Interfacial Characterisation of Sol-Gel Derived Coatings of Hydroxyapatite and Zirconia Thin Films with Anodised Titanium Substrates

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

ΒY

Richard Roest

B.Sc. M.Sc. (UTS)

UNIVERSITY OF TECHNOLOGY, SYDNEY November 2008

© RICHARD ROEST 2008

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

ABSTRACT

The anodisation of titanium involves the formation of a thin, compact oxide layer, which improves the wettability of the oxide film. This process involves the conversion of the rutile structure of the original titanium oxide into a mixed rutile and crystalline anatase structure. An understanding of the anodised structure and how it influences the bonding properties of the sol-gel coating of hydroxyapatite (HAp) and zirconia is the main focus of this research project.

The titanium samples were anodised in a mixed phosphoric acid (H_3PO_4) sulphuric acid (H_2SO_4) solution. The samples were also anodised at three different voltages, 25V, 50V and 75 Volts for 30 minutes. Both anodised and original titanium samples were spin coated with alkoxide-derived hydroxyapatite and zirconia sol-gel coatings and examined using X-ray diffraction and scanning electron microscopy. By controlling the oxide layer formed on the titanium substrates, its thickness and the amount of anatase formed in the mixed oxide layer as well as the oxide films porosity enabled the preparation of an oxide film surface that yielded the optimum conditions for coating with the sol gel solutions.

The diffusion theory can be seen to operating in the coating of the sol gel films through interdiffusion of the sol gel coating into the titanium oxide layer, with zirconium ions detected in the titanium oxide layer up to a depth of 75 microns and in the case of the hydroxyapatite sol gel coating phosphorus and calcium was detected in the titanium oxide layer. The adhesion of the sol gel coated samples was tested using a micro-adhesion tester and the zirconia samples were further tested on an Ortho-pod tribological tester to determine the wear properties. The results show a significant improvement in interfacial energy of the hydroxyapatite films on the Ti6AL4V substrates over the C.P. titanium substrates with the anodised 25 volt and 50 volt Ti6Al4V substrate yielding values of 12.1 and 12.8 J/m² compared with values of less than 2 J/m² for the C.P. titanium samples.

Experimentation also shows that for both C.P. Titanium and Ti6Al4V substrates the 25 and 50 volt anodised samples for the crack free zirconia have interface toughness values in excess of 1.5 MPa.m^{1/2} in addition to them the Ti6Al4V substrate also is in excess of 1.5 MPa.m^{1/2} indicating that these samples all possess good interface toughness values while the other substrates have toughness values half the previously mentioned samples of about 0.75 MPa.m^{1/2}.

The zirconia solution used was modified with 1- Butanol to reduce the viscosity of the zirconia sol gel to 10 -12 centipoise and this lead to the formation of a crack free zirconia coating of 100 nm thickness when spin coated, also the tetragonal polymorph was found on all substrates tested with X-ray diffraction.

Tribological results on the zirconia-coated titanium samples, both anodised and control, showed the titanium samples yielded better wear-resistance properties than the double coated samples. The 50 volt anodised titanium samples yielded the best wear resistance of all samples tested after 500,000 cycles on the Orthopod machine in water.

Acknowledgements

I am deeply indebted to a number of people for their help and guidance throughout the duration of this degree. In particular, I would like to express my deepest gratitude to my supervisor, Associate Professor Besim Ben-Nissan for the guidance, encouragement, expertise and friendship he has given during this degree.

Special thanks to Dr Greg Heness, Dr Norman Booth, Alex Rubel and Jules Guerbois for their support and assistance; their time and enthusiasm are greatly appreciated.

I would also like to offer a special thank you to the following people for their assistance with this research study:

- Associate Professor Matthew Phillips, Dr Richard Wuhrer, Mark Berkahn and Ms Katie McBean from the Micro structural Analysis Unit of UTS, whose help and encouragement with the SEM and XRD analysis were greatly appreciated.
- Associate Professor Alan W. Eberhardt and Carrie Stewart from the University of Alabama, who assisted with the tribological testing of my samples.

