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Abstract. Object tracking is widely used in many applications such as
intelligent surveillance, scene understanding, and behavior analysis.
Graph-based semisupervised learning has been introduced to deal
with specific tracking problems. However, existing algorithms follow-
ing this idea solely focus on the pairwise relationship between
samples and hence could decrease the classification accuracy for
unlabeled samples. On the contrary, we regard tracking as a one-
class classification issue and present a novel graph-based semi-
supervised tracker. The proposed tracker uses linear neighborhood
propagation, which aims to exploit the local information around
each data point. Moreover, the manifold structure embedded in the
whole sample set is discovered to allow the tracker to better model
the target appearance, which is crucial to resisting the appearance
variations of the object. Experiments on some public-domain sequen-
ces show that the proposed tracker can exhibit reliable tracking
performance in the presence of partial occlusions, complicated back-
ground, and appearance changes, etc. © 2013 SPIE and IS&T [DOI:
10.1117/1.JEI.22.1.013015]

1 Introduction
As a traditional research topic, numerous researchers have
extensively studied object tracking through various methods.
Tracking aims to precisely associate the target in consecutive
video frames while maintaining its identity. However, this
goal is far from being reached because the tracking process
is often affected by many unexpected disturbances, such
as occlusion, the target’s appearance variation, a sudden
background or illumination change, etc. Therefore, making
tracking more robust and adaptive still represents an
important research subject.

In existing tracking algorithms, the region of target is
usually represented as a point,1 contour,2 skeleton,3 or some
primitive geometric shapes such as a rectangle4 and an
ellipse. Point representation is suitable for small objects.
A contour or skeleton is a good choice for tracking a nonrigid
target with significant appearance variations. In our case,
the image region of the object is represented as a rectangle
because this representation is more efficient and is not overly
sensitive to the slight appearance changes of the target
between adjacent frames.

Feature selection is critical for tracking and is closely
related to object representation. Color feature is commonly
adopted for histogram-based representations,5 while edge is
often used as a feature when the target is represented by a
contour. However, these features are not robust to illumina-
tion changes. Thus, the Gabor wavelet, which is a kind of
texture feature, is implemented over the rectangular region
of the target in our algorithm. The Gabor wavelets can
capture the energy information in different directions and
scales and hence provide better adaptability in the presence
of illumination changes.

The mechanisms of traditional trackers can be roughly
classified into two types: motion based and matching
based. The motion-based approach associates the object in
consecutive frames by exploiting the motion information.
For example, Kanede-Lucas tracker (KLT)6 adopted optical
flow constraint to describe the relationship between the gray
value of the image and the structural variation of the target.
Matching-based tracker aims to identify the target that is the
most similar to the historical records. Mean-shift tracker5

used kernel technique to represent the similarity between
the candidate regions and template. Kalman filter tracker7

and particle filter8 tracker searched the candidate regions
for matching by estimating the position of object. Various
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tracking algorithms are summarized in the work of Yilmaz
et al.9

Machine learning has been introduced to the tracking
domain in recent years. One or more discriminative classi-
fiers are often used to enable a tracker to learn the specificity
and variations of a target’s appearance. Avidan proposed the
support vector tracker10 by using a support vector machine to
discriminate the target and the background. Grabner et al.
used the framework of an on-line AdaBoost to select “good”
features for tracking.4,11 However, these trackers are easily
confused under a complicated background, and their re-
detection ability after losing the target is weak. To enhance
stability, multiple instance learning was applied to
tracking.12,13 Instead of classifying a single instance, this
learning strategy classifies the bags consisting of several
instances. The bag is positive as long as it contains one pos-
itive instance. Therefore, severe drifting can be avoided
when the target is located with slight inaccuracy.

Moreover, some graph-based semisupervised learning
algorithms, such as the harmonic function,14 have also been
introduced to address the tracking problem. A large number
of unlabeled samples are adopted in this method to in-
crease the discriminative ability of the tracker. However,
this method has two main limitations. First, the graph is
constructed simply using the pairwise relationship of the
sample measured by Euclidean distance and hence cannot
effectively discover the property of a large complex dataset
with high-dimensional samples. Second, this algorithm
regards tracking as a binary classification problem and
attempts to use very few negative training samples to
describe overly complex backgrounds.

