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Abstract. In this paper we present some new applications of
Lie symmetry analysis to problems in stochastic calculus. The
major focus is on using Lie symmetries of parabolic PDEs to obtain
fundamental solutions and transition densities. The method we
use relies upon the fact that Lie symmetries can be integrated
with respect to the group parameter. We obtain new results which
show that for PDEs with non trivial Lie symmetry algebras, the
Lie symmetries naturally yield Fourier and Laplace transforms of
fundamental solutions, and we derive explicit formulas for such
transforms in terms of the coefficients of the PDE.

1. Introduction

A Lie group symmetry of a differential equation is a transformation
which maps solutions to solutions. Lie symmetries allow complex so-
lutions to be constructed from trivial solutions. Indeed crucially, with
a Lie group symmetry, we obtain a continuous family of solutions, pa-
rameterized by the group variable. The books [17] and [1] contain both
an introduction to Lie symmetry groups and numerous applications.

The current paper is a part of a program which explores the connec-
tions between Lie symmetry analysis and harmonic analysis. Here we
will illustrate the links between the two areas by focusing on the appli-
cation of Lie symmetries to the construction of fundamental solutions.

The current author and his collaborators have developed the method-
ology used here in several publications, such as [9], [7] and [8]. The idea
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is to produce an integral transform of a fundamental solution by apply-
ing a single Lie symmetry to a trivial solution. For this to be useful, the
transform must have a known inversion integral. Ideally, the transform
should be one of the most well studied, such as the Fourier or Laplace
transform, since extensive tables for these transforms exist and there is
a rich theory which we can exploit to obtain further information about
the fundamental solution, such as its asymptotic behaviour.

In [7], Craddock and Lennox studied equations of the form

ut = σxγuxx + f(x)ux − µxru, (1.1)

where σ > 0, µ, γ and r are constants. They proved that it is always
possible to obtain integral transforms of fundamental solutions of (1.1)
by symmetry, when the drift f satisfies any one of a family of Riccati
equations. However, Laplace transforms could only be obtained for
certain subclasses of the problems they studied. For the remaining
classes, integral transforms involving Whittaker functions were needed.
Although these so called Whittaker transforms have known inversion
integrals, explicit inversion is usually not possible as few Whittaker
transforms have been calculated.

In this paper we significantly improve on previous results. We con-
sider a class of equations of the form ut = σxγuxx + f(x)ux − g(x)u.
Suppose that g is fixed and given and γ 6= 2. We show that if h(x) =
x1−γf(x) is a solution of any one of three families of Riccati equations,
then by using the full group of symmetries, it is always possible to
obtain a generalized Laplace transform or Fourier transform of funda-
mental solutions of the PDE, purely by symmetry. Our method has
natural advantages over many other techniques and we will show how
it can actually be used to rectify a shortcoming of the method of re-
duction to canonical form. We will apply the theory to a number of
examples and problems in stochastic analysis.

The fact that we may compute Laplace and Fourier transforms,
purely through a Lie algebra calculation, suggests a close relationship
between Lie symmetry analysis and harmonic analysis. The symmetry
group itself gives us these transforms absolutely explicitly as functions
of the coefficients of the derivatives in the PDE. This is a consequence
of the relationship between the representations of the underlying Lie
group and the symmetry transformations, which was first developed
in [3] and [4]. We believe that the connections between Lie symmetry
analysis and harmonic analysis needs to be explored further. It is hoped
that this work will stimulate further investigations in this direction.

1.0.1. Integrating symmetries. Suppose that we have a linear PDE

P (x,Dα)u =
∑

|α|≤n

aα(x)Dαu, x ∈ Ω ⊆ Rm, (1.2)
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with α = (α1, ..., αm), αi ∈ N, |α| = α1 + · · ·+αm and Dα = ∂|α|
∂x

α1
1 ···∂xαm

m
.

Let G be a one parameter group of symmetries, generated by some
vector field v =

∑m
i=1 ξ(x)∂xi

+ φ(x, u)∂u, where ∂x = ∂
∂x

etc. Denote
the action of G on a solution u by σ(exp εv)u(x) = Uε(x). By the Lie
symmetry property, there is an interval I ⊆ R containing zero such
that Uε(x) is a continuous one parameter family of solutions of (1.2),
for all ε ∈ I. Continuity and linearity imply the following.

Lemma 1.1. Suppose that Uε(x) is a continuous one parameter family
of solutions of the PDE (1.2), which holds for ε ∈ I ⊆ R. Suppose
further that ϕ : I → R is a function with sufficiently rapid decay. Then

u(x) =

∫

I

ϕ(ε)Uε(x)dε (1.3)

is a solution of the PDE (1.2). Further, if the PDE is time depen-
dent and Uε(x, t) is the family of symmetry solutions, then u(x, t) =∫

I
ϕ(ε)Uε(x, t)dε and u(x, 0) =

∫
I
ϕ(ε)Uε(x, 0)dε. Further, dnUε(x)

dεn is also
a solution for all n = 0, 1, 2, 3..

Proof. To prove that u is a solution, we simply differentiate under the
integral sign. If I is unbounded, we may take ϕ to have compact
support to achieve convergence of the integral. The final claim follows
from the fact that the PDE does not depend on ε, so the order of
differentiation may be reversed. ¤

This simple result lies at the heart of the results we obtain here.

1.1. Fundamental Solutions as Transition Densities. A funda-
mental solution for the Cauchy problem

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u, x ∈ Ω ⊆ R, (1.4)

u(x, 0) = φ(x),

is a kernel p(x, y, t) with the property that: (i) for each fixed y, p(x, y, t)
is a solution of (1.4) on Ω × (0, T ] for some T > 0; and (ii) u(x, t) =∫
Ω

φ(y)p(x, y, t)dy, is a solution of the given Cauchy problem for ap-
propriate initial data φ. In general a fundamental solution will be a
distribution in the sense of Schwartz. For an introduction to the theory
of fundamental solutions for parabolic problems, see chapter one of the
book by Friedman [11].

Fundamental solutions play an important role in probability theory.
Consider an Itô diffusion X = {Xt : t ≥ 0} which satisfies the stochas-
tic differential equation (SDE)

dXt = b(Xt, t)dt + σ(Xt, t)dWt, X0 = x, (1.5)

in which W = {Wt : t ≥ 0} is a standard Wiener process. The existence
and uniqueness of solutions of (1.5) depends on the coefficient functions
b, σ. See [13] for conditions guaranteeing a unique strong solution to
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(1.5). Assume that b and σ are such that (1.5) has a unique strong
solution. Then the expectations

u(x, t) = Ex [φ(Xt)] =def E
[
φ(Xt)

∣∣∣∣X0 = x

]
, (1.6)

are solutions of the Cauchy problem

ut =
1

2
σ2(x, t)uxx + b(x, t)ux (1.7)

u(x, 0) = φ(x).

The PDE (1.7) is known as the Kolmogorov forward equation. See
[13] for background on stochastic calculus. Thus if p(x, y, t) is the
appropriate fundamental solution of (1.7) then we may compute the
given expectations according to Ex [φ(Xt)] =

∫
Ω

φ(y)p(x, y, t)dy.
In this context, the fundamental solution is known as the probabil-

ity transition density for the process. Obviously we also require that∫
Ω

p(x, y, t)dy = 1.
Recall that fundamental solutions are not unique. The PDE (1.7)

may have many fundamental solutions, only one of which will be the
transition density. One of the strengths of the methods of this paper,
is that they will always produce a fundamental solution which is a
probability density. There are many other methods for which this is
not the case.

