are known, we have a family of integral equations for
p(t, x, y).

Consider the example of the one dimensional heat equation ut = uxx.
If u(x, t) solves the heat equation, then for ǫ small enough, so does

ũǫ = e−ǫx+ǫ2tu(x− 2ǫt, t). (2.7)

Taking u0 = 1, equation (2.5) gives
∫ ∞

−∞
e−ǫyp(t, x− y)dy = e−ǫx+ǫ2t, (2.8)

where p(t, x) is the one dimensional heat kernel. Thus the multiplier
in the symmetry (2.7) is nothing more than the two sided Laplace
transform of p(t, x− y). We can recover p(t, x− y) by inverting (2.8).

A second well know symmetry of the heat equation is

ũǫ =
1√

1 + 4ǫt
exp

{ −ǫx2

1 + 4ǫt

}
u

(
x

1 + 4ǫt
,

t

1 + 4ǫt

)
. (2.9)

Using u0 = 1 again we obtain
∫ ∞

−∞
e−ǫy2

p(t, x− y)dy =
1√

1 + 4ǫt
exp

{ −ǫx2

1 + 4ǫt

}
. (2.10)

Equation (2.10) is an integral transform. It is easy to verify that

p(t, x) = 1√
4πt
e−x2/4t is a solution of the integral equation (2.10). Di-

rectly inverting the transform is more problematic since we do not
know of an explicit inversion theorem and the inverse transform will be
unique only up to the addition of an arbitrary odd function. However,
using the fact that p is positive and setting z = y2 gives

∫ ∞

−∞
e−ǫy2

p(t, x− y)dy =

∫ ∞

0

e−ǫzG(t, x, z)dz,

whereG(t, x, z) = (p(t, x−√
z)+p(t, x+

√
z))/2

√
z. Thus the multiplier

in the symmetry (2.9) is the Laplace transform of G(t, x, z). Inverting
the Laplace transform gives

G(t, x, z) =
1√
4πt

exp

{−(x2 + z)

4t

}
cosh(x

√
z/2t)√
z

.

From this we can recover p(t, x). A more satisfactory method of ex-
tracting the fundamental solution from (2.10) is developed in Section
7. Our overall aim is to show that exploiting the relationship (2.6)
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yields a fundamental solution for any PDE of the form (1.1) with non
trivial symmetry group.

3. Symmetries of Generalized Bond Pricing Equations

A zero coupon bond is a security which pays the holder one unit of
currency at maturity. A readable account of the theory of bond pricing
by PDE methods is contained in the book [Jos03].

Assume that the risk neutral spot rate of interest X satisfies the
stochastic differential equation

dXt = f(Xt, t)dt+ b(Xt, t)dWt, X0 = x, (3.1)

where W is a standard Wiener process. The function f is known as
the drift and b the volatility. Let u be a solution of the PDE

ut =
1

2
b(x, t)2uxx + f(x, t)ux − xu, x ≥ 0 (3.2)

with initial condition u(x, 0) = 1. It can be shown that the price at
time t of a zero coupon bond maturing at time T , is given by u(x, T−t).

We concentrate here on interest rate models of the form

dXt = f(Xt)dt+
√

2σXtdWt.

This corresponds to γ = 1 in (1.1). We will illustrate the general
principles for the γ = 1 case. We will proceed by computing the Lie
symmetries of the PDE (1.1) with γ = 1. The case r = 1 contains
the bond pricing equation for this class of interest rate models. Its
symmetries were completely described by Lennox in [Len04]. The µ = 0
case was analysed by Craddock and Platen in [CP04]. The case of
arbitrary γ in (1.1) is considered in Section 7.

Proposition 3.1. The partial differential equation

ut = σxuxx + f(x)ux − µxru (3.3)

with r 6= −1 has a non trivial Lie algebra of symmetries if and only
if the drift function f is a solution of one of the following families of
Ricatti equations

σxf ′ − σf +
1

2
f 2 + 2µσxr+1 = Ax+B, (3.4)

σxf ′ − σf +
1

2
f 2 + 2µσxr+1 =

A

2
x2 +Bx+ C, (3.5)

σxf ′ − σf +
1

2
f 2 + 2µσxr+1 =

A

2
x2 +

2

3
Bx

3
2 + Cx− 3

8
σ2.(3.6)

If r = −1 the right hand side of equations (3.4)-(3.6) is replaced by
σxf ′ − σf + 1

2
f 2 + 2µσ lnx.
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The proof of this result is essentially the same as the µ = 0 case given
in [CP04]. The factors of 1

2
and 2

3
multiplying the constants A and B

in (3.5) and (3.6) are a notational convenience. For our purposes we
need only the following facts: When f is a solution of (3.4), then there
is an infinitesimal symmetry

v1 = xt∂x +
1

2
t2∂t −

1

2σ
(x+ tf(x) +

1

2
At2)u∂u. (3.7)

When f is a solution of (3.5) there is an infinitesimal symmetry of
the form

v1 = xe−
√

At∂x −
e−

√
At

√
A
∂t +

e−
√

At

2σ
(
√
Ax− f(x) +

B√
A

)u∂u. (3.8)

When f is a solution of (3.6) with A = 0 there is an infinitesimal
symmetry

v1 =
(
xt+

B

12

√
xt3
)
∂x +

1

2
t2∂t −

1

2σ

(
x+

B

2

√
xt2 + tf(x) − σB

24
√
x
t3

+
B

12
√
x
t3f(x) +

C

2
t2 +

B2

144
t4
)
u∂u.

When f is a solution of (3.6) with A 6= 0 then there is an infinitesimal
symmetry

v1 = e−
√

At
(
x+

2B

3A

√
x
)
∂x −

e−
√

At

√
A
∂t + e−

√
At
(
√
A

2σ
x+

2B
√
x

3σ
√
A

− f(x)

2σ
+

B

6A
√
x
− Bf(x)

3σA
√
x

+
C

2σ
√
A

+
B2

9σA3/2

)
u∂u. (3.9)

A complete classification of the infinitesimal symmetries is in [Len04].
It may be readily checked that the symmetry algebras in all cases are
either the Lie algebras of SL(2,R) × R or SL(2,R) ⋊ H3 where H3 is
the three dimensional Heisenberg group. The vector fields listed above
all come from sl2.

