
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works.” 

 



1051-8215 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2014.2345933, IEEE Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH XXXX 1

CAMHID: Camera Motion Histogram Descriptor
and Its Application to Cinematographic Shot

Classification
Muhammad Abul Hasan, Min Xu,Member, IEEE,Xiangjian He,Senior Member, IEEE,and Changsheng Xu,

Fellow, IEEE

Abstract—In this paper, we propose a non-parametric camera
motion descriptor called CAMHID for video shot classification. In
the proposed method, a motion vectorfield (MVF) is constructed
for each consecutive video frames by computing the motion vector
of each macroblock (MB). Then, the MVFs are divided into a
number of local region of equal size. Next, the inconsistent/noisy
motion vectors of each local region are eliminated by a motion
consistency analysis. The remaining motion vectors of each local
region from a number of consecutive frames are further collected
for a compact representation. Initially, a matrix is formed
using the motion vectors. Then, the matrix is decomposed using
singular value decomposition (SVD) technique to represent the
dominant motion. Finally, the angle of the most variance retaining
principal component is computed and quantized to represent
the motion of a local region by using a histogram. In order
to represent the global camera motion, the local histograms are
combined. The effectiveness of the proposed motion descriptor for
video shot classification is tested by using support vector machine
(SVM). Firstly, the proposed camera motion descriptors for video
shots classification are computed on a video dataset consisting
of regular camera motion patterns (e.g., pan, zoom, tilt, static).
Then, we apply the camera motion descriptors with an extended
set of features to the classification of cinematographic shots. The
experimental results show that the proposed shot level camera
motion descriptor has strong discriminative capability to classify
different camera motion patterns of different videos effectively.
We also show that our approach outperforms state-of-the-art
methods.

Index Terms—video shot classification, motion analysis, singu-
lar value decomposition.

I. I NTRODUCTION

V IDEO is an important medium and it describes the visual
content of a scene with the help of time domain to

human eyes. Smooth visual informationflow is achieved by
capturing a significantly large number of sequential frames
per second to comply with the human brain’s cognition speed
limit. As a result, video cameras have to capture highly
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redundant visual data. With the ever increasing production of
video data, the demand of efficient indexing, retrieving and
browsing of this redundant form of video data is a necessity.
A video produced by a freely moving camera is a rich form of
data which is heavily existed in today’s multimedia contents.
Apart from the visual information, interesting spatio-temporal
information is also buried inside the raw video data. Using
the dynamic spatio-temporal information, many methods have
been proposed for video concept detection, content based
video indexing and retrieval [1]–[7]. The approaches based on
motion characterization have played an important role in this
regard [8]. In videos captured by freely moving cameras, cam-
era movements and object movements are two main sources
of motion. By analyzing such motion information, video shots
are classified to aid the tasks for content based video indexing
and retrieval [9].

A robust shot classification technique can be useful in
many applications such as shot indexing and retrieval [8],
video summarization [10] and video data structuring [11]. In
this regard, camera motion characterization based video shot
classification techniques play an important role. In [12], a shot
characterization technique is proposed to represent video shots
by using histograms. In [13], [14], MPEG domain motion
vectors (MVs) encoded in P- and B-frames were analyzed to
characterize camera motion. A temporal slice based analysis
was used to characterize camera motion by Ngoet al. [15].
Optical flow based methods were used to extract motion
information and to model camera motion and object motion
[16]–[19].

In this paper, we propose a novel camera motion char-
acterization and description technique by identifying camera
motion patterns from an inherent motion structure buried in
raw video data. We deal with motion information in two main
stages, motion characterization and motion description. Our
intention is to exploit the redundant information of video data
to characterize the camera motion patterns of video shots.
Firstly, motion vectors of consecutive frames are extracted and
inconsistent motions are suppressed by applying a statistical
temporal motion analysis. Then, global motion patterns of each
video shot is represented by using a number of local motion
descriptors. The local motion descriptors are used to describe
local camera motion patterns. Then, the extracted features are
used in a statistical learning framework to recognize the qual-
itative camera motion patterns which have been categorized
into directing semantic classes by video directors from the
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video directing point of view.
At the motion characterization stage, motion vectorfields

(MVFs) are constructed by extracting motion vectors from
consecutive frames using a block matching (BM) technique.
The MVFs are segmented into a number of equal sized local
region. Then, the temporal gradient of the motion vectors of
each MB of each local region is computed. Then, by using
an effective statistical measure on the gradient of motion,
the motion vectors of interest (MVIs) are identified. MVIs
of each local region are then characterized by using the
principal component analysis. The most variance retaining
principal component is identified to represent the camera
motion compactly. To do this, we accumulate the MVIs from
a small number of frames of a local region and construct
a matrix. Then, the matrix is decomposed using the SVD
technique. Let us assume that we havet frames in a video shot.
The matrix is formed by using MVIs of the corresponding
local regions ofn consecutive frames where (n ≪ t). Finally,
the oriented angle of the principle component is computed
and quantized with a predefined step size. The consecutive
quantized angles of each local region are used to characterize
the local temporal motion. At the motion description stage,
quantized angles of each local region are used to create a
histogram. Each of the histogram is considered as local motion
descriptor. By combining all the local histograms, the camera
motion histogram descriptor is formed for an input video.
Figure 1 shows theflow diagram of the proposed method.

In order to identify our work as a novel research effort,
we study the state-of-the-art techniques on motion analysis
and characterization. Our motivation is to develop a novel
motion descriptor which has strong discriminative capability to
distinguish different camera motions in a wide range of video
shot types. The contributions of our work are as follows.

• A novel compact camera motion characterization tech-
nique is introduced to characterize the camera motion in
a video.

• A novel shot level camera motion descriptor is proposed
to represent the overall motion activity of a shot by using
a histogram.

• We investigate the performance of the proposed camera
motion descriptor along with a set of additional features
in cinematographic shot classification.

The detail of our contribution is described in Sections III and
IV.

The rest of the paper is organized as follows. In Section
II, the related work is reviewed. Our proposed approach for
camera motion characterization and description technique is
described in Section III. Section IV describes the need of
additional features for cinematographic shot classification and
introduces a new set of features. In Section V, we show
the effectiveness of the proposed camera motion descriptor
in classifying different camera motion types. This paper is
concluded in Section VI.