I would also like to acknowledge the support of the Australian Institute for Nuclear Science and Engineering (AINSE) for giving me a Postgraduate Research Award which provided access to a wide range of facilities at the Lucas Heights site, and I would also like to acknowledge the support of the Australian Nuclear Science and Technology Organisation (ANSTO) Materials Engineering Division. I would also like to give special thanks to Dr Bruno Latella from the Materials Engineering Division of ANSTO who helped conduct the micro-adhesion testing and provided endless assistance and mentoring during the project in addition to his friendship and guidance which made the journey towards completing my thesis more enjoyable.

Finally, a special thanks to my family and close friends for their support and confidence during this project.

TABLE OF CONTENTS

Authorship Certificate	i
ABSTRACT	
Acknowledgements	iv
TABLE OF CONTENTS	VI
LIST OF TABLES	X
LIST OF FIGURES AND ILLUSTRAT	ONSXI
APPENDIX	XV
LIST OF SYMBOLS, ABBREVIATION	IS AND NOMENCLATUREXVI
PUBLICATION LIST	XVII
CHAPTER 1 - INTRODUCTION	
1.1 Background	1
1.2 Thesis Structure	2
1.3 Statement of Study Aims	
CHAPTER 2 – TITANIUM SUBSTRAT	'ES AND ANODISING4
2.1 Titanium	4
2.2 Titanium Anodising	5
2.3 Formation Mechanism of	Anodic Oxide Films8
2.4 Growth Modes for Anodic	Oxide Films9
2.5 Anodising Surface Roughn	ess14
2.6 Titanium Corrosion Resista	ance
2.6.1 General Corrosion Re	sistance15
2.7 Anodising Set-up and Pro	cesses16
2.8 Anodising Solutions	
2.9 Anodised Samples	
CHAPTER 3 - SOL GEL PROCESS – H	YDROXYAPATITE AND ZIRCONIA COATINGS24
3.1 Hydroxyapatite	
3.1.1 Hydroxyapatite I	Production Methods25

3.2	Hydroxy	yapatite Experimental Method	26
3	3.2.1	Hydroxyapatite Coating Procedure	27
3.3	Zirconia.		29
3	3.3.1 Zirc	conia Coatings	30
3.4	Zirconia	a Experimental Procedure	31
3.5	Zirconia	a Sol Gel Discussion	33
СНАРТ	TER 4 – BIO	OCOMPATIBLE INTERFACES	
4.1	Cellular	Adhesion and Biocompatibility	38
4.2	Implant	: Interface design	39
4.3	Osteobla	asts Adhesion	40
4.4	Osteobla	ast Cell Culturing and Bio-Assays	40
2	4.4.1	Experimental method	41
4.5	Results	and Discussion	42
2	4.5.1	Cell Growth and Cytotoxity	45
4.6	Cell grow	wth Conclusions	50
СНАРТ	FR 5 – INT	TERFACE ANALYSIS WITH SIMS	50
5.1	Seconda	ary Mass ion Spectrometry (SIMS)	
5.1	Seconda	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method	52 52 52
5.1 5.2	Seconda 5.1.1 Results	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion	
5.1 5.2 5.3	Seconda 5.1.1 Results SIMS In	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion	
5.1 5.2 5.3 CHAPT	Seconda 5.1.1 Results SIMS In TER 6 – XR	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS	
5.1 5.2 5.3 CHAPT 6.1	Seconda 5.1.1 Results SIMS In ER 6 – XR Titanium	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS n X-Ray Diffraction (XRD)	
5.1 5.2 5.3 CHAPT 6.1	Seconda 5.1.1 Results SIMS In ER 6 – XR Titanium 5.1.1	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS n X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples	
5.1 5.2 5.3 CHAPT 6.1 6.2	Seconda 5.1.1 Results SIMS In ER 6 – XR Titanium 5.1.1 Titanium	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS n X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples n X-Ray Diffraction - Experimental Results	
5.1 5.2 5.3 CHAPT 6.1 6.2 6.3	Seconda 5.1.1 Results SIMS In TER 6 – XR Titanium 5.1.1 Titanium Hydroxy	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion hterface Conclusions RD ANALYSIS OF THIN FILMS n X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples n X-Ray Diffraction - Experimental Results yapatite Sol Gel Coatings XRD Analysis	
5.1 5.2 5.3 CHAPT 6.1 6.2 6.3 6.4	Seconda 5.1.1 Results SIMS In TER 6 – XR Titanium 5.1.1 Titanium Hydroxy Zirconia	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion hterface Conclusions RD ANALYSIS OF THIN FILMS In X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples N X-Ray Diffraction - Experimental Results yapatite Sol Gel Coatings XRD Analysis Sol Gel Coatings XRD Analysis	
5.1 5.2 5.3 CHAPT 6.1 6.2 6.3 6.4 CHAPT	Seconda 5.1.1 Results SIMS In ER 6 – XR Titanium 5.1.1 Titanium Hydroxy Zirconia	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS n X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples n X-Ray Diffraction - Experimental Results yapatite Sol Gel Coatings XRD Analysis Sol Gel Coatings XRD Analysis IIN FILM ADHESION AND SURFACE PROPERTIES	
5.1 5.2 5.3 CHAPT 6.1 6.2 6.3 6.4 CHAPT 7.1	Seconda 5.1.1 Results SIMS In TER 6 – XR Titanium 5.1.1 Titanium Hydroxy Zirconia TER 7 – TH Coatings	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion nterface Conclusions RD ANALYSIS OF THIN FILMS m X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples xRD Analysis of Titanium Samples yapatite Sol Gel Coatings XRD Analysis Sol Gel Coatings XRD Analysis IIN FILM ADHESION AND SURFACE PROPERTIES s Film Adhesion	
5.1 5.2 5.3 CHAPT 6.1 6.2 6.3 6.4 CHAPT 7.1 7.2	Seconda 5.1.1 Results SIMS In ER 6 – XR Titanium 5.1.1 Titanium Hydroxy Zirconia ER 7 – TH Coatings Mechan	ary Mass ion Spectrometry (SIMS) Secondary Mass ion Spectrometry (SIMS) method and Discussion Interface Conclusions RD ANALYSIS OF THIN FILMS IN X-Ray Diffraction (XRD) XRD Analysis of Titanium Samples XRD Analysis of Titanium Samples Yapatite Sol Gel Coatings XRD Analysis Sol Gel Coatings XRD Analysis IIN FILM ADHESION AND SURFACE PROPERTIES s Film Adhesion	

