University of Technology Sydney Faculty of Engineering and Information Technology

An Investigation of Free Surface Hydraulic Structures Using Large Eddy Simulation and Computational Fluid Dynamics

Peter David McKellar Brady

A dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

13 April 2011

Supervisors:

Adjunct Professor John Reizes

Dr Matthew Gaston

CERTIFICATE OF ORIGINALITY

I certify that the work in this dissertation has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the dissertation has been written by me. Any help that I have received in my research work and the preparation of the dissertation itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the dissertation.

Production Note: Signature removed prior to publication.

Signature of Candidate

Acknowledgements

The author wishes to specifically thank his supervisors who have contributed the most to the successful completion of this project: Adjunct Professor John Reizes and Dr Matthew Gaston. Without their understanding, support and input this work would not have reached such a satisfactory conclusion. The author also wishes to thank his previous supervisors, Professors Archie Johnston and Simon Beecham, for their past contributions.

This highly computationally intensive research would not have been possible without the support of the Faculty of Engineering and IT computer support program and personnel, including: Robert Corran, Anthony Dumbrell, James Lucas, Frank Ng, Phi Nguyen, Andrew de Thame, Michel de la Villefromoy and Peter Yardley. In particular, having access to the Faculty student laboratories over the semester breaks to run grid computation projects was much appreciated.

I must also thank my family and friends for their support during this work – especially my parents for their love and extensive support, in particular financial at the later stages of this research. Finally, I would like to extend a thank you to my friend and figure skating coach, Jean McGregor, for her support and understanding of my numerous last minute absences and skipped training sessions.

Contents

Table of Contents

CERTIFICATE OF ORIGINALITY	III
ACKNOWLEDGEMENTS	V
CONTENTS	VII
TABLE OF CONTENTS	VII
LIST OF FIGURES	XV
LIST OF TABLES	XXVII
LIST OF APPENDICES	
Nomenclature	xxxı
English Symbols	xxxi
Greek Symbols	xxxiii
Mathematical Operators	xxxiv
Subscripts	xxxv
Superscripts	xxxv
Other Operators and Variables	
Non-dimensional Groups	xxxvi
Acronyms	xxxvi
ABSTRACT	XXXIX
1. INTRODUCTION	1
1.1. SCALES OF FLUID DYNAMICS	1
1.2. Policy Framework	3
1.3. THE SCALES AND TYPES OF CIVIL ENGINEERING SIMULATIONS	5
1.4. SEWER OVERFLOWS AND STORMWATER DISCHARGE DEVICES	6
1.4.1. Characteristics of Flows to Be Simulated	
1.4.2. Common Overflow Management Devices Installed	8
1.4.3. Sewer and Combined Sewer Overflow Design and Research	11
1.5. FLOW FEATURES TO BE SIMULATED	16
1.6. OUTLINE OF THE RESEARCH PROGRAM	17
	vii

1.7. SELECTION CRITERIA FOR THE VALIDATION STUDIES	
1.8. SELECTION OF THE SINGLE PHASE VALIDATION CONFIGURATION	19
1.9. SELECTION OF THE TWO-PHASE VALIDATION STUDIES	20
1.10. MAPPING OF THE RESEARCH PROGRAM TO THIS DOCUMENT	
2. MATHEMATICAL MODELS OF SINGLE PHASE FLUIDS	25
2.1. INTRODUCTION	25
2.2. CONSERVATION EQUATIONS	25
2.2.1. Conservation of Mass	
2.2.2. Conservation of Momentum	
2.3. INTRODUCTION TO TURBULENCE	
2.4. DIRECT NUMERICAL SIMULATION	
2.5. Large Eddy Simulation	
2.5.1. Filtering the Navier-Stokes Equations	
2.5.2. LES Models	
2.6. IS AVERAGING A SOLUTION TO THE RESOLUTION REQUIREMENTS OF DNS AND LES?	
2.6.1. Averaging the Navier-Stokes Equations	
2.6.2. The Closure Problem	
2.7. TURBULENCE MODELS FOR THE REYNOLDS AVERAGED FORMULATION	44
2.8. Hybrid Turbulence Models: Detached Eddy Simulation	
2.9. ILES: THE ALTERNATIVE USED IN THIS RESEARCH	
3. THE FINITE VOLUME METHOD	49
3.1. INTRODUCTION AND CONVENTIONS	
3.2. INTEGRATION OF THE GENERAL CONSERVATION EQUATION	51
3.3. DISCRETISATION OF THE GENERAL CONSERVATION EQUATION	
3.3.1. The Surface Flux Integral Terms	52
3.3.2. The Source and Volume Integral Terms	54
3.3.3. The Unsteady Term and Time Integrals	55
3.4. FINITE DIFFERENCE SCHEMES	
3.4.1. Spatial and Temporal Schemes in CFD-ACE+	

3.4.2. The Unsteady Term	57
3.4.3. Convection Term	59
3.5. The General Finite Volume Equation	62
3.6. BOUNDARY CONDITIONS	62
3.6.1. Application of Boundary Conditions	
3.6.2. Fixed Value Boundaries	63
3.6.3. Wall Functions	64
3.7. COUPLING OF THE VELOCITY AND PRESSURE FIELDS	65
3.7.1. Continuity and Mass Conservation	65
3.7.2. SIMPLEC for Transient Problems	66
3.8. Fluid Properties	68
4. NUMERICAL SIMULATION OF FREE SURFACES	69
4.1. Model Requirements	69
4.2. NUMERICAL MODELS OF FREE SURFACES	69
4.3. THE VOLUME OF FLUID MODEL	73
4.4. THE PLIC METHOD FOR SURFACE RECONSTRUCTION	74
4.4.1. Overview of the PLIC Method	74
4.4.2. Computation of Truncation Volumes	
4.5. SURFACE TENSION AND CONTACT ANGLES	78
4.5.1. Surface Tension	
4.5.2. Wall Contact Angle	
5. SINGLE PHASE VALIDATION: CONFIGURATION AND FLOW FIELD	81
5.1. INTRODUCTION	81
5.2. Preliminary Two-Dimensional Investigations	82
5.3. CONFIGURATION OF THE THREE-DIMENSIONAL SIMULATIONS	
5.3.1. Geometry and Computational Mesh	88
5.3.2. Boundary and Initial Conditions	
5.3.3. Solver Parameters	
5.4. CONVERGENCE OF THE SOLVER DURING THE SIMULATIONS	96
5.5. OBSERVATIONS OF THE GLOBAL FLOW FIELD FROM THE SPANWISE PERIODIC MESHES	96

5.5.1. Three Dimensional Structures	
5.5.2. Velocity Magnitude Distribution along the $z=0$ Plane	101
5.5.3. Vorticity and Velocity Magnitude Cut Planes	104
5.6. SPANWISE VELOCITY CORRELATIONS	107
5.6.1. Description and Validation of the Sampling Technique Used in the Present Work	107
5.6.2. Correlation Analysis of the Data from the Present Work	110
5.7. REVIEW OF THE FLOW VISUALISATIONS	116
6. SINGLE PHASE VALIDATION: POINT AND INTEGRAL DATA	117
6.1. INTRODUCTION	117
6.2. Grid Convergence	117
6.2.1. Methodology	117
6.2.2. Velocity Components as a Function of Time	118
6.2.3. Statistical Characteristics of the Velocity Traces	119
6.2.4. Outcome of the Grid Convergence Study	122
6.3. SPATIAL DOMAIN ANALYSIS OF TIME AVERAGED DATA	123
6.3.1. Motivation for Time Averaging	123
6.3.2. Method to Compute the Online Averages	124
6.3.3. Methods to Test the Quality of the Average Statistics	125
6.3.4. Quality of the Averages from the Present Work	127
6.3.5. Comparison with Averaged Experimental Data	
6.3.6. Comparison with Averaged Numerical Data	
6.4. SPECTRAL ANALYSIS OF TURBULENCE STATISTICS	150
6.4.1. Introduction	150
6.4.2. Specific Method of Computation	151
6.4.3. Power Spectra and Dominant Frequencies	151
6.4.4. Decay Slope Estimation	154
6.4.5. Turbulent Length Scales	158
6.5. SINGLE PARAMETER VALIDATION: INTEGRAL QUANTITIES	160
6.5.1. Quantities Considered	160