II. RELATED WORK

In the context of motion analysis for video shot classifica-
tion, indexing and retrieval, there are a great deal of research

Fig. 1. Flow diagram of the proposed camera motion histogram descriptor
technique.

work accomplished [9], [20]–[25]. In case of semantic analysis
of video shot, camera motion patterns are often used as an
important clue. While watching a video, human visual systems
can perceive motions which can be described in terms of the
motion quality: slow or fast motion. However, in a computer
vision system, it is described by using activity descriptors. In
[26], visual motion descriptors were organized into four cate-
gories: motion activity [27], camera motion [11], [28], mosaic
[29] and motion trajectory [8]. Camera motion descriptors are
used to represent the type of camera motion happened in a
video shot. Mosaic is captured by using the parameters of
the parametric motion model of a camera. Motion trajectory
tells the object motion in time. Generally, the camera motion
descriptors tell the generic inherent camera motion which is
used to identify the directing semantics of video shots.

Many parametric methods for camera motion detection have
been proposed. By using two consecutive video frames of a
video, global motion models were proposed in [11], [29]–[32].
In each case, dominant motion patterns were determined using
robust statistical techniques. Although global camera motion
detection techniques are theoretically sound, it is considered to
be less feasible to estimate correct parameters in wide variety
of videos. The 2D parametric transformation suffers from a
weak assumption that assumes the camera distance from the
scene to be far. This assumption will lead to estimating wrong
rotational and translational parameters. In [31], [32], the depth
problem was handled by identifying the horizon lines. It is
based on the assumption that there is a horizon line present
in a typical outdoor scene video which can be identified by
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using a gradient analysis in gray scale images. This assumption
will lead to many wrong parameter calculations where the
horizon line is not obvious. None of the mentioned parametric
models can be applied in classifying video shots based on
directing semantic classes, as directing semantic video shots
[33] consist of wide variety of shooting techniques in wide
variety of shooting sets.

In contrast, nonparametric methods analyze the video data
by using statistical methods to measure local or global camera
motions. In [34], motion distribution of a shot was represented
by using a histogram to analyze the camera motion to measure
the video shot similarity. A template matching based approach
was used to recognize camera motions in [22], [35]. In [9],
a nonparametric spatio-temporal mode-seeking method was
proposed in the motion space. The spatial distribution of
the dominant motion modes was used to represent motion
characteristics. Although this method is capable of learning
the semantic concepts of video shots, it does not have the
capability to model temporal motion patterns. Maet al.
[36] proposed another nonparametric generic motion pattern
descriptor for video shot classification. A mapping technique
based on a unit circle was applied to transform MVfields
to a multidimensional motion pattern descriptor. Although it
introduces a temporal information accumulating technique for
statistical learning, it lacks an unified representation frame-
work.

Template based camera motion detection was used in [22],
[23]. Lan et al. proposed a framework for home video camera
motion analysis in [23]. A template based background motion
estimation (ME) technique was applied to characterize dif-
ferent camera motions. Leeet al. proposed an MPEG video
stream shot classification technique [22]. A video was divided
into shots and the shots were classified into six basic camera
movements using templates. Template based techniques can-
not be used in highly dynamic video sequences due to the
high random motions captured from different objects and the
motions from the camera.

In order to use motion information buried in the video data
effectively, it is important to extract motion information from
the frame sequences. In [24], [25], MPEG video MVs were
directly used in a camera motion descriptor. Although a good
classification accuracy was achieved, direct use of MVs for
compressed videos could be misleading. For the purpose of
best representation of a video frame, MVs in a MPEG frame
were predicted either from its previous frame (i.e., P-frame) or
bidirectionally predicted frame (i.e., B-frame). Bidirectionally
predicted frames are much complex in nature as they use both
previous and future frames for motion compensation. Thus, it
can be concluded that the MVs in MPEG videos do not repre-
sent the optimal optical displacement of a macroblock (MB)
with respect to time. In [24], backward predicted MVs were
mapped to a forward predicted one. Moreover, I-frame’s MVs
were estimated by interpolation of two nearest P-frames. The
overall procedure may produce misleading motion information
and eventually may identify a wrong camera motion. In [25],
MVs were only estimated from P-frames for characterization
of camera motion. This technique of extracting motion infor-
mation may suffer from lack of information and hence the

estimated camera motion may not be accurate. Due to this
problem, frames may suffer from the wrong representation
during reconstruction and frame-rate-up conversation. Many
research efforts were made to address this problem in the
compressed domain [37], [38].

In conclusion, although many research effort have been
accomplished to characterize camera motions of video shots,
there is still a room to improve it. Efficient motion rep-
resentation and effective motion description techniques can
represent a video shot for semantic indexing. In our proposed
method, we apply a BM based ME technique to estimate MVs
from video frames and further represent the MVs compactly
in the temporal direction to overcome the above-mentioned
problems. The detail of our approach is shown in Sections III
and IV below.

III. PROPOSEDCAMERA MOTION DESCRIPTOR

In this section, the proposed technique for camera mo-
tion descriptor is described in detail. We name the pro-
posed descriptor the CAmera Motion HIstogram Descriptor
(CAMHID). The CAMHID is constructed in four steps. Firstly,
BM based ME technique is used to estimate the local motion of
each MB. Then, by analyzing the local motion of each MB in
the temporal direction, MVIs are identified. Then, in the third
step, MVIs are used to produce a sequence of compact repre-
sentations of the temporal motion. In the last step, the compact
representations are used to obtain a normalized histogram as
the local motion feature of video shots. As shown in Figure
1, the output of the above-mentioned four steps for feature
extraction is a CAMHID, that integrates the motion features
of the local regions. The following subsections describe the
detail of CAMHID construction.

A. Block Matching Based Motion Estimation

BM based ME is a popular technique to estimate local
motion. This technique has been widely used for video
compression, particularly for motion compensation in the
current state-of-the-art video coding standards [39]. The ME
techniquesfind the optimal optical displacement in an MB
of a frame. The optimal displacement is represented by an
MV which corresponds to the coordinate displacements of the
best matching block in the reference frame. For an MB in
the i -th frame, MV is searched in the(i + 1)-th frame. Let
{ f i�f ( i + 1) } be two consecutive frames taken from a video
shot. We construct a motion vectorfield (MVF) by extracting
all MVs. In order to do that, framef i is subdivided into non-
overlapping MBs of sizeN × N (see Figure 2). For each
MB, the most similar block in framef ( i + 1) is identified by
searching in the area of size(M + N ) × (M + N ) in f ( i + 1)

as shown in Figure 2, whereM = 2× N . For an MV denoted
by mvi

(x�y ) , we need to compute the horizontal displacement
ui

(x�y ) and the vertical displacementvi
(x�y ) . Formally, we write:

