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ABSTRACT

Motivation: B-cell epitope is a small area on the surface of an antigen

that binds to an antibody. Accurately locating epitopes is of critical

importance for vaccine development. Compared with wet-lab meth-

ods, computational methods have strong potential for efficient and

large-scale epitope prediction for antigen candidates at much lower

cost. However, it is still not clear which features are good determinants

for accurate epitope prediction, leading to the unsatisfactory perform-

ance of existing prediction methods.

Method and results: We propose a much more accurate B-cell epi-

tope prediction method. Our method uses a new feature B factor

(obtained from X-ray crystallography), combined with other basic phy-

sicochemical, statistical, evolutionary and structural features of each

residue. These basic features are extended by a sequence window

and a structure window. All these features are then learned by a two-

stage random forest model to identify clusters of antigenic residues

and to remove isolated outliers. Tested on a dataset of 55 epitopes

from 45 tertiary structures, we prove that our method significantly

outperforms all three existing structure-based epitope predictors.

Following comprehensive analysis, it is found that features such as

B factor, relative accessible surface area and protrusion index play an

important role in characterizing B-cell epitopes. Our detailed case

studies on an HIV antigen and an influenza antigen confirm that our

second stage learning is effective for clustering true antigenic residues

and for eliminating self-made prediction errors introduced by the first-

stage learning.

Availability and implementation: Source codes are available on

request.

Contact: jinyan.li@uts.edu.au

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

B-cell epitope is the binding site of an antibody on an antigen.

It can be recognized by a specific B lymphocyte to stimulate an

immune response. If both the antigen and its binding antibody

are known, the epitope site can be accurately determined by

wet-lab experiments, such as by X-ray crystallography.

However, it takes a great deal of time and labor to identify the

epitope(s) of an unknown antigen and its specific antibody.

Computational methods have strong potential for efficient and

large-scale epitope prediction for many antigen candidates at

much lower cost. Early computational prediction methods have

focused on the identification of linear epitopes, which are simple

forms of B-cell epitopes.

A linear epitope is composed of a single continuous sequence
segment. The early prediction methods have assumed that there

should be a good and simple correlation between certain propen-
sities and linear epitope residues, and attempted to predict linear

epitopes through one or two propensities. For example, hydro-
philicity was used by Hopp and Woods (1981) and Parker et al.

(1986), flexibility by Karplus and Schulz (1985), protrusion index
(PI) by Thornton et al. (1986), antigenic propensity by Kolaskar

and Tongaonkar (1990), amino acid pair by Chen et al. (2007)
and �-turns by Pellequer et al. (1993). To enhance the robustness

of the prediction, various ideas of sliding windows have been
proposed (Chou and Fasman, 1974) and applied in linear epitope

prediction (Hopp and Woods, 1981; Karplus and Schulz, 1985;
Westhof, 1993). However, the sliding window approach is over-

simplified and the prediction performance was not improved
significantly (Chen et al., 2007). In 2005, Blythe and Flower

derived 484 amino acid propensity scales from the AAIndex
and found that even the best set of scales and parameters

performed only marginally better than random methods. They
recommended the use of more sophisticated methods for epitope

prediction (Blythe and Flower, 2005). Other research works have
tried to use machine learning methods such as Hidden Markov

Model (Larsen et al., 2006), Recurrent Neural Network (Saha
and Raghava, 2006) and Support Vector Machine (Chen et al.,

2007) to improve performance for linear epitope prediction.
The other form of B-cell epitope is called conformational

epitope. A conformational epitope consists of discontinuous
stretches of residues that are tightly connected after folding in

3D space. As over 90% of epitopes are conformational
(Andersen et al., 2006) and an increasing number of protein

structures have recently become available, close attention has
been shifted to the problem of conformational epitope prediction

(Andersen et al., 2006; Kulkarni-Kale et al., 2005; Lo et al., 2013;
Moreau et al., 2008; Ponomarenko et al., 2008; Sun et al., 2009;

Sweredoski and Baldi, 2008; Zhao et al., 2012). DiscoTope
(Andersen et al., 2006) is one of the first methods to study

conformational epitopes based on structural data. It combines
the structural proximity sum of sequentially smoothed log-odds

ratios with contact numbers to derive a prediction score. Another
novelty of the method is that it uses the concept of structural

window to smooth the physicochemical propensities. A later
method called ElliPro (Ponomarenko et al., 2008) takes advan-

tage of the PI (Thornton et al., 1986) and makes use of a residue
clustering algorithm to predict both linear and conformational

B-cell epitopes for a protein sequence or protein structure.
ElliPro does not have a training process, but the parameter

thresholds must be set before implementation. The SEPPA
method (Sun et al., 2009) introduces a novel concept of ‘unit

patch of residue triangle’ to describe the local spatial context*To whom correspondence should be addressed.
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of the protein surface. It also incorporates clustering coefficients

to describe the spatial compactness of surface residues for

epitope prediction. A more recent work in this area is the anti-

body-specific B-cell epitope prediction (Zhao et al., 2011). This

method can accurately predict the more useful antibody-specific

epitopes rather than antigenic residues. But it requires more prior

information, e.g. antibody structure or sequence information. It

is not applicable to a new virus when its antibody is unknown. In

spite of intensive research, the prediction performance by all of

these methods still needs much improvement.