To illustrate, recall Lie’s result that any PDE of the form (1.4) which
has a four dimensional Lie algebra of symmetries can be reduced to an
equation of the form

ut = uxx − A

x2
u, (1.8)

where A is a constant. (See the paper [12] for a detailed discussion
of this reduction method). This PDE has a well known fundamental
solution

Q(x, y, t) =

√
xy

2t
exp

(
−x2 + y2

4t

)
I 1

2

√
1+4A

(xy

2t

)
. (1.9)

Thus a common solution strategy is to reduce an equation of the
form (1.4) with a four dimensional Lie algebra of symmetries to the
form (1.8) and construct from Q a fundamental solution of the original
PDE. This is often referred to as the method of reduction to canonical
form.

This works if all we seek is a fundamental solution. But if we require
the fundamental solution to also be a density, then this strategy will in
general fail. As an example, suppose that we wish to find the transition
density for the diffusion X = {Xt : t ≥ 0} satisfying the SDE

dXt =
2aXt

2 + aXt

dt +
√

2XtdWt, X0 = x > 0, a > 0. (1.10)
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Observe that the drift is Lipschitz continuous for positive a and and
√

x
is Hölder continuous, with Hölder constant 1

2
. Thus by the Yamada-

Watanabe Theorem, (Theorem 5.5 of [15]), the SDE has a unique strong
solution. We require a fundamental solution of

ut = xuxx +
2ax

2 + ax
ux. (1.11)

This can be reduced to (1.8) with A = 3
4

by making the change of
variables x → √

x and t → 4t, then eliminating the first derivative
term by letting u = eψ(x)ũ(x, t) for a suitable choice of ψ. We may
then obtain a fundamental solution of (1.11) by applying the change of
variables to Q(x, y, t). From which we conclude that

q(x, y, t) =
1

t

2 + ay

(2 + ax)

√
x

y
e−

(x+y)
t I1

(
2
√

xy

t

)
, (1.12)

is a fundamental solution of (1.11). This conclusion is correct. The
problem is that (1.12) is not the transition density for the diffusion. To
see this, observe that

l(x, t) =

∫ ∞

0

q(x, y, t)dy = 1− e−
x
2t

2 + ax
6= 1.

Thus q is not a probability density. Notice that l(x, t) is a solution
of the Cauchy problem for (1.11), on (0,∞) with u(x, 0+) = 1 and
that it has bounded second and first derivatives derivatives in x and
t. However l isn’t a solution of the Cauchy problem on [0,∞), since
l(0, t) = 1

2
6= 1.

In [9], it was shown that the transition density is actually

p(x, y, t) =
e−

(x+y)
t

(2 + ax)t

[√
x

y
(2 + ay)I1

(
2
√

xy

t

)
+ tδ(y)

]
. (1.13)

This produces solutions of the Cauchy problem for (1.11) on [0,∞) for
bounded initial data.

Since (1.9) is not itself a probability density, there is no a priori
reason to expect that we will obtain a density from it if we make a
change of variables. In order to obtain a density, it is often necessary
to include additional terms which involve generalized functions, such
as the Dirac delta that occurs in (1.13). The obvious question is how
do we know what these extra terms are?

Exactly the same problem arises with a number of other techniques,
such as the method of group invariant solutions. See [8] for a discussion
of this. An advantage of our method is that the required generalized
function terms appear naturally.
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2. Generalized Laplace Transforms of Fundamental
Solutions

We begin with a definition.

Definition 2.1. Let f : [0,∞) → R be Lebesgue integrable and be of
suitably slow growth. The generalized Laplace transform of f is the
function

Fγ(λ) =

∫ ∞

0

f(y)e−λy2−γ

dy, (2.1)

where λ > 0 and γ 6= 2.

An explicit inversion theorem for this transform may be found in
[14]. However the transform is usually inverted by reducing it to a
Laplace transform by setting z = y2−γ. We need the integral resulting
from (2.1) to be convergent under this change of variables, but for the
transforms we consider, this is not a problem.

In this paper we will be concerned with PDEs of the form

ut = σxγuxx + f(x)ux − g(x)u, x ≥ 0, (2.2)

for σ > 0, γ 6= 2. Similar results can be proved in the case where γ = 2,
but this is usually best handled by letting y = ln x and reducing to
γ = 0. However see [8] for an explicit result when γ = 2.

Equation (2.2) always has time translation symmetries and we may
multiply solutions by a constant. In our context, we term these trivial
symmetries. We require richer, non trivial (at least four dimensional)
symmetry groups. For γ 6= 2, introduce h(x) = x1−γf(x). It can be
shown (see [8]) that the Lie algebra of symmetries of (2.2) is non trivial
if and only if for a given g, h satisfies any one of the following Riccati
equations.

σxh′ − σh +
1

2
h2 + 2σx2−γg(x) = 2σAx2−γ + B,

σxh′ − σh +
1

2
h2 + 2σx2−γg(x) =

Ax4−2γ

2(2− γ)2
+

Bx2−γ

2− γ
+ C,

σxh′ − σh +
1

2
h2 + 2σx2−γg(x) =

Ax4−2γ

2(2− γ)2
+

Bx3− 3
2
γ

3− 3
2
γ

+
Cx2−γ

2− γ
− κ,

with κ = γ
8
(γ − 4)σ2. The constant factors multiplying A, B and C

above are included to simplify our later notation.

Remark 2.2. Clearly we could fix f in advance and these equations
would then give us conditions on g which guarantee the existence of
non trivial symmetries.

For the first Riccati equation Craddock and Lennox proved in [8] the
following result.
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Theorem 2.3. Suppose that γ 6= 2 and h(x) = x1−γf(x) is a solution
of the Riccati equation

σxh′ − σh +
1

2
h2 + 2σx2−γg(x) = 2σAx2−γ + B. (2.3)

Then the PDE (2.2) has a symmetry solution of the form

U ε(x, t) =
1

(1 + 4εt)
1−γ
2−γ

exp

{−4ε(x2−γ + Aσ(2− γ)2t2)

σ(2− γ)2(1 + 4εt)

}
×

exp

{
1

2σ

(
F

(
x

(1 + 4εt)
2

2−γ

)
− F (x)

)}
u

(
x

(1 + 4εt)
2

2−γ

,
t

1 + 4εt

)
,

where F ′(x) = f(x)/xγ and u is a solution of the PDE. That is,
for ε sufficiently small, Uε is a solution of (2.2) whenever u is. If
u(x, t) = u0(x) with u0 an analytic, stationary solution then there is a
fundamental solution p(x, y, t) of (2.2) such that

∫ ∞

0

e−λy2−γ

u0(y)p(x, y, t)dy = Uλ(x, t). (2.4)

Here Uλ(x, t) = U 1
4
σ(2−γ)2λ. Further, if u0 = 1, then

∫∞
0

p(x, y, t)dy = 1.

Thus we can find fundamental solutions by inverting a generalized
Laplace transform. These generalized Laplace transforms can always
be explicitly inverted, see [10]. Inversion of the transforms which arise
from Theorem 2.3 will frequently involve the use of distributions. The
following result is useful for the purpose of inverting the Laplace trans-
forms that we will encounter.

Proposition 2.4. When n is a non-negative integer we have

L−1[λne
k
λ ] =

n∑

l=0

kl

l!
δ(n−l)(y) +

(
k

y

)n+1
2

In+1

(
2
√

ky
)

, (2.5)

where L is the Laplace transform, δ(y) is the Dirac delta and In is a
modified Bessel function of the first kind.

For a proof, together with more general Laplace transforms of dis-
tributions, see [10].