(ui
( x�y)�v

i
(x�y ) ) = ar g min

u∈{ − M
2 + 1�����M

2 } �
v∈{ − M

2 + 1�����M
2 }

e(x�y�u�v�i ) (1)
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Fig. 2. BM based MV searching from two consecutive framesf i andf ( i + 1) .
For anN × N MB at (x�y) in f i , the searching area is marked inf ( i + 1) .
The size of the searching area is(M + N ) × (M + N ) centring at the
searching block region.

where,

e(x�y�u�v�i ) =
N − 1X

p= 0

N − 1X

q= 0

|f i (x + p�y + q)−

f ( i + 1) (x + u + p�y + v + q)|�

The optimal optical displacement identified by Eq. (1) is used
to computeui

(x�y ) = (x − u) andvi
(x�y ) = (y− v) which repre-

sent the horizontal and vertical displacements of themvi
(x�y )

respectively. Likewise, we constructM VF i = { mvi
(x�y ) } , for

∀x ∈ α�∀y ∈ β. Here,α andβ correspond to the width and
height of the video frame respectively.

B. MV of Interest Detection

(a) (b)

(c) (d)

Fig. 3. Motion analysis using benchmark video sequences. (a) Foreman
video sequence. (b) The variance of the gradient of the motion vectors of
the first 10 MVFs of the Foreman sequence are computed and depicted. (c)
Flower garden video sequence. (d) The variance of the gradient of the motion
vectors of thefirst 10 MVFs of the Flower garden sequence are computed
and depicted.

In this subsection, we propose a technique to identify
the MVI by analyzing the local motions in the temporal
direction. Our goal is to identify the spatial region where the

motion information has a direct relationship with the camera
movements. The basic camera movements are categorized as
static, pan, tilt, zoom and combination of them. The camera
can be operated manually by holding in a hand or by mounting
on a tripod or any form of transportation. In professional video
shooting (e.g., the shooting for sports, news, andfilm), video
shots are captured with smooth, jerking free and consistent
camera motions. The objects in video frames can be static
or dynamic. Due to camera movement, the MVs belonging
to the static object region have a direct relationship with the
camera movements. However, according to our observation,
motion pertaining to non-rigid bodies and focused objects
(e.g., objects are being shot) are independent of camera
motions. Non-rigid bodies (e.g., rippling water and waving
leaves) and players/actors often produce random and jerky
motions with respect to the camera frames. Figure 3 shows
camera motion analysis by using benchmark video sequences.
Although thefirst 10 frames of the Foreman sequence are
identified as static, the person in the frame actually produces
a random motion with respect to the camera. Figure 3(b) and
3(d) show the motion variance over thefirst 10 video frames
in the Foreman and Flower garden video sequences. As it
can be seen, MBs belonging to the non-rigid bodies produce
high variances. Theflower garden sequence mostly preserves
camera motion information in most of the MBs. The washed
out areas of the helmet (in the Foreman sequence) and a big
part of the sky area (in theflower garden sequence) do not
produce any motion information. Based on this observation, in
this subsection, we search for the MVIs where camera motion
consistency is preserved in the computed MVs. In order to
do that, we go through the following steps. First of all, for
each MB, we compute the gradient of MVs in the temporal
direction. The gradients of horizontal displacementui

(x�y ) and
of vertical displacementvi

(x�y ) are computed separately for
each MB of the entire shot. Formally, we write:

∇u (x�y ) = {∇u1
(x�y )�∇u2

(x�y )�����∇u( t − 1)
( x�y) }�

∇v (x�y ) = {∇v1
(x�y )�∇v2

(x�y)�����∇v( t − 1)
(x�y ) }�

(2)

where,

∇ui
(x�y ) =

�
u( i + 1)

(x�y ) − ui
(x�y )

�
�

∇vi
(x�y ) =

�
v( i + 1)

(x�y ) − vi
(x�y )

�
�

Next, MVs are determined as MVI or not by employing
a simple and effective statistics based traditional measure of
distance on the computed∇u (x�y ) and∇v (x�y ) . In order to
identify MVIs, we check the consistency of the motion activity
of MBs by using the gradient of the MVs (described in Eq.
(2)). If the MB at (x�y) of framef i shows that the motion is
significantly consistent fork

�
k < (t − 1)

�
consecutive MBs

in the temporal direction, then the MV is declared as an MVI.
The MVI determination process is formally written in Eq. (3).

mvi i
(x�y ) =

�
�

�

tr ue P(∇ui
(x�y )�∇vi

(x�y ) |µ�Σ ) < τ

f alse otherwise
�

(3)
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whereP() computes the multivariate normal probability, as-
suming that∇u ( x�y) and∇v (x�y ) ∼ N (µ�Σ ),

µ =

"
µ∇u i

( x �y )

µ∇v i
( x �y )

#

�Σ =

"
σ∇u i

( x �y )
σ∇u i

( x �y )
σ∇v i

( x �y )

σ∇u i
( x �y )

σ∇v i
( x �y )

σ∇v i
( x �y )

#

�

σ∇u i
( x �y )

=

vu
u
t 1

k − 1

k− 1X

j = 0

�
∇ui + j

(x�y ) − µ∇u i
( x �y )

�2
�

σ∇v i
( x �y )

=

vu
u
t 1

k − 1

k− 1X

j = 0

�
∇vi + j

(x�y ) − µ∇v i
( x �y )

�2
�

µ∇u i
( x �y )

=
1
k

k− 1X

j = 0

∇ui + j
(x�y )�

µ∇v i
( x �y )

=
1
k

k− 1X

j = 0

∇vi + j
(x�y )�

andτ is a threshold for motion inconsistency tolerance which
is set experimentally.

C. Motion Characterization

The MVI based motion characterization technique is de-
scribed in this subsection. Our intention is to characterize a
video shot in such a way that preserves the motion content in
a compact manner. Figure 4 shows roughly region-wise shot
motion summary of common video shot types (according to
the definition of each shot type). It shows that the motion
patterns of static, tilt and pan shot are similar in every frame
region. However, zoom shot’s motion pattern varies and is
dependent on local regions. Therefore, in order to identify
the characteristics of a video shot, we need to consider this
fact. Accordingly, we divide the computed MVFs into nine
(i.e., 3 × 3) local non-overlapping regions of equal size. The
MVF at the local region(p�q) of frame i is denoted by
M VF i

(p�q) , wherep∈ { 1�2�3} andq∈ { 1�2�3} . For each of
the local regions,M VF(p�q) ’s motion contents in the temporal
direction are separately and compactly represented. Figure
5 shows the basic strategy of the motion characterization
procedure. As shown in thefigure, mvi i

(x�y) ∈ M VF i
(p�q)

of n consecutive temporal regions are accumulated for a
compact representation. During the accumulation, we compute
the mean distance magnitude of the motion vectors. Let us
assume that we havel MVIs. Formally, we represent the mean
as follows.