In this work, we propose a much more accurate epitope

prediction method named CeePre (Conformational epitope

prediction). Two new ideas are adopted by CeePre. First,

CeePre uses a new feature B factor in the learning process, com-

bined with many other physicochemical, statistical, evolutionary

and structural features of the residues. These features are also

extended by a sequence window and a structure window to

derive composite features. B factor is an important parameter

of protein X-ray crystallography. It measures the flexibility/rigid-

ity of residues/atoms in a protein 3D structure. A higher B factor

score implies more flexibility of the atom/residue. It has been

found that low B factors are usually distributed at the core of

unbound interfaces (Swapna et al., 2012). The second new idea is

that CeePre is a two-stage model under the random forest learn-

ing process (Breiman, 2001). In the first stage, the original 304

features are used to predict the potential antigenic residues. In

the second stage, the predicted class labels from the first stage are

added to the feature space to cluster nearby antigenic residues to

form epitopes and remove isolated antigenic or non-antigenic

residue predictions. This idea is based on the hypothesis that

the aggregated antigenic residues are more likely to constitute

epitopes, while the isolated antigenic residues are probably

wrongly predicted. This idea is effective to eliminate self-made

prediction errors to obtain really meaningful final results.
CeePre is tested on a set of 55 epitopes from 45 tertiary antigen

structures. The result shows that CeePre significantly outper-

forms all existing structure-based epitope predictors

(DiscoTope, ElliPro and SEPPA). With a comprehensive ana-

lysis of the important features suggested by random forests in the

epitope prediction, it is found that B factor, relative accessible

surface area (RSA) and PI play an important role in improving

prediction performance. Our analysis also confirms that whether

a residue is involved in an epitope is affected by nearby residues

both in sequence and in space, and thus it is a good idea to use

both the sequence and structure window to construct the feature

vector.

2 MATERIALS AND METHODS

2.1 Datasets

The structure data in this work consists of two types: quaternary struc-

tures and tertiary structures. Quaternary structures are used to determine

which residues are in an epitope, while tertiary structures are used to

extract feature scores of candidate residues. The structure data are com-

piled via the steps presented below.

2.1.1 Quaternary structures and epitope residues A dataset con-

taining 107 non-redundant antigen–antibody complexes (Kringelum

et al., 2013) is used. Some (e.g. T-cell antigens) are removed according

to the following criteria.

� Only one symmetric unit is used within each complex. If a complex

contains more than one symmetric unit, redundant units are

removed, as carried out by Ponomarenko and Bourne (2007).

� Complexes 1NFD, 1XIW, 1YJD and 2ARJ are removed because

their antibodies interact only with the T-cell chains and have no

interaction with antigen chains. 1QFW is also removed because its

antigen chains are from the gonadotropin alpha subset.

In total, 102 quaternary structures are used to determine the B-cell

epitopes. An epitope residue is an antigen residue such that there exists

at least one heavy atom of this antigen residue that is within 4 Å distance

from a heavy atom of a residue of the antibody (Ponomarenko et al.,

2008).

2.1.2 Tertiary structures Traditional structure-based epitope predic-

tion methods typically use quaternary structure datasets (Andersen et al.,

2006; Kringelum et al., 2013; Sun et al., 2009). From a practical perspec-

tive, the prediction should be conducted under the assumption that the

corresponding antibodies are unknown. In other words, using tertiary

structures rather than quaternary structures is more reasonable for the

analysis and prediction of epitopes. Simply separating the antigens from

the quaternary structures is not a good idea to get the tertiary structure

data. This is because the antigen side in a quaternary structure contains

the binding information (Supplementary Fig. S1); for example, residues

bound by antibodies are less flexible and have smaller B factors in the

quaternary structure. It is unfair to use the binding information to predict

epitope sites in an unbound status. Therefore, to obtain the correspond-

ing tertiary structures of the antigens from the quaternary structures is

non-trivial.

We take an alignment approach to the construction of our tertiary

structure dataset from the quaternary structure data. First, the antigens

in the quaternary structures are aligned with every tertiary structure in

Protein Data Bank (PDB). A tertiary structure is selected if the sequence

similarity is495% and the epitope residues can be completely aligned. By

this step, 34 complexes are removed, as they cannot be aligned with any

tertiary structure under the 95% sequence similarity condition. 1EGJ is

also removed because it can only be aligned with 1C8P, which

is determined by NMR (not X-ray). Twelve more complexes are removed

because their epitopes cannot be completely mapped onto the

corresponding tertiary structures.