To overcome these two defects, the proposed algorithm
treats tracking as a one-class semisupervised classification
problem and establishes the graphical model using local
information around each sample. When the target moves
around in the scenario, the background varies continually

while the target itself substantially remains unchanged.
Therefore, the collected positive samples can sufficiently
represent the appearance of the target. On the contrary, the
negative samples, which are needed for binary classification
methods, cannot properly capture the variations of the back-
ground. Thus we only focus on the positive samples that
represent the target areas.

Moreover, the notation of a manifold has been verified
in many scientific works15,16,17 that postulate that the vari-
able high-dimensional observations of the target can be
embedded in a low-dimensional geometry. Hence, finding
the manifold hidden in the different appearances of the target
during the tracking process will help the tracker learn the
object essentially, which will be a step forward to a robust
performance (Fig. 1). Given the aforementioned concepts, a
graph-based semisupervised learning method called linear
neighborhood propagation (LNP)18 is suitable for tracking
because it uses local information of the samples to discover
the low-dimensional structure when the graph is established.
Our tracker is thus named the LNP tracker. However, unlike
in the standard LNP algorithm, target location is regarded as
a one-class classification problem in our tracking case to
meet the necessary criteria of “specificity versus variability.”

The structure of this paper is as follows. In Sec. 2, the
framework of the proposed method is introduced. Details of
our tracking algorithm are explained in Sec. 3. Section 4
illustrates the experimental results on the public sequences
and provides corresponding analysis. Finally, a conclusion
is drawn in Sec. 5.

2 Framework
The flow chart of our approach is shown in Fig. 2. First, a
target TGð1Þ (the number in superscript is used to denote the
frame number) is chosen manually in the first frame. Then a

Y

X

Fig. 1 Illustration of a manifold. The face images are extracted from
the Foreman sequence used in the experimental section. The appear-
ances of the face differ in many aspects, such as in observation angle,
illumination, and expression. However, these face images can be
finely projected onto a low-dimensional embedding space. Fig. 2 Flow chart of the LNP tracker.
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temporary tracker (e.g., mean-shift tracker) is utilized in the
subsequent S − 1 frames to collect several positive samples
(i.e., TGð2Þ;TGð3Þ; · · · ;TGðSÞ tracked by mean-shift in every
frame) to establish the labeled dataset LSðhÞ ¼ fx1; x2; · · · ;
xlðhÞg (lðhÞ ¼ S at present) and the corresponding graph GðhÞ

LS .
Subsequently, the LNP tracker replaces the mean-shift
tracker. When the h-th (h > S) frame arrives, uðhÞ unlabeled
samples are collected by the sliding window technique to
form the unlabeled set USðhÞ ¼fxlðhÞþ1;xlðhÞþ2; · · ·;xlðhÞþuðhÞg.
The samples are combined with GðhÞ

LS to construct GðhÞ ¼
GðhÞ

LS ∪ GðhÞ
US (GðhÞ

US is the subgraph in GðhÞ corresponding to
USðhÞ), of which the weight matrix is denoted as W.
Afterward, labels of positive samples are propagated to unla-
beled ones through edges. The label prediction vector f� ¼
ðfTLS..

.
fTUSÞ

T

can then be obtained. The sample that has the
largest value in fTUS is taken as TGðhÞ. Finally, TGðhÞ and
the samples gathered in the previous M − 1 frames are pre-
served in GðhÞ, while the remaining samples in fTUS are
deleted. This procedure is iterated until the end of the
sequence.

3 LNP Tracker in Detail

3.1 Temporary Tracker
After the target is annotated in the first frame, an existing
simple tracker begins to work in the subsequent S − 1 frames
to obtain a small number of labeled samples. Here S should
not be set very large, and any tracker can locate the target
precisely in such a short period. Hence we call this tracker
a temporary tracker. In this paper, the mean-shift tracker is
employed, and S is set to 20.