2.0.1. Reduction to Canonical Form Revisited. Using Theorem 2.3 we
reconsider the method of reduction to canonical form.

Example 2.1. Consider the PDE

ut = uxx − A

x2
u, x > 0, (2.6)

and for simplicity let A > −3
4
. Stationary solutions of the PDE are

u0(x) = x
1+
√

1+4 A
2 and u1(x) = x

1−√1+4 A
2 . Using Theorem 2.3 and u0 we
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know that there is a fundamental solution Q with
∫ ∞

0

e−λy2

u0(y)Q(x, y, t)dy =
u0(x)

(1 + 4λt)1+
√

1+4 A
2

exp

(
− λx2

1 + 4λt

)
.

Letting z = y2 converts this to a Laplace transform and inverting
this Laplace transform gives the fundamental solution (1.9). The cal-
culations are quite elementary. But what if we take the solution u1?
We now seek a fundamental solution p(x, y, t) such that
∫ ∞

0

e−λy2

u1(y)p(x, y, t)dy = u1(x)(1 + 4λt)
−2+

√
1+4 A
2 exp

(
− λx2

1 + 4λt

)
.

Let us fix A = 3
4
. We let z = y2 in the generalized Laplace transform,

perform the inversion with the aid of Proposition 2.4 and obtain a
second fundamental solution of (2.6) for this choice of A given by

p(x, y, t) = 2 e
−(x2+y2)

4 t y

√
y

x

(
xI1(

x y
2 t

)

4 t y
+ δ(y2)

)
. (2.7)

Now recall that in Section 1.1 we considered the Itô diffusion satis-
fying the SDE

dXt =
2aXt

2 + aXt

dt +
√

2XtdWt, X0 = x > 0, a > 0. (2.8)

The corresponding Kolmogorov forward equation

ut = xuxx +
2ax

2 + ax
ux, (2.9)

can be reduced to the canonical form

ut = uxx − 3

4x2
ux (2.10)

by a change of variables. This PDE has a known fundamental solution
given by (1.9). From this we earlier found a fundamental solution of
(2.9), but this fundamental solution was not a transition density.

However we now have a second fundamental solution of equation
(2.10). If we use the fundamental solution (2.7) we deduce that

p(x, y, t) =
e−

(x+y)
t

(2 + ax)t

[√
x

y
(2 + ay)I1

(
2
√

xy

t

)
+ tδ(y)

]
, (2.11)

is also a fundamental solution of (2.9) and this, as noted above, is the
transition density for the diffusion.

Thus we failed to produce a transition density when we first consid-
ered this example, because we did not use the appropriate fundamental
solution of (2.10). The point is that in order to obtain a transition
density in general via the method of reduction to canonical form, it is
necessary to consider all fundamental solutions of the canonical form
and choose the one which leads to the desired density. This however
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can be quite a laborious exercise. Our results will give the correct result
much more efficiently.

If the drift in (2.2) satisfies either of the remaining two Riccati equa-
tions, Craddock and Lennox proved in [7] that fundamental solutions
can be obtained by inverting a Whittaker transform. Unfortunately
Whittaker transforms are difficult to invert, so we would prefer a re-
sult which gives fundamental solutions in terms of generalized Laplace
transforms. Fortunately this is possible. This discovery is one of the
main contributions of this paper. The first result is the following.

Theorem 2.5. Consider the PDE

ut = σxγuxx + f(x)ux − g(x)u, γ 6= 2, x ≥ 0, (2.12)

and suppose that g and h(x) = x1−γf(x) satisfy

σxh′ − σh +
1

2
h2 + 2σx2−γg(x) =

A

2(2− γ)2
x4−2γ +

B

2− γ
x2−γ + C,

where A > 0, B and C are arbitrary constants. Let u0 be a stationary,
analytic solution of (2.12). Then (2.12) has a solution of the form

U ε(x, t) = (1 + 2ε2(cosh(
√

At)− 1) + 2ε sinh(
√

At))−c

×
∣∣∣∣∣
cosh(

√
At
2

) + (1 + 2ε) sinh(
√

At
2

)

cosh(
√

At
2

)− (1− 2ε) sinh(
√

At
2

)

∣∣∣∣∣

B

2σ
√

A(2−γ)

e−
1
2σ

F (x)− Bt
σ(2−γ)

× exp

{
−√Aεx2−γ(cosh(

√
At) + ε sinh(

√
At))

σ(2− γ)2(1 + 2ε2(cosh(
√

At)− 1) + 2ε sinh(
√

At)

}

× exp

{
1

2σ
F

(
x

(1 + 2ε2(cosh(
√

At)− 1) + 2ε sinh(
√

At))
1

2−γ

)}

× u0

(
x

(1 + 2ε2(cosh(
√

At)− 1) + 2ε sinh(
√

At))
1

2−γ

)
, (2.13)

where F ′(x) = f(x)/xγ and c = (1−γ)
2−γ

. Further, there exists a funda-

mental solution p(x, y, t) of (2.12) such that

∫ ∞

0

e−λy2−γ

u0(y)p(x, y, t)dy = Uλ(x, t), (2.14)

where Uλ(x, t) = U σ(2−γ)2λ√
A

(x, t).
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Proof. Applying Lie’s algorithm shows that if f satisfies the given con-
dition, then there are infinitesimal symmetries

v1 =

√
Ax

2− γ
e
√

At∂x + e
√

At∂t −
(

Ax2−γ

2σ(2− γ)2
+

√
Ax1−γ

2σ(2− γ)
f(x)

)
e
√

Atu∂u

− αue
√

At∂u,v2 = −
√

Ax

2− γ
e−

√
At∂x + e−

√
At∂t

−
(

Ax2−γ

2σ(2− γ)2
−

√
Ax1−γ

2σ(2− γ)
f(x) + β

)
e
√−Atu∂u,v3 = ∂t,v4 = u∂u.

Here α = 1−γ
2(2−γ)

√
A + B

2σ(2−γ)
, β = − 1−γ

2(2−γ)

√
A + B

2σ(2−γ)
. The key is

to find the right symmetry to generate a generalized Laplace trans-
form. This turns out to be given by using v1,v2,v3 to produce the
infinitesimal symmetry

v =
2
√

Ax

2− γ
sinh(

√
At)∂x + 2(cosh(

√
At)− 1)∂t − 1

σ
g(x, t)u∂u,

where g(x, t) =

(
Ax2−γ

(2− γ)2
+

B

2− γ
) cosh(

√
At) +

√
A sinh(

√
At)(

x1−γ

2− γ
f(x) + σc).

Exponentiation of this symmetry shows that U ε(x, t) is a solution of

(2.12). The change of parameters ε → σ(2−γ)2λ√
A

shows that Uλ(x, 0) =

e−λx2−γ
u0(x). The basic principle is that if p(x, y, t) is a fundamental

solution of (2.12), then we should have
∫ ∞

0

e−λy2−γ

u0(y)p(x, y, t)dy = Uλ(x, t). (2.15)

That is, Uλ(x, t) is the generalized Laplace transform of u0p.
To prove this, we first observe that Uλ is a generalized Laplace trans-

form if it is a Laplace transform. This follows from the obvious change
of variables reducing it to a Laplace transform. Any function which can
be written as a product of Laplace transforms is a Laplace transform.
The drift functions can be expressed in terms of hypergeometric func-
tions, which are analytic. So a straightforward argument shows that
Uλ can be written as the product of functions analytic in 1

λ
and any

function analytic in 1
λ

is automatically a Laplace transform. Thus Uλ is
a generalized Laplace transform of some distribution u0p. (Chapter Ten
of [20] contains the most general conditions under which a distribution
may be written as a Laplace transform).