After this filtering process, 55 quaternary structures are retained and

their corresponding epitopes are mapped onto 45 tertiary structures. For

some cases, two or more antigens from quaternary structures are mapped

onto the same tertiary structures. Supplementary Table S1 shows the

dataset details and the mapping between the quaternary structures and

the tertiary structures. All the feature scores of the residues in this work

are extracted from the tertiary structures rather than the quaternary

structures.

2.1.3 Non-epitope residues In general, except for epitope residues all

other surface residues in a tertiary structure can be considered to be

non-epitope residues. In particular, Rost and Sander (1994) have con-

sidered a residue to be a surface residue if its RSA is415%, while the

RSA threshold is set at 25% by Deng et al. (2009). The absolute value of

the accessible surface area (ASA) has also been used to identify surface

residues. Jordan (2010) has adopted a threshold of 5 Å2 to define surface

residues. Using a simple statistic on the RSA of epitope residues in our

dataset, we find that475% of epitope residues have an RSA425.9%.

Thus, we take the criterion RSA 25% (Deng et al., 2009) to define surface

residues. As a result, there are 725 epitope residues and 6504 non-epitope

residues in our datasets.

i265

Epitope prediction by CeePre

, 
-
a 
2
tiliz
,
protrusion index
,
is 
-
, 
,
. 
; Kringelum etal., 2013
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu281/-/DC1
,
above 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu281/-/DC1
. 
larger than 
ve
more than 
larger than 


A key issue here is that the numbers of epitope residues and non-

epitope residues are imbalanced. The epitope residues are just a little

more than 10% of the non-epitope residues. If this imbalanced dataset

is used in training, the classifier would tend to categorize every residue as

non-epitope. Therefore, we sample non-epitope residues randomly to

obtain the same number of non-epitope residues as that of the epitope

residues to produce a balanced dataset. CeePre is trained on these

balanced datasets and tested on both the balanced dataset and the imbal-

anced dataset.

2.2 Feature space of residues

2.2.1 Basic features including our newly proposed B factor A

variety of features have been studied by Chen et al. (2007); El-

Manzalawy et al. (2008); Hopp and Woods (1981); Janin (1979);

Karplus and Schulz (1985); Kolaskar and Tongaonkar (1990);

Pellequer et al. (1993); Sollner et al. (2008); Thornton et al. (1986). In

addition to our newly introduced B factor feature to characterize epitope

residues, many of those traditionally used physicochemical features,

statistical features, evolutionary features and structural features are also

collected by this work (Table 1). In total, there are 38 features as our basic

features (Supplementary Table S2), including 20 PSSM features and 8

secondary structure features. The B factor score of each residue is the

average B factor of all of the atoms in this residue.

2.2.2 Window-based features: extended composite features The

location of epitope residues can be influenced by their nearby residues in

sequence and spatially. We introduce two windows to capture this influ-

ence: a sequence window and a structure window. Features whose value

scores are calculated according to the residues within a window are called

window-based features.

� A total of 38 smoothed features by a sequence window. The size of

the sequence window is 7 (Andersen et al., 2006), i.e. the sequence

window of a residue i covers residues i� 3, i� 2, i� 1, i, i+1, i+2,

i+3. We use the average value of each basic feature v over this

window to obtain the smoothed value of v for residue i. It is

named a smoothed feature v0. As there are 38 basic features, we

can obtain an additional 38 smoothed features for each residue.

Note that the window size is adjustable.

� A total of 228 new features by a structure window. A surface residue

is inside a structure window of a target residue if the distance be-

tween any atom of the target residue and an atom of the surface

residue is less than a threshold (window size: 10 Å, adjustable).

We calculate the maximum, minimum and average of all of the resi-

dues in the structure window of each residue for every basic or

sequence-window smoothed feature u. This process introduces 228

[(38+38)� 3] composite features, which are named structural

maximum, minimum or average features of u. With this addition,

we use a total of 304 (38+38+228) features to characterize every

residue.

Figure 1 summarizes the process of constructing feature space from

tertiary structures.

2.3 Prediction method

2.3.1 Two-stage learning Our prediction method CeePre has two

stages of learning:

� The first stage of learning is by the random forest model (Breiman,

2001) on a training dataset of residues described by our 304 features.

The trained model is named CeePre1. CeePre1 can predict the class

labels of the residues in a test dataset. It can also predict the class

labels of the training residues. CeePre1 is depicted in Figure 2.

Table 1. Features used in the our study and the methods for calculating

their value scores

Catalogue Feature Calculation

Physicochemical Hydrophilicity Parker (Andersen

et al., 2006)

Hydrophobicity AA Index (Kawashima

et al., 2008)

Flexibicity AA Index (Kawashima

et al., 2008)

Polarity AA Index (Kawashima

et al., 2008)

�-turns AA Index (Kawashima

et al., 2008)

B factor PDB file

Statistical Log-odds ratio DiscoTope (Andersen

et al., 2006)

Evolutionary PSSM PSI-Blast

Structural PI PSAIA (Mihel

et al., 2008)

ASA NACCESS

RSA NACCESS

Secondary

structure

DSSP

Fig. 1. Construction of the feature space from tertiary structures

Fig. 2. The learning and test of CeePre1
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� The second stage of learning consists of four steps. Step 1: train a

CeePre1 model on a training dataset described by the 304 features,

and obtain the predicted class labels for the training data and the test

data. The predicted class labels of the training data are given by an

internal 10-fold cross-validation process over the training data itself.