3.2 Graph Construction
In a graph-based semisupervised learning algorithm, a graph
is represented as G ¼ hV; Ei, where V and E stand for the
vertex and the edge sets, respectively. Samples are repre-
sented by vertices, and their similarity is described by the
edge weights. Once the first S frames of the sequence have
been processed, the LNP tracker begins to deal with the
many unlabeled samples. At this time, an initial graph
GðhÞ

LS (h ¼ S currently) is established using LSðSÞ. Existing
methods often use the Gaussian kernel to define the similar-
ity between samples x1 and x2 (Refs. 14 and 19) such as in

ω12 ¼ exp

�
−
kx1 − x2k2

2σ2

�
: (1)

However, Euclidean distance cannot honestly reflect the
similarity of the high-dimensional samples in the complex
dataset.17 Therefore, this approach for graph construction
is not applicable in the present study. Instead of considering
the pairwise relationship between instances as Eq. (1), this
paper focuses on the local neighborhood information of
samples. The benefit of our method to graph construction
is discussed in Sec. 4.1.

Initially, K nearest neighbors of xiði ¼ 1; 2; · · · ; SÞ are
calculated by the Euclidean distance because in a small
local area, this similarity measurement is reliable. Subse-
quently, in graph GðSÞ

LS , xi can be optimally expressed as

the linear combination of its K neighbors. The objective
function of each xi is defined as

εi ¼
����xi −

X
j∶xij∈NðxiÞ

ωijxij

����
2

; (2)

where NðxiÞ denotes the neighbors of xi, and coefficient ωij

is the contribution of xij to xi. This contribution describes the
similarity between xij and xi. The main idea behind this
method is borrowed from a well-known manifold learning
algorithm called locally linear embedding (LLE).15 The
LLE and our method pay attention to the local information
around a data point. Therefore in graph GðSÞ

LS , the similarities
between samples are determined by considering the manifold
structure hidden in a dataset. Furthermore, the sum of the
weights of the neighbors should be restricted to 1. Thus
the additional constraints are formulated asX

j

ωij ¼ 1; ωij ≥ 0: (3)

Unlike the graph established in Ref. 14, the weight matrix
ðWÞij ¼ ωij here is no longer symmetrical because it is a
sparse matrix in which ωij > 0 if xj ∈ NðxiÞ and ωij ¼ 0
if xj ∈= NðxiÞ.

Reference 18 also pointed out that Eqs. (2) and (3) can be
written in the matrix formation as follows:

min
ωij

P
j;k∶xj;xk∈NðxiÞ

ωijHjkωik

s:t:
P
j
ωij ¼ 1;ωij ≥ 0

; (4)

where Hjk is the ðj; kÞ’th element of matrix H, and Hjk

equals to ðxi − xjÞTðxi − xkÞ at the point xi. Equation is a
standard quadratic programming problem and can easily
be solved by existing methods. GðSÞ

LS is then found by solving
S optimization problems such as in Eq. (4). As the tracking
process continues, the initial graphGðSÞ

LS is updated incremen-
tally through graph expansion and graph deletion operations,
which are introduced in Secs. 3.3 and 3.5, respectively.

3.3 Graph Expansion
In the frame h (h ≥ Sþ 1), a search window slides in the
region near the TGðh−1Þ to collect uðhÞ unlabeled samples
xlðhÞþ1; xlðhÞþ2 · · · xlðhÞþuðhÞ . As this paper does not consider
the scale change of the target, the size of the search window
in all frames remains the same. Next, GðhÞ

LS should be
expanded to a larger graph GðhÞ to include these unlabeled
samples, namely, GðhÞ ¼ GðhÞ

LS ∪ GðhÞ
US , as mentioned in Sec. 2

(Fig. 3). Reconstructing the graph here is unnecessary and
inefficient because this process needs to calculate K neigh-
bors of all the instances and seek the solutions to Eq. (4).
However, only a small fraction of samples require research-
ing neighbors actually. Thus, an incremental graph expan-
sion strategy comprising two steps is adopted.20 Unlabeled
samples xlðhÞþ1 to xlðhÞþuðhÞ are inserted into GðhÞ one by one.
When we search K neighbors of a query point xq ∈ USðhÞ,
q ¼ lðhÞ þ 1; lðhÞ þ 2; : : : ; lðhÞ þ uðhÞ, a hyper sphere Θ cen-
tered on xq (Fig. 3) is first defined by the radius given as
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r ¼ ðd1 þ d2Þð1þ εÞ: (5)