Now suppose that (2.15) holds for some distribution p. We prove
that p is a fundamental solution of the PDE. The fact that Uλ(x, t)

is a solution and Uλ(x, t) =
∫∞

0
e−λy2−γ

u0(y)p(x, y, t)dy implies that
p is a solution for each fixed y. Now integrate a test function ϕ(λ)
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with sufficiently rapid decay against Uλ. By Lemma 1.1 the function
u(x, t) =

∫∞
0

Uλ(x, t)ϕ(λ)dλ is a solution of (2.2). We also have

u(x, 0) =

∫ ∞

0

Uλ(x, 0)ϕ(λ)dλ =

∫ ∞

0

u0(x)e−λx2−γ

ϕ(λ)dλ = u0(x)Φγ(x),

where Φγ is the generalized Laplace transform of ϕ. Next observe that
by Fubini’s Theorem
∫ ∞

0

u0(y)Φγ(y)p(x, y, t)dy =

∫ ∞

0

∫ ∞

0

u0(y)ϕ(λ)p(x, y, t)e−λy2−γ

dλdy

=

∫ ∞

0

∫ ∞

0

u0(y)ϕ(λ)p(x, y, t)e−λy2−γ

dydλ

=

∫ ∞

0

ϕ(λ)Uλ(x, t)dx = u(x, t).

But u(x, 0) = u0(x)Φγ(x). This means that if we integrate initial data
u0Φγ against p, the resulting function solves the Cauchy problem for
(2.12), with this initial data, which proves that p is a fundamental
solution. ¤

Corollary 2.6. Suppose that the conditions of the previous theorem
hold and that g = 0. Take the stationary solution u0 = 1. The resulting
fundamental solution p has the property that

∫∞
0

p(x, y, t)dy = 1.

Proof. We know that
∫∞
0

e−λy2−γ
p(x, y, t)dy = Uλ(x, t). Observe that

U0(x, t) = 1, since

∣∣∣∣
cosh(

√
At
2

)+sinh(
√

At
2

)

cosh(
√

At
2

)−sinh(
√

At
2

)

∣∣∣∣
B

2σ
√

A(2−γ)

e−
Bt

σ(2−γ) = 1. ¤

Remark 2.7. The extension of these results to the case A < 0 is achieved
by replacing cosh(

√
At) with cos(

√
|A|t) etc. The reader may check the

details.

For the final class of Riccati equations, we are able to establish results
similar to Theorem 2.5, which give Laplace transforms under a change
of variables.

Theorem 2.8. Suppose that γ 6= 2 and h(x) = x1−γf(x) and g satisfy

σxh′−σh+ 1
2
h2 +2σx2−γg(x) = Ax4−2γ

2(2−γ)2
+ Bx3− 3

2 γ

3− 3
2
γ

+ Cx2−γ

2−γ
−κ, where κ =

γ
8
(γ − 4)σ2,γ 6= 2 and A > 0. Let u0 be an analytic stationary solution

of the PDE (2.2). Define the following constants: a = C
2σ(2−γ)

, b =
(1−γ)

√
A

2(2−γ)
, k = 2(2−γ)B

3
√

A
, d = B2

9Aσ
, l = Bγ

3Ak
and s = a+d√

A
−

√
Ak2

2σ(2−γ)2
. Let

X(ε, x, t) =


 x1− γ

2 + k√
1 + 2ε2(cosh(

√
At)− 1) + 2ε sinh(

√
At)

− k




2
2−γ

,
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and F ′(x) = f(x)
xγ . Then equation (2.12) has a solution of the form

U ε(x, t) =
xl(1 + 2ε2(cosh(

√
At)− 1) + 2ε sinh(

√
At))

− 2b√
A

(k + kx
γ
2 (1−

√
1 + 2ε2(cosh(

√
At)− 1) + 2ε sinh(

√
At)))l

×
∣∣∣∣∣
cosh(

√
At
2

) + (1 + 2ε) sinh(
√

At
2

)

cosh(
√

At
2

)− (1− 2ε) sinh(
√

At
2

)

∣∣∣∣∣

s

e

√
Ak2

σ(2−γ)2
−2s

√
At

× exp

{
−√Aε(x1− γ

2 + k)2(cosh(
√

At) + ε sinh(
√

At))

σ(2− γ)2(1 + 2ε2(cosh(
√

At)− 1) + 2ε sinh(
√

At)

}

× exp

{
1

2σ
(F (X(ε, x, t)− F (x)))

}
u0 (X(ε, x, t)) .

Further, (2.12) has a fundamental solution p(x, y, t) such that
∫ ∞

0

e−λ(y2−γ+2ky1− γ
2 )u0(y)p(x, y, t)dy = Uλ(x, t), (2.16)

in which Uλ(x, t) = U σ(2−γ)2λ√
A

(x, t).

Proof. The proof is similar to the previous result. It is a matter of
finding the right symmetry, which turns out to be

v =

(
x

2− γ
+

2B

3A
x

γ
2

)
sinh(

√
At)∂x +

(cosh(
√

At)− 1)√
A

∂t +
N(x, t)

2
u∂u,

where

N(x, t) = −
√

A(x1− γ
2 + k)2

σ(2− γ)2
cosh(

√
At) +

γB

A
x

γ
2
−1 sinh(

√
At)−

f(x)

σxγ

(
x

2− γ
+

2B

3A
x

γ
2

)
sinh(

√
At)− 2s cosh(

√
At)− 2b√

A
sinh(

√
At).

Exponentiation of the symmetry produces the solution U ε(x, t). The
rest of the proof proceeds as before. ¤
Remark 2.9. This theorem involves a somewhat different form of gen-
eralized Laplace transform . Note however that the transform Φ(λ) =∫∞
0

e−λ(y2−γ+2ky1− γ
2 )φ(y)dy reduces to a Laplace transform when we

make the substitution z = y2−γ + 2ky1− γ
2 . (This gives a quadratic for

y1− γ
2 in terms of z and we take the positive root).

When A < 0 a similar result holds, with cosh(
√

At) replaced by

cos(
√
|A|t) etc. When A = 0, the generalized Laplace transform takes

on a simpler form. The case where γ = 1, B = 0 case can be found
in [9]. In addition, if g = 0, then taking u0 = 1 yields a fundamental
solution p(x, y, t) with

∫∞
0

p(x, y, t)dy = 1.
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These Laplace transforms are less tractable than the previous two
cases and so a detailed analysis of the inversion process will be given
elsewhere. The drifts covered by this case include some very important
examples, such as the so called double square root model of Longstaff,
[16] which is an alternative to the Cox-Ingersoll-Ross model for interest
rates dynamics. Thus this result is potentially very useful in financial
modelling.

2.1. When is a Fundamental Solution a Transition Density?
We have already seen that a fundamental solution of the Kolmogorov
forward equation is not necessarily a transition density. We also require
that the fundamental solution integrate to one. However, even this is
not enough for the fundamental solution to be the desired density, as
the following new result for squared Bessel processes shows.

Proposition 2.10. Consider a squared Bessel process X = {Xt : t ≥
0} of dimension 2n. The Kolmogorov forward equation is

ut = 2xuxx + 2nux. (2.17)

There are two linearly independent stationary solutions u0(x) = 1 and
u1(x) = x1−n. For the stationary solution u0, the inverse Laplace trans-
form of Uλ(t, x) coming from Theorem 2.3 yields the transition density
for a squared Bessel process of dimension 2n. If n = 2, 3, 4, .... and we
use the second stationary solution u1 to construct Uλ(t, x), then the
inverse Laplace transform of the symmetry solution produces a second
fundamental solution q(t, x, y) with

∫∞
0

q(t, x, y)dy = 1. Moreover, if
Eq denotes expectation taken with respect to this fundamental solution,
then

Eq

[
(Xt)

1−n
∣∣X0 = x

]
= x1−n.