7.4 Electro	ostatic Theory	77
7.5 Diffusi	on Theory	77
7.6 Mecha	nics of Adhesion	77
7.6.1	Wettability and Surface Energetics	
7.6.2	Interfacial Thermodynamics	
7.6.3	Contact Angle	79
7.6.4	Contact Angle Discussion	
7.7 Scanni	ing Electron Microscopy (SEM)	82
7.8 Surfac	e roughness	82
7.8.1 Sı	urface Roughness Discussion	83
CHAPTER 8 – M	IECHANICAL MICRO ADHESION AND NANO HA	RDNESS TESTING 86
8.1 Mecha	nical Sample Preparation	
8.2 Adhesi	ion Test Methods	
8.3 Micro-	Adhesion Testing of Thin Films	
8.4 Mecha	nical Properties	
8.4.1	Critical Stress for Cracking	91
8.4.2	Fracture Energy of Film	91
8.4.3	Fracture Film Toughness	92
8.5 Dog-B	one Samples used in Micro-Adhesion Testing	92
8.5.1	Micro-Adhesion Testing Method	93
8.6 Micro-	Adhesion Testing Results	95
8.6.1	Micro-Adhesion Discussion	96
8.7 Micro-	Adhesion Conclusions	
8.8 Nano-I	ndentation Testing	110
CHAPTER 9 – T	RIBOLOGICAL PROPERTIES	
9.0 Tribolog	gy	
9.1 Friction	n	
9.2 Ceram	ics Wear	115
9.3 Titaniu	ım – Friction Properties	116
9.4 Tribolo	ogy Testing	117

9.4.1	Tribology Testing Procedure	118
9.4.2	Frictional Wear Testing	118
9.5 Statisti	cal Analysis	120
9.6 Results	and Discussion	121
CHAPTER 10 – C	CONCLUSION	
BIBLIOGRAPHY	7	
APPENDIX		