In Eq. (5), ε is a constant that is set to 0.5. d1 is the
Euclidean distance between xq and its 1-NN xq1, and d2
is the Euclidean distance between xq1 and its furthest neigh-
bor xq1K. Next, K neighbors of all the points in Θ are recal-
culated. After GðhÞ is expanded, its weight matrix W is
modified accordingly using the same method explained in
Sec. 3.2. The complexity of inserting one xq following this
method is O½2ðq − 1Þ þ n3Θ�, where nΘ is the number of
samples in the Θ, and nΘ ≪ q − 1. However, if the graph
is rebuilt from scratch when a new point xq is inserted,
the complexity is as high as Oðq3Þ.

3.4 Label Propagation
Label propagation aims to transmit the label information
from labeled samples to unlabeled ones through graph G.
Suppose that function f can assign a real value fi to the
corresponding sample xi. Then the soft label of samples
is given by fi ¼ fðxiÞ, where i ¼ 1; 2: : : lðhÞ; lðhÞ þ 1; lðhÞþ
2; : : : ; lðhÞ þ uðhÞ. The initial state in frame h is defined as

y ¼ ðyTLS..
.
yTUSÞ

T

; (6)

where

yLS ¼ ðy1 y2: : : ylðhÞ ÞT
yUS ¼ ð ylðhÞþ1 ; ylðhÞþ2 : : : ylðhÞþuðhÞ ÞT

with elements

yi ¼
�
1; 1 ≤ i ≤ lðhÞ

0; lðhÞ þ 1 ≤ i ≤ lðhÞ þ uðhÞ
:

Then the label prediction vector f� can be derived itera-
tively as

fðtþ1Þ ¼ αWfðtÞ þ ð1 − αÞy: (7)

In Eq. (7), W is the weight matrix obtained in Sec. 3.2.
α is the trade-off between the initial state and the infor-
mation from the neighbors of samples. fðtÞ ¼ ½fðtÞ1 : : : fðtÞ

lðhÞ

fðtÞ
lðhÞþ1

· · · fðtÞ
lðhÞþuðhÞ

�T is the column vector at iteration t, and

fð0Þ ¼ y. The equation is proven to converge to18

f� ¼ lim
t→∞

fðtÞ ≜ ðfTLS..
.
fTUSÞ

T

; (8)

where fTLS is the subvector corresponding to LS
ðhÞ, and fTUS is

for USðhÞ. Here the convergence indicates that the ordering of
the magnitude of the elements in f� does not change for sev-
eral successive iterations. Every element in f� is above zero
because tracking is regarded as a one-class classification
task. Therefore the target in frame h is the sample with the
largest component in fUS, as indicated in the equation below:

TGðhÞ ¼ ½xiji¼ lðhÞ þ argmax
r

ðfUSÞr;r¼ 1;2 · · · uðhÞ�: (9)

The confidence score of the target location in frame h is
defined as

ScoreðTGðhÞÞ ¼ max
r

ðfUSÞr: (10)

3.5 Labeled Set Updating and Graph Deletion

TGðhÞ can be determined as the final tracking target only if
ScoreðTGðhÞÞ exceeds a certain threshold δðhÞ, because
extremely low ScoreðTGðhÞÞ indicates that the LNP tracker
is not confident on the result. This uncertainty is usually
caused by large appearance changes or significant occlu-
sions. These uncertain or inaccurate samples should not
be added to the labeled set because they may cause drifting
problems. δðhÞ is determined through an adaptive way21 such
that if ScoreðTGðhÞÞ is λσðhÞ lower than the mean level from
ScoreðTGðSþ1ÞÞ to ScoreðTGðh−1ÞÞ, TGðhÞ being a final target
is invalid. Therefore