µm ag =
1
l

X
|mvi

( x�y ) |� ∀mvi
(x�y ) ∈mvi i

(x�y )� (4)

If the value of µm ag in Eq. (4) is zero, then it is obvious
that there is no camera motion present in the corresponding
frames. Practically, some small unnoticeable camera motions
may remain present in the static video shots. In order to handle
this kind of small camera motions, the mean magnitude is
checked. If the mean magnitude is smaller than a predefined
threshold, then the corresponding region is characterized as a
static region. Otherwise, the motion related to the local region

is characterized and compactly represented. In this work, the
region motion is identified as static if the value ofµm ag is
less than1�0.

Fig. 4. Region-wise shot motion summary of static, tilt, pan and zoom shots
(left to right). Each of the local regions represents the rough camera motion
direction.

The compact representation is accomplished using the
singular value decomposition (SVD) technique [40]. At the
beginning, a matrixA is created with the accumulated MVI
from n blocks of M VF i

(p�q) . Matrix A containsl MVs and
the MVs ared dimensional vectors. In our case,d = 2 as we
have only two components in the motion vectors. Therefore,
A is anl × 2 matrix. Then, we apply SVD onA to decompose
it as follows.

A = UΛV T� (5)

whereU is an (l × d) orthonormal matrix. The columns of
U are the eigenvectors ofAAT . Λ = diag(λ1�����λd) is
a d × d diagonal matrix containing the singular values in
descending order. The singular values are the square roots
of the eigenvalues of bothAAT and AT A. The magnitude
of each singular value corresponds to the importance of the
corresponding principal component.V is a(d× d) orthonormal
matrix and the columns ofV are the eigenvectors ofAT A.
We are interested inV as it encodes the coefficients used to
expandA in terms of U. As the tops (s < d) principle
components approximate a significant amount of information
of the original data [41], we represent the camera motion using
the most dominant principle component ofV . Therefore, the
accumulated MVI fromn blocks of M V F i

(p�q) is compactly
represented by the most dominant component. The vector is
identified aspc( i�n )

(p�q) , wheren is a constant.

Fig. 5. Local motion characterization using motion vectors. The MVIs from
n consecutive local regions are accumulated for a compact representation.

D. Shot Motion Representation

In the previous subsection, each time a set ofn temporal
regions are either characterized as static or further char-
acterized according to the direction of the most dominant
principal component. For each local region, we use thepc( i�n )

(p�q)
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obtained in Subsection III-C to form a histogram. First of all,
the oriented angles of the principal componentspc( i�n )

(p�q) are
computed. Eq. (6) is used to compute the oriented angles.

θ
( i�n )
(p�q) =

�
�

�

arccos
�

v �pc( i�n )
(p�q)

�
if ypc ≥ 0

360◦ − arccos
�

v �pc( i�n )
(p�q)

�
otherwise

�

(6)
where ypc is the y component ofpc( i�n )

(p�q) and v is an unit
vector alongx axis. The angle is quantized with Q levels in
the range[0◦�360◦ ]. Figure 6 shows the angle quantization
strategy. Thefirst angle level range is345◦ to 15◦ in counter
clockwise direction, and rest of the levels are equally spaced
along the angle circle. Using the computed angle and the static
motion information, The histogram for a region is formulated
as follows.

H (p�q) (c) =
�

h0
(p�q) (c)�h1

(p�q) (c)�����hQ
(p�q) (c)

�

� (7)

where hi
(p�q) (c) represents the count (or height) of thei -th

bin. Thefirst bin represents the static region count. The rest
are corresponding to the quantized angles with indicesi ∈
{ 1�����Q} . Finally, the histogram is normalized for a uniform
representation using the following equation.

Ĥ (p�q) (c) =

 
h0

(p�q) (c)

C
�

h1
(p�q) (c)

C
�����

hQ
(p�q) (c)

C

!

� (8)

whereC =
P Q

i = 0 hi
(p�q) (c). Eq. (8) is used as the feature of a

region to represent the camera motion related to the region.
After all mentioned in Subsections III-A-III-D, we integrate

all histogram features corresponding to the regions to form a
single feature vector. This vector represents the camera motion
of input video shot as a camera motion descriptor.

Fig. 6. Compactly represented motion quantization rule. The angle of each
pc( i�n )

( p�q) resides in one of the 12 ranges.

IV. FEATURES EXTRACTION FORCINEMATOGRAPHIC

SHOT CLASSIFICATION

In this section, we extend CAMHID to perform the cin-
ematographic shot classification task, which involves classi-
fying cinematographic shots into thefilm directing semantic
classes. In order to do that, we extend the feature space by
extracting more features which considers the depth of a shot.
In the following, wefirst describe the cinematographic shot

framework and describe the directing semantic classes. We
also discuss the need of additional features which enhance the
discriminating capability in cinematographic directing seman-
tic classes.

A. Cinematographic Framework

Film making is completely based on thefilm making
grammars. The directors heavily apply thesefilm making
grammars on every single cinematographic shot. The directors’
main intention is to visualize the screenplay by capturing a
cinematographic shot through a set of camera motions and a
set of viewpoints. Capturing grammatically correct cinemato-
graphic shots ensures the viewer attentions on the predeter-
mined actor(s), object(s) or place(s) based on the screenplay
(henceforth, we will use ‘object’ and ‘actor’ interchangeably).
According to [33], two of the major issues which determine
the viewer attentions are as follows.

• Camera operation: a set of well defined camera opera-
tions are routinely performed to ensure the presence of
different actions from the object of interest on the view
plane. The camera operation is a strong indication of the
categories of actions happening from the directing point
of view. For example, static shots are often used to display
the emotion of the actors, and panning shots are often
used to make sure the presence of object of interests on
a view plane.

• Camera distance: The size of the objects of interest
on a view plane carries different semantics from the
direction sense. In cinematography, wide shots are often
used to relate the object of interest with the surrounding
environments while close-up shots are often used to
display the emotional aspects on the actor’s faces.