Proof. Taking u0(x) = 1 gives Uλ(x, t) = 1
(1+2λt)n exp

(− λx
1+2λt

)
, and

inversion of this Laplace transform gives the well known transition
density for a squared Bessel process of dimension 2n.

To prove the second claim, we use the fact that if u1(x) = x1−n then

Uλ(x, t) = x1−n (1 + 2 t λ)n−2e−
λx

1+2λt . The fundamental solution will be

q(x, y, t) = (2t)n−2
(y

x

)n−1

e−
x+y
2t L−1

[
λn−2ek/λ

]
. (2.18)

Here k = x
(2t)2

. Since n− 2 is a nonnegative integer, we have

L−1
[
λn−2ek/λ

]
=

n−2∑

l=0

kl

l!
δ(n−2−l)(y) +

(
k

y

)n−1
2

In−1

(
2
√

ky
)

. (2.19)

From which q(x, y, t) =

1

2t

(y

x

)n−1
2

e−
x+y
2t In−1

(
2
√

xy

t

)
+ (2t)n−2

(y

x

)n−1
n−2∑

l=0

xlδ(n−2−l)(y)

(2t)2ll!
.
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Now ∫ ∞

0

(2t)n−2
(y

x

)n−1
n−2∑

l=0

xl

(2t)2ll!
δ(n−2−l)(y)dy = 0,

since the Dirac delta functions and their derivatives select the value of
the test function yn−1 and its derivatives at zero. Also

∫ ∞

0

1

2t

(y

x

)n−1
2

e−
x+y
2t In−1

(
2
√

xy

t

)
dy = 1,

as the integrand is simply the transition density of a squared Bessel
process of dimension 2n. To complete the proof we note that U0(x, t) =
u1(x) and

Uλ(x, t) =

∫ ∞

0

e−λyu1(y)q(t, x, y)dy. (2.20)

Which implies that
∫∞

0
u1(y)q(x, y, t)dy = u1(x). ¤

Thus we have two fundamental solutions which integrate to one, but
they cannot both be the transition density, as the transition density
for squared Bessel processes is known to be unique. (See [18] for a
detailed exposition of the theory of squared Bessel processes). The
existence of these additional fundamental solutions does not seem to
have been previously observed.

Example 2.2. Take n = 3. Then the transition density for the squared
Bessel process of dimension 6 is

p(x, y, t) =
1

2t

y

x
e−

x+y
2t I2

(√
xy

t

)
. (2.21)

From the stationary solution u0(x) = x−2 we obtain a second funda-
mental solution

p2(x, y, t) = p(x, y, t) + e−
x+y
2t

(
y2

2tx
δ(y) + 2t

(y

x

)2

δ′(y)

)
, (2.22)

and
∫∞
0

p2(t, x, y)dy = 1. It acts on test functions which have finite
derivative at zero. Notice however that the solution of the Cauchy
problem ut = 2xuxx + 6ux, u(x, 0) = φ(x) given by this fundamental
solution will not be continuous as x → 0.

So how can we tell that a fundamental solution is in fact the desired
density? A reasonably straightforward one in the γ = 1 case is the
following. Similar results can be proved for any γ.

Proposition 2.11. Let X = {Xt : t ≥ 0} be an Itô diffusion which is
the unique strong solution of

Xt = X0 +

∫ t

0

f(Xs)ds+

∫ t

0

√
2σXtdWt, (2.23)
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where W = {Wt : t ≥ 0} is a standard Wiener process. Suppose
further that f is measurable and there exist constants K > 0, a > 0
such that |f(x)| ≤ Keax for all x. Then there exists a T > 0 such that
u(x; t, λ) = Ex

[
e−λXt

]
is the unique solution of the first order PDE

∂u

∂t
+ λ2σ

∂u

∂λ
+ λEx

[
f(Xt)e

−λXt
]

= 0, (2.24)

subject to u(x; 0, λ) = e−λx, for 0 ≤ t < T, λ > a.

Proof. The Itô formula gives

e−λXt = e−λx +

∫ t

0

e−λXs(λ2σXs − λf(Xs))ds− λMt, (2.25)

where Mt =
∫ t

0
e−λXs

√
2σXsdWs is a local martingale. Obviously we

have

Ex

[∫ t

0

(
√

Xse
−λXs)2ds

]
= Ex

[∫ t

0

Xse
−2λXsds

]
≤ Ex

[∫ t

0

ds

2eλ

]
< ∞,

so Mt is a martingale, from which Ex [Mt] = M0 = 0. Taking expecta-
tions in (2.25) therefore gives

Ex

[
e−λXt

]− λ2σ

∫ t

0

Ex

[
Xse

−λXs
]
ds = e−λx − λ

∫ t

0

Ex

[
f(Xs)e

−λXs
]
ds.

(2.26)

Further, Ex

[
Xse

−λXs
]

= − ∂
∂λ
Ex

[
e−λXs

]
. Differentiation of (2.26) with

respect to t gives (2.24). Now f(x)e−λx is bounded and measurable for
λ > a. So Ex

[
f(Xt)e

−λXt
]
is continuous in t. (For example, Proposition

15.49 of Breiman [2]). For each fixed t it is analytic in λ. The coefficients
of the PDE are analytic as is the initial data. The uniqueness of the
solution follows from the Cauchy-Kovalevskaya Theorem for first order
systems. (See Trèves’ book [19] for a proof of the Cauchy-Kovalevskaya
Theorem). ¤
Example 2.3. Let X = {Xt : t ≥ 0} be the squared Bessel process sat-
isfying the SDE, dXt = ndt + 2

√
XtdWt. Then equation (2.24) implies

that u(x; t, λ) = Ex

[
e−λXt

]
is the unique solution of the first order PDE

ut+2λ2uλ+λnu = 0, u(x; 0, λ) = e−λx. This PDE is easily solved by the
method of characteristics, giving Ex

[
e−λXt

]
= 1

(1+2λt)
n
2

exp
(− λx

1+2λt

)
.

This is of course the same result we obtained from Theorem 2.3 with
u0 = 1.

3. Some Applications and Examples

Now that we are able to determine when a fundamental solution is
a transition density, we are in a position to give some examples. Of
course the transition densities will always arise from taking u0 = 1 as
the stationary solution. This is obvious in practice, though rather more
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difficult to prove in general. The virtue of our results is that they are
extremely easy to use. Despite the apparently complicated expressions
for U ε in Theorem 2.5, their Laplace transforms can easily be inverted.

Example 3.1. We will now obtain the transition density for the Cox-
Ingersoll-Ross process of interest rate modelling from Theorem 2.5.
That is, we will obtain the transition density for the process X = {Xt :
t ≥ 0} where

dXt = (a− bXt)dt +
√

2σXtdWt, X0 = x. (3.1)

We assume that a is positive and real for convenience. The drift
is a solution of σxf ′ − σf + 1

2
f 2 = 1

2
Ax2 + Bx + C with A = b2,

B = −ab, C = 1
2
a2 − aσ. We require a fundamental solution of

ut = σxuxx + (a− bx)ux, (3.2)

which is positive and integrates to one. Using Theorem 2.5, with
u0(x) = 1, F (x) = a ln x− bx and after some cancellations, we arrive at

∫ ∞

0

e−λyp(x, y, t)dy =
b

a
σ e

ab
σ

t

(λσ(ebt − 1) + bebt)
a
σ

exp

{ −λbx

λσ(ebt − 1) + bebt

}
.

(3.3)

We easily invert this Laplace transform to obtain

p(x, y, t) =
beb( a

σ
+1)t

σ(ebt − 1)

(y

x

) ν
2
exp

{−b(x + ebty)

σ(ebt − 1)

}
Iν

(
b
√

xy

σ sinh
(

bt
2

)
)

,

(3.4)

with ν = a
σ
− 1. This is the transition density for the CIR process. We

can check this using Proposition 2.11.