6.5.2. Mean C_D and C_L	
6.5.3. Root Mean Squared C_D and C_L	
6.5.4. Recirculation Length	
6.5.5. Base Pressure Coefficient	
6.5.6. Discussion of the Single Parameter Results	
6.6. WALL TIME	167
6.7. DISCUSSION OF THE SINGLE PHASE VALIDATION STUDIES	
7. FLOWS WITH A FREE SURFACE	173
7.1. INTRODUCTION	173
7.2. THE CYLINDER CENTRED INERTIAL FRAME OF REFERENCE	177
7.3. Cylinder Centred Boundary Conditions	179
7.4. Cylinder Centred Volume Conditions	
7.5. Non-Dimensional Numbers	
8. TWO-PHASE PRELIMINARY STUDIES	
8.1. Introduction	
8.2. AN INQUIRY INTO THE INFLUENCE OF A HYDROSTATIC PRESSURE VARIATION AT TH	HE INLET AND
OUTLET BOUNDARIES	
8.2.1. Motivation for this Study	
8.2.2. Geometric Design, Grid Layout and Solver Configuration	
8.2.3. Convergence of the Solver During the Simulations	
8.2.4. Observations and Discussions from the Hydrostatic Tests	
8.3. A STUDY OF THE GRID AND GEOMETRIC CONFIGURATIONS	196
8.3.1. Motivation for these Studies	
8.3.2. Geometric Design and Grid Layout: Common Parameters	
8.3.3. Geometric Design and Grid Layout: Test Specific Modifications	
8.3.4. Solver Configuration	
8.3.5. Point Probe Locations	
8.3.6. Convergence of the Solver During the \mathcal{F} Simulations	
8.3.7. Observations from the Parametric Tests of \mathfrak{F}	
8.3.8. Convergence of the Solver During the £ Tests	

8.3.9. Observations from the Parametric Tests of \mathcal{L}	211
8.4. RECOMMENDATIONS FOR THE DEVELOPMENT OF THE THREE-DIMENSIONAL MODELS FROM TH	Е
Two-Phase Preliminary Studies	220
9. THREE-DIMENSIONAL, TWO-PHASE SIMULATIONS: CONFIGURATION AND THE	
SIMULATED FREE SURFACE SHAPE	223
9.1. Introduction	223
9.2. CONFIGURATION OF THE SIMULATIONS	224
9.2.1. General Geometric Configuration	224
9.2.2. Configuration of the Computational Meshes	226
9.2.3. Time Step and Solver Configuration	233
9.3. CONVERGENCE AND STABILITY OF THE NUMERICAL SOLVER	235
9.4. VISUAL EXAMINATION OF THE SIMULATED FREE SURFACES	235
9.4.1. Case 1: Full Depth, $Re_d = 27 \times 10^3$	235
9.4.2. Case 2: Full Depth, $Re_d = 54 \times 10^3$	248
9.4.3. Case 3: Partial Depth, $Re_d = 54 \times 10^3$	250
10. THREE-DIMENSIONAL, TWO-PHASE SIMULATIONS: POINT, TIME DOMAIN AND)
SPECTRAL RESULTS	253
10.1. WAVE SHAPE PARAMETERS	253
10.1.1. Introduction	253
10.1.2. Bow Wave Height – D ₁	253
10.1.3. Cavity Depth – L_0	257
10.1.4. Rooster Tail Height – D_3	259
10.1.5. Rooster Tail Length – L_3	260
10.2. Spectral Validation	262
10.3. Computational Run Time Tests	265
11. THREE-DIMENSIONAL, TWO-PHASE SIMULATIONS: DRAG FORCES EXPERIENCE	CED
BY THE CYLINDER	267
11.1. INTRODUCTION	267
11.2. Forces on the Cylinders	268
11.3. Drag due to the Presence of the Free Surface	271

13	BIBLIOGRAPHY	.283
12	2. CONCLUSION	.283
	11.5. ALTERNATIVE WAVE DRAG VALUES	.280
	11.4. PRESSURE EFFECTS DUE TO THE PRESENCE OF A FREE SURFACE	.275

List of Figures

FIGURE 1-1 – RELATIVE SCALES OF FLUID MECHANICS AND DYNAMICS RESEARCH. POINTS ABOVE THE
REPRESENTATIVE OF IDENTIFIABLE PHYSICAL OBJECTS FOR COMPARISON OF SIZES
FIGURE 1-2 – PARTICLE SIZE DISTRIBUTION OF SOLIDS RECOVERED FROM STORMWATER RUNOFF FROM ROAD CATCHMENTS, EXTRACTED FROM A META-STUDY BY WALKER ET AL (1999)
FIGURE 1-3 – PHOTOGRAPH OF THE FULL SUMP OF A CONTINUOUS DEFLECTION DEVICE PRIOR TO CLEANING (ROCLA, 2009)
Figure 1-4 – Schematic Representation, with indicative photographs, of a three stage offline stormwater treatment system and associated creek rehabilitation
FIGURE 1-5 – TRASH RACK GPT, WITH TRAPPED LEAF LITTER AND LOW FLOW OUTLET
FIGURE 1-6 – A PHOTOGRAPH OF SEWER OVERFLOW STRUCTURE IN SYDNEY THAT IS DESIGNED TO DISCHARGE EFFLUENT DIRECTLY INTO A CONCRETE LINED STORMWATER CHANNEL NEAR PUNCHBOWL (AVIS, 2001)
FIGURE 1-7 – PHOTOGRAPH OF A SCALE MODEL OF A SINGLE SIDE WEIR SEWER OVERFLOW CHAMBER (BEECHAM, 1991). THE OVERFLOW OUTLET IS THE WOODEN CHUTE SHOWN IN THE FOREGROUND WHILE THE LOW FLOW OUTLET PIPE IS LOCATED ON THE BOTTOM RIGHT OF THE IMAGE
FIGURE 1-8 – SKETCH OF THE CENTRE PLANE OF THE SEWER STORAGE CHAMBER USED BY STOVIN AND SAUL (1996), DIMENSIONS IN METRES
FIGURE 1-9 – DOMINANT FLOW REGIME IDENTIFIED BY STOVIN AND SAUL (1996)
FIGURE 1-10 – EXAMPLE IMAGES FROM THE THREE CAMERA LOCATIONS: (A) THE CAMERA BEHIND THE CYLINDER SHOWING A PERSPECTIVE OF THE WAKE; (B) THE CAMERA SIDE-ON AND ABOVE THE FREE SURFACE, AND; (C) THE CAMERA SIDE-ON AND PARALLEL WITH THE FREE SURFACE, AN IMAGE SUITABLE FOR PHOTOGRAMMETRY
Figure 2-1 – Plot of Equations (2.6), (2.7) and (2.8) with constants of proportionality of unity and a characteristic length of 0.05 m for water at 20° C
FIGURE 2-2 – SCHEMATIC ILLUSTRATION OF THE VORTEX-ON-VORTEX CONCEPTUALISATION OF TURBULENCE
FIGURE 2-3 – IDEALISED TURBULENT ENERGY SPECTRUM AS A FUNCTION OF WAVE NUMBER ON LOG-LOG SCALES, ADAPTED FROM WILCOX (1998) AND NEZU AND NAKAGAWA (1993)
FIGURE 3-1 – DEFINITION SKETCH FOR A FINITE VOLUME CELL USING STANDARD CARDINAL DIRECTIONS TO IDENTIFY CELL FACES
FIGURE 3-2 – SKETCH OF THE NODES AND FACES USED IN A ONE-DIMENSIONAL CONTROL VOLUME, ADAPTED FROM VERSTEEG AND MALALASEKERA (1996)