Based on these two issues, the construction of a taxonomy
of the cinematographic directing semantics is discussed in
the following. In directing semantic classes, the quality of
camera operation and camera distance are more important
than their quantity. For example, the differentiation between
a slow zooming and a fast zooming is a subjective matter
and quantitative measurements can be another research topic.
Hence, in this work, we only consider the qualitative camera
motion and distance. The relationship of the camera motion
and object distance is important in directing semantic classes.
The presence of a focused object makes the viewers feel like
they are tracking the object. For example, a panning shot with
a focused object gives a feeling to the viewers that the viewers
personally track the object. However, without any focused
object, a panning shot simply introduces a place to the viewers.
In cinematography, this type of shots is only used to establish
a new setting influencing viewers’ mind. Scene composition
is another aspect of cinematography which handles different
issues such as distance of camera, camera angle and light.
Among them, distance of camera is crucial as it determines
the degree of emotional involvement of a viewer. In cinemas,
we often see that highly emotional scenes are presented by
using close-up/medium shots. Long distance shots are used
to establish the context of a focused object. For the task of
cinematographic shot classification, we group close-up and
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medium shots into one class as it is not easy to distinguish the
purposes of using these two types of shots. In a wide range of
cinemas, the use of close-up and medium shots are very similar
for similar emotional shots. However, long shots are mainly
used for contextual tracking and contextual establishments.

B. Cinematographic Directing Semantic Classes

The cinematographic directing semantic classes are created
using the basic directing element discussed in the previous
subsection. In [33], the cinematographic shots are analyzed
based on the directing elements andfinally end up creating
seven semantic classes: 1) stationary, 2) contextual-tracking,
3) focus-tracking, 4) focus-in, 5) focus-out, 6) establishment,
and 7) chaotic shots. In reality, the directing semantic classes
of cinematographic shots are not clearly categorized into other
video domains (e.g., attack shots in soccer video). However,
meaningful indexing is still possible using the introduced
directing semantic classes. In the following, seven semantic
classes are briefly described.

Stationary (S) shots: A significant portion of cinemato-
graphic shots are dialogue shots and the dialogue shots are
mainly captured by using stationary shots. Stationary shots
contain minimum amount of camera movements to concentrate
the viewer attentions on the actor’s activities. Figure 7(a)
shows an example of static shots. In this particular case, as it
can be seen, the shot is captured by focusing on the actress
using close-up shot while the camera movement remains
almost static.

Tracking shot: Tracking shots are the one which are cap-
tured by focusing on object(s) and follow along the direction of
the movement. This type of shots is used to closely relate the
viewers to the objects [42]. It makes the viewers feel like they
are following the objects. Because of its own characteristics,
tracking shots are considered as an important shot class. There
are two types of tracking shots used in cinematography. 1)
Contextual tracking (CT) shots which establish a relationship
of an object with the context by capturing a bigger picture of
the scene. The focused object is captured using a long shot
so that the object looks smaller but provides scenic detail of
the shooting set by using panning camera movements. Figure
7(b) shows an example of contextual tracking shot where the
actress is being shot with a clear indication of the context
(cityscape view). 2) Focus tracking (FT) is another variant of
tracking shots which provides a closer view of the objects. The
intention behind taking this type of shots is to focus on the
closer detail of the object while tracking. Figure 7(c) shows
an example of focus tracking shots.

Focus-in (FI) shots: In cinematography, focus-in shots are
captured in two ways: 1) zooming in by shortening the focal
length of the camera lens and 2) moving the camera to the
object to shorten the camera distance for a closer view of the
object. Both of these are mainly used to provide a greater detail
of a focused object to highlight some important detail. Figure
7(d) shows an example of focus-in shot, where the object is
getting bigger by changing the focal length.

Focus-out (FO) shots: Focus-out shots are used to detach
emotional involvement of the viewers from an object or relax

the viewers by changing the viewing space. This effect is
usually achieved through zooming out or dolly out shots, as
the camera gradually moves away from the subject and creates
emotional distance. Figure 7(e) shows an example of focus-out
shots by changing the position of the camera distance.

Establishment (E) shots: Establishment shots form another
important directing semantic class which is used in cinematog-
raphy. This type of shots is used to introduce a location to
establish a relationship with the following sequence of shots.
This type of shots is often taken by panning the camera
without focusing on any particular object. Figure 7(f) shows
an example of establishment shots.

Chaotic (C) shots: This type of shots are characterized by
the chaotic movement of the camera to follow an object or
an object action. Chaotic shots are the one which cannot be
characterized to be anyone of the above mentioned classes.
Generally, in this type of shots, a random camera motion
happens due to focusing on an object’s random motion. In
order to represent fast action (or motions), directors apply this
technique. In this shot type, it is not usually for the fast moving
object to dominate viewer attention. Such shots are usually
used to represent thrills and used more often in actionfilms.
Figure 7(g) shows an example of chaotic shots.

C. Feature Extraction from Cinematographic Shot Classes

The far right column of Figure 7 shows the CAMHID
features of each camera motion type. Figure 7(a) shows an
example static shot and the corresponding CAMHID which
combines the features from the four prime corner regions.
As it can be seen, histogram bins regarding no motion have
more counts than the rest. Similarly, in other corresponding
CAMHIDs, only camera motion information is incorporated.
Although CAMHID is capable of describing the camera mo-
tion efficiently, it has a limitation to represent the camera
distance of the cinematographic directing semantic classes.
As mentioned, camera distance is another important char-
acteristics to be considered for classifying cinematographic
shots. In this section, we extend the features representing
the depth to overcome that limitation. The additional set of
features is extracted from the readily available MVI. As the
corresponding MBs of MVIs roughly represent the regions
which preserve the camera movement, computing the ratio
of the local MVI regions estimates the rough local depth.
In order to do that, for eachM V F i

(p�q) , ∀p ∈ { 1�2�3} ,
∀q∈ { 1�2�3} and∀i ∈ { 1�2�����m} , we count the number of
MVIs belonging to each local region (mvi i

(x�y) ∈M V F i
(p�q) ).

Formally, we write:

C(p�q) =
X

mvi i
(x�y ) ∈M VF i

(p�q)� (9)

whereC(p�q) is the count of the number of MVI present in
the local region(p�q) for the entire shot. Then, local counts
are normalized. Formally, we write as follows.

Ĉ(p�q) = C(p�q)�(v∗t)� (10)

wherev is number of possible motion vectors in a video frame
and t is number of frames in an input video. The normalized
features along with CAMHID is the feature vector used
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(a) static shot

(b) contextual tracking shot

(c) focus tracking shot

(d) focus in shot

(e) focus out shot

(f) establishment shot

(g) chaotic shot

Fig. 7. Cinematographic directing semantic shot classes and the corresponding CAMHID are shown in (a) - (g). The left column represents thefirst frames
of the shots. Second column shows an intermediate frame of each shot. The third column represents the last frame of each shot. The right column shows the
camera motion histogram descriptor by combining the local camera motion features on the four corners. The four corner local regions are identified on the
last frame in (a) and the corresponding local histograms are identified in the corresponding CAMHID.

for classifying directing semantic classes of cinematographic
shots. In the next section, we show the effectiveness of our
proposed features.