δðhÞ ¼ μðhÞ − λσðhÞ (11)

with the mean μðhÞ and the variance σðhÞ formulated as

8<
:

uðhÞ ¼ 1
h−S−2

P
h−1
j¼Sþ1 ScoreðTGðjÞÞ

σðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
h−S−2

P
h−1
j¼Sþ1 ½ScoreðTGðjÞÞ − uðhÞ�2

q ;

h > Sþ 2:

(12)

We use xðhÞTG to denote the sample that is finally selected

as the target in frame h. Then xðhÞTG is added to LSðhÞ to estab-
lish LSðhþ1Þ for building graph Gðhþ1Þ, as explained in
Sec. 3.3. Moreover, positive samples collected before frames
h − Tðh ≥ TÞ are eliminated from LSðhÞ beforehand, thereby
allowing the LNP tracker to learn the latest appearance of
the target and to prevent the size of LSðhÞ from growing
constantly. If we use the notation ΩðhÞ to denote the set of
eliminated samples, then

( )hG

( )h
LSG

( )h
USG

1d

2d

Query point
1 2( )(1 )r d d

Fig. 3 Incremental graph expansion. The pink and blue dots
represent the labeled samples and the unlabeled samples that are
added to the original graph, respectively. The dashed circle indicates
the hyper sphere in which the samples should update their neighbors.
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LSðhþ1Þ ¼ LSðhÞ ∪ fxðhÞTGg∕ΩðhÞ. (13)

Similarly, vertices in GðhÞ with respect to the samples
in ΩðhÞ should likewise be excluded from the graph.
Additionally, only xðhÞTG is retained while vertices related to

GðhÞ
US∕x

ðhÞ
TG are removed. The aforementioned graph deletion

is fulfilled using the similar method in Sec. 3.3, that is,
by defining Θ and then updating the neighbor information
within it.

4 Analysis and Experiments

4.1 Analysis of the LNP Tracker
By analyzing the working mechanism of the LNP tracker
and by providing corresponding examples, reasons of the
improved performance achieved by the proposed tracker
are explained. Compared with existing methods, we hold
that two points are critical:

1. A one-class classification-based tracker is more accu-
rate than that based on binary classification, especially
when the background contains different image struc-
tures from the target.

2. Exploiting the local information is better than simply
using the pairwise relationship of samples.

The advantage of a one-class classification listed is dem-
onstrated in Fig. 4. In Fig. 4(a), the unlabeled sample is dif-
ficult to classify because no record in the positive or negative
set is similar to it, even though it should be classified as a
background. An unlabeled sample such as this will probably
decrease the accuracy of the tracker and limit the tracking
performance. Nevertheless, if a one-class classification is
utilized, as shown in Fig. 4(b), this problem can easily be
resolved. The reason is that as long as the new sample is
unlike the object, the sample will not be chosen as the final
target.

The LNP tracker is not easily confused by adopting the
local information mentioned in number 2 even when the
appearance of the target changes significantly. In Fig. 5,
x1 ∼ x5 are positive samples, and xu is the unlabeled sample.
The target of graph construction is to connect the unlabeled
samples to the similar labeled ones with edges. Figure 5(a)
illustrates that although the observation angle of xu looks
very different from x1 ∼ x5, using Eq. (4) to establish a
graph still produces strong ties between them (see edge
weights in red boxes). Comparatively, if Eq. (1) is adopted
to present the pairwise relationship between xu and the five
labeled samples, the connections between xu and x1 ∼ x3 are
relatively very weak (edge weights in green boxes approx-
imately equal to 0). Similarly, Fig. 5(b) indicates that when
partial occlusion occurs, bigger edge weights can be obtained
using the local method (red boxes) compared with those

Positive Negative

Unlabeled

N

Target
Non-target

(a) (b)

Fig. 4 One-class classification versus binary classification: (a) shows the process of binary classification; (b) indicates the mechanism of the one-
class classification. The unlabeled sample that is difficult to be classified in (a) will easily be regarded as the nontarget in (b) (red box).