$Figure \ 3-3-Regular \ two-dimensional \ grid \ for \ the \ explanation \ of \ the \ Barth \ and \ Jespersen$	I
GRADIENT ESTIMATION TECHNIQUE (BARTH AND JESPERSEN, 1989)	. 60
FIGURE 3-4 – WALL ADJACENT COMPUTATIONAL CELL EXAMPLE SKETCH	. 63
FIGURE 3-5 – Assumed Laminar Velocity Distribution at a Wall, Reproduced from Versteed and Malalasekera (1996)	3 . 64
FIGURE 3-6 – FLOW DIAGRAM OF THE TRANSIENT SIMPLEC ALGORITHM	. 67
FIGURE 4-1 – SCHEMATIC OF A SELECTION OF CELLS THAT ARE CUT BY AN INTERFACE THAT WOULD IN TURN NEED TO BE RE-MESHED WITH AN INTERFACE TRACKING SCHEME (BAI ET AL., 2009)	. 71
FIGURE $4-2$ – Inclined free surface showing smearing of the interface due to the interface capturing method used in VOF.	. 72
FIGURE 4-3 – RECONSTRUCTION OF A CIRCULAR ARC USING THE PLIC APPROXIMATION, NUMBERS ARE CELL VOLUME FRACTIONS (KOTHE ET AL., 1996)	. 75
FIGURE 4-4 – TWO-DIMENSIONAL CELL FOR A SAMPLE TRUNCATION VOLUME COMPUTATION	. 77
FIGURE 4-5 – SKETCH OF CONTACT ANGLE AND WALL VECTORS (ESI CFD INC., 2007A).	. 79
FIGURE 5-1 – SKETCH OF THE SQUARE CYLINDER IN A DUCT CONFIGURATION WITH THE PRINCIPLE COORDINATE AXES AND NAMING SCHEME IDENTIFIED.	. 81
FIGURE 5-2 – DIAGRAM OF THE TWO-DIMENSIONAL GEOMETRY USED AS THE BASIS FOR THE PRELIMINAR TESTS.	ey . 83
FIGURE 5-3 – SKETCH OF THE DEFINITION OF THE WALL NORMAL CELL LENGTH.	. 83
FIGURE 5-4 – IMAGE OF THE VELOCITY MAGNITUDE SHOWING A HIGH-SPEED EVENT THAT WAS SUBSEQUENTLY EJECTED OUT OF THE WAKE TOWARDS THE TOP WALL.	. 84
FIGURE 5-5 – VELOCITY MAGNITUDE VISUALISATION OF A VON KÁRMÁN VORTEX STREET BEHIND A SQUARE CYLINDER, REPRODUCED FROM JOHANSEN, WU AND SHYY (2004)	. 85
Figure 5-6 – Comparison of the resolved flow features in the $\mathfrak{F}=5$ mm (a) and the $\mathfrak{F}=50$ mm (b) simulations with the flow visualised by the velocity magnitude and instantaneous streamlines to indicate the recirculation zones.) . 85
Figure 5-7 – Drag coefficients as a function of time for $\mathfrak{F}=5$ MM and $\mathfrak{F}=50$ MM	. 86
Figure 5-8 – Probability distribution function of the lift coefficients computed across the simulation time interval of $10 \le t \le 100$ s from the ten \pounds simulations.	87
Figure 5-9 – Probability distribution functions of the lift coefficients computed across the simulation time interval $10 \le t \le 100$ s from the seven \mathfrak{F} simulations	Е . 87
FIGURE 5-10 – COMPARATIVE DIAGRAM OF THE GEOMETRY OF THE SPANWISE PERIODIC AND WATER TUNNEL CONFIGURATIONS SHOWING THE CYLINDER CENTRED COORDINATE ORIGIN.	. 89

Figure 5-11 – Grid and domain layout for the right square cylinder models90
FIGURE 5-12 – TOTAL CELL COUNT FOR THE FOUR SQUARE CYLINDER MODELS AND THEIR SIZE RELATIVE TO THE LOW RESOLUTION MESH
FIGURE 5-13 – LATERAL CELL SIZE AS A FUNCTION OF Y COORDINATE FOR THE MESHES
FIGURE 5-14 – STREAMWISE CELL SIZE AS A FUNCTION OF <i>X</i> COORDINATE FOR THE MESHES
FIGURE 5-15 – CUMULATIVE DISTRIBUTION FUNCTIONS OF <i>N</i> _{ITER} FOR THE FOUR SIMULATIONS
FIGURE 5-16 – FLOW VISUALISATION OF ISOSURFACES OF VORTICITY MAGNITUDE AT $ \Omega =25s^{-1}$ surfaces COLOURED BY VELOCITY MAGNITUDE FROM THE HIGH-RESOLUTION MESH AT A SIMULATION TIME OF T=34.0s.
FIGURE 5-17 – THREE PERSPECTIVE VIEWS OF THE SIMULATION TIME OF <i>T</i> =8.6S FROM THE HIGH-
RESOLUTION MESH WITH TWO RIBS AND TWO ROLLS IDENTIFIED AND ANNOTATED
Figure 5-18 – Flow visualisation of isosurfaces of vorticity magnitude at $ \alpha =25s^{-1}$ coloured
BY VELOCITY MAGNITUDE, FROM THE HIGH-RESOLUTION MODEL AT A SIMULATION TIME OF <i>T</i> =35.0S.
FIGURE 5-19 – Q CRITERION VORTEX STRUCTURES ADAPTED FROM SONG AND PARK (2009)100
FIGURE 5-20 – FLOW VISUALISATION ON THE $z=0$ plane from the high-resolution simulation, time $T=34.4$ s
FIGURE 5-21 – FLOW VISUALISATION OF THE VELOCITY MAGNITUDE ACROSS A Z=0 PLANE FROM THE HIGH-
RESOLUTION MODEL AT A SIMULATION TIME OF 35.0S
FIGURE 5-22 – FLOW VISUALISATION ON THE CENTRE PLANE OF THE FULLY DEVELOPED FLOW COMPUTED BY HOFFMAN (2005)
FIGURE 5-23 – IDEALISED 3D WAKE TOPOLOGY FROM THE HORIZONTAL PERTURBATION MODEL (MEIBURG AND LASHERAS, 1988), REPRODUCED FROM DOBRE AND HANGAN (2004)103
Figure 5-24 – Cut plane at $z=0$ from the high-resolution model at $t=35.0$ showing velocity magnitude in grey scale and vorticity magnitude contours in colour and a three- dimensional view with an isosurface of $\Omega=25s^{-1}$ 104
Figure 5-25 – Cut plane at γ =0 from the high-resolution model at τ =34.6 showing velocity magnitude in grey scale and vorticity magnitude contours in colour (b) and a three- dimensional view with an isosurface of $ \Omega $ =25s ⁻¹ (a)105
Figure 5-26 – Flow visualisation of the vorticity magnitude (colour contours) and the velocity magnitude (greyscale) on the $y=0$ plane from the water tunnel simulation, time $t=41$ s and the isosurfaces at $ \Omega =25s^{-1}$
FIGURE 5-27 – AUTOCORRELATION FUNCTION FOR A POINT LOCATED AT $(0.250, 0, 0)$ M showing the AFFECT OF A CHANGE OF SAMPLE RATES FOR THE <i>U</i> -VELOCITY 108