V. EXPERIMENTAL RESULTS

To show the performance of the proposed camera motion
histogram descriptor, CAMHID is experimented and evaluated
in this section. To do that,firstly, we evaluate the classification
performance using a dataset based on basic camera motions.
Secondly, we evaluate the classification performance on direct-
ing semantic classes of cinematographic shots using the second
dataset. Each dataset consists of training and testing sets,and

the performance is evaluated based on the precision, recall and
f 1-scores on the testing datasets. The following subsections
describe the detail of evaluation procedure.

A. Dataset Preparation and Feature Extraction

To evaluate the classification performance of the proposed
CAMHID and its extension, we conduct experiments on two
of our own created datasets. Thefirst dataset (Dataset 1) is
created based on the basic camera motion types. According to
the basic camera motion types, video shots are classified into
four basic classes: 1) static, 2) pan, 3) tilt and 4) zoom. The
static shots are captured by placing or holding the camera
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firmly without any significant camera movement. For close-
up view of objects, static video shots are often captured. The
panning shots are captured by rotating the camera about the
vertical axis. For the purpose of following objects horizontally,
pan shots are often used. Tilt shots are captured by rotating
the camera about the horizontal axis. Tilt shots are used
for following objects in the vertical direction. Zoom shots
are captured by changing the focal length of camera lens.
Depending on the situation, we observe two types of zoom
shots: zoom in and zoom out. A video shot is captured
continuously, which may contain different types of camera
motions (for video content structuring detail, please see [43]).
In that case, the label is given based on most dominant camera
motion in the shot. We segment video shots from Hollywood
films and label the shots manually. For training the SVM
classifier, we create training data from three Hollywoodfilms.
For evaluating the performance, a testing dataset is created.
The shots are also taken from Hollywoodfilms. The detailed
breakdown of the testing data in Dataset 1 is given in Table I.

The second dataset (Dataset 2) is created based on the
directing semantic classes of cinematographic shot. Similar to
Dataset 1 preparation, we label a training set and a testing
set manually. For training the SVM classifiers, we create
training data fromfive Hollywood films. Then, for testing
the classification performance, a testing dataset is created.
The shots are also taken from Hollywoodfilms. The detailed
breakdown of each shot type in the testing data is given in
Table II. The created datasets are available for public use [44].

TABLE I
DETAILED BREAKDOWN OF THE TESTING DATA IN DATASET 1.

static pan tilt zoom

no. of shot 1630 229 97 88

While extracting features from a video shot, we set the
MB size to be of16 × 16 pixels. In order to evaluate the
performance of the proposed CAMHID, wefirst conduct an
experiment to decide the optimum grid size. In order to
do that, we extract the CAMHID features by segmenting
the input video shots into different grid sizes and train an
SVM using 3-fold and 5-fold cross validation approaches
respectively. Then, we compute precision and recall rates to
compare the performances of different grid sizes. Table III
shows the performances of different grid sizes. As it can be
seen, when grid size is3× 3, we achieve the best classification
performance. For the rest of experiments, we select the grid
size to be3 × 3. After selecting the grid size, we conduct an
experiment on optimum size of the training data size selection.
Figure 8 shows the learning curve of Dataset 1. To conduct
this experiment, we use a 3-fold cross validation approach.
As it can be seen, with the changing size of the training data
for Dataset 1, the training error remains steady. However, the
cross validation error decreases gradually with the changing
size of the training data size. Based on this experiment, we
decide the training set size of Dataset 1 to be 75 shots from
each class. Therefore, the total training set size is set to be
300 (= 75 × 4) shots. A similar experiment is conducted on
Dataset 2 to decide the optimum training shot size. It is found

that the optimum training data size for Dataset 2 is 90 shots
for each class. Therefore, our training data size of Dataset 2
is 630 (= 90 × 7) shots.

TABLE II
DETAILED BREAKDOWN OF THE TESTING DATA IN DATASET 2.

S CT FT FI FO E C

no. of shot 2110 452 912 190 39 180 1675

’%’ 37.96 8.13 16.41 3.42 0.70 3.24 30.14

TABLE III
CLASSIFICATION PERFORMANCE ONDATASET 1 USING DIFFERENT GRID

SIZES FORCAMHID FEATURE EXTRACTION. FOR THIS EXPERIMENT WE

USE SVM WITH RBF KERNEL WHEN γ = 2− 8 AND C = 29 .

Grid 3-fold cross validation 5-fold cross validation
precision(%) recall(%) precision(%) recall(%)

2 × 2 72.53± 3.31 69.16± 3.26 75.31± 2.16 78.33± 3.15
3 × 3 82.51± 2.12 77.33± 2.43 81.32± 2.29 82.52± 2.77
4 × 4 61.87± 4.72 64.62± 3.41 67.52± 4.21 65.72± 6.73
5 × 5 80.13± 3.16 77.03± 4.17 80.99± 3.22 79.41± 2.92

In CAMHID, local region features mainly describe the
camera motion of the corresponding local region. To determine
the effectiveness of different local regions’ motion descriptors,
a feature selection experiment is conducted. Figure 9 shows
thef 1-scores on different feature sets extracted from Dataset 1.
As it can be seen, with the changing size of the training data,
the f 1-score measure using four corner regions outperforms
the rest. Accordingly, we collect the features from the prime
corner regions (top left, top right, bottom left and bottom right)
in the rest of the experiments. From all four corner regions,
we compute their features and put them sequentially to obtain
the value of CAMHID.

Fig. 8. Learning curve using different training data sizes on Dataset 1.

The best performance of the proposed method is achieved
by setting the optimum values fork and n experimentally.
In order to conduct the experiment tofind the bestk, we
compute the average accuracies for each givenk and changing
n values. Figure 10(a) shows the experimental results for given
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Fig. 9. Classification performance analysis using different feature sets.

k values. The biggest average value is recorded as the optimum
k value. In order to conduct the experiment tofind the best
n, we compute the average accuracies for each givenn and
changingk values. Figure 10(b) shows the experimental results
for givenn values. The biggest average value is recorded as the
optimumn value. As it can be seen in Figures 10(a) and 10(b),
for k = 10 and n = 5 respectively, we achieve the optimum
results. At the end of these experiments, the optimumk and
n are set to be10 and 5 respectively for conducting the rest
of experiments.