For example, consider the case of the Lie symmetry algebra when f
satisfies (3.4). Introduce the standard basis for sl2 given by

k1 =

(
0 1
0 0

)
, k2 =

(
−1 0
0 1

)
, k3 =

(
0 0
−1 0

)
.

Calculating the commutator table for the Lie symmetries shows that
v1 given by (3.7) is equivalent to the matrix element k3. The time
translation symmetry v2 = ∂t is equivalent to k1 and the Lie bracket of
v1 and v2 produces a vector field which is equivalent to the basis vector
k2. Similar comments can be made about the Lie symmetry algebras
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when the drift f satisfies one of the other classes of Ricatti equations.
In general, all the vector fields listed here correspond to k3.

It is also worth noting that all the known symmetry methods for
obtaining fundamental solutions, such as the group invariant solution
method of Bluman, Cole and Kumei (cf [BK89]) will only work for the
drifts described in Proposition 3.1.

4. Laplace Transforms of Fundamental Solutions.

The first case to consider is when f satisfies (3.4). The next result
generalizes Theorem 4.1 of [CP04]. The case r = 1 is in [Len04].

Theorem 4.1. Let f be an analytic solution of the Ricatti equation

σxf ′ − σf +
1

2
f 2 + 2µσxr+1 = Ax+B. (4.1)

Let u0(x) be an analytic solution of (3.3) which is independent of t and

Uλ(x, t) = exp

{
1

2σ

(
F

(
x

(1 + σλt)2

)
− F (x)

)
− λ(x+ A

2
t2)

(1 + σλt)

}
×

u0

(
x

(1 + σλt)2

)
, (4.2)

where F ′(x) = f(x)/x. Then

Uλ(x, t) =

∫ ∞

0

u0(y)pµ(t, x, y)e−λydy

where pµ(t, x, y) is a fundamental solution of (3.3).

Proof. We exponentiate the vector field (3.7) to see that if u0(x) is a sta-
tionary solution of the PDE (3.3) where f satisfies (3.4), then Uλ(x, t)
given by (4.2) is also a solution. Since u0 and f are analytic, then for
each t > 0, Uλ is analytic in 1/λ and therefore is a Laplace transform in
y of u0(y)pµ(t, x, y) for some distribution pµ. Since Uλ(x, 0) = u0(x)e

−λx

we must have p(0, x, y) = δx(y), the Dirac measure weighted at x. To
see that pµ is a fundamental solution of (3.3), observe that if we inte-
grate a test function ϕ(λ) with sufficiently rapid decay against Uλ then
the function u(x, t) =

∫∞
0
Uλ(x, t)ϕ(λ)dλ is a solution of (3.3). We also

have

u(x, 0) =

∫ ∞

0

Uλ(x, 0)ϕ(λ)dλ =

∫ ∞

0

u0(x)e
−λxϕ(λ)dλ = u0(x)Φ(x),
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where Φ is the Laplace transform of ϕ. Next observe that
∫ ∞

0

u0(y)Φ(y)pµ(t, x, y)dy =

∫ ∞

0

∫ ∞

0

u0(y)ϕ(λ)pµ(t, x, y)e−λydλdy

=

∫ ∞

0

∫ ∞

0

u0(y)ϕ(λ)pµ(t, x, y)e−λydydλ

=

∫ ∞

0

ϕ(λ)Uλ(x, t)dx = u(x, t).

We know that u(x, 0) = u0(x)Φ(x). Thus integrating initial data u0Φ
against pµ solves the Cauchy problem for (3.3), with this initial data.
Hence pµ is a fundamental solution. �

We will give some financial applications. To obtain drift functions,
we set f(x) = 2σxy′(x)/y(x). This transforms equation (3.4) with r =
1 to the linear ODE

2σ2x2y′′(x) + (2µσx2 − Ax−B)y(x) = 0. (4.3)

This has general solution

y(x) = e
−ix

√
µ√

σ xβ/2

(
a1F1(α, β,

2 i x
√
µ√

σ
) + bΨ(α, β,

2 i x
√
µ√

σ
)

)
, (4.4)

where a and b are constants, α =
−
(
i A−2

√
µ σ

3
2 −2

√
µ
√

1+ 2 B

σ2 σ
3
2

)

4
√

µ σ
3
2

, β =

1+
√

1 + 2 B
σ2 , 1F1 is Kummer’s confluent hypergeometric function and

Ψ is Tricomi’s confluent hypergeometric function, given by formula
13.1.6 in [AS72]. This implies that f is analytic.

To obtain a stationary solution u0 we solve

σxuxx + f(x)ux − µxu = 0. (4.5)

We set u = ũ(x)e
∫

ϕ(x)dx with ϕ(x) = − 1
2σx

f(x). An easy calculation
shows that ũ satisfies the ODE

2σ2x2ũxx − (Ax+B)ũ = 0. (4.6)

Equation (4.6) is solved in terms of Bessel functions. Hence u0 is also
analytic.

Example 4.1. If A = 0, then

y(x) = a
√
x Jη

(
x
√
µ/σ

)
+ b

√
xYη

(
x
√
µ/σ

)
. (4.7)

Here η = 1
2

√
1 + 2B/σ2, Jη, Yη are Bessel functions of the first and

second kinds and a and b are arbitrary constants. If B = 0, a = 0 and
b = 1 we obtain the drift function f(x) = 2x

√
µσ cot

(
x
√

µ
σ

)
.

A stationary solution of the corresponding bond pricing equation is
u0(x) = csc

(
x
√

µ
σ

)
. Applying Theorem (4.1) we obtain
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Uλ(x, t) = exp

{ −λx
1 + t λ σ

}
csc

(
x

√
µ

σ

)
.

Computing the inverse Laplace transform gives,

pµ(t, x, y) = exp

{−(x+ y)

σt

}( √
x√
y σt

I1(
2
√
xy

σt
) + δ(y)

)
sin(y

√
µ
σ
)

sin(x
√

µ
σ
)
.

The bond price B(x, t, T ) when the risk neutral spot rate of interest
x follows the SDE dXt = 2Xt

√
σ cot( Xt√

σ
)dt+

√
2σXtdWt, is then

B(x, t, T ) =

∫ ∞

0

p1(T − t, x, y)dy = e

{
−x(T−t)

1+σ(T−t)2

} sin

(
x

√
σ+σ

3
2 (T−t)2

)

sin
(

x√
σ

) .