Step 2: expand the 304-feature vector by adding four features

through a structure window and the predicted class labels of

CeePre1. The four new features of the residues are (i) the predicted

class label of CeePre1, (ii) the number of predicted epitope residues in

the window, (iii) the number of predicted non-epitope residues in the

window and (iv) the ratio of the predicted epitope residues over all

the residues in the window. Step 3: train the random forest model on

the enriched training dataset described by 308 features. The trained

model is named CeePre2. Step 4: apply CeePre2 to predict the class

labels of the residues in the test dataset described by the same 308

features and to get the test performance. Figure 3 illustrates the

learning and test processes of CeePre2.

CeePre1 focuses on the accurate prediction of antigenic residues.

On top of CeePre1, CeePre2 concentrates to cluster separate antigenic

residues and to eliminate isolated false positives and false negatives.

Generally, spatially aggregative antigenic residues more easily constitute

epitopes. On the contrary, isolated antigenic residues are not likely to be a

part of an epitope. Taking this principle, CeePre2 converts the prediction

results of CeePre1 into the four features at the second stage to integrate

separated antigenic residues into a cluster of epitope residues, enhancing

the prediction performance for many cases.

2.3.2 Random forest Random forest is used as our learning model.

Random forest is an ensemble method proposed by Breiman (2001).

It constructs multiple decision tree classifiers and obtains the final pre-

dictions by voting. It has many advantages (Han et al., 2006). Firstly, it is

robust to errors and outliers and can avoid over-fitting. Secondly, its

accuracy is comparable with other ensemble algorithms (e.g.

AdaBoost), but it is much faster. Also, it gives an internal estimate of

variable importance.

Many software packages contain the random forest algorithms. An

implementation of random forest in R package by Liaw and Wiener

(2002) is used here. There are two important parameters: the number

of trees to grow and the number of features selected as candidates at

each split. In the learning process, we build 100 trees and determine

feature numbers by optimizing F-score.

2.4 Evaluation metrics

CeePre is evaluated under six metrics: accuracy, recall, specificity,

precision, F-score and Matthews correlation coefficient (MCC). Recall,

specificity and precision reflect the prediction tendencies of classifiers.

Recall (sensitivity or TP recognition rate) and specificity (TN recognition

rate) illustrate the percentage of correct predictions for positive and

negative samples. A corresponding criterion is precision showing the

percentage of correct positive-labeled samples. There is a trade-off

between precision and recall. Recall favors positive-bias predictions,

while precision favors negative predictions.

Accuracy (recognition rate) describes how well the classifier recognizes

both positive samples and negative samples. It is effective only when the

samples are evenly distributed. If positive and negative samples are imbal-

anced, classifiers apt to predict samples, as the majority class will achieve

better accuracy. The F-score combines precision and recall and can be

used to assess the performance of classifiers on both balanced datasets

and imbalanced datasets. MCC is another metric that can be used to

evaluate a classifier’s performance, especially on imbalanced datasets.

It returns a value between �1 and +1: +1 stands for a perfect predic-

tion, 0 for random prediction and �1 for totally reversed prediction.

3 RESULTS AND DISCUSSION

We first compare our CeePre model with three other structure-

based epitope predictors (DiscoTope, ElliPro, SEPPA). The

evaluation is based on both the balanced datasets and the

whole imbalanced dataset. In this section, we also highlight

several B factor-related features, which are important in epitope

prediction.

3.1 Evaluation on the balanced datasets

A 10-fold cross validation procedure is conducted on our

balanced datasets consisting of all the 725 epitope residues and

725 non-epitope residues obtained by sampling. The sampling is

operated three times to obtain three different non-epitope residue

datasets. The mean value and standard deviation of each metric

over the three samplings are reported to eliminate the bias

induced by sampling.
The performance of CeePre and those of the other three

predictors are presented in Table 2. CeePre (CeePre1 and

CeePre2) exhibits excellent performance on the balanced

datasets, surpassing the other three predictors on all metrics.

Specifically, the F-score of CeePre2 is 0.89, 0.31 higher than

the best F-score (SEPPA) of the other predictors. The MCC of

CeePre2 is 0.77, which is four times more than the best MCC of

the other three predictors (0.19 by SEPPA). Accuracy is mean-

ingful on the balanced datasets: the accuracy of CeePre2 is 0.88,

0.29 better than the best accuracy (SEPPA) of the other

predictors. In summary, CeePre shows excellent performance

on the balanced datasets.
We can also see that CeePre2 outperforms CeePre1 in terms of

almost all metrics except for slight decrease in specificity. For

example, the recall of CeePre2 is improved to 0.93 because more

epitope residues are identified. The improvement is attributed to

the idea that CeePre2 adds the prediction results of CeePre1 into

the four new features expanded in the second learning stage.