Example 3.2. Consider now the diffusion X = {Xt : t ≥ 0} satisfying
the SDE

dXt = 2Xt tanh(Xt) +
√

2XtdWt, X0 = x > 0. (3.5)

Then the transition density is a fundamental solution of ut = xuxx +
2 tanh(x)ux. The drift satisfies xf ′ − f + 1

2
f 2 = 2x2. So A = 4, B =

C = 0. An application of Theorem 2.5 with u0 = 1 reveals the existence
of a fundamental solution p(x, y, t) such that

∫ ∞

0

e−λyp(x, y, t)dy =
cosh( x

1+λ sinh(t)(2 cosh(t)+λ sinh(t))
)

cosh(x)

× exp

{
− λx (cosh(2t) + λ cosh(t) sinh(t))

1 + λ sinh(t) (2 cosh(t) + λ sinh(t))

}
.
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Inversion of this Laplace transform requires a certain amount of work,
which we omit for the sake of brevity. The result is that

p(x, y, t) =
exp

{
− x+y

tanh(t)

}

sinh(t)

cosh(y)

cosh(x)

(√
x

y
I1

(
2
√

xy

sinh t

)
+ sinh(t)δ(y)

)
.

This is the transition density for X satisfying (3.5).

An important application of our results is to the calculation of Laplace
transforms of joint densities. We present some examples.

Example 3.3. We will find a fundamental solution of the PDE

ut = xuxx + (
1

2
+
√

x)ux − µ

x
u, x ≥ 0, 0 ≤ µ <

15

16
,

which at µ = 0 reduces to the transition density of the process X =
{Xt : t ≥ 0}, where dXt = (1

2
+
√

Xt)dt +
√

2XtdWt. To obtain such a
fundamental solution, we require a stationary solution uµ

0(x) with the
property that u0

0(x) = 1. Such a stationary solution is not difficult to

find. It is uµ
0(x) = x

1
4 e−

√
x(Iα(

√
x) + I−α(

√
x), where α = 1

2

√
1 + 16µ.

Applying Theorem 2.3 we have to invert the Laplace transform,

∫ ∞

0

e−λyuµ
0(y)p(x, y, t)dy =

e−
√

xx
1
4 e−

λ(x+1
4 t2)

1+λt

1 + λt
Bes(x, y, t), (3.6)

where Bes(x, y, t) = Iα

( √
x

1+λt

)
+ I−α

( √
x

1+λt

)
. This is quite straightfor-

ward with the aid of the inversion formula

L−1[
1

λ
exp

(
m2 + n2

λ

)
Id

(
2mn

λ

)
] = Id(2m

√
y)Id(2n

√
y), d > −1.

Inverting the Laplace transform gives the fundamental solution

p(x, y, t) =
e
√

y−√x

t

(
x

y

) 1
4

e−
x+y

t
− 1

4
tP (x, y, t), (3.7)

where P (x, y, t) =
Iα

“√
xy

t

”
Iα(√y)+I−α

“√
xy

t

”
I−α(

√
y)

Iα(√y)+I−α(
√

y)
. For µ ≥ 15

16
this fun-

damental solution is not integrable near zero. Taking µ = 0 gives the
transition density for X, (see [9] for the density), which means that we

can use it to calculate Ex

[
e−λXt−µ

R t
0

ds
Xs

]
via the Feynman-Kac formula.

That is

Ex

[
e−λXt−µ

R t
0

ds
Xs

]
=

∫ ∞

0

e−λyp(x, y, t)dy, (3.8)

where p is given by (3.7). See [15] for the Feynman-Kac formula. How-
ever it does not seem possible to evaluate this integral in closed form.
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Example 3.4. Here we will consider the process X = {Xt : t ≥ 0}
where

dXt = (
1

2
+

√
Xt tanh(

√
Xt))dt +

√
2XtdWt.

We wish to calculate the expectation Ex

[
e−λXt−µ

R t
0

ds
Xs

]
. To this end we

need a fundamental solution of ut = xuxx +(1
2
+
√

x tanh(
√

x))ux− µ
x
u.

A stationary solution which reduces to u = 1 at µ = 0 is provided by

u0(x) = x
1
4

cosh(
√

x)
I−α(

√
x), where α =

√
1+16µ

2
. This leads to

∫ ∞

0

u0(y)e−λyp(x, y, t)dy =
x

1
4 I−α

( √
x

1+λt

)

(1 + λt) cosh(
√

x)
exp

(
−λ(x + 1

4
t2)

1 + λt

)
.

Inversion of the Laplace transform gives the fundamental solution

p(x, y, t) =
1

t

(
x

y

) 1
4 cosh(

√
y)

cosh(
√

x)
exp

(
−x + y

t
− 1

4
t

)
I−α

(
2
√

xy

t

)
.

This reduces to the transition density of the process at µ = 0. (See
[9] for the derivation of the transition density). This fundamental so-
lution is integrable near zero for 0 ≤ µ < 1

2
. We may calculate by

the Feynman-Kac formula Ex

[
e−λXt−µ

R t
0

ds
Xs

]
=

∫∞
0

e−λyp(x, y, t)dy but

this integral again does not seem to be easy to evaluate analytically.
Of course it is possible to evaluate it numerically.

We leave it to the reader to show that for X = {Xt : t ≥ 0} where

dXt = (
1

2
+

√
Xt coth(

√
Xt))dt +

√
2XtdWt,

we may solve the equation ut = xuxx + (1
2

+
√

x coth(
√

x))ux − µ
x
u to

obtain the fundamental solution

p(x, y, t) =
1

t

(
x

y

) 1
4 sinh(

√
y)

sinh(
√

x)
exp

(
−x + y

t
− 1

4
t

)
Iα

(
2
√

xy

t

)
,

where α =
√

1+16µ
2

. This reduces to the transition density of the process
at µ = 0. It is integrable at y = 0 for all µ > − 1

16
.

The range of µ values in these examples for which the fundamental
solution is integrable at y = 0 depends on the properties of the process.
For µ outside the given ranges we may find other fundamental solutions,
and investigate their properties. Some will contain distributional terms.
A full study of this is beyond the scope of the current paper.

Example 3.5. Let X = {Xt : t ≥ 0} be a squared Bessel pro-
cess, where dXt = ndt + 2

√
XtdWt, X0 = x. The joint density

of (Xt,
∫ t

0
ds
Xs

) arises in the pricing of Asian options and other prob-

lems, see [6]. To obtain its Laplace transform we require a funda-
mental solution for the PDE ut = 2xuxx + nux − µ

x
u. From Theorem

2.3 the reader may check that the stationary solution u0(x) = xd,



FUNDAMENTAL SOLUTIONS 19

where d = 1
4
(2 − n +

√
(n− 2)2 + 8µ), leads to the Laplace trans-

form
∫∞

0
ydp(x, y, t)e−λydy = xd

(1+2λt)2d+n/2 exp
{ −λx

1+2λt

}
. Inversion gives

the fundamental solution

p(x, y, t) =
1

2t

(
x

y

) 1
2
(1−n

2
)

I2d+n
2
−1

(√
xy

t

)
exp

{
−(x + y)

2t

}
. (3.9)

Now

Ex

[
e−λXt−µ

R t
0

ds
Xs

]
=

∫ ∞

0

e−λyp(x, y, t)dy

= e−
x
2t

( x

2t

)d Γ(α)1F1(α, β, x
2t+4t2λ

)

Γ(β)(1 + 2λt)α
,

with α = d + n
2
, β = 2d + n

2
. Here 1F1 is Kummer’s confluent hyper-

geometric function. This is the Laplace transform of the joint density
of (Xt,

∫ t

0
ds
Xs

). See [8] for more on this example and applications of
symmetries to the calculation of joint densities.