With the fundamental solution we can also price options on bonds,
interest rate swaps, interest rate caps and many other instruments.
For example, a European call/put option is the right to buy/sell an
underlying asset for a fixed strike price at some date in the future. The
price of a call option with strike E on the zero coupon bond B is simply

C(B, x, t, T ) =

∫ ∞

0

max (B(y, t, T ) − E, 0) p1(T − t, x, y)dy.

Example 4.2. Setting A = 0, B = 4σ2, a = 1 and b = 1 in the general
solution (4.4) we obtain the drift function

f(x) =
−2σ

g(x)

(
g(x) +

µx2

√
σ

(sin(x

√
µ

σ
) − cos(x

√
µ

σ
))

)
,

where g(x) =
(
x
√
µ+

√
σ
)

cos(x
√

µ
σ
) +

(
x
√
µ−√

σ
)

sin(x
√

µ
σ
).

Omitting the details, we obtain via Theorem 4.1 a fundamental so-
lution of ut = σxuxx + f(x)ux − µxu. It is

pµ(t, x, y) =
1

σt
exp

{
−x+ y

σt

}(
x

y

) 3
2

I3

(
2
√
xy

σt

)
g(y)

g(x)
.

The corresponding bond price may now readily be obtained.
Many such examples are possible. The drifts which arise can be very

complex, and so allow for very different kinds of interest rate dynamics.

4.0.1. Stochastic volatility models. Consider the problem of pricing a
European option under stochastic volatility. The time evolution of the
underlying asset St is modelled by the SDE dSt = rSdt+

√
vtdW

1
t and

the volatility vt satisfies dvt = f(vt)dt+ a
√
vtdW

2
t .

We assume that the two Wiener processes W 1,W 2 are uncorrelated.
The value of an option at time t with expiry T and payoff g is denoted
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V (S, v, t). It can be shown that V must satisfy the PDE

Vt +
1

2
vS2VSS + rSVS +

1

2
a2vVvv + f(v)Vv − rV = 0, (4.8)

subject to V (S, v, T ) = g(S, v). For a discussion of stochastic volatility
models see the book by Joshi, [Jos03]. Letting S = lnx, t→ T − t and

V̂ (ξ, v, t) =
∫∞
−∞ V (x, v, t)e−iξxdx leads to the PDE

Ut =
1

2
a2vUvv + f(v)Uv − µvU, (4.9)

with α = r(iξ − 1), µ = 1
2
(ξ2 + iξ) and U = e−αtV̂ . If pµ(t, v, y) is the

fundamental solution of (4.9), then

V̂ (ξ, v, t) = eα(T−t)

∫ ∞

0

ĝ(ξ, y)pµ(T − t, v, y)dy.

From which we can determine V . Consequently, for our models, the
problem of pricing an option under stochastic volatility is reduced to
the evaluation of an integral.

5. Whittaker Transforms of Fundamental Solutions

Let us consider the vector field v1 from (3.8). Craddock and Platen
were only able to handle some special cases for this symmetry. Here
we present the complete solution to the problem.

Exponentiating v1 and replacing ǫ with −ǫ we see that if u0(x) is a
stationary solution of equation (3.3), then with F ′(x) = f(x)/x,

U−ǫ(x, t) = e−
Bt
2σ exp

{
−
√
Axǫ

2σ(e
√

At − ǫ)
+

1

2σ

(
F

(
xe

√
At

e
√

At − ǫ

)
− F (x)

)}

× (e
√

At − ǫ)
B

2σ
√

A u0

(
xe

√
At

(e
√

At − ǫ)

)
, (5.1)

is also a solution of (3.3). We assume that u0 is not left invariant by
this symmetry. If it is, then the analysis we present fails. However if
(5.1) leaves u0 invariant, we may use a second sl2 symmetry, generated

by v2 = xe
√

At∂x + e
√

At√
A
∂t− e

√
At

2σ
(
√
Ax+f(x)+ B√

A
)u∂u. This symmetry

will not fix u0. The analysis we present here can be repeated for that
symmetry and the results are essentially identical.

We assume that A > 0. The case A < 0 can be handled by a slight
modification of our argument. We write U−ǫ(x, t) as an integral of its
initial value against our fundamental solution. Then we have,

∫ ∞

0

U−ǫ(y, 0)pµ(t, x, y)dy = U−ǫ(x, t). (5.2)

To identify this as a known integral transform we observe that the
solution u0 may be written as u0(x) = ũ0(x)e

−F (x)/2σ where ũ0 satisfies
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the ODE 2σ2x2ũ′′0(x) − (1
2
Ax2 +Bx+ C)ũ0(x) = 0. This has solution

ũ0(x) = e
−
√

A x
2σ x

β
2

(
a1F1(α, β,

√
Ax

σ
) + bΨ(α, β,

√
Ax

σ
)

)
, (5.3)

where α = B
2σ

√
A

+ 1
2
β, β = 1 +

√
1 + 2 C

σ2 . With a = 0, b = 1, this gives

U−ǫ(x, t) = e−
Bt
2σ (e

√
At − ǫ)

B

2σ
√

A
−β

2 x
β
2 e−

F (x)
2σ exp

{
−
√
Ax(e

√
At + ǫ)

2σ(e
√

At − ǫ)

}

× Ψ

(
α, β,

√
Axe

√
At

σ(e
√

At − ǫ)

)
. (5.4)

Therefore, with η = B
2σ

√
A
− 1

2
β, equation (5.2) reads

U−ǫ(x, t) = (1 − ǫ)η×
∫ ∞

0

y
β
2 e−

F (y)
2σ exp

{
−
√
Ay(1 + ǫ)

2σ(1 − ǫ)

}
Ψ

(
α, β,

√
Ay

σ(1 − ǫ)

)
pµ(t, x, y)dy.

Upon setting λ =
√

A
σ(1−ǫ)

this becomes
∫ ∞

0

e−λy(λy)
β
2 Ψ(α, β, λy)hµ(t, x, y)dy = λ

B

2σ
√

AU√
A

σλ
−1

(x, t),

where hµ(t, x, y) = (
√

A
σ

)ηe
√

Ay−F (y)
2σ pµ(t, x, y).

Let Wk+1/2,ν(z) = e−z/2z1/2+νΨ(ν−k, 1+2ν, z) be the second Whit-
taker function, (see formula 13.1.33 of [AS72]). If 1+2ν = β, ν−k = α,
then the previous integral becomes.