CeePre2 also removes some isolated epitope and non-epitope

residue predictions and clusters nearby epitope residue and

Fig. 3. The learning and test of CeePre2
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non-epitope residue predictions. This is reasonable because all

residues in an epitope are typically spatially close to each other.

On the other hand, one or two isolated residues should not

become an epitope. The slight decrease in specificity probably

implies the discovery of previously unknown epitopes in the ter-

tiary structures, as the epitopes have not been fully annotated

so far.

3.2 Evaluation on the whole dataset

In a real scenario, the number of epitope residues and non-epi-

tope residues are not equal. To make the results more convincing

in practice, we show a 10-fold cross validation result on the

entire dataset, where the proportion of epitope residues and

non-epitope residues is 1:9. For each fold, the training is on

nine parts of the balanced dataset, and the test is on one part

of the epitope residue data and all of the remaining non-epitope

residues (not only the one part of the non-epitope residue data in

the balanced dataset). The 10-fold cross validation process is

repeated three times each with a different sampling of the non-

epitope residues. The mean value and the standard deviation of

each criterion are recorded in Table 3.
Again CeePre has far better performance than the other three

predictors under all metrics. It achieves an F-score of 0.54, which

is twice as much as the best F-score (SEPPA) of the other three

predictors. Its MCC is �0.53, while the best MCC of the others

is only 0.11. Compared with CeePre1, its recall improves signifi-

cantly to 0.93, indicating that most of the epitope residues are

identified. However, the precision and specificity of CeePre2

show a slight decrease, which is partly due to the incomplete

determination of epitopes in PDB.
CeePre also has better recall, precision and specificity than the

other three predictors. In terms of specificity, DiscoTope has a

higher specificity (0.82) than ElliPro and SEPPA, which is

slightly less than the specificity of CeePre2, but the recall of

DiscoTope is only 0.23. This signifies that DiscoTope mistakes

most of the epitope residues for non-epitope residues. In con-

trast, ElliPro prefers to recognize more residues as epitope resi-

dues, and thus shows a high recall value (0.76) and a low

precision (0.1). Nevertheless, its recall is still much less than the

recall of CeePre. This is probably because ElliPro only uses one

feature (PI) in the prediction. SEPPA compromises epitope resi-

due predictions and non-epitope residue predictions; thus, it has

medium recall and specificity, but higher precision than the other

two. However, the highest values of all three metrics of the other

three predictors are lower than those obtained by our CeePre

method.

3.3 Important features for prediction

A variety of features, including physicochemical features, statis-

tical features, evolutionary features and structural features, are

used by CeePre. Not all of them play an equally important role in

the prediction. Their contribution to the prediction performance

varies. The most effective features should have both significant

biological and computational importance. In this section, we

report the most important features for epitope prediction.

These features are ranked by the random forest model, as

shown in Figure 4.
Figure 4b shows that the four new features extracted from the

prediction results of CeePre1 by a structure window do play a

significant role in CeePre2, indicating a strong clustering effect.

Other features, especially RSA (V73) and ASA (V71), are also

top ranked in CeePre2. Figure 4a gives a more detailed descrip-

tion of the weighty features for characterizing epitope residues.

This ranking procedure is repeated on three training samplings.

Only those features that appear three times in the top-30 features

or twice in the top-20 features are reported in Table 4.

Table 3. Performance on the whole dataset

Methods F-score Precision Recall MCC Specificity Accuracy

CeePre1 0.55� 0.019 0.41� 0.025 0.85� 0.016 0.53� 0.016 0.86� 0.016 0.86� 0.013

CeePre2 0.54� 0.006 0.38� 0.007 0.93� 0.003 0.53� 0.005 0.83� 0.006 0.84� 0.005

DiscoTope 0.16 0.13 0.23 0.04 0.82 0.76

ElliPro 0.18 0.10 0.76 0.02 0.27 0.32

SEPPA 0.23 0.14 0.56 0.11 0.62 0.62

Note: Sign a�b represents mean value a and standard deviation b.

Table 2. Performance on the balanced datasets

Methods F-score Precision Recall MCC Specificity Accuracy

CeePre1 0.85� 0.013 0.85� 0.012 0.85� 0.016 0.71� 0.026 0.85� 0.012 0.85� 0.013

CeePre2 0.89� 0.006 0.85� 0.009 0.93� 0.003 0.77� 0.014 0.83� 0.011 0.88� 0.007

DiscoTope 0.33� 0.004 0.57� 0.022 0.23� 0.000 0.07� 0.020 0.83� 0.015 0.53� 0.008