Fig. 5 Comparison of methods for graph construction: (a) indicates
the view change and (b) shows the effect of occlusion on edge
weights. xu is the unlabeled sample and is linked to the labeled sam-
ples x1 ∼ x5 by two graph construction methods; i.e., pairwise and
local methods, respectively. ωu1 ∼ ωu5 in red boxes are edge weights
generated using the local method, while ω̃u1 ∼ ω̃u5 in green boxes
are those generated using the pairwise method.
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obtained based on the pairwise idea (green boxes). In fact,
a good strategy for graph construction is to assign large
weights between xu and x1 ∼ x5 to let the tracker know that
the two are the same. Experimental results suggest that by
using our graph construction strategy, the LNP tracker will
regard xu and x1 ∼ x5 as the same thing. Therefore local
information around samples can offer more clues for the
LNP tracker to recognize the object. Note that in Fig. 5(a)
and 5(b), x5 is actually more similar to xu than any other
labeled samples. Thus Eqs. (1) and (4) assign the biggest
weight (ωu5 and ω̃u5) to it.

4.2 Comparison with Other Trackers
The LNP tracker is tested on several challenging public
sequences and is compared with other popular trackers,
such as mean-shift (MS),5 semiboosting (SB),11 FragTracker
(FT),22 and harmonic function tracker (HF).14 Note that the
HF is a binary classification-based tracker wherein the graph
is constructed using pairwise information. In all the experi-
ments below, the parameters of the LNP tracker are K ¼ 5,
α ¼ 0.99, and T ¼ 150. The Gabor feature23 is adopted
because it discovers the local feature of the target perfectly
from different directions and scales.

4.2.1 Handling appearance change

The appearance change of a target is a noteworthy obstacle
for reaching a robust tracking because such change
will most likely make the tracker unable to identify the pre-
vious target. In a Hockey (available at http://www.vision.ee
.ethz.ch/~hegrabne/) sequence, a player skates quickly to
defend the attacker, and his body posture would vary dra-
matically all the time. The performance of five trackers is
compared in Fig. 6(a). The HF (green box) fails to track
the player (the target) when he waves his arms and makes a
turn to catch the attacker (frame 75). The SB (yellow box)
cannot find the target in frames 39 and 52 because the
defender bends down to accelerate during this period.
Nevertheless the SB can redetect and continue to track the
target successfully afterward. Generally, the MS (blue box),
FT (magenta box), and the LNP tracker (red box) perform
better in this sequence. Comparatively, slight drifting appears
in frames 25 and 39 in the blue box, while the LNP tracker is
able to track the target accurately from beginning to end.

4.2.2 Face tracking

Face tracking is also considered as a difficult task because
the trackers are easily confused in the presence of facial
views or expression variations. The Foreman sequence
(available at http://media.xiph.org/video/derf/) contains the
situations that often occur during the face tracking process,
such as significant expression changes, intense head move-
ments, hand occlusions, and view conversions. The frames
presented in Fig. 6(b) indicate that the LNP tracker can resist
the aforementioned disturbances and locate the face pre-
cisely throughout the whole sequence. The HF loses the tar-
get in frames 27, 86, and 149 to 174. The MS works well in
the majority of the frames except in 159 and 174. In frame
159, the face rotates to a profile view, and when it recovers,
the tracker cannot locate the frontal face as it did before.
Moreover the SB fails to find the target after an occlusion

by hand occurs. Thus no yellow boxes appear in frames
155 to 174.

Moreover, ScoreðTGðhÞÞ, which is interpreted as tracking
confidence level in Sec. 3.4, is also plotted in Fig. 7(a). This
figure reveals that in frames 75 to 100 and 150 to 170, the
confidence curve drops to a low level. Frames 75 to 100
correspond to the intense head movements, which include
the shaking of the head and the action of looking up. Thus
in such cases the tracker’s confidence level is lower. Frames
150 to 170 correspond to the occlusion and observation view
changes. These changes decrease the confidence level of the
tracker. Therefore, the confidence curve adopted in our algo-
rithm can honestly reflect the whole tracking process, and it
helps exclude many disturbances that may lead to drifting.

4.2.3 Dealing with occlusion

Partial or complete occlusion is another critical issue for
robust tracking. The Car (available at http://vision.cse
.psu.edu/data/vividEval/datasets/datasets.html) and Woman
(available at http://ice.dlut.edu.cn/lu/Project/cvpr12_jia_
project/cvpr12_jia_project.htm) sequences are used to test
the occlusion handling ability of the LNP tracker.