Figure 5-28 – Autocorrelation function for a point located at $(0.250, 0, 0)$ m showing the	
AFFECT OF A CHANGE OF SAMPLE RATES FOR THE V-VELOCITY	109
Figure 5-29 – Autocorrelation function for a point located at $(0.250, 0, 0)$ m showing the	
AFFECT OF A CHANGE OF SAMPLE RATES FOR THE W-VELOCITY.	109
Figure 5-30 – Schematic of the spanwise distribution of sampling points used in the	
CORRELATION ANALYSIS	110
Figure $5-31 - Location$ of the point probes chosen for the correlation analysis with the	
COMPUTATIONAL BOUNDARIES AND AN INDICATIVE LOCATION OF THE WAKE BOUNDARY	111
Figure 5-32 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE ${ m UC1}$	112
Figure 5-33 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE ${ m SC1}$	112
Figure 5-34 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE $WC1$	113
Figure 5-35 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE $WC2$	113
Figure 5-36 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE $WC3$	114
Figure 5-37 – R_{LM} correlation coefficients for both the water tunnel and the HR spanwise	
PERIODIC SIMULATIONS AS A FUNCTION OF SEPARATION OVER THE LINE $WC4$	115
FIGURE $6-1$ – Location of the point probe in relation to the square cylinder and the	
APPROXIMATE BOUNDARY OF THE WAKE REGION	118
Figure 6-2 – U velocity as a function of time for the point probe at (0.78,0,0)M.	119
FIGURE 6-3 – DISTRIBUTION FUNCTION OF THE <i>U</i> -VELOCITIES FROM THE FOUR SIMULATIONS	120
FIGURE 6-4 – DISTRIBUTION FUNCTION OF THE <i>V</i> -VELOCITIES FROM THE FOUR SIMULATIONS.	120
FIGURE 6-5 – DISTRIBUTION FUNCTION OF THE <i>W</i> -VELOCITIES FROM THE FOUR SIMULATIONS	121
FIGURE 6-6 – MINIMUM, MAXIMUM, MEAN AND THE STANDARD DEVIATION FOR THE PRINCIPLE VELOCI	TIES
FROM THE POINT PROBE AT (0.078, 0, 0)M, SEE FIGURE 6-1.	121
FIGURE 6-7 – MODE, MEDIAN, SKEWNESS AND KURTOSIS FOR THE PRINCIPLE VELOCITIES FROM THE POI	NT
probe at (0.078, 0, 0)m	122
Figure $6-8 - Diagram$ of the development of the averages and the three phases of online	
AVERAGING	124

FIGURE 6-9 – EXAMPLE OF THE DEVELOPMENT OF THE AVERAGES AND FLUCTUATING STATISTICS AS A FUNCTION OF TIME
FIGURE 6-10 – DEFINITION SKETCH OF THE LINE AND THE PERPENDICULAR DISTANCE
FIGURE 6-11 – VISUALISATION OF THE TIME AVERAGED U-VELOCITY ON THE Z=0 PLANE FOR THE LR, MR, HR AND WT SIMULATIONS, SUBPLOT (A) – (D) RESPECTIVELY
FIGURE 6-12 – MAGNIFICATION OF THE NEAR CYLINDER REGIONS OF FIGURE 6-11
FIGURE 6-13 – SKETCH OF THE LOCATION OF POINT PROBES FOUR AND EIGHT RELATIVE TO THE DOMAIN BOUNDARIES AND THE INDICATIVE WAKE EXTENT
FIGURE 6-14 – THE DEVELOPMENT OF THE AVERAGES AND MEAN SQUARED FLUCTUATIONS AS A FUNCTION OF TIME FOR THE LR SIMULATION AT POINT PROBE FOUR
FIGURE 6-15 – THE DEVELOPMENT OF THE AVERAGES AND MEAN SQUARED FLUCTUATIONS AS A FUNCTION OF TIME FOR THE HR SIMULATION AT POINT PROBE EIGHT
FIGURE 6-16 – SCATTER PLOT OF THE UPPER AND LOWER POINTS FOR THE TIME AVERAGED <i>U</i> - AND <i>V</i> -VELOCITIES FROM THE MEDIUM-RESOLUTION SIMULATION
Figure 6-17 – Histogram of \mathfrak{D} for the U - and V -velocities from the four simulations
FIGURE 6-18 – POINT-BY-POINT COMPARISON OF THE HIGH RESOLUTION SIMULATION DATA FROM THE PRESENT WORK WITH THE EXPERIMENTAL DATA OF LYN AND RODI (1994)
FIGURE 6-19 – POINT-BY-POINT COMPARISON OF THE WATER TUNNEL SIMULATION DATA FROM THE PRESENT WORK WITH THE EXPERIMENTAL DATA OF LYN AND RODI (1994)
Figure 6-20 – Histogram of \mathfrak{D} as a function of the percentage error defined in Equation (6.9).
FIGURE 6-21 – LOCATION OF THE FOUR COMPARISON LINES WITHIN THE $z = 0$ plane used at the DLES2 CONFERENCE DESCRIBED BY VOKE (1996)
FIGURE 6-22 – <i>U</i> -velocity plot along the y=0, z=0 line of the present results compared with results from the DLES2 workshop (Voke, 1996) and the experimental data of Lyn and Rodi (1994).
FIGURE 6-23 – MAGNIFICATION OF THE U-VELOCITIES IN NEAR CYLINDER REGION OF FIGURE 6-22 139
FIGURE 6-24 – CENTRELINE PLOT OF THE TIME AVERAGE OF THE V'V' FLUCTUATIONS
FIGURE 6-25 – ZOOM OF THE NEAR CYLINDER RESULTS PLOTTED IN FIGURE 6-24
Figure 6-26 – Centreline plot of the time average of the $u'u'$ fluctuations
FIGURE 6-27 – CENTRELINE PLOT OF THE TIME AVERAGE OF THE $w'w'$ fluctuations

FIGURE 6-28 – TIME AVERAGE U-VELOCITIES FROM THE PRESENT SIMULATIONS, THE EXPERIMENTAL DATA
of Lyn and Rodi (1994) and the compiled results of Voke (1996) along constant x lines
IN THE $z = 0$ plane
Figure 6-29 – Time average $U'U'$ fluctuations from the present simulations, the experimental data of Lyn and Rodi (1994) and the compiled results of Voke (1996) along constant x
LINES IN THE $Z = 0$ PLANE
Figure 6-30 – Time average $v'v'$ fluctuations from the present simulations, the experimental data of Lyn and Rodi (1994) and the compiled results of Voke (1996) along constant x
LINES IN THE $Z = 0$ PLANE
Figure 6-31 – Time average $U'V'$ fluctuations from the present simulations, the experimental data of Lyn and Rodi (1994) and the compiled results of Voke (1996) along constant x lines in the $z = 0$ plane
FIGURE 6-32 – Power spectral density of the <i>v</i> -velocity for a point on the wake centreline at $x=0.078$ m from the high-resolution simulation. 152
FIGURE 6-33 – COMPARISON OF STROUHAL NUMBERS FROM PUBLISHED DATA AND THE FOUR SIMULATION OF PRESENT WORK
FIGURE 6-34 – INDICATIVE SLOPE OF THE PSD TRACES IN THE POWER-LAW DECAY REGIONS FOR EIGHT
POINTS LOCATED IN THE WAKE ALONG THE $y = 0$, $z = 0$ line
FIGURE 6-35 – KOLMOGOROV LENGTHS COMPUTED ALONG THE WAKE CENTRE LINE
ELCURE 6.26 COMPARISON OF MEAN DRAC COFFEIGUENTS FROM DURI ISUED DATA AND THE FOUR
SIMULATIONS OF PRESENT WORK
FIGURE 6-37 – COMPARISON OF MEAN LIFT COEFFICIENTS FROM PUBLISHED DATA AND THE FOUR SIMULATIONS OF PRESENT WORK 16
FIGURE 6-38 – COMPARISON OF ROOT MEAN SQUARED DRAG COEFFICIENTS FROM PUBLISHED DATA AND THE FOUR SIMULATIONS OF PRESENT WORK
FIGURE 6-39 – COMPARISON OF ROOT MEAN SQUARED LIFT COEFFICIENTS FROM PUBLISHED DATA AND THE FOUR SIMULATIONS OF PRESENT WORK
FIGURE 6-40 – COMPARISON OF RECIRCULATION LENGTHS
FIGURE 6-41 – COMPARISON OF COEFFICIENTS OF BASE PRESSURE FROM PUBLISHED DATA AND THE FOUR SIMULATIONS OF PRESENT WORK.
FIGURE 0-42 – COMPARISON OF MODEL RUN SPEEDS FOR DIFFERENT LES SUBGRID MODELS AND AN INDICATIVE K-EPSILON RANS MODEL
Figure 7-1 – All 900 drag coefficients measured by Hay (1947) plotted as a function of
FROUDE NUMBER RELATIVE TO THE DIAMETER