ElliPro 0.61� 0.001 0.51� 0.001 0.76� 0.000 0.03� 0.004 0.27� 0.003 0.51� 0.002

SEPPA 0.58� 0.007 0.60� 0.016 0.56� 0.000 0.19� 0.025 0.63� 0.025 0.59� 0.012

Note: a�b represents mean value a and standard deviation b.
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3.3.1 Relative accessible surface area RSA and ASA are
top-ranked among all the features. This signifies that the surface

accessible area of residues can effectively distinguish epitope resi-

dues from non-epitope residues on protein surfaces. The RSA

distribution of epitope residues and non-epitope residues on pro-

tein surfaces is appreciably distinct (Fig. 5). The mean RSA of

epitope residues is 46.0%, while that of non-epitope residues is

54.2%. Epitope residues are less surface-exposed than other

surface residues. With a Mann–Whitney U hypothesis test

assuming that the RSA of epitope and non-epitope residues

are under the same distribution, the hypothesis is rejected

(P-value: 0). This means that there is a clear distinction in the

distribution of RSA between epitope and non-epitope residues.

3.3.2 B factor Another important feature is B factor, which is a
characteristic used to indicate the mobility of atoms. The atoms

buried in proteins are typically less mobilizable and have a smal-

ler B factor, while those exposed on the surface are more flexible

and have a larger B factor. B factor is widely used in studies on

(a)

(b)

Fig. 4. Ranking of top-30 important features in CeePre. (a) Shows the

top-30 important features in the original 304 features. (b) Illustrates the

top-30 important features of all the 308 features in CeePre2. In CeePre2,

the four additional features are the prediction result of CeePre1 (V305),

the number of predicted epitope residues in the structure window

(V306), the number of predicted non-epitope residues in the structure

window (V307) and the rate of predicted epitope residues in the structure

window (V308)

Table 4. Ranked feature list in CeePre1

Feature R1 R2 R3 Average

rank

Feature name

v73 1 1 1 1.0 RSA

v71 2 2 2 2.0 ASA

v152 4 3 9 5.3 Maximum smoothed

B factor

v151 5 5 3 4.3 Maximum B factor

v130 13 9 6 9.3 Maximum smoothed PI

v238 16 7 5 9.3 Average smoothed �-turns

v75 7 8 16 10.3 B factor

v303 10 16 8 11.3 Average B factor

v162 11 18 7 12.0 Minimum smoothed �-turns
v150 30 22 11 21.0 Maximum smoothed RSA

v86 18 24 29 23.7 Maximum smoothed �-turns

v154 20 30 22 24.0 Minimum smoothed

hydrophilicity

v223 25 25 26 25.3 Minimum ASA

v76 3 6 4.5 Smoothed B factor

v228 8 4 6.0 Minimum smoothed B factor

v304 6 10 8.0 Average smoothed B factor

v227 9 14 11.5 Minimum B factor

v247 12 15 13.5 Average GLU (E)

v88 13 14 13.5 Maximum smoothed

Log-odds ratio

v240 19 11 15.0 Average smoothed

Log-odds ratio

v82 15 17 16.0 Maximum smoothed flexibility

v234 14 20 17.0 Average smoothed flexibility

Note: R1, R2 and R3 stand for ranks on the three samplings, respectively. Average

rank is the arithmetic mean of the three rankings.

Fig. 5. Box plot of RSA for epitopes and non-epitopes
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protein binding (Chung et al., 2006; Liu et al., 2013; Neuvirth

et al., 2004). However, this is the first time B factor has been used

as a feature in epitope prediction.
As can be seen from Figure 4a and Table 4, B factor is a

notable feature in distinguishing epitope residues from non-

epitope residues. The P-value of the Mann–Whitney U hypoth-

esis test on B factor is 0, implying that there are different

distributions between epitope residues and non-epitope residues

in terms of B factor; in other words, B factor is an effect-

ive feature in epitope prediction. In addition, the smoothed

B factor along the sequence and the B factor of the nearby

residues in the structure window also affect the predic-

tion significantly. A test on the sequence smoothed

B factor returns a P-value of 0, which confirms that it is

reasonable to use the sequence window in constructing new

features.

Figure 6 shows a box-plot of the B factor distribution

of epitope residues and non-epitope residues. The average

B factor of epitope residues is 39.7, while that of non-

epitope residues is 52.27: epitope residues are apt to locate

in less mobilizable areas compared with other surface

residues.
Figure 7 provides an example to illustrate the association

of the epitopes with the B factor distribution on A/Hong

Kong/1/1968 (H3N2) influenza virus (4FNK). It can

be seen that epitopes are mainly located at those

residues whose B factor is small. For this example, the

epitopes on the stem region (often conserved epitopes)

locate at those residues where the B factor is low (blue),
while the epitope on the head region (often less conserved)

has slightly higher B factors (green). This is because the
HA1 itself is more flexible than HA2 and thus has higher

B factors.

3.3.3 Protrusion index PI, a widely used structural feature
(Ponomarenko et al., 2008; Thornton et al., 1986), proves to

be effective in the prediction, as shown in Figure 8. The
mean PI of epitope residues is 0.87 and that of non-epitope

residues is 1.07. That is, epitopes are more concave on the
surface. The P-value of the Mann–Whitney U hypothesis test

on PI is 0, indicating its effectiveness in identifying epitope
residues.