Example 3.6. Let us now consider a two dimensional problem. We
will solve

ut = uxx + uyy − A

x2 + y2
u, (x, y) ∈ R2, A > 0 (3.10)

u(x, y, 0) = f(x, y).

We convert the problem to polar coordinates. So we let u(x, y, t) =

U(
√

x2 + y2, tan−1( y
x
), t), where U(r, θ, t) satisfies

Ut = Urr +
1

r
Ur +

1

r2
Uθθ − A

r2
U, (3.11)

with U(r, θ, 0) = f(r cos θ, r sin θ) = F (r, θ). Taking the Fourier trans-

form in θ, where f̂(n) =
∫ 2π

0
f(θ)e−inθdθ, this becomes

Ût = Ûrr +
1

r
Ûr − n2 + A

r2
Û . (3.12)

With initial data Û(r, n, 0) = F̂ (r, n, 0), this has solution

Û(r, n, t) =

∫ ∞

0

F̂ (ρ, n, 0)p(r, ρ, n, t)dρ,

with p(r, ρ, n, t) a fundamental solution of (3.12). Stationary solutions

are u0(r) = r
√

n2+A and u1(r) = r−
√

n2+A. Applying Theorem 2.3 with
u0 we find that there is a fundamental solution of (3.12) such that

∫ ∞

0

e−λρ2

u0(ρ)p(r, ρ, n, t)dρ =
r
√

n2+A

(1 + 4λt)1+
√

n2+A
exp

(
− λr2

1 + 4λt

)
.
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The change of variables ρ2 = z converts this to a Laplace transform
and inversion gives

p(r, ρ, n, t) =
1

2t
exp

(
−r2 + ρ2)

4t

)
I√n2+A

(rρ

2t

)
. (3.13)

Formally at least, this gives us the Fourier series expansion of the
solution of (3.11)

U(r, θ, t) =
∑

n∈Z

∫ ∞

0

F̂ (ρ, n)
1

4πt
e−

r2+ρ2

4t I√n2+A(
rρ

2t
)einθdρ.

Convergence of the series obviously depends on F̂ .
As in the one dimensional case, we can find further solutions. If we

take u1(r) = r−
√

n2+A as a stationary solution, then we see that there
is a fundamental solution of (3.12) such that

∫ ∞

0

e−λρ2

u1(ρ)p(r, ρ, n, t)dρ =
r−

√
n2+A

(1 + 4λt)1−√n2+A
exp

(
− λr2

1 + 4λt

)
.

Inversion of these generalized Laplace transforms will require distribu-
tions and the result depends on n and A. These kinds of distributions
are discussed in [10]. As we have a different distribution for each n,
the fundamental solutions will depend upon infinite sums of right sided
distributions, rather than a single distribution as happens in the one
dimensional case.

4. Fourier Transforms of Fundamental Solutions

We have so far dealt only with PDEs defined over the positive half
line. When the domain of the PDE is the whole of R, we can re-
cover fundamental solutions by inverting a Fourier transform. We il-
lustrate the procedure for an interesting subclass of the equations we
have looked at.

Consider as motivation the heat equation. This has a well known
symmetry

ũε(x, t) =
1√

1 + 4εt
exp

{
− εx2

1 + 4εt

}
u

(
x

1 + 4εt
,

t

1 + 4εt

)
. (4.1)

Take u = 1. The general method we have introduced implies that we
should look for a fundamental solution K(x, y, t) with the property that

∫ ∞

−∞
e−εy2

K(x, y, t)dy =
1√

1 + 4εt
exp

{
− εx2

1 + 4εt

}
. (4.2)

It is easy to verify that K(x, y, t) = 1√
4πt

e−
(x−y)2

4t is a solution of

this equation. However, if we did not know K to begin with, it is not
clear how it can be extracted from (4.2). This integral equation does
not even have a unique solution, since for ε > 0 and any bounded,
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continuous odd function h we have
∫∞
−∞ e−εy2

(K(x, y, t) + h(y))dy =∫∞
−∞ e−εy2

K(x, y, t)dy.

A method for extracting the heat kernel from (4.1) using two station-
ary solutions is given in [7]. However, the heat equation also possesses

a symmetry of the form ũε(x, t) = e−εx+ε2tu(x−2εt, t). If we take ε = iλ
and let u = 1, then this symmetry leads to

∫ ∞

−∞
e−iλyK(x, y, t) = e−iλx−λ2t. (4.3)

So we have obtained the Fourier transform of the heat kernel from a
Lie group symmetry. The Fourier inversion theorem easily gives the
one dimensional heat kernel.

This method applies to more problems than the heat equation. When-
ever we have a PDE

ut = σuxx + f(x)ux − g(x)u, x ∈ R (4.4)

with a six dimensional Lie algebra of symmetries, we may construct
Fourier transforms of fundamental solutions. We have seen conditions
on the drift f which guarantee the existence of a nontrivial symmetry
group. Proposition 4.1 is a special case of our earlier results, which
we have not yet exploited. It guarantees the existence of a six dimen-
sional symmetry group for equations of the form (4.4) and provides the
symmetries that will be used to produce Fourier transforms.

Proposition 4.1. Let the drift function f in equation (4.4) satisfy the
Riccati equation

σf ′ +
1

2
f 2 + 2σg =

1

2
Ax2 + Bx + C (4.5)

where A,B,C are arbitrary constants. Then equation (4.4) has a six
dimensional Lie algebra of symmetries. Moreover if A 6= 0, then it has
a symmetry of the form

ũε(x, t) = e
−
√

Aε
σ

cosh(
√

At)x+
√

Aε2

2σ
sinh(2

√
At)+ Bε

σ
√

A
(1−cosh(

√
At))

× e
1
2σ (F (x−2ε sinh(

√
At))−F (x))u(x− 2ε sinh(

√
At), t). (4.6)

If f satisfies the special case

σf ′ +
1

2
f 2 + 2σg = Ax + B (4.7)

then it has a symmetry of the form

ũε(x, t) = e−
εx
2σ

+ ε2t
4σ
−Aε

4σ
t2+ 1

2σ
(F (x−εt)−F (x))u(x− εt, t). (4.8)

In both cases F ′(x) = f(x).
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Proof. Let v = ξ∂x + τ∂t + φ∂u. Lie’s method shows that v generates
symmetries if and only if ξ = 1

2
xτt + ρ, φ(x, t, u) = α(x, t)u where

α = −x2

8σ
τtt − x

2σ
ρt − 1

4σ
(xf(x))τt − 1

2σ
ρ + η (4.9)

and

−x2

8σ
τttt − x

2σ
ρtt + ηt = −1

4
τtt − 1

2σ
(σ(xf)′′ + f(xf)2 + 2(σxg)′)τt

− 1

2σ
(σf ′′ + ff ′ + 2σg′)ρ. (4.10)

The Lie algebra of symmetries is six dimensional if and only if ρ is
nonzero. This occurs when f satisfies the given Riccati equations. In
the first case, we find that there is an infinitesimal symmetry of the
form

v1 = sinh(
√

At)∂x − ((
√

Ax +
B√
A

) cosh(
√

At) + f(x) sinh(
√

At))
u

2σ
∂u.

Exponentiating 2v1 and multiplying the result by the constant e
Bε

σ
√

A

produces (4.6). In the second case there is an infinitesimal symmetry

v = t∂x − 1

2σ
(x + tf(x) +

A

2
t2)u∂u.