LIST OF TABLES

Table 4.1 Bone by M	Properties of the Osteoblast Phenotype From Cell Biology of artin et al. [133]
Table 4.2	Osteocalcin Concentration Data over 14 day Period42
Table 4.3 Standards	Osteocalcin Concentration Data over 14 day Period with and Blanks
Table 4.4	Saos raw data produced with Propium Iodide47
Table 4.5	Saos raw data averages produced with Propium iodide47
Table 4.6	Mg63 raw data produced with Propium Iodide48
Table 4.7	Mg63 raw data averages produced with Propium iodide48
Table 7.1 drop	Contact Angle measured using drop shape analysis with 15µL
Table 7.2 Tencor Alp	Surface Roughness of Titanium Samples measured using KLA ha-Step IQ Surface Profiler84
Table 7.3 measured	Surface Roughness of Sol Gel Coated Titanium Samples using KLA Tencor Alpha-Step IQ Surface Profiler
Table 8.1 Autopolish	Ti6AL4V Sample polishing method using STRUERS er87
Table 8.2 Autopolish	C.P Titanium Sample polishing method using STRUERS er87
Table 9.1 Cracked Zi	Tribology Testing Matrixes for Titanium Samples with irconia Coating117
Table 9.2	Wear tables for zirconia coated titanium samples and list

showing samples used in testing 122

LIST OF FIGURES AND ILLUSTRATIONS

Figure 2.1 Illi based on a	ustration of titanium anodising cell before current is applied, a Christiane Jung presentation. [56]11
Figure 2.2 Star oxygen ior	rt of the anodised titanium oxide layer formation showing the ns moving into the titanium oxide layer. [56]
Figure 2.3 Fin [56]	al layer formation after the titanium oxide is finished growing.
Figure 2.4 Ti6Al4V al	Ra Surface roughness chart of both C.P. Titanium and loy anodised at 25 Volts14
Figure 2.5 use	Titanium Anodising rack with anodic oxide film evident after
Figure 2.6 He samples, i	at-treated (550°C) samples, showing homogeneity of anodised n concentrated solutions20
Figure 2.7	Ti6Al4V sample anodised at 25V21
Figure 2.8	C.P. Titanium sample anodised at 25V21
Figure 2.9	C.P. Titanium sample anodised at 50V22
Figure 2.10	Ti6Al4V sample anodised at 50V22
Figure 2.11	C.P. Titanium sample anodised at 75V23
Figure 2.12	Ti6Al4V sample anodised at 75V23
Figure 3.1	Hydroxyapatite sol gel flowchart28
Figure 3.2	Zirconia sol gel flowchart32
Figure 3.3 C.P. titani	SEM of 200nm thick zirconia sol gel coating on 75V anodised um showing cracking in coating
Figure 3.4 C.P. titani	SEM of 200nm thick zirconia sol gel coating on 75V anodised um showing cracking in coating
Figure 3.5 75V anodi	Optical micrograph of 100nm thick zirconia sol gel coating on sed C.P. titanium showing crack free coating
Figure 3.6 substrate viscosity (SEM of 200nm thick zirconia sol gel coating on C.P. titanium showing reduced cracking in zirconia coating with reduced 20CPS)
Figure 3.7 substrate (10-12 CP	SEM of 200nm thick zirconia sol gel coating on C.P. titanium showing no cracking in zirconia coating with final viscosity S)

Figure 4.1	Osteocalcin standard curve over 14 day period44
Figure 4.2	Osteocalcin production over 14 day period44
Figure 4.3	Saos standard curve produced with Propium Iodide46
Figure 4.4	Mg 63 standard curve produced with Propium Iodide46
Figure 4.5	Mg63 cell numbers produced with Propium iodide49
Figure 4.6	Saos cell numbers produced with Propium iodide
Figure 5.1 through zi	Ti6Al4V Alloy with zirconia coating showing sputtered area rconia coating with the scale at 100 microns
Figure 5.2 zirconia sh	Interior of SIMS sputtered area on Ti6Al4V alloy coated with nowing alpha and beta grains
Figure 5.3 nanoscale Ti6Al4V su	Interface area of SIMS sputtered crater showing the porosity generated as the crater was sputtered on anodised bstrate
Figure 5.4 coating	Interface area of 75V Ti6Al4V anodised sample with Zirconia
Figure 5.5	C.P. Titanium SIMS Depth profile of Hydroxyapatite Coating 57
Figure 5.6 including a	Depth Profile of Phosphorus in C.P. Titanium samples anodised samples
Figure 5.7 anodised s	Depth Profile of Calcium in C.P. Titanium samples including samples
Figure 5.8	C.P. Titanium SIMS Depth profile of Zirconia Coating60
Figure 5.9 Coating.	75 Volt anodised C.P. Titanium SIMS Depth profile of Zirconia
Figure 6.1 75V).	XRD diffractogram of CP titanium anodised samples (25-
Figure 6.2 75V (BLUE	XRD diffractogram of CP titanium – 25V (red), 50V (BLACK),) anodised and hydroxyapatite coated68
Figure 6.3 Hydroxyap	XRD Diffractogram of 25V C.P. Titanium Sample with patite Coating
Figure 6.4 Hydroxyap	XRD Diffractogram of 50V C.P. Titanium Sample with patite Coating
Figure 6.5 Hydroxyap	XRD Diffractogram of 75V C.P. Titanium Sample with patite Coating
Figure 6.6 (BLUE) an	CP titanium diffractogram – 25V (red), 50V (BLACK), 75V odised – Zirconia-coated samples71