3.3.4 Other features Besides the structural features discussed
above, traditional physicochemical features such as �-turns,
hydrophobicity and flexibility are also highly ranked in epitope
prediction. The epitope residue predictions are affected by

physicochemical features of residues that are nearby in sequence
or have spatial proximity. As can be seen from Table 4, the

top-ranked physicochemical features are mostly smoothed over
the sequence window (‘Smoothed’) or the structural window

(‘Average’, ‘Maximum’ or ‘Minimum’). In particular, some of
them, such as �-turns and hydrophilicity smoothed over the se-

quence window or the structural window, strongly reflect the
influence of nearby residues on epitope residue predictions.

Therefore, applying the sequence window and the structure
window on these features contributes to the identification of

the epitope residues.

4 CASE STUDIES

CeePre is trained on our entire balanced dataset and then applied

to the tertiary structure data of an antigen of HIV and an antigen
of an influenza virus to make prediction of their epitopes. These
two antigens are distantly related to the antigens in our training

dataset.

4.1 Antigen GP120 of HIV-1 clade A/E 93TH057

The tertiary structure data of the antigen GP120 of HIV-1 clade

A/E 93TH057 is stored at PDB entry 3TGT. There are six

Fig. 6. Box plot of B factor distribution for epitopes and non-epitopes Fig. 8. Box plot of PI for epitopes and non-epitopes

Fig. 7. Mapping of B factors with epitope residues on A/Hong Kong/1/

1968 (H3N2) influenza virus (4FNK). (a) B factor distribution on 4FNK:

the color pattern is shown in the color bar: the color from blue to red

represents the B factor from small to large. (b) Epitopes on 4FNK: the

epitopes are marked in magenta
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complexes (3SE8, 3SE9, 4LSP, 4LSU, 3NGB and 4JB9) contain-
ing this antigen or a mutated one in PDB. From these six

complexes, we extracted six epitopes for GP120. These epitopes,
not all identical, are aggregative and overlapping

(Supplementary Fig. S2).
In our training dataset, the only antigen related to HIV virus

is an HIV-1 capsid protein (2PXR). Its epitope is extracted

from 1AFV (an HIV-1 capsid protein in complex with

Fab25.3). But no significant sequence similarity is found
between 2PXR and 3TGT (the test antigen GP120) by

BLAST. In the training dataset of DiscoTope and SEPPA, how-
ever, there are antigens similar to antigen GP120. In fact,

DiscoTope’s training data contains 1RZK, 1G9M, 1G9N and
1GC1, which are four envelope glycoprotein GP120 and anti-

body complexes. In SEPPA, 2I5Y, 1G9M and 1G9N are three
envelope glycoprotein GP120 and antibody complexes.

Therefore, the comparison is not favorable to CeePre, as the
performance of DiscoTope and SEPPA on 3TGT may be over-

estimated. ElliPro does not need to be trained, and thus it has no
training dataset.

4.1.1 Prediction performance comparison The prediction results

of CeePre and those of the other three predictors are
reported in Table 5. CeePre achieves good prediction results,

outperforming DiscoTope and SEPPA. ElliPro has a slightly
higher recall (0.66 versus our 0.61), that is, 66% of the true epi-

tope residues are correctly predicted. However, its precision is
only 0.22, meaning that of the residues predicted as epitope resi-

dues, only 22% are true epitope residues. In other words, it tends
to predict non-epitope residues as epitope residues. As to

CeePre2, although the recall value is slightly less than ElliPro
(0.05 lower), its accuracy is significantly higher (0.51 higher).

Thus, it achieves an F-score of 0.55, which is twice as high as
that of ElliPro. Also, our MCC is much better (0.58 versus

�0.08). The comparison result can be seen more clearly in
Figure 9c and e.

4.1.2 The clustering effect of the new features used

by CeePre2 As can be seen from Figure 9a–c, 61% of
the true epitope residues are identified by CeePre2.
Compared with CeePre1, CeePre2 has an impressive clustering ef-

fect on true epitope residues. Some non-epitope residue

predictions among true epitope residue predictions are also
corrected as true epitope residues by CeePre2. At the same

time, CeePre2 corrects predictions for some isolated residues
that are all predicted as antigenic residue by CeePre 1, for

example, residues at positions 47, 53, 57, 63, 68, 232, 234, 236,
247, 250, 299, 439 and 444 in chain A, which are all false-positive

predictions by CeePre1.

4.2 Antigen hemagglutinin of influenza A/Japan/305/

1957(H2N2)

Our prediction models CeePre1 and CeePre2 are also applied to
the tertiary structure data (3KU3) of antigen hemagglutinin

(HA) of an influenza virus A/Japan/305/1957(H2N2). This anti-
gen has two quaternary structures in PDB: 4HF5 (A/Japan/305/

1957 in complex with Fab 8F8) and 4HLZ (A/Japan/305/1957 in
complex with a broadly neutralizing antibody C179 (Dreyfus

et al., 2013).