The target is totally occluded by a tall tree in the Car
sequence [Fig. 6(c)]. Furthermore, the car being tracked is
similar to another one in the scenario, thereby requiring the
tracker to make a clear distinction between the two. The sec-
ond car is chosen as the target, and all trackers successfully
locate the target in the initial phase (frames 22 and 25).
However, when the car is totally occluded by a tall tree
(frame 78) and appears again (frame 87), the MS, HF, and
FT cannot locate the target accurately. The SB mistakenly
tracks the first car until the end. Only the LNP tracker rede-
tects and tracks the preset target (the second car) successfully
after the occlusion. Note that in frames 78 and 257, the LNP
tracker judges the target to be out of the scenario (no red box
is available) because the target is occluded in frame 78 and
part of the object is clipped by the edge of image in frame
257. These two periods are also illustrated in the confidence
curve [Fig. 7(b)]. This curve indicates that during frames
60 to 80 and 250 to 260, the confidence level drops
significantly.

In the Woman sequence [Fig. 6(d)], the upper body of the
target is occluded by three cars successively. In frame 94,
134, 216, and 254, the SB, MS, FT, and HF all begin to
locate the object inaccurately. Only the LNP tracker is not
influenced by the occlusions.

Moreover, if the position error in the i’th frame is
defined as

Errori ¼ kTarget Centeriðx; yÞ − Ground Truthiðx; yÞk2;

then the position errors over all frames of the Car, Woman,
and more sequences (CarInDark andGirl, available at http://
ice.dlut.edu.cn/lu/Project/cvpr12_jia_project/cvpr12_jia_
project.htm and http://www.dabi.temple.edu/~hbling/code
_data.htm, respectively) are plotted in Fig. 8. The figure
illustrates that the LNP tracker is closer to the ground truth
in general. The tracking results of the LNP tracker for the
CarInDark and Girl sequences are also illustrated in Fig. 9.
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Fig. 6 Comparison of the MS, SB, HF, FT, and the LNP in theHockey, Foreman,Car, andWoman sequences. Red box: LNP, blue box: MS, yellow
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Fig. 7 Confidence curve for the LNP tracker: (a) is the Foreman sequence, and (b) denotes the Car sequence.
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Fig. 9 Tracking results of the LNP tracker: (a) is the CarInDark sequence, and (b) is the Girl sequence.
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Fig. 10 Illustration of the failure case.
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4.3 Failure Case
Although the proposed tracker achieves satisfying results in
most instances, it is expected to fail in some extreme situa-
tions. For example, in Fig. 10, a stone is tracked accurately
from the beginning up to frame 397. When the stone is
moved in frames 518 to 556, the tracker gets confused
and drifts to track the wrong object. This failure may be
attributed to two reasons. First, the background contains
many objects whose structures are very similar to that of
the target. This scenario causes great difficulty for the
one-class tracker to make a distinction between the target
and the background. Hence the tracker is likely to mistakenly
treat other stones as the target. Second, the target in this case
is too small and has no notable texture feature. Therefore the
Gabor feature adopted is no longer discriminative. In such
circumstances, the traditional trackers based on binary clas-
sification will probably perform better than the LNP tracker
when features that are more proper are fused into the tracking
framework.

5 Conclusion and Future Work
This paper regards tracking as a one-class classification task
and proposes a graph-based semisupervised tracker called
the LNP tracker. The graphical model is constructed using
the neighborhood information of the samples, and the
label is transmitted through the edges. The proposed LNP
tracker discovers the manifold structure in the dataset,
thus achieving more robust and adaptive performance.
Experiments demonstrate the rationality of our method
and suggest that the LNP tracker can effectively deal with
some internal or external disturbances during the tracking
process, i.e., appearance changes, observation view changes,
occlusions, etc.

However, the computational complexity is still very high
(5.14 fps for a 20 × 32 target) despite the incremental graph
construction is adopted. Future work should therefore focus
more on this point. Building a suitable graph for object
tracking is also an interesting trend to explore.
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