∫ ∞

0

e−
λy
2 Wk+ 1

2
,ν(λy)hµ(t, x, y)dy = λ

B

2σ
√

AU√
A

σλ
−1

(x, t).

We may write this as
∫ ∞

0

e−
λy
2 (λy)−k− 1

2Wk+ 1
2
,ν(λy)(λy)

k+ 1
2hµ(t, x, y)dy = λ

B

2σ
√

AU√
A

σλ
−1

(x, t).

If h̃µ(t, x, y) = yk+ 1
2hµ(t, x, y), then this becomes

∫ ∞

0

e−
λy
2 (λy)−k− 1

2Wk+ 1
2
,ν h̃µ(t, x, y)dy = λ

B

σ
√

AU√
A

σλ
−1

(x, t). (5.5)

The final integral in (5.5) is the so called Whittaker transform of h̃µ.

Definition 5.1 (The Whittaker Transform). The Whittaker transform
of a suitable function φ is defined by

(Wk,νφ)(λ) = Φ(λ) =

∫ ∞

0

(λy)−k−1/2e−λy/2Wk+1/2,ν(λy)φ(y)dy. (5.6)
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An inversion theorem for this transform is known. For a suitable con-
stant ρ we have

φ(y) =
1

2πi

Γ(1 + ν − k)

Γ(1 + 2ν)

∫ ρ+i∞

ρ−i∞
(λy)−k−1/2eλy/2Mk−1/2,ν(λy)Φ(λ)dλ.

The function Mk−1/2,ν is the first Whittaker function given by formula
13.1.32 of [AS72]. The integral is taken in the principal value sense.
For a discussion of the transform, see [BP89] p110. Note that Brychkov
and Prudnikov call this the Meijer transform. There does not seem to
be a general naming convention in the literature regarding these trans-
forms. Unfortunately, theorems guaranteeing that a given function is
a Whittaker transform seem to be difficult to prove, so our next result
is not as strong as Theorem 4.1.

Theorem 5.2. Let f be a solution of (3.5) for µ 6= 0. Let η = B
2σ

√
A
−

1
2
β, ν = 1

2

√
1 + 2C/σ2 and k+ 1

2
= − B

2σ
√

A
. Let U√

A
λσ

−1
(x, t) be given by

(5.1). Suppose that λ
B

σ
√

AU√
A

λσ
−1

(x, t) is the Whittaker transform of a

function h̃µ(t, x, y). Then h̃µ(t, x, y) =
(√

A
σ

)η

yk+ 1
2 e

√
Ay−F (y)

2σ pµ(t, x, y),

where pµ is a fundamental solution of the PDE (3.3).

Note. If µ = 0 this theorem is still valid if we simply replace the
stationary solution given with u0 = 1. It is also easy to show that if
A→ 0 then this result reduces to Theorem 4.1.

Proof. From the initial value for λ
B

σ
√

AU√
A

λσ
−1

(x, t), it is clear that its

Whittaker transform must be of the form h̃µ(t, x, y), where p(0, x, y) =
δx(y). To show that pµ is a fundamental solution, we use the same
argument as in the proof of Theorem 4.1. We need to know that
the Whittaker transform has the right operational properties, such as∫∞
0
f(x)(Wk,νg)(x)dx =

∫∞
0

(Wk,νf)(x)g(x)dx. This is the case. For
a discussion of this and other operational properties of the Whittaker
transform see Chapter 7 of [KS04]. �

Note. Fortunately, it is possible to explicitly prove that for a wide
range of parameters we do indeed have a Whittaker transform. For
example, if Re(ν − k) > −1 then h̃µ can be shown to be a Whittaker
transform. Two other special cases are presented now.

5.1. Two special cases.

5.1.1. The case B
2σ

√
A

+ 1
2

= 1
2

√
1 + 2C

σ2 . Set ν = 1
2

√
1 + 2C

σ2 . Since

Ψ(2ν, 1 + 2ν, x) = x−2ν , then for this choice of parameters the problem
reduces to inverting a Laplace transform. We consider only the case
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A > 0. We obtain after a straightforward calculation
∫ ∞

0

exp

{
−
√
Ay(1 + ǫ)

2σ(1 − ǫ)
− F (y)

2σ

}
y

1
2
−ν(1 − ǫ)−1+2νpµ(t, x, y)dy

= e
√

At(e
√

At − ǫ)−1+2νx
1
2
−ν exp

{
−
√
A(e

√
At + ǫ)

2σ(e
√

At − ǫ)
− F (x)

2σ

}
. (5.7)

We set λ =
√

A(1+ǫ)
2σ(1−ǫ)

. After some further calculations this reduces to

∫ ∞

0

e−λyy
1
2
−νe−

F (y)
2σ pµ(t, x, y)dy = e−

F (x)
2σ

( √
A

σ(e
√

At − 1)

)1−2ν

e
√

At×

exp

{
−
√
Ax

2σ tanh(
√

At
2

)
+

m

λ+
√

A
2σ

coth(
√

At
2

)

}
(λ+

√
A

2σ
coth(

√
At

2
))−1+2ν ,

where m = Ax
2σ

cosech2(
√

At
2

). Inversion of this Laplace transform is
straightforward. There are two cases.

If ν 6= 1
2

then

pµ(t, x, y) =

4ν

√
x

y

√
Ae(

1
2
+ν)

√
At

4σ sinh(
√

At
2

)
e

F (y)−F (x)
2σ exp

{
−

√
A(x+ y)

2σ tanh(
√

At
2

)

}
I−2ν

(
2
√
Axy

σ sinh(
√

At
2

)

)
.

If ν = 1
2

then the fundamental solution is given by

pµ(t, x, y) = e
F (y)−F (x)

2σ exp

{
−

√
A(x+ y)

2σ tanh(
√

At
2

)

}
× (5.8)

( √
A

2σ sinh(
√

At
2

)

√
x

y
I1

(
2
√
Axy

σ sinh(
√

At
2

)

)
+ δ(y)

)
.