In our training dataset, only one tertiary structure (2YPG) is

from the influenza family, and its three epitopes (extracted from

1EO8, 1QFU, 1KEN) are all annotated. The evolution distance

between the two antigens is far: 3KU3 HA belongs to group 1,
while 2YPG HA belongs to group 2. Their sequence similarity

determined by BLAST is only 36% for HA1 and 56% for HA2.

HA in group 1 is not included in the training datasets of

DiscoTope, ElliPro or SEPPA either. Thus, this is a fair

comparison.

4.2.1 Prediction performance comparison on 3KU3 The predic-

tion results are listed in Table 6. The performance by CeePre2

excels for every metric compared with the three predictors. Its
F-score is more than twice of the best of the other three pre-

dictors. For MCC, another metric that characterizes the overall

performance of classifiers, CeePre2 far exceeds all three pre-

dictors. There is a remarkable improvement in recall, which

implies that more epitope residues are identified by CeePre2.

At the same time, the precision and specificity of CeePre2 are

also higher.
Compared with CeePre1, CeePre2 makes a significant im-

provement on recall, but shows a relatively small decrease in

Fig. 9. Epitope prediction for antigen GP120 of an HIV virus. (a) The

true epitope residues. (b) and (c) Prediction results by our methods

CeePre1 and CeePre2 respectively. (d–f) Prediction results by other meth-

ods DiscoTope, ElliPro and SEPPA respectively. TP predictions are in

red, FN predictions are in orange, FP predictions are in yellow and the

background cyan represents TN predictions. The purple circles in sub-

figure (b) mark those residues that are wrongly predicted as an isolated

epitope or a non-epitope residue by CeePre1 and are corrected by clus-

tering in CeePre2

Table 5. Prediction performance on the HIV antigen GP120 (3TGT)

Methods F-score Precision Recall MCC Specificity Accuracy

CeePre1 0.59 0.61 0.57 0.47 0.89 0.81

CeePre2 0.67 0.73 0.61 0.58 0.93 0.85

DiscoTope 0.55 0.55 0.55 0.40 0.86 0.78

ElliPro 0.33 0.22 0.66 �0.08 0.26 0.35

SEPPA 0.38 0.31 0.50 0.13 0.65 0.62

i271

Epitope prediction by CeePre

,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu281/-/DC1
vs 
that 
vs 
-
(
)
Figure 9(e)
(
), (b) and (
)
which 
e.g.
(HA) 
which 


specificity and precision. This means that more true epitope resi-

dues are correctly classified, but some non-epitope residues are

marked as epitope residues. Next, we will discuss the reason for

this phenomenon.

4.2.2 Some prediction details Figure 10 shows that the two
epitopes of the HA are correctly identified by CeePre. All the

antigenic residues of the epitope binding to 8F8 are correctly

predicted by CeePre2. This epitope is on HA1. Almost all of

the antigenic residues of the epitope on HA2 that binds to the

broadly neutralizing antibody C179 are correctly predicted.

A small number of edge antigenic residues (residues 38, 40, 291

on chain A and residues 42, 45, 56 on chain B) are predicted as

negative. This may be because this epitope is conserved; it has a

slightly different feature from strain-specific epitopes and may

need special strategies for epitope prediction and feature selec-

tion. As can be seen in Figure 10d–f, this conserved epitope is not

detected by the other three predictors.

CeePre2 again demonstrates the clustering effect on this anti-

gen: separated antigenic residues are aggregated into epitopes,

while isolated epitope and non-epitope residue predictions by

CeePre1 are removed by the second stage of CeePre2. The pre-

cision and specificity may decrease in this stage, especially for

those antigens whose epitopes are not completely discovered or

annotated (high FP). For example, although some antibodies

have been proved to react with the virus A/Japan/305/

1957(H2N2), for example, C05 and CR6261 (Ekiert et al.,

2012), their complex structures are not yet determined and the

epitopes are still unknown. These epitope residues cannot be

annotated here, leading to a higher FP rate.

5 CONCLUSION

In this article, we have proposed CeePre for conformational

B-cell epitope prediction. CeePre has a two-stage learning

strategy for the random forest algorithm to identify clusters of

antigenic residues. It incorporates various basic features as well

as extended composite features through a sequence window and

a structure window. Of these features, B factor is used for the

first time for B-cell epitope prediction It has been found to be

effective in epitope prediction.

To be practically useful, a tertiary structure dataset has been

constructed for the training of our prediction method and has

also been used in the evaluation of CeePre. Compared with three

widely used structure-based epitope prediction models,

our CeePre shows a significant improvement in prediction

performance.

For deep case studies, CeePre has been applied to the epitope

prediction for two antigens that are distantly related to our train-

ing data. One antigen is an HIV antigen, the other is an influenza

antigen. It has been found that CeePre not only obtains more

accurate predictions of epitope residues but also forms more

meaningful epitope predictions by clustering adjacent residues.
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