(a)

(b)

Fig. 10. The selection of optimumk andn selection based on classification
accuracy measurement on Dataset 1. (a) Average classification accuracies for
fixed k values andn ∈ { 2�4�6�8} . (b) Average classification accuracies for
fixed n value andk ∈ { 6�8�10�12} . For both (a) and (b) cases,τ is set to
be 0�25.

Thresholdτ also has great influence to achieve the best
performance. In order tofind an optimum threshold value for
τ , we compute classification accuracies for changing threshold
values. Figure 11 represents the experimental results. As it can

be seen, whenτ is set to be0�25, we achieve the optimum
results. For the rest of experiments, we setτ to be0�25.

Fig. 11. The selection ofτ representing the optimum motion inconsis-
tency tolerance threshold by measuring classification accuracies for changing
threshold values. The values along x-axis represent thresholdτ values. For
this experiment, we usek = 10 andn = 5.

B. SVM Classification

In this research, we use One-Against-One SVM technique
for video shot classification. The effectiveness of One-Against-
One approach has been presented in [45]. To summarize the
One-Against-One multi-class SVM, let us assume that we have
n training data in ad dimensional space belonging toc classes
{ xi�yi }� xi ∈ Rd� i = 1�����n� yi ∈ { 1�����c} . This
approach constructsc(c − 1)�2 classifiers using the training
data. Each of the classifiers is obtained by using the training
data of the corresponding two classes. For classi and classj ,
the binary classification problem is formally written as:

min
w i j �bi j �ξ i j

�
1
2

(wi j )T wi j + C
X

t

ξt
i j (wi j )T

�

(wi j )T φ(x t ) + bi j ≥ 1 − ξt
i j (wi j )T�if yt = i

(wi j )T φ(x t ) + bi j ≤ − 1 + ξt
i j (wi j )T�if yt = j

(11)

whereξt
i j is a non-negative slack variable,φ(x i ) is a function

to mapx i into a higher dimensional space andC is the penalty
parameter. By minimizing12 (wi j )T wi j , we want to maximise
the margin, 2

||w i j | | , between classi and classj . The penalty
term C

P
t ξ

t
i j is used to reduce the number of training errors

for linearly non-separable cases. The goal is tofind an optimal
separating hyperplane by obtaining a balance between the
regularization term 2

||w i j | | and the training errors. To improve
the separability, the data are mapped into a higher dimensional
dot product space using the functionφ. If the dot product space
is expressed byK (x i�x j ) = φ(x i ) �φ(x j ), thenK (x i�x j ) is
called a kernel function. The kernel used must meet Mercer’s
condition which is described in [46]. In this work, kernel selec-
tion is made experimentally. In the experiments, we consider
three kernels, namely polynomial, sigmoid and RBF kernels.
For each of the kernels, precision and recall rates are measured
in 3-fold and 5-fold cross validation settings. Table IV shows
the experimental results. As it can be seen, RBF kernel turns
out to be the best performer in this experiment. Therefore, we
select RBF kernel for conducting the rest of experiments. The
accuracy of SVM classification depends on the values of two
parametersC andγ . Careful selection of these two parameters
is important. Otherwise the classifier may perform poorly in
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TABLE IV
CLASSIFICATION ACCURACY MEASUREMENTS ONDATASET 1 USING DIFFERENT KERNELS FORSVM CLASSIFICATION. FOR THIS EXPERIMENT WE SET

γ = 2− 8 AND C = 29 .

Kernels 3-fold cross validation 5-fold cross validation
precision (%) recall (%) precision (%) recall (%)

Polynomial kernel (2nd order),(γxT
i x j + r )d , r = 1 91.33± 2.39 90.14± 1.82 92.83± 1.66 88.11± 2.95

Polynomial kernel (4th order) 92.51± 1.77 90.33± 1.82 91.21± 2.01 91.35± 2.10
Sigmoid kernel,t anh(γxT

i x j + r ), r = 1 88.87± 1.62 82.48± 2.72 89.05± 1.21 86.72± 2.99

RBF kernel,e− γ | | x i �x j | |2
92.99± 1.26 94.07± 1.09 93.02± 1.39 94.34± 0.97

the testing phase. A cross-validation approach is commonly
used to determine the best parameters. Wefind the best penalty
parameterC from the range{ 2− 5�2− 4�����210} and width
control parameterγ from the range{ 2− 10�2− 1�����25} .

Once the training is accomplished, the testing is done using
the voting strategy called “Max Wins”, proposed in [47].
In summary, for each comparison given datax, the sign of
((wi j )T φx + bi j ) indicates the class of belonging. If the sign
indicates thatx belongs to classi , then the vote of classi is
increased. Otherwise, the vote of classj is increased. At the
end, the class with maximum vote is declared as the class of
x. In case of draw, the lowest index class is considered as the
winner.

C. Evaluation

The performance of CAMHID descriptor and cinemato-
graphic features are evaluated in this subsection. For both
datasets, the effectiveness is shown by using confusion matrix
and by comparing recall rates, precision rates andf 1 scores.

In Dataset 1, shots are classified into 4 classes: static, pan,
tilt and zoom. The SVM classifier is trained using the training
data and the performance is evaluated using the testing data.
Table V shows the confusion matrix of the shot classification
performance on Dataset 1. The recall rates, precision rates
and f 1-scores are reported in Table VI. As shown in Table
VI, the classification accuracy is reasonably high. We compare
the performance of shot classification with three state-of-the-
art approaches. In [15], video shots were classified into static,
pan, tilt and zoom classes. Although the achieved classification
accuracy was very high, the dataset size was very small
(consisting of 45 shots only). Another approach was reported
in [25] where video shots were classified based on camera
movements. In that case, the authors used a dataset of only 32
MPEG-1 video sequences, which is also considered as a very
small dataset. In [18], dense trajectory based technique was
reported to describe video motions. The application shown in
[18] was for action recognition. We test the performance of
the descriptor based on dense trajectories only as mentioned in
[18]. Other features such as HOG, HOF and MBH mentioned
in [18] are irrelivant to our work, so we do not make any com-
parison on these features in this paper. Our shot classification
results are compared with the methods described in [15], [25]
and [18]. Figure 12 shows the recall, precision andf 1-score
comparison. The average recall and precision rates of [15] are
89�29% and88�0% respectively, rates of [25] are97�66% and
90�03% respectively and rates of [18] are77�94% and74�49%
respectively. As the datasets used in [15] and [25] are not made