5.1.2. The case B = 0. If B = 0 then we make use of the fact that

(λx)
1
2
+νe−λxΨ(1/2 + ν, 1 + 2ν, λx) = 2−ν

√
λx/πKν(λx) (5.9)

where Kν is a modified Bessel function. This implies that

U σλ√
A
−1(x, t) = (

√
A

σ
)η 2−ν

√
π

∫ ∞

0

√
λyKν(λy)e

√
Ay
2σ

−F (y)
2σ pµ(t, x, y)dy.

This so called K transform can be inverted. We have

(

√
A

σ
)η 2−ν

√
π
e

√
Ay−F (y)

2σ pµ(t, x, y) =

∫ ρ+i∞

ρ−i∞
(λy)

1
2 Iν(λy)U σλ√

A
−1(x, t)dλ,

for a suitable constant ρ. Here Iν is the modified Bessel function of the
first kind. Notice that for A < 0 we obtain the Hankel transform of
the fundamental solution.
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5.1.3. The case a = 1, b = 0. If we had taken a = 1, b = 0 in (5.3),
we would arrive at the so called 1F1 transform, described on page 115
of [BP89]. We leave the details of this calculation to the interested
reader.

6. The Final Class of Ricatti Equations

Now suppose that the drift function f satisfies the Ricatti equation
σxf ′−σf+ 1

2
f 2 +2µσxr+1 = A

2
x2 + 2

3
Bx

3
2 +Cx− 3

8
σ2. When A = 0 we

obtain the Laplace transform of the fundamental solution. The result
here generalizes Theorem 6.1 of Craddock and Platen [CP04]. The
proof is identical to that of Theorem 4.1 above and we omit it.

Theorem 6.1. Let f be a solution of the Ricatti equation,

σxf ′ − f +
1

2
f 2 + 2µσxr+1 = Ax

3
2 + Cx− 3

8
σ2. (6.1)

Let u0(x) be an analytic solution of (3.3) which is independent of t. Let

F ′(x) = f(x)/x, H(λ, x, t) = (12(1+λσt)
√

x−Aλ(σt)3)2

144(1+λσt)4
and

G(λ, x, t
σ
) = −λ(x+ 1

2
Ct2)

1+λt
−

2
3
At2

√
x(3+λt)

(1+λt)2
+

A2t4(2λt(3+ 1
2
λt)−3)

108(1+λt)3
.

Then for λ ≥ 0, Uλ(x, t) =
∫∞

0
u0(y)pµ(t, x, y)e−λydy, where pµ(t, x, y)

is a fundamental solution of (3.3) and

Uλ(x, t) =

√ √
x(1 + λσt)√

x(1 + λσt) − Aλ
12

(σt)3
exp {G(λ, x, t)}u0(H(λ, x, t)

× exp

{
− 1

2σ
(F (x) − F (H(λ, x, t)))

}
. (6.2)

The case when A 6= 0 in (3.6) turns out to be similar to that of the
previous section, though because of the nature of the symmetries, it is
perhaps not quite as elegant.

Let D = 2B
3A

, E = 1√
A
( C

2σ
+ B2

9σA
) and F ′(x) = f(x)/x. For simplicity

we will begin with the µ = 0 case and again assume that A > 0. The
cases A < 0 and µ 6= 0 can be handled similarly.

To solve the Ricatti equation (3.6) we set y = 2
√
x and h′(y)

h(y)
=

1
σy

(
f
(

y2

4

)
− σ

2

)
, then we obtain a second order ODE for h which is

solvable in terms of confluent hypergeometric functions. Omitting the
rather straightforward details this leads to

exp

{
1

2σ
F (x)

}
= x

1
4 e−

√
A(x+2D

√
x)

2σ

(
c1Ψ(−α

2
,
1

2
,

√
A(D +

√
x)

2

σ
)

+c21F1(β,
1

2
,

√
A(D +

√
x)

2

σ
)

)
, (6.3)
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where α = −1
2

+ 2B2−9CA

9σA
3
2

and β =
−4 B2+9

(
2 A C+σA

3
2

)

36 σ A
3
2

and c1 and c2

are arbitrary constants. We will take the solution corresponding to
c2 = 0, c1 = 1.

We exponentiate the infinitesimal symmetry (3.9). Let u(x, t) be a
solution of (3.3), then the following is also a solution.

ρ(exp(ǫv1))u(x, t) = (1 + ǫe−
√

At)−E

√√√√
√
xe

√
At
2

e
√

At
2 (D +

√
x) −D

√
e
√

At + ǫ

× exp






√
Aǫ(

√
x+D)2

2σ(e
√

At + ǫ)
+

1

2σ
F




(
e

√
At
2 (D +

√
x)√

e
√

At + ǫ
−D

)2







×

exp

{
− 1

2σ
F (x)

}
u




(
e

√
At
2 (D +

√
x)√

e
√

At + ǫ
−D

)2

, ln(e
√

At + ǫ)



 . (6.4)

Since we have assumed that µ = 0 we may take a stationary solution
u0(x) = 1. After cancellations, this leads to the following solution of
(3.3).

Uǫ(x, t) = (1 + ǫe−
√

At)−Ee
√

At
4 exp

{
−
√
A(

√
x+D)2

2σ

(
e
√

At − ǫ

e
√

At + ǫ

)}

× Ψ

(
−α

2
,
1

2
,

√
A(

√
x+D)2

σ(e
√

At + ǫ)

)
/hα(x), (6.5)

with hα(x) = exp
{
−

√
A(

√
x+D)2

2σ

}
Ψ
(
−α

2
, 1

2
,
√

A
σ

(
√
x+D)2

)
.

From this point the analysis is similar to that of the previous section
for the case of the Ricatti equation (3.5). We wish to interpret equation

(2.6) as a known integral transform. We set λ =
√

A
σ(1+ǫ)

. Thus (2.6)

becomes
∫ ∞

0

e−λ(
√

y+D)2Ψ

(
−α

2
,
1

2
, λ(

√
y +D)2

)
gα(y)pµ(t, x, y)dy = Uλ(x, t),

where gα(y) =
(√

A
σ

)E

exp
{√

A
2σ

(
√
y +D)2

}
/hα(y) and Uλ(x, t) =

λ−EU√
A

σλ
−1

(x, t). Upon setting z = (
√
y +D)2 we have

∫ ∞

0

e−λzΨ

(
−α

2
,
1

2
, λz

)
H(

√
z − |D|)g̃α(z)p̃µ(t, x, z)dω(z) = Uλ(x, t),

(6.6)
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where H is the Heaviside step function and g̃α and p̃µ are the obvious

transformed functions and dω(z) = (
√

z−|D|√
z

)dz. If we set ν = −1/4, k =

α/2 − 1/4 then (6.6) becomes

∫ ∞

0

e−
λz
2 (λz)−k− 1

2Wk+ 1
2
,ν(λz)Gα(z)p̃µ(t, x, z)dz = λ−k− 1

4Uλ(x, t),

where Gα(z) = H(
√
z−D)g̃α(z)(

√
z−D)zk− 1

4 . We can thus apply the
inversion formula for the Whittaker transform to recover the funda-
mental solution. Again, the proof of the next result follows the same
pattern as for Theorem 4.1.