FIGURE $7-2 - DIAGRAM$ of a sub-section of the David Taylor Model Basin with the surface
PIERCING CIRCULAR CYLINDER AND THE FREE SURFACE SHOWN177
FIGURE 7-3 – DIAGRAM OF THE CONFIGURATION OF THE CYLINDER CENTRED REFERENCE FRAME
FIGURE 7-4 – PLOT OF THE NORMALISED INLET VELOCITY AS A FUNCTION OF TIME
FIGURE 7-5 – PLOT OF THE NORMALISED ACCELERATION AS A FUNCTION OF TIME
FIGURE 8-1 – SKETCH OF THE TWO-DIMENSIONAL CHANNEL MODEL AND THE EDGE AND BOUNDARY
FIGURE 8-2 – CUMULATIVE PROBABILITY DISTRIBUTION OF <i>N</i> _{<i>iter</i>} FOR BOTH THE NO AIR AND WITH AIR SIMULATIONS
Figure 8-3 – Snapshot of the flow field at time, $t = 0$, for both simulations with the domain coloured by the fluid velocity magnitude and the free surface a blue line
FIGURE 8-4 – SNAPSHOT OF THE PRESSURE DISTRIBUTION AT TIME, $T = 0$, for the NO Air (A) and the with Air (B) simulations
FIGURE 8-5 – CONTOUR PLOT OF THE PRESSURE DIFFERENTIAL DEFINED IN EQUATION (8.3)
FIGURE 8-6 – VISUALISATION OF THE VELOCITY MAGNITUDE AND THE LOCATION OF THE FREE SURFACE AT A $T = 0.1$ s for the NO Air (A) and the with Air (B) simulations
FIGURE 8-7 – VELOCITY VECTORS COLOURED BY THEIR MAGNITUDE AT THE AIR AND WATER OUTLETS AT TIME $t = 0.1$ s for the NO AIR AND THE WITH AIR CASES, (A) AND (B) RESPECTIVELY
FIGURE 8-8 – INDICATIVE PRESSURE DISTRIBUTION AT $T = 0.1$ S for the two simulations
FIGURE 8-9 – CONTOUR PLOTS OF THE PRESSURE DIFFERENTIAL DEFINED IN EQUATION (8.4)
FIGURE 8-10 – SNAPSHOT OF THE FLOW FIELD AT <i>T</i> =5.1s for the NO AIR (A) AND THE WITH AIR (B) SIMULATIONS WITH THE DOMAIN COLOURED BY THE VELOCITY MAGNITUDE AND THE FREE SURFACE BY A SOLID BLUE LINE
FIGURE 8-11 – VELOCITY VECTORS ALONG CONSTANT X LINES FOR THE NO AIR SIMULATION – SUBPLOTS (A) AND (C) – AND THE WITH AIR MODEL – SUBPLOTS (B) AND (D)
FIGURE 8-12 – SKETCH OF PRESSURE IMBALANCES CAUSING UNPHYSICAL BOUNDARY FLOWS
Figure 8-13 – Sketch of the two-dimensional plane used in the geometry tests with the length to the outlet boundary, \mathfrak{L} , and the wall normal cell size, \mathfrak{F} , shown
FIGURE 8-14 – DIMENSIONAL SKETCH (IN MILLIMETRES) AND GRID LAYOUT FOR THE TWO-DIMENSIONAL MESH USED IN TESTING THE SIZE OF THE INNER CYLINDER CELL
FIGURE 8-15 – MAGNIFICATION OF THE CENTRAL STRUCTURED O-TYPE DOMAINS ADJACENT TO THE CYLINDER AND THE TRANSITIONAL UNSTRUCTURED DOMAIN
Figure 8-16 – Cell count and number of nodes along edge jn for the six $\mathfrak F$ meshes200

$Figure \ 8-17-Plot \ of \ the \ radial \ cell \ size \ as \ a \ function \ of \ the \ radial \ distance \ for \ six \ tests \ of$
DIFFERENT WALL NORMAL CELL SIZES
Figure 8-18 – Cell count and number of nodes along edge ef for the 11 simulations of \mathfrak{L} 202
FIGURE 8-19 – PLOT OF THE POINT PROBE LOCATIONS
FIGURE 8-20 – Cumulative probability distributions of N_{iter} for the Six \mathfrak{F} simulations
Figure 8-21 – C_D and C_L as a function of time from the $\mathfrak{F} = 5$ mm and $\mathfrak{F} = 1$ mm simulations, (a) and (b) respectively
Figure 8-22 – Velocity magnitude of the flow field from the \mathfrak{F} = 5mm simulation
Figure 8-23 – Velocity magnitude of the image from the $\mathfrak{F}=0.50$ mm simulation206
Figure 8-24 – C_D and C_L as a function of time from the $\mathfrak{F} = 0.50$ mm simulation
Figure 8-25 – Velocity magnitude of the flow field from the $\mathfrak{F}=0.05$ mm simulation
FIGURE 8-26 – C_D and C_L as a function of time from the $\mathfrak{F} = 0.25$ mm (a), $\mathfrak{F} = 0.15$ mm (b) and $\mathfrak{F} = 0.05$ mm (c) simulations
Figure 8-27 – Zoom of the velocity magnitude in the region close to the cylinder for (a) $\mathfrak{F}=5.00$ mm and (b) $\mathfrak{F}=0.05$ mm simulations, respectively
FIGURE 8-28 – AVERAGE C_D and RMS C_L as a function of \mathfrak{F}
FIGURE 8-29 – CUMULATIVE PROBABILITY DISTRIBUTIONS OF N_{ITER} FOR THE 11 \pounds SIMULATIONS
Figure 8-30 – The von Kármán vortex street visualised with the velocity magnitude for the $\pounds = 400$ mm (a), $\pounds = 1199$ (b) and $\pounds = 2998$ (c) simulations
Figure 8-31 – Difference in the velocity fields between the \pounds = 2998 mm and the \pounds = 1199 mm simulations; and the \pounds = 2998 mm and the \pounds = 400 mm simulations, (a) and (b) respectively
FIGURE 8-32 – PLOT OF THE FOUR OF THE LENGTH TEST U-VELOCITIES AS A FUNCTION OF TIME FOR THE
SEVEN POINT PROBES
FIGURE 8-33 – PLOT OF THE FOUR OF THE LENGTH TEST <i>V</i> -VELOCITIES AS A FUNCTION OF TIME FOR THE SEVEN POINT PROBES
FIGURE 8-34 – PLOT OF U-VELOCITIES (CIRCLE SYMBOLS AND SOLID LINES) AND THE RMS V-VELOCITIES
As a function of \pounds for point probe located at x=28mm
FIGURE 8-35 – PLOT OF U-VELOCITIES (CIRCLE SYMBOLS AND SOLID LINES) AND THE RMS V-VELOCITIES
As a function of \mathfrak{L} for the point probes located at $x = 200$ mm
Figure 8-36 – \mathfrak{U}_{PT} for the mean <i>U</i> -velocity as a function of the distance of the point probes from the outlet boundaries