This leads to (4.8). ¤

Observe that in both cases ũε(x, 0) = e−cεxu(x, 0) for constant c. So
we can seek a fundamental solution with the property that

∫ ∞

−∞
e−iλyu(y, 0)p(x, y, t)dy = ũ iλ

c
(x, t). (4.11)

In other words, we can obtain Fourier transforms of fundamental
solutions. We present some examples.

Example 4.1. We will obtain the transition density of the process
X = {Xt : t ≥ 0} where

dXt = 2aXt

(
ce2aXt − 1

ce2aXt + 1

)
dt +

√
2dWt, (4.12)

for a, c ∈ R. The Kolmogorov equation is ut = uxx + 2ax
(

ce2ax−1
ce2ax+1

)
ux

and we seek a fundamental solution which integrates to 1. Observe
that the drift satisfies f ′ + 1

2
f 2 = 2a2. Using the stationary solution

u0 = 1 and Proposition 4.1 leads to the symmetry solution

Uλ(x, t) = e−λ2t−iλ(x−2at)

(
1 + ce2ax−4aiλt

1 + ce2ax

)
. (4.13)
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Since Uλ(x, 0) = e−iλx we seek a fundamental solution p(x, y, t) such
that

∫∞
−∞ e−iλyp(x, y, t)dy = Uλ(x, t). The Fourier inversion immedi-

ately gives the result. The integrals are standard Gaussians and we
have

p(x, y, t) =
1

2π

∫ ∞

−∞
eiλye−λ2t−iλ(x−2at)

(
1 + ce2ax−4aiλt

1 + ce2ax

)
dλ

=
K(x− 2at− y, t) + ce2axK(x + 2at− y, t)

1 + ce2ax
, (4.14)

where K(x − y, t) = 1√
4πt

e−
(x−y)2

4t . The reader can check that this is a

fundamental solution and since
∫∞
−∞ p(x, y, t)dy = U0(x, t) = 1, it is a

density. In fact it is the transition density for the process.

An interesting feature of this Fourier transform analysis is that it
is not always optimal to use stationary solutions. In the next set of
examples, we use nonstationary solutions, for the simple reason that
they lead to Fourier transforms which are easier to invert.

Example 4.2. We will obtain the transition density of a mean revert-
ing Ornstein-Uhlenbeck process X = {Xt : t ≥ 0},

dXt = (a− bXt)dt +
√

2σdWt, (4.15)

with a ≥ 0, b > 0. If a = 0, then we have the regular Ornstein-
Uhlenbeck process. The Kolmogorov forward equation is

ut = σuxx + (a− bx)ux, x ∈ R. (4.16)

Observe that (4.16) has a symmetry of the form

ũε(x, t) = e
a
b
−a ε

σ
+ σ

2 b
+

ε (a−b x+b ε sinh(b t))

eb t σ u(x− 2 ε sinh(b t), t). (4.17)

Now ũε(x, 0) = ex− b x ε
σ u(x, 0). We will let ε → iσλ

b
. Then we look for a

fundamental solution p(x, y, t) and a solution u such that
∫ ∞

−∞
e−iλyu(y, 0)eyp(x, y, t)dy = ũ iσλ

b
(x, t). (4.18)

We could use u = 1, but as illustration, instead we seek a solution of
(4.16) of the form u(x, t) = em(t)x+z(t). Substitution into the PDE gives

u(x, t) = e−
2 eb t (a−b x)+σ

2 b e2 b t . Using this solution and the given symmetry,
we seek a fundamental solution such that

∫ ∞

−∞
e−iλyeyp(x, y, t)dy = e−

λ2 σ2 sinh(b t)
b

+
i λ(σ+eb t (a−b x−eb t (a+σ)))

b e2 b t +r(x,t)

with r(x, t) = −2 eb t (a−b x)−σ
2 b e2 b t . We can now recover p by taking the inverse

Fourier transform. The integrals are standard Gaussians and we leave
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the details to the reader. The result is that

p(x, y, t) =

√
be

bt
2√

4πσ sinh(bt)
exp

(
−e−bt(a(ebt − 1) + b(x− ebty))2

4bσ sinh(bt)

)
.

Despite the fact that we did not use the stationary solution u0 = 1,
this is the transition density for the mean reverting Ornstein-Uhlenbeck
process.

Example 4.3. Consider the PDE ut = uxx−Bx2u, x ∈ R, with B > 0.
Now this has a symmetry of the form

ũε(x, t) = e−2
√

Bε cosh(2
√

Bt)x−2
√

Bε2 sinh(2
√

Bt)u(x− 2
√

Bε cosh(2
√

Bt), t).

Observe that ũε(x, 0) = e−2
√

Bεxu(x, 0). We replace ε with ε = iλ
2
√

B
. We

take u(x, t) = e−
1
2

√
Bx2−√Bt. Here u(x, 0) = e−

1
2

√
Bx2

. This gives us the
Fourier transform

∫ ∞

−∞
e−iλye−

1
2

√
By2

p(x, y, t)dy = e
−
„

1−e−4
√

Bt
«

λ2+4i
√

Be−2
√

Btxλ+2B(x2+2t)
4
√

B .

We apply the inverse Fourier transform. The result is that

e−
1
2

√
By2

p(x, y, t) =
1

2π

∫ ∞

−∞
eiλye

−
„

1−e−4
√

Bt
«

λ2+4i
√

Be−2
√

Btxλ+2B(x2+2t)
4
√

B dy

=
4
√

Be
−
√

B

„
x2−4e2

√
Btyx−2t+e4

√
Bt(x2+2y2+2t)

«

2(−1+e4
√

Bt)
√

π − e−4
√

Btπ
. (4.19)

From which we obtain

p(x, y, t) =
4
√

B√
2π sinh(2

√
Bt)

exp

(
−
√

B(x2 + y2)

2 tanh(2
√

Bt)
+

√
Bxy

sinh(2
√

Bt)

)
,

which is valid for all B > 0. For B < 0, we may show by similar
calculations that the obvious extension to negative B, namely

q(x, y, t) =
4
√
|B|√

2π sin(2
√
|B|t)

exp

(
−

√
|B|(x2 + y2)

2 tan(2
√
|B|t) +

√
|B|xy

sin(2
√
|B|t)

)
,

is a fundamental solution.

Example 4.4. Consider now the PDE ut = uxx−Axu, −∞ < x < ∞.
Lie’s method shows that if u is a solution, then so is

ũε(x, t) = e−εx+ε2t−Aεt2u(x− 2εt, t). (4.20)

Further, u(x, t) = e−Axt+ 1
3
A2t3 is a solution. Then we look for a funda-

mental solution such that
∫∞
−∞ e−iλyp(x, y, t)dy = e

A2t3

3
−tλ2+i(At2−x)λ−Atx.
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From which

p(x, y, t) =
1

2π

∫ ∞

−∞
eiλye

A2t3

3
−tλ2+i(At2−x)λ−Atxdλ

=
1√
4πt

e
A2t3

12
− 1

2
A(x+y)t− (x−y)2

4t . (4.21)

The results and applications of this paper can be extended to larger
classes of equations. Although we have concentrated on PDEs in which
the coefficient of the second derivative term is a power law, our methods
may be applied to any PDE of the form ut = a(x, t)uxx + b(x, t)ux +
c(x, t)u which has at least a four dimensional Lie algebra of symmetries.
For such PDEs we may obtain, up to a change of variables, a Fourier
or Laplace transform of a fundamental solution, by applying a single
symmetry to a trivial solution. This is discussed in [5]. The process for
constructing integral transforms of fundamental solutions for equations
lying outside the class considered in the current work is essentially the
same as the method employed here.
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