available for public access, we cannot directly compare our
results with the results using those two methods. However, the
method proposed in [18] has made their source code for public
use [48]. Therefore, we use the available code to measure
the performance in classifying video shots in basic camera
motion classes using Dataset 1. As the static trajectories are
eliminated during pre-processing, we have not used the static
shots of Dataset 1 for training and testing the method in [18].
Therefore, for evaluation, we have used only pan, tilt and
zoom shots to determine the performance. The average recall
and precision rates of the proposed method are94�23% and
95�27% respectively. The averagef 1-score of [15], [25], [18]
and the proposed method are88�08%, 93�62%, 76�14% and
94�48% respectively. Although the approaches in [15] and [25]
perform well in small datasets, thef 1-score performance of the
proposed method outperforms the rest and it is considered to
be more acceptable as the proposed method performs robustly
on a much larger dataset. To summarize the above comparison,
we claim that our method outperforms the method shown in
[15], [25] and [18] on average in terms of recall rate, precision
rate andf 1-score. Furthermore, our method is more promising
and consistent.

TABLE V
CONFUSION MATRIX OF SHOT CLASSIFICATION USINGDATASET 1.

static pan tilt zoom

static 0.94 0.03 0.02 0.01
pan 0.01 0.96 0.01 0.02
tilt 0.02 0.01 0.96 0.01
zoom 0.01 0.02 0.00 0.97

TABLE VI
RECALL (R), PRECISION(P) AND f 1 SCORE(f 1 ) MEASURES OF SHOT

CLASSIFICATION PERFORMANCE USINGDATASET 1.

static pan tilt zoom average

R 0.94 0.96 0.96 0.97 0.94
P 1.00 0.81 0.74 0.74 0.95
f 1 0.97 0.88 0.84 0.84 0.94

The performance of shot classification is further evaluated
using Dataset 2 to show the ability of CAMHID and extended
features in classifying cinematographic shots into the directing
semantic classes. After training the SVM classifier using the
training data of Dataset 2, the performance is evaluated using
the testing data of Dataset 2. The confusion matrix is reported
in Table VII. It is found that stationary shots are mostly
confused with chaotic shots. This kind of misclassification
mainly happens due to the threshold applied. This happens
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(a) recall

(b) precision

(c) f 1 -score

Fig. 12. Camera motion based video shot classification results comparison
with [15], [25] and [18] using Dataset 1. (a) Recall rate comparison. (b)
Precision rate comparison. (c)f 1-score comparison.

due to a small magnitude differences which fall near the
borderline of motion magnitude. However, the amount of
wrong classifications is at a minimum level. Focus tracking
shots and Contextual tracking shots introduce another level
of confusion. Since the establishment shots also have similar
motion patterns, this shot type also introduces additional
confusion in classification. Although there is a level of confu-
sion, the classification results using the proposed method are
still promising. Table VIII shows the detailed classification
performance using recall rates, precision rates andf 1-scores.
To evaluate the performance of our proposed method, we
compare the result with a state-of-the-art methods described
in [33]. Figures 13 shows the performance comparison of our
method with the methods described in [33]. In [33], the au-
thors proposed two methods to classify cinematographic shots
into directing semantic classes. Thefirst method classifies
the shots with occlusion handling (OH) mechanism and the
second method does so without occlusion handling (WOH)
mechanism. As it can be seen in Figure 13(a), the recall rate
of our method for all the classes is higher than the results

using the state-of-the-art approach. Although for most of the
classes, precision rates using our method are higher than those
using the method shown in [33], for other classes our precision
rates show a bit lower than the state-of-the-art. To show a
fairer comparison, Figure 13(c) demonstrates the comparison
results of f 1-scores. It is shown that, the proposed method
has higherf 1-scores for the classes except contextual tracking
and focus-out classes. The averagef 1-scores of [33] with
occlusion handling and without occlusion handling are83�03%
and81�55% respectively. However, it turns out that the average
f 1-score of the proposed method is85�02% which is higher
than the other two methods.

TABLE VII
CONFUSION MATRIX OF SHOT CLASSIFICATION USINGDATASET 2.

S CT FT FI FO E C

S 94.22 0.57 0.71 0.57 0.28 0.57 3.08

CT 0.44 87.61 5.53 1.55 0.88 3.10 0.88

FT 0.88 8.00 88.16 0.66 0.55 0.66 1.10

FI 0.53 2.11 1.05 91.58 0.53 3.16 1.05

FO 0.00 2.56 2.56 0.00 92.31 0.00 2.56

E 0.00 2.22 0.56 1.67 0.00 94.44 1.11

C 1.55 1.07 3.04 2.03 0.66 1.31 90.33

TABLE VIII
RECALL (R), PRECISION(P) AND f 1 SCORE(f 1 ) MEASURES OF SHOT

CLASSIFICATION PERFORMANCE USINGDATASET 2.

S CT FT FI FO E C

R 94.22 87.17 88.16 88.95 89.74 94.44 90.33

P 98.08 77.87 89.23 72.53 55.56 73.91 94.68

f 1 96.11 82.26 88.69 79.91 68.63 82.92 92.45

The CAMHID feature extraction processing time for a30
frame video shot of size688× 272 pixels using a PC (Windows
XP, Microsoft Visual Studio 8.0 with OpenCV 2.3, Intel Core
i5 2.5 GHz, 4 GB Memory) takes6�79 seconds.

VI. CONCLUSION

In this paper, a novel camera motion characterization tech-
nique has been proposed to compute the camera motion
descriptor for an input video. The camera motion has been
characterized by analyzing the extracted raw motion vectors
in the temporal domain. The temporal characterization of
the camera motions is then described by using a histogram,
which combines local camera motion characterization features.
We have applied the proposed technique to classify a video
database into basic camera motion classes. We have further
applied the proposed technique to classify cinematographic
shots by extending the feature space. In the feature extension
part, we consider the depth of the scene which is considered as
one of the most important characteristics in cinematographic
shot directing semantic classes. We have applied the motion
descriptor with the extended feature on a separate dataset
where shots are to be classified into directing semantic classes.
We have evaluated and compared the performance of the
proposed descriptor with state-of-the-art approaches. It has
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been demonstrated that the proposed descriptor has a strong
capability to effectively discriminate different types of camera
movements and shot types.

(a) recall

(b) precision

(c) f 1 -score

Fig. 13. Cinematographic shot classification results in comparison with
[33]. (a) Recall rate comparison. (b) Precision rate comparison. (c)f 1 -score
comparison.
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