Figure 8-37 – \mathfrak{U}_{PT} for the RMS V-velocity as a function of the distance of the point probes
FROM THE OUTLET BOUNDARIES
FIGURE 8-38 – C_D and C_L as a function of time from the $\mathfrak{L} = 685$ mm simulation
Figure 8-39 – Plot of the mean drag and the RMS lift coefficients as a function \pounds 220
FIGURE 9-1 – SKETCH OF THE CYLINDER CENTRED DOMAIN, REPEATED FROM FIGURE 7-3
Figure $9-2-$ Sketch of the geometry, boundary conditions and coordinate origin used in the
CIRCULAR CYLINDER INVESTIGATIONS, ALL DIMENSIONS ARE IN MILLIMETRES
FIGURE $9-3$ – Geometry and edge sketch for full depth configuration with all dimensions in
MILLIMETRES
FIGURE 9-4 – GEOMETRY AND EDGE SKETCH FOR THE CUT OFF CYLINDER CONFIGURATION WITH ALL
FIGURE 9-5 – PLOTS OF THE CELL SIZE ALONG LINES THAT CONTAIN THE POINT $(0,0,0)$ and are parallel to the <i>k</i> , <i>k</i> , and <i>z</i> ares (a) (b) and (c) respectively. Due to the Mundon symplectic sector $(0,0,0)$
10 THE <i>x</i> -, <i>x</i> -, AND <i>z</i> -AXES (A), (B) AND (C) RESPECTIVELY. DUE TO THE MIRKOR-SYMMETRY APOLIND THE $z=0$ plane, only the positive <i>z</i> -AXIS is shown in (C).
FIGURE 9-6 – VIEW OF A Y-PLANE TAKEN FROM THE MEDIUM RESOLUTION MODEL WITH THE DASHED,
PURPLE LINES SHOWING THE FORCED OR THOGONAL EDGES
FIGURE 9-7 – CUMULATIVE PROBABILITY DISTRIBUTIONS OF N _{iter} FOR THE FOUR FREE SURFACE PIERCING SIMULATIONS.
FIGURE 9-8 – MEDIUM RESOLUTION GRID, LOW SPEED OBLIQUE COMPARISON WITH EXPERIMENTAL
PHOTOGRAPHS OF THE FREE SURFACE IN THE NEAR WAKE OF THE CYLINDER
FIGURE 9-9 – MEDIUM RESOLUTION GRID, LOW SPEED SIDE VIEW COMPARISON WITH EXPERIMENTAL
PHOTOGRAPHS OF THE FREE SURFACE IN THE NEAR WAKE OF THE CYLINDER
FIGURE 9-10 – SHAPE OF THE INSTANTANEOUS FREE SURFACE FROM YU ET AL (2008)
FIGURE 9-11 – SKETCH OF THE STRUCTURE OF A SHIP WAKE REPRODUCED FROM ESA (<i>'SHIP Wakes,'</i>
2009)
FIGURE 9-12 – CONTOUR PLOT OF THE TIME-AVERAGED Y_{es} (in metres) from the present work with
ANNOTATIONS HIGHLIGHTING PARTICULAR FEATURES
FIGURE 9-13 – CONTOUR PLOT COMPARISON OF THE TIME-AVERAGED y_{re} from the present work and
The Tow Tank results of Inoue et al. (1993)
FIGURE 9-14 – CONTOUR PLOT COMPARISON OF THE OF THE TIME-AVERAGED V_{reg} from the dresent work
AND THE TOW TANK SIMULATION OF YU ET AL (2008)
FIGURE 9-13 – CONTOUR PLOT COMPARISON OF THE TIME-AVERAGED Y_{FS} FROM THE PRESENT WORK AND THE TOW TANK RESULTS OF KAWAMURA FT AL (2002) 244
277

FIGURE 9-16 – Y_{FS} as a function of <i>z</i> for $x = 0.035$ m with the error bars from the present we)RK
INDICATIVE OF THE SPREAD RATHER THAN A MEASUREMENT ERROR	245
Figure 9-17 – Plot of the horizontal location of the vertical traverse lines used by Inou	JE ET
al (1993) to measure the velocity relative to the entire computational domain of t	HE
PRESENT WORK (A) AND A MAGNIFICATION OF THE CYLINDER REGION (B)	246
FIGURE 9-18 – AVERAGE VELOCITY AS A FUNCTION OF Y_{FS} FOR THE VERTICAL STATION MARKED AS "A	٨",
"B" AND "C" SHOWN IN FIGURE 9-17 FOR SUBPLOTS (A), (B) AND (C), RESPECTIVELY	247
FIGURE 9-19 – AVERAGE VELOCITY AS A FUNCTION OF Y_{FS} FOR THE VERTICAL STATION MARKED "D" II	N
Figure 9-17	248
FIGURE 9-20 – MEDIUM RESOLUTION GRID, HIGH SPEED OBLIQUE COMPARISON WITH EXPERIMENTA	L
PHOTOGRAPHS OF THE FREE SURFACE IN THE NEAR WAKE OF THE CYLINDER	249
FIGURE 9-21 – MEDIUM RESOLUTION GRID, HIGH SPEED SIDE VIEW COMPARISON WITH EXPERIMENT	AL
PHOTOGRAPHS OF THE FREE SURFACE IN THE NEAR WAKE OF THE CYLINDER	250
FIGURE 9-22 – OBLIQUE COMPARISON OF THE FREE SURFACE CLOSE TO THE CYLINDER FROM THE	
PRESENT PARTIAL DEPTH SIMULATION TO THE EXPERIMENTS OF HAY (1947).	251
FIGURE 9-23 – SIDE VIEW COMPARISON OF THE FREE SURFACE CLOSE TO THE CYLINDER FROM THE	
PRESENT PARTIAL DEPTH SIMULATION TO THE EXPERIMENTS OF HAY (1947).	223
FIGURE 10-1 – SKETCH OF THE KEY LENGTHS MEASURED BY HAY (1947)	253
FIGURE 10-2 – BOW WAVE HEIGHT AS A FUNCTION OF FROUDE NUMBER FROM ALL THE MEASUREMENT	Г S OF
Нау (1947)	255
FIGURE 10-3 – PLOT OF THE D_1 as a function of Fr_D for the present work, Hay (1947) and	
WIKRAMASINGHE AND WILKINSON (1997)	256
FIGURE 10-4 – PLOT OF L_0/L as a function of Fr_L , from Hay's (1947) Figure 92	257
FIGURE 10-5 – PLOT OF THE DEPTH OF THE VENTILATED CAVITY AS A FUNCTION OF FR_{D}	258
FIGURE 10-6 – PLOT OF THE HEIGHT OF THE ROOSTER TAIL AS A FUNCTION OF FR_D	259
FIGURE 10-7 – EXAMPLE OF THE SCALED MEASUREMENTS MADE FROM HAY'S IMAGES	260
Figure 10-8 – Plot of the length to the peak of the rooster tail, L_3 for $D=50$ mm	261
FIGURE 10-9 – Power spectral density plots for the $Re_D = 54 \times 10^3$ simulation.	263
Figure $10-10 - Strouhal$ numbers from the present simulations compared with results from the present sinterpresent simulations compared with results from the	ОМ
TWO META-ANALYSES OF SINGLE-PHASE EXPERIMENTAL STUDIES.	264
Figure 10-11 – Comparison of computational run times for the 2^{ND} order model with	
ALTERNATE TURBULENCE MODELS.	266