Theorem 6.2. Let f be a solution of the Ricatti equation (3.6). Let
Uǫ(x, t) be as given by (6.5). Further let Gα(z) be as defined above and

k = −α/2− 1/4, ν = −1/4. Suppose that U √
A

λσ
−1

(x, t) = λ−k− 1
4 ( σλ√

A
)−E

×U√
A

σλ
−1

(x, t) is a Whittaker transform of a function Gα(z)p(t, x, z).

Then

Gα(z)p(t, x, z) =

∫ ρ+i∞

ρ−i∞
(λy)−k−1/2eλy/2Mk−1/2,ν(λy)U √

A
λσ

−1
(x, t)dλ,

(6.7)

and p̃(t, x, (
√
y +D)2) is a fundamental solution of (1.1) for the given

drift.

Note: This result can easily be extended to the µ 6= 0 case. Just
replace Uǫ(x, t) in the integral (6.7) by Uǫ(x, t) multiplied by the ap-
propriate stationary solution u0 of the PDE, as per the symmetry (6.4).

Example 6.1. Suppose that µ = 0 and (2B2 − 9CA)/9σA
3
2 = 3

2
. Fur-

ther assume that E > 0. It is straightforward to invert the transform
for these values and we obtain the fundamental solution

p(t, x, y) =
2

1
2
−E

√
y

(
√
y +D)

(√
x+D√
y +D

) 1
2
−E

exp

{√
AEt

2
+G(x, y, t)

}

× IE− 1
2




√
A(

√
x+D)(

√
y +D)

σ sinh
(√

At
2

)



 (1 − e−
√

At)−1H(
√
y +D − |D|),

where G(x, y, t) =
−
√

A
(
[(
√

y+D)2−(
√

x+D)2]+((
√

x+D)2+(
√

y+D)2) coth(
√

A t
2

)
)

2σ
.

7. The case of arbitrary γ.

We have shown that for every class of Ricatti equation in Propostion
3.1, there is an sl2 symmetry whose action comes from a well known
integral transform of the fundamental solution. Similar results can be
established for PDEs of the form (1.1) with γ 6= 1. There are various
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special cases which need to be considered in order to present a com-
plete picture, but this can be done by following the method described
here. Rather than embarking on an exhaustive treatment, we will con-
tent ourselves with an illustrative result for the general case and some
examples.

Theorem 7.1. Suppose that g(x) = x1−γf(x), γ 6= 2, r + 2 − γ 6= 0
and that g satisfies the Ricatti equation σxg′−σg+ 1

2
g2 +2σµxr+2−γ =

2σAx2−γ + B, where A and B are constants. Then equation (1.1) has
a symmetry of the form

Uǫ(x, t) =
1

(1 + 4ǫt)
1−γ
2−γ

exp

{−4ǫ(x2−γ + Aσ(γ − 2)2t2)

σ(2 − γ)2(1 + 4ǫt)

}
×

exp

{
1

2σ

(
F

(
x

(1 + 4ǫt)
2

2−γ

)
− F (x)

)}
u

(
x

(1 + 4ǫt)
2

2−γ

,
t

1 + 4ǫt

)
,

where F ′(x) = f(x)/xγ . Suppose further that the natural domain of
(1.1) is x ≥ 0. Let U ǫ be the value of Uǫ when u = u0 is a stationary
solution of the PDE (1.1). Then

∫ ∞

0

e−λy2−γ

u0(y)pµ(t, x, y)dy = U 1
4
λσ(2−γ)(x, t), (7.1)

where pµ(t, x, y) is a fundamental solution. If the equation is defined
on R then ∫ ∞

−∞
e−λy2−γ

u0(y)pµ(t, x, y)dy = U 1
4
λσ(2−γ)(x, t), (7.2)

Proof. A straightforward application of Lie’s prolongation algorithm
shows that when g satisfies the given Ricatti equation, there is an
infinitesimal symmetry of the form

v =
8xt

2 − γ
∂x +4t2∂t−(

4x2−γ

σ(2 − γ)2
+

4x1−γtf(x)

σ(2 − γ)
+

4(1 − γ)

2 − γ
t+4At2)u∂u.

Exponentiating the symmetry gives Uǫ. The remainder of the proof is
similar to that of Theorem 4.1. �

The integral transform in (7.1) can obviously be reduced to a Laplace
transform. We present an example.

Example 7.1. Let γ = 0. The Ricatti equation in Theorem 7.1 is easily
solved by the change of variables g = 2xσy′/y. One solution gives the

drift f(x) = −σ
2 x

+ 2
√
x
√
µ
√
σ cot(

2 x
3
2
√

µ

3
√

σ
). A stationary solution of

the corresponding PDE is u0(x) = x
3
2 csc(

2 x
3
2
√

µ

3
√

σ
). Applying Theorem

7.1 gives

Uǫ(x, t) =
x3/2

(1 + 4ǫt)7/4
exp

{ −ǫx2

σ(1 + 4ǫt)

}
csc(

2x
3
2
√
µ

3
√
σ

).



SYMMETRIES AND TRANSFORMS 17

The substitution z = y2 in (7.1) turns it into a Laplace transform.
Taking the inverse leads to the fundamental solution

p(t, x, y) =
1

2σt
x

3
4 y

1
4 exp

{−(x2 + y2)

4σt

}
I 3

4

( x y
2σt

) sin(
2 y

3
2
√

µ

3
√

σ
)

sin(
2x

3
2
√

µ

3
√

σ
)
.

Extracting the fundamental solution from (7.2) is not quite so straight-
forward. Fortunately there is an effective way of doing this. The basic
approach is to integrate the symmetries with respect to the group pa-
rameter.