Figure 6.7	Ti6Al4V Sample with Zirconia Sol gel Coating72
Figure 6.8 Coating.	Ti6Al4V anodised at 25V Substrate with Zirconia Sol Gel
Figure 7.1	Contact angle of titanium samples79
Figure 7.2	Surface Roughness of Titanium Samples measured using KLA
Tencor Alp	ha-Step IQ Surface Profiler83
Figure 8.1	Micro-adhesion test sample93
Figure 8.2	Micro-Adhesion Tester
Figure 8.3	Micro-adhesion test set-up showing the video attachment,
monitor ar	nd measuring devices95
Figure 8.4 Ti6Al4V St	Interface energy of Hydroxyapatite coatings on CP and ubstrates
Figure 8.5	Interface energy of crack free Zirconia coatings on Titanium
Substrates	5
Figure 8.6	Interface energy of (200nm) cracked Zirconia coatings on
Titanium S	Substrates
Figure 8.7	Interface Toughness of Crack Free Zirconia coatings on
Titanium S	Substrates
Figure 8.8	Interface Toughness of Cracked Zirconia coatings on
Titanium S	Substrates
Figure 8.9	Interface Toughness of Hydroxyapatite coatings on Titanium
Substrates	5
Figure 8.10	SEM micrograph of 25 Volt anodised C.P titanium sample
with hydro	oxyapatite Coating after Micro-Adhesion Testing
Figure 8.11	SEM micrograph of 25 Volt anodised C.P titanium sample
with hydro	oxyapatite Coating after Micro-Adhesion Testing
Figure 8.12 Coating af	SEM micrograph of C.P titanium sample with hydroxyapatite ter Micro-Adhesion Testing
Figure 8.13	Shear stress of hydroxyapatite coatings on Titanium
Substrates	5
Figure 8.14	Shear stress of Zirconia coatings on Titanium Substrates 104
Figure 8.15	Shear stress of Thin Zirconia coatings on Titanium
Substrates	5
Figure 8.16 Substrates	Film Fracture Energy of Thin Zirconia coatings on Titanium

Figure 8.17 Substrates	Film Fracture Energy of Zirconia coatings on Titanium
Figure 8.18 Substrates	Film Fracture Energy of Hydroxyapatite coatings on Titanium
Figure 8.19 Coating	E Mod Nano-Indentation graph of Hydroxyapatite Sol Gel
Figure 8.20	E Mod Nano-Indentation graph of Zirconia Sol Gel Coating 112
Figure 8.21 Hydroxyap	Hardness measurements in Nano-Indentation graph of patite Coating
Figure 8.22 Zirconia Co	Hardness Measurements in Nano-Indentation graph of pating
Figure 9.1	Wear chart showing material loss after testing 121
Figure 9.2	C.P Titanium sample with cracked Zirconia coating 124
Figure 9.3 coating.	75 volt anodised C.P Titanium sample with cracked Zirconia