Figure 11-1 – Drag coefficients as a function of time for the simulations at $R_{E_D}=27\times10^3$ and
$RE_D = 54 \times 10^3$
FIGURE 11-2 – COMPARISON OF THE DRAG COEFFICIENTS FROM THE PRESENT SIMULATIONS, WITH MAGNIFICATION OF THE PRESENT RESULTS, AND THE TWO INCH MEASUREMENTS WITH DIFFERENT DRAFTS FROM HAY (1947)
FIGURE 11-3 – COMPARISON OF THE TWO-PHASE DRAG COEFFICIENTS FROM THE PRESENT WORK AND HAY
(1947) WITH THAT OF A SINGLE-PHASE CIRCULAR CYLINDER
FIGURE 11-4 – SECTIONAL DRAG COEFFICIENTS FROM CHAPLIN AND TEIGEN (2003)273
Figure 11-5 – C _D values computed by Chaplin and Teigen (2003) with additional data reproduced from Zdravkovich (1997)
Figure 11-6 – C_{FS} as a function of Fr, reproduced from (Chaplin and Teigen, 2003)275
FIGURE 11-7 – A VERAGE PRESSURE DISTRIBUTION ON THE FACE OF A, NOMINALLY, TWO-DIMENSIONAL CYLINDER FROM A THREE-DIMENSIONAL SIMULATION
Figure 11-8 – A verage pressure distribution on the face of a three-dimensional cylinder with a free surface, which is marked with the solid line. Note that the still water level is at y=0.2m in this plot
Figure 11-9 – Reproduction of Figure 11-4 transposed into the present vertical coordinates with the sectional drag from the present work included
FIGURE 11-10 – RECOMPUTED VALUES OF <i>C_{FS}</i> FROM HAY (1947), CHAPLIN AND TEIGEN (2003) AND THE PRESENT WORK
FIGURE 12-1 – COMPARISON OF THE ELEVATION OF THE FREE SURFACE USING NO SURFACE
RECONSTRUCTION AND THE PLIC METHOD, (A) AND (B) RESPECTIVELY

List of Tables

TABLE 1-1 – Example of the limitations of simultaneously scaling both Re and Fr	4
TABLE 1-2 – MAJOR TYPES OF CHEMICAL AND BIOLOGICAL POLLUTANTS IN SEWAGE AND STORMWATER	Q
AND THEIR PRINCIPLE SOURCES, FROM WONG (2003) AND SHON ET AL (2000).	0
TABLE 1-3 – CYLINDER DEPTH AND DIAMETERS INVESTIGATED BY HAY.	21
TABLE 5-1 – EDGE DETAILS FOR THE SPANWISE PERIODIC MESHES WITH DIST = DISTRIBUTION TYPE; HT	=
Hyperbolic tangent distribution; $U = Uniform$ node distribution	92
TABLE 5-2 – EDGE DETAILS FOR THE WATER TUNNEL MESH.	93
TABLE 5-3 – LIST OF THE LOCATIONS OF THE SPANWISE LINE PROBES. 1	10
TABLE 6-1 – DETAILS OF THE AVERAGING STAGES FROM THE PRESENT WORK. 1	28
TABLE 6-2 – POWER LAW SLOPE CALCULATED VIA A LINEAR REGRESSION OF THE POINT PROBE DISCUSSED	D
IN §6.4.3. THE FREQUENCY RANGE WAS FOR 4195 POINTS OVER 150-300Hz1	56
TABLE 7-1 – KEY PARAMETERS OF THE BENCHMARK RIGHT CIRCULAR CYLINDER STUDIES TO BE USED TO)
VALIDATE THE PRESENT WORK	74
TABLE 8-1 – EDGE NODE COUNT AND SPACING FOR THE EDGES SKETCHED IN FIGURE 8-1	86
TABLE 8-2 – EDGE LIST AND NODE COUNT FOR EDGES THAT ARE COMMON FOR ALL THE MODELS, WITH	
NODES SPACED UNIFORMLY (UNLESS NOTED OTHERWISE) ACROSS ALL THE LISTED EDGES 1	99
TABLE 8-3 – LENGTH AND NUMBER OF THE NODES FOR THE VARIABLE LENGTH EDGE EF SHOWN IN FIGUR	Е
8-14 For the length to the outlet boundary tests	01
TABLE 9-1 – MATRIX OF MESHES CONSTRUCTED PER CONFIGURATION OF CYLINDER DEPTH. 2	27
TABLE 9-2 – EDGE DETAILS FOR THE FULL DEPTH CYLINDER CONFIGURATION. DIST = DISTRIBUTION TYPE	PE;
HT = Hyperbolic tangent distribution; U = Uniform distribution2	29
TABLE 9-3 – EDGE DETAILS FOR THE CUT OFF CYLINDER CONFIGURATION. DIST = DISTRIBUTION TYPE;	
HT = Hyperbolic Tangent distribution; U = Uniform distribution2	31
TABLE 9-4 – TOTAL CELL COUNT FOR THE THREE GRIDS. 2	32
TABLE 9-5 – TIME STEP SIZE FOR THE DIFFERENT RESOLUTION AND SPEED COMBINATIONS.	34

List of Appendices

APPENDIX A : DETAILS OF THE NUMERICAL CONVERGENCE PROCEDURE WITHIN	
A.1. INTRODUCTION	
A 2. HOW THE RESIDUALS ARE COMPUTED WITHIN CFD-ACE+	319
A.3. USER SPECIFIED CONTROL OF RESIDUAL LIMITS AND THE ITERATIVE CYCLE	
A.4. AN EXAMPLE OF ITERATIVE CONVERGENCE CONTROL	
A.5. NOTES AND OBSERVATIONS ON CONVERGENCE	323
APPENDIX B : HYPERBOLIC TANGENT STRETCHING FUNCTION	
B.1. Derivation	
B.2. SAMPLE MATLAB CODE TO COMPUTE THE NODAL COORDINATES	
APPENDIX C : SQUARE CYLINDER TWO-DIMENSIONAL TESTS	
C.1. INTRODUCTION	
C.2. COMMON CONFIGURATION FOR ALL THE PARAMETER STUDIES	
C.2.1. Geometry and Mesh	
C.2.2. Initial and Boundary Conditions	
C.2.3. Solver Parameters	
C.3. The Effect of Varying the Length to the Outlet Boundary, \mathfrak{L}	
C.3.1. Alterations to the Common Configuration for the \pounds Tests	
C.3.2. Convergence of the Solver During the Simulations	
C.3.3. Examination of the Instantaneous Flow Field	
C.3.4. Examination of the Lift and Drag Coefficients as a Function of Time	
C.3.5. Statistical Characteristics of the Force Coefficients	
C.4. Investigation of the Effect of Varying the Wall Normal Length of the	First Cell
Adjacent to the Cylinder, \mathfrak{F}	
C.4.1. Alterations to the Common Configuration for the \mathcal{F} Tests	
C.4.2. Convergence of the Solver during the Simulations	
C.4.3. Examination of the Instantaneous Flow Field	
C.4.4. Examination of the Lift and Drag Coefficients as a Function of Time	
C.4.5. Statistical Characteristics of the Force Coefficients	

C.5. SUMMARY AND RECOMMENDATIONS FOR THE THREE-DIMENSIONAL MESHES	. 367
APPENDIX D : SOURCE CODE	. 369
D.1. MAKEFILE	. 369
D.2. FLAG_PARAMETERS.F90	. 370
D.3. DYNAMIC_AVERAGE.F90	. 370
D.4. LIBUSERACE.F	. 377
APPENDIX E ADDITIONAL MEASUREMENTS FROM THE EXPERIMENTAL DATA	OF
HAY (1947)	. 389
E.1. INTRODUCTION AND EXPERIMENTAL METHODOLOGY	. 389
E.2. Additional Wave Height Measurements	. 391

Nomenclature

English Symbols

Symbol	Definition
A	area
a	finite volume equation general coefficient variable
<i>b</i> , <i>B</i>	bottom face/cell
C_s	Smagorinsky constant
$C_{\varepsilon 1}, C_{\varepsilon 2}, C_{\mu}$	closure constants for the $k - \varepsilon$ RANS model
C _{surf}	surface coefficient for VOF surface reconstruction
c_i and c_μ	constants of proportionality for the viscous and inertial "effects"
d	circular cylinder diameter, square cylinder side length
е, Е	east cell face/cell
E_k	kinetic energy
$E(\kappa)$	energy as a function of wave number
F_E	ensemble average of a general function
f_i	inertial effects
f	general function
F_p	force due to pressure
F _{st}	surface tension forces
F_T	time average of a general function
F	volume fraction with VOF
F_{ϑ}	volumetric, spatial, average of a general function
f_{μ}	viscous effects
F_s	wall shear stress