The heat equation has two stationary solutions u0(x) = 1 and u1(x) =
x. From these we obtain the symmetry solutions

U0
ǫ (x, t) =

1√
1 + 4ǫt

e
−ǫx2

1+4ǫt , U1
ǫ (x, t) =

x

(1 + 4ǫt)
3
2

e
−ǫx2

1+4ǫt . (7.3)

Now let ϕ(ǫ) and ψ(ǫ) have sufficient decay to guarantee the conver-
gence of the integrals in

u(x, t) =

∫ ∞

0

ϕ(ǫ)U0
ǫ (x, t)dǫ+

∫ ∞

0

ψ(ǫ)U1
ǫ (x, t)dǫ. (7.4)

The function u(x, t) is a solution of the heat equation with u(x, 0) =
Φ(x2)+xΨ(x2) where Φ and Ψ are the Laplace transforms of ϕ and ψ.
The solutions U0

ǫ and U1
ǫ may be represented as Laplace transforms.

U0
ǫ (x, t) =

1√
4t
e−x2/4t

∫ ∞

0

e−ǫze−
z
4t

1√
πz

cosh(

√
zx

2t
)dz, (7.5)

U1
ǫ (x, t) =

1√
4t
e−x2/4t

∫ ∞

0

e−ǫze−
z
4t

1√
π

sinh(

√
zx

2t
)dz. (7.6)

Using these in (7.4) and reversing the order of integration gives

u(x, t) =

∫ ∞

0

1√
4πt

e−
x2+z

4t

[
Φ(z)

cosh(
√

zx
2t

)√
z

+ Ψ(z) sinh(

√
zx

2t
)

]
dz.

Letting z = y2 this becomes after simplification, u(x, t) =
∫ ∞

0

1√
4πt

e−
x2+y2

4t

[
e

xy
2t

(
Φ(y2) + yΨ(y2)

)
+ e−

xy
2t

(
Φ(y2) − yΨ(y2)

)]
dy

=

∫ ∞

0

1√
4πt

e−
(x−y)2

4t

(
Φ(y2) + yΨ(y2)

)
dy+

∫ ∞

0

1√
4πt

e−
(x+y)2

4t

(
Φ(y2) − yΨ(y2)

)
dy (7.7)

Letting y → −y in the second integral gives

u(x, t) =

∫ ∞

−∞

1√
4πt

e−
(x−y)2

4t

(
Φ(y2) + yΨ(y2)

)
dy (7.8)
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Since u(x, 0) = Φ(x2)+xΨ(x2) this implies that p(t, x−y) = 1√
4πt
e−

(x−y)2

4t

which is correct. Let us now use this procedure to determine the fun-
damental solution for another PDE.

Example 7.2. Consider the equation ut = uxx + 2 tanh(x)ux. This is
defined for all x ∈ R. So we are in the situation of (7.2) in Theorem
7.1. Stationary solutions are u0(x) = 1 and u1(x) = tanhx. From the
symmetry in Theorem 7.1 we obtain the two symmetry solutions

U0
ǫ (x, t) =

1√
1 + 4ǫt

exp

{−ǫ(x2 + 4t2)

1 + 4ǫt

}
cosh

(
x

1+4ǫt

)

coshx
, (7.9)

U1
ǫ (x, t) =

1√
1 + 4ǫt

exp

{−ǫ(x2 + 4t2)

1 + 4ǫt

}
sinh

(
x

1+4ǫt

)

coshx
. (7.10)

The solution u(x, t) =
∫∞
0
ϕ(ǫ)U0

ǫ (x, t)dǫ +
∫∞

0
ψ(ǫ)U1

ǫ (x, t)dǫ satisfies
the initial condition u(x, 0) = Φ(x2)+tanhxΨ(x2), where Φ and Ψ are
the Laplace transforms of ϕ and ψ. Now U0

ǫ (x, t) =

∫ ∞

0

e−t−ǫz−x2+z
4t

coshx

1

2
√

4πzt

[
cosh(

√
z(x+ 2t)

2t
) + cosh(

√
z(x− 2t)

2t
)

]
dz,

and U1
ǫ (x, t) =

∫ ∞

0

e−t−ǫz−x2+z
4t

coshx

1

2
√

4πzt

[
cosh(

√
z(x+ 2t)

2t
) − cosh(

√
z(x− 2t)

2t
)

]
dz.

We use these representations in the integrals defining u and reverse the
order of integration. Then we let z = y2 and expand the hyperbolic
cosines to get

u(x, t) =

∫ ∞

0

1√
πt
e−

x2+y2

4t
−tΦ(y2) cosh y cosh(

xy

2t
)sechxdy+

∫ ∞

0

1√
πt
e−

x2+y2

4t
−tΨ(y2) sinh y sinh(

xy

2t
)sechxdy

=

∫ ∞

0

e−t 1√
4πt

e−
(x−y)2

4t
cosh y

coshx

(
Φ(y2) + tanh yΨ(y2)

)
dy+

∫ ∞

0

e−t 1√
4πt

e−
(x+y)2

4t
cosh y

cosh x

(
Φ(y2) − tanh yΨ(y2)

)
dy.

The replacement y → −y in the second integral leads to

u(x, t) =

∫ ∞

−∞
e−t 1√

4πt
e−

(x−y)2

4t
cosh y

coshx

(
Φ(y2) + tanh yΨ(y2)

)
dy.

This implies that the desired fundamental solution is

p(t, x, y) = e−t 1√
4πt

exp

{
−(x− y)2

4t

}
cosh y

cosh x
. (7.11)
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That this is the fundamental solution can be readily checked. It is also
straightforward to verify that

∫ ∞

−∞
e−ǫy2

e−t 1√
4πt

exp

{
−(x− y)2

4t

}
cosh y

coshx
dy = U0

ǫ (x, t) (7.12)

as required by Theorem 7.1.

Using this procedure, the reader may check that

p(t, x, y) = e−t 1√
4πt

exp

{
−(x− y)2

4t

}
sinh y

sinhx
(7.13)

is a fundamental solution for ut = uxx + 2 coth(x)ux valid for x 6= 0.
Other examples can be computed the same way.