APPENDIX

Appendix–1	25 Volt anodised C.P. Titanium zirconia coated depth
profile.	
Appendix-2 profile.	50 Volt anodised C.P. Titanium zirconia coated depth
Appendix-3	Ti6AL4V- XRD Diffractogram of anodised samples
involving 2	5, 50, 75 Volt plus Ti6Al4V sample147
Appendix-4	<i>Ti6AL4V - XRD Diffractogram of 50V anodised sample</i>
with Zircon	<i>nia Coating</i> 148
Appendix-5	<i>Ti6AL4V - XRD Diffractogram of 75V anodised sample</i>
with Zircon	<i>nia Coating</i> 148
Appendix-6	SEM of anodised 25 volt C.P. titanium sample after
Micro-Adhe	esion Testing with Hydroxyapatite Sol Gel Coating 1K
magnificati	ion
Appendix-7 I	<i>Vano-Indentation of anodised 25 volt C.P. titanium</i>
sample sho	owing the E-Modulus150
Appendix-8 I	<i>Vano-Indentation of anodised 50 volt C.P. titanium</i>
sample sho	owing the E-Modulus151
Appendix-9 I	<i>Vano-Indentation of anodised 75 volt C.P. titanium</i>
sample sho	wing the E-Modulus152
Appendix-10	<i>Nano-Indentation of anodised 25 volt C.P. titanium</i>
sample sho	owing the Hardness Value153
Appendix-11	Nano-Indentation of anodised 50 volt C.P. titanium
sample sho	owing the Hardness Value154
Appendix-12 sample sho	Nano-Indentation of anodised 75 volt C.P. titanium wing the Hardness Value155
Appendix-13	SEM of anodised 75 volt Ti6Al4V sample after Micro-
Adhesion	Testing with Hydroxyapatite Sol Gel Coating 40K
magnificati	ion
Appendix-14	SEM of anodised 75 volt Ti6Al4V sample after Micro-
Adhesion	Testing with Hydroxyapatite Sol Gel Coating 50K
magnificati	ion
Appendix-15	SEM of anodised 50 ti6Al4V sample after Micro-
Adhesion	Testing with Hydroxyapatite Sol Gel Coating 40K
magnificati	ion158
Appendix-16	Micro adhesion results from testing and energy
calculation	s

LIST OF SYMBOLS, ABBREVIATIONS AND

NOMENCLATURE

V	Volts
A	Constants
В	Constants
σ_{c}	Critical stress for cracking (MPa)
ε _c	Strain at first cracking
E _f	Young's Modulus of film (MPa)
σ _r	Residual Stress
λ_{f}	Fracture energy of film (Jm ⁻²)
g(a)	Constant
a	Dundas parameter
K _{ic}	Film toughness (MPa.m ^{1/2})
d	Oxide thickness
3	Strain
σ	Stress (MPa)

PUBLICATION LIST

R. Roest, A.J. Atanacio, B.A. Latella, R. Wuhrer, and B. Ben-Nissan, 'An Investigation of Sol gel coated zirconia thin films on anodised titanium substrate by secondary ion mass spectrometry and scanning electron microscopy' Materials Forum Volume 31- 2007. Edited by J.M. Cairney and S.P.Ringer

Roest, R. Heness, G., Latella, B., Ben-Nissan, B., "Fracture toughness of nanoscale Hydroxyapatite coatings on titanium substrates" Proc. 6th Int. Conf. Fract. & Strength of Solids, pp. 1297-1302, 2005

Roest, R., Heness, G., Latella, B. and Ben-Nissan, B. "Fracture toughness of nanoscale zirconia coatings on titanium substrates", Proc. Int. Conf. Structural Integrity and Fracture, pp. 325-330, 2004

R. Roest et al, "Adhesion of Sol-Gel Derived Zirconia Nano-Coatings on Surface Treated Titanium", *Key Engineering Materials*, Vols. 254-256, pp. 455-458, Trans Tech Publications, Switzerland. 2004.

Roest, R., Eberhardt, A.W., Latella, B., Wuhrer, R. & Ben-Nissan, B. 2004, 'Tribology and adhesion of zirconia nano-coatings on surface treated titanium', *Transactions - 7th World Biomaterials Congress, Transactions - 7th World Biomaterials Congress, Transactions - 7th World Biomaterials Congress,* pp. 1783.-1787th 2004.

R. Roest et al, "Sol-Gel Derived Hydroxyapatite Coatings on Anodized Titanium Substrates", *XII International Workshop on Sol Gel Science and Technology*, pp. 112, 25-29 August 2003, Sydney.

R. Roest and B. Ben-Nissan, "Surface Modification of Anodized Titanium for Calcium Phosphate Coatings", *Proceedings of the Engineering Materials*, 23-26 September 2001, Melbourne. (Eds.) E. Pereloma and K. Raviprasad, pp. 115. 2001