G	filter function
g	gravitation vector
Н	channel height
h	depth from a reference point, for example when computing
	hydrostatic pressures
I_{\eth}	general time integral for a variable ö
k	turbulent kinetic energy
l	integral length
l_c	characteristic length
m	mass
n/N	north cell face/cell
Ν	cell count, number of experimental repetitions
n	surface normal vector
Р	a general point when discussing the finite volume method
p	thermodynamic pressure
P_h	hydrostatic pressure
S_{\eth}	source term for variable ö
s/S	south cell face/cell
S_{ij}	resolved strain rate tensor with LES
S _{ij}	strain rate tensor with RANS
\overline{S}	volume averaged source term
t	time (s); top cell face
Т	time, when used in the temporal RANS average, or the top cell
	in the finite volume method
t _{ij}	viscous stress tensor with RANS models
xxxii	

U_i	average velocity in the <i>i</i> th direction
u _c	characteristic velocity
\hat{u}_i	filtered velocity with each hat representing one filtering iteration
u'_i	fluctuating velocity in the <i>i</i> th direction
<i>u</i> _i	instantaneous total velocity in the <i>i</i> th direction
<i>u</i> ⁺	non-dimensional wall velocity, $u^+ \triangleq \frac{U}{u_{\tau}}$
u, v, w	principle velocity components in a Cartesian reference frame
$\mathcal{U}_{ au}$	wall velocity, $u_{\tau} \triangleq \sqrt{\frac{\tau_{w}}{\rho}}$
u	velocity vector (m/s)
U_{∞}	free stream velocity
w/W	west cell face/cell
x_i	<i>i</i> th coordinate direction
x	spatial coordinate vector
x, y, z	principle Cartesian coordinate axes
<i>y</i> ⁺	non-dimensional wall distance, $y^+ \triangleq \frac{u_\tau y}{v}$

Greek Symbols

Symbol	Definition
$\sigma_k, \sigma_{\varepsilon}$	closure constants for the $k - \varepsilon$ RANS model
θ	wall contact angel with VOF
ρ	density
Г	diffusion coefficient when discussing the finite volume method
ε	dissipation rate
μ	dynamic viscosity

$ au_{ij}$	fluid stress tensor for a general fluid; specific Reynolds stress
	tensor with RANS
α	$\frac{1}{\text{Re}}$
$v = \frac{\mu}{\rho}$	kinematic viscosity
η	Kolmogorov length
τ	Kolmogorov time scale
υ	Kolmogorov velocity scale
Δ	LES filter width
ξ	point distance vector when filtering for LES
σ	surface tension coefficient
V_T	turbulent viscosity
λ	wave length
K	wave number
$ au_{_{w}}$	wall shear stress
θ	volume
δ	a small increment of a variable, for example δx
ϕ, ψ, ξ	general variables used for the explanation of RANS correlations

Mathematical Operators

abla imes	curl operator
$ abla \cdot$	divergence operator
∇	gradient operator
$\frac{D}{Dt}$	substantive derivative
$\mathbb{N}(u_i)$	Navier-Stokes operator with RANS
xxxiv	

Δt	a small time increment
Δx	a small spatial increment
0	order operator

Subscripts

Symbol	Definition
i, j, k	directional indices
w	wall

Superscripts

Symbol	Definition
0	indicates a variable at the current time step
+	non-dimensional quantity
UP	variable computed from a first order upwind scheme
2UP	variable computed from a second order upwind scheme

Other Operators and Variables

Symbol	Definition
ð	general scalar when discussing the finite volume method
X	blending factor for finite volume time integration
G	blending factor for the finite difference schemes between a first order upwind method and a higher degree scheme
R	geometric blending factor for central difference schemes
£	length from the centre of the cylinder to the outlet boundary
F	wall normal cell length.
D	two-dimensional distance of a point from a line

Non-dimensional Groups

Symbol	Definition
$\operatorname{Re} \triangleq \frac{u_c l_c}{v}$	Reynolds number based on a characteristic velocity and length
Re _τ	turbulent Reynolds number
Re _H	Reynolds number based on the channel height
We $\triangleq \frac{\rho u_c^2 l_c}{\sigma}$	Weber number for describing surface tension

Acronyms

Acronym	Definition
2D	Two Dimensions
20U	2 nd Order Upwind
3D	Three Dimensions
CFD	Computational Fluid Dynamics
CFL	Courant-Freidrichs-Lewy
CPU	Central Processing Unit
DCP	Development Control Plans
DES	Detached Eddy Simulation
DFT	Digital Fourier Transform
DLES2	2nd Conference on Dynamic and Large Eddy Simulation
DNS	Direct Numerical Simulation
FS	Free Surface
GPT	Gross Pollutant Traps
HEC-RAS	Hydraulic Engineering Corp – River Analysis System
HR	High Resolution
HS	High Speed
xxxvi	

ILES	Implicit Large Eddy Simulation
L&R	Abbreviation of papers by D Lynn and W Rodi (Lyn and Rodi, 1994, Lyn et al., 1995)
LDA	Laser Doppler Anemometry
LEP	Local Environment Plans
LES	Large Eddy Simulation
LES Dyn	Dynamic Large Eddy Simulation model
LES LD	Locally Dynamics Large Eddy Simulation model
LR	Low Resolution
LS	Low Speed
MAC	Marker And Cell
MILES	Monotonically Integrated Large Eddy Simulation
MR	Medium Resolution
PIV	Particle Image Velocimetry
PLIC	Piecewise Linear interface Construction
РОТЕО	Protection of the Environment Operations
PSD	Power Spectral Density
RAM	Random Access Memory
RANS	Reynolds Averaged Navier-Stokes
RMS	Root Mean Squared
SF	Single Fluid
SGS	Sub-Grid Scale
SIMPLEC	Semi-Implicit Method for Pressure Linked Equations - Corrected
SLIC	Single Linear Interface Construction
SMAG	Smagorinsky

SPH	Smoothed Particle Hydrodynamics
UNSW	University of New South Wales
UTS	University of Technology Sydney
VOF	Volume of Fluid
WT	Water Tunnel geometric configuration

Abstract

The work presented in this dissertation is essentially a thesis in three distinct parts (single fluid validation, two fluid validation and data analysis) rather than the established approach for the development of a novel computational fluid dynamics solver. First, the progression is a traditional one, in which an existing technique was applied to a new area and subsequently extended. Second, from detailed analysis of the large volume of data generated in the validation process, a number of insights were gained into the flow features of the prototypes investigated that extended beyond a traditional validation study and discovered a number of new physical phenomena.

Previous researchers have used monotonically integrated large eddy simulation (MILES) methods to investigate a range of flows including turbulent decay in rotary valve engines and rocket body dynamics. MLES methods have the distinct advantage over standard LES simulation techniques in that they promise to provide similar levels of detail and accuracy but at a fraction of the computational cost. However, to the author's knowledge these techniques have not been applied to the prototype problem of this thesis: cylinders in cross flow without and with free surfaces. Hence the *raison d'étre* of this thesis: to apply a faster yet equally accurate CFD method to a free surface problem via a validated single fluid investigation. Specifically, the progression was to first validate the method against a single right square cylinder in cross flow without a free surface and then to extend the method to a right circular cylinder in cross flow with a free surface.

With the right square cylinder without free surface the research focussed on the extensively studied configuration of a two dimensional square cylinder at a Reynolds number of 22×10^3 . Despite the agreement of the validation parameters with published data, detailed examination of the flow field revealed inconsistencies in the modelled results. In particular the power spectrum decay of the data appear too "easy" to obtain, indicating possible flaws in the theoretical basis, while correlation data apparently supports a conclusion that the previous assumption of four diameters domain width is too narrow to provide an uncorrelated flow region.

The free surface physics of the circular cylinder model was captured with the volume of fluid method and was applied to Reynolds number flows based on cylinder diameter of between 27×10^3 and 54×10^3 . These flows, at the provided grid resolution, push the

lower boundary of what can be called MILES, yet interpretations of the results indicates that the model is accurately capturing the physics of the flows.