One may prove results similar to Theorem 7.1 which cover every
possible drift for which there is a non trivial Lie algebra of symmetries.
For example, if σxg′−σg+ 1

2
g2 +2σµxr+2−γ = Ax4−2γ

4−2γ
+ Bx2−γ

2−γ
+C, γ 6=

2 then we have a Whittaker type transform giving the fundamental
solution. There are also theorems analagous to Theorems 6.1 and 6.2.
We leave these and the γ = 2 case to the reader. We will conclude by
relating the γ = 0 case to an important equation in nilpotent harmonic
analysis.

8. The Heat Equation on The Heisenberg Group.

We choose a basis for the Heisenberg Lie algebra, by setting X =
∂
∂x

+ y ∂
∂z

, Y = ∂
∂y

− x ∂
∂z

and Z = ∂
∂z
. The sublaplacian is then X2 + Y 2

and so the heat equation on the Heisenberg group may be expressed as

Ut = Uxx + Uyy + 2yUxz − 2xUyz + (x2 + y2)Uzz. (8.1)

This possesses few symmetries, but it is invariant under rotations, so
the heat kernel itself should also be invariant under rotations. We
therefore make the change of variables r =

√
x2 + y2. This reduces the

heat equation to

Ut = Urr +
1

r
Ur + r2Uzz, r ≥ 0. (8.2)

Taking the Fourier transform in z gives

ut = urr +
1

r
ur − λ2r2u, (8.3)

where

u(r, t;λ) =

∫ ∞

−∞
U(r, z, t)e−iλzdλ. (8.4)

This PDE does have useful symmetries. However instead of consid-
ering (8.3), we will study

ut = urr +
1

r
ur − (λ2r2 − 2|λ|)u. (8.5)
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If u is a solution of (8.5), then w = e−2|λ|tu(r, t) is a solution of (8.3).

We consider (8.5) because it has a stationary solution u0(r) = e−
|λ|
2

r2
.

Equation (8.3) has Bessel functions as stationary solutions. These lead
to Hankel type transforms, which are harder to invert than Laplace
transforms.

Proposition 8.1. A basis for the Lie algebra of symmetries of (8.5)
is given by

v1 = 2|λ|re4|λ|t∂r + e4|λ|t∂t − 2λ2r2e4|λ|tu∂u,

v2 = −2|λ|re−4|λ|t∂r + e−4|λ|t∂t − 2(λ2r2 − 2|λ|)e−4|λ|tu∂u,

v3 = ∂t, v4 = u∂u,

and there is an infinite dimensional ideal spanned by vector fields of
the form vβ = β(r, t)∂u, where β is an arbitrary solution of (8.5).

We are only interested here in v2. If u0(r) = e−
|λ|r2

2 then an elemen-
tary calculation shows that

ρ(exp(ǫv2))u0(r) =
e4|λ|t

e4|λ|t − 4|λ|ǫ exp

{−|λ|r2

2

(
e4|λ|t + 4|λ|ǫ
e4|λ|t − 4|λ|ǫ

)}
.

From this solution we can recover the heat kernel for both (8.5) and
(8.3), as well as the heat kernel for the Heisenberg group. The main
result is the following.

Theorem 8.2. The heat kernel for the PDE (8.5) is

p(t, r, ξ) =
|λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)

}
I0

( |λ|rξ
sinh(2|λ|t)

)
,

where Iν is the modified Bessel function of the first kind.

Proof. If p(t, r, ξ) is the heat kernel, then given a solution u(r, t) we
must have u(r, t) =

∫∞
0
u(ξ, 0)p(t, r, ξ)dξ. Applying this to the solution

ρ(exp ǫv2)u0(r), we obtain
∫ ∞

0

p(t, r, ξ)

1 − 4|λ|ǫ exp

{−|λ|ξ2

2

(
1 + 4|λ|ǫ
1 − 4|λ|ǫ

)}
dξ

=
e4|λ|t

e4|λ|t − 4|λ|ǫ exp

{−|λ|r2

2

(
e4|λ|t + 4|λ|ǫ
e4|λ|t − 4|λ|ǫ

)}
.

We set s = |λ|
2

(
1+4|λ|ǫ
1−4|λ|ǫ

)
. After some simplification this gives

∫ ∞

0

e−sξ2

p(t, r, ξ)dξ =
|λ|e2|λ|t

2 sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)

}
×

1

s+ |λ|
2

coth(2|λ|t)
exp

{
k

(s+ |λ|
2

coth(2|λ|t)

}
, (8.6)
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where k = λ2r2cosech2(2|λ|t)/4. Setting η = ξ2 converts this into a
Laplace transform. The right hand side of (8.6) can be inverted. With
η replaced by ξ2 this gives

p(t, r, ξ) =
|λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)

}
I0

( |λ|rξ
sinh(2|λ|t)

)
, (8.7)

which is the desired result. �

For suitable ϕ the following integral defines solutions of (8.5),

u(r, t) =

∫ ∞

0

ϕ(ξ)
|λ|ξe2|λ|t

sinh(2|λ|t) exp

{−|λ|(r2 + ξ2)

2 tanh(2|λ|t)

}
I0

( |λ|rξ
sinh(2|λ|t)

)
dξ.

Since u(r, t) =
∫∞
0
ϕ(ξ)e−2|λ|tp(t, r, ξ)dξ is a solution of (8.3) for suit-

able initial data ϕ, we can obtain solutions of the heat equation on H3

by setting

U(r, z, t) =

∫ ∞

−∞

|λ|
2π sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)

}
eiλzK(r, λ, t)dλ,

(8.8)

where the kernel K is given by

K(r, λ, t) =

∫ ∞

0

ξ exp

{ −|λ|ξ2

2 tanh(2|λ|t)

}
I0

( |λ|rξ
sinh(2|λ|t)

)
ϕ(ξ)dξ.

(8.9)

An obvious choice is to take K = 1. This is achieved by setting ξϕ(ξ) =
δ(ξ), which gives the following solution of (8.1)

h(r, z, t) =

∫ ∞

−∞

|λ|
2π sinh(2|λ|t) exp

{ −|λ|r2

2 tanh(2|λ|t)

}
eiλzdλ. (8.10)

This is, up to scalar multiple, the heat kernel forH3 obtained by Gaveau
and others. We have thus obtained a family of solutions of the heat
equation which contains the heat kernel.

The natural question to ask is whether the methods used here can
be applied to other heat equations on nilpotent Lie groups? There are
reasons to believe that this is in fact the case. This question will be
addressed in future work.
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