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Abstract 
The work presented in this dissertation is essentially a thesis in three distinct parts 

(single fluid validation, two fluid validation and data analysis) rather than the 

established approach for the development of a novel computational fluid dynamics 

solver.  First, the progression is a traditional one, in which an existing technique was 

applied to a new area and subsequently extended.  Second, from detailed analysis of the 

large volume of data generated in the validation process, a number of insights were 

gained into the flow features of the prototypes investigated that extended beyond a 

traditional validation study and discovered a number of new physical phenomena. 

Previous researchers have used monotonically integrated large eddy simulation 

(MILES) methods to investigate a range of flows including turbulent decay in rotary 

valve engines and rocket body dynamics.  MLES methods have the distinct advantage 

over standard LES simulation techniques in that they promise to provide similar levels 

of detail and accuracy but at a fraction of the computational cost.  However, to the 

author’s knowledge these techniques have not been applied to the prototype problem of 

this thesis: cylinders in cross flow without and with free surfaces.  Hence the raison 

d’étre of this thesis: to apply a faster yet equally accurate CFD method to a free surface 

problem via a validated single fluid investigation.  Specifically, the progression was to 

first validate the method against a single right square cylinder in cross flow without a 

free surface and then to extend the method to a right circular cylinder in cross flow with 

a free surface. 

With the right square cylinder without free surface the research focussed on the 

extensively studied configuration of a two dimensional square cylinder at a Reynolds 

number of 22 ×103 .  Despite the agreement of the validation parameters with published 

data, detailed examination of the flow field revealed inconsistencies in the modelled 

results.  In particular the power spectrum decay of the data appear too “easy” to obtain, 

indicating possible flaws in the theoretical basis, while correlation data apparently 

supports a conclusion that the previous assumption of four diameters domain width is 

too narrow to provide an uncorrelated flow region. 

The free surface physics of the circular cylinder model was captured with the volume of 

fluid method and was applied to Reynolds number flows based on cylinder diameter of 

between 27 ×103  and 54 ×103 .  These flows, at the provided grid resolution, push the 



 xl 

lower boundary of what can be called MILES, yet interpretations of the results indicates 

that the model is accurately capturing the physics of the flows. 
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1. Introduction  

1.1. Scales of Fluid Dynamics 

Fluid dynamics is a diverse discipline that encompasses a vast range of length and time 

scales.  The characteristic length scale, lc , is often used as a measure is, therefore, 

generally dominant.  For example, the smallest scales, where lc = O 100pm( ) , are 

connected with the study of phenomena such as rarefied gases and atmospheric proton 

showers (Surendran, 2006, Bergmann et al., 2007) so that Monte Carlo simulations 

dominate.  Conversely, at galactic scales, where lc = O 10Em( ) , smoothed particle 

hydrodynamic techniques (Bekki, 2004, Bate, 2008) are generally utilised.  This spread 

of length scale equates to a change in lc  of over 30 orders of magnitude, as illustrated in  

Figure 1-1.  However, it must be noted that there is no hard division between the scales 

of lc  at which the different approaches for studying the various phenomena associated 

with particular scales are applicable.  For example, the lower boundary of the 

computational fluid dynamics region overlaps with the upper boundary of Monte Carlo 

simulations.  Similarly, smoothed particle hydrodynamics simulations have been 

employed on problems with lc O 10m( )  in contrast to the galactic scales for which the 

method was originally designed (Monaghan, 1988, Monaghan et al., 1994). 

Within this broad expanse of length scales, civil engineers predominately operate in the 

range of 

 10 2m lc 104m . (1.1) 

Over this subset of length scales, the lower bound of Equation (1.1) is roughly 

equivalent to the diameter of the pipes that would be used in a domestic water supply 

system.  Alternatively, at the upper bound of Equation (1.1), lc  would be related to the 

length of an entire river basin. 

Despite the possibility, and the appeal due to its apparent simplicity, of reducing a fluid 

dynamics problem to merely defining a length scale and then choosing the most 

appropriate simulation technique, there are external constraints that must be satisfied. 
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 Figure 1-1 – Relative scales of fluid mechanics and dynamics research.  Points above the number line represent published model 

scales with points below the number line representative of identifiable physical objects for comparison of sizes. 
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In a manner reminiscent of an arms race, or, perhaps in a civil engineering context at 

least, a feedback loop, there is always a tandem development of the legislative 

frameworks and simulation techniques. 

1.2. Policy Framework 

In recent years, spurred by a voting population with both an increased environmental 

awareness and a consequent willingness to demand a clean environment, a need has 

developed for asset owners to reduce water based pollutant loads that are discharged 

into receiving waters.  In a response to these concerns a number of landmark planning 

instruments have been enacted at all levels of government from international treaties to 

local planning guidelines.  In the Australian context these instruments include the local 

government development control plans (DCP) and local environment plans (LEP), for 

example Hornsby Shire Council (1997) and state government legislation, such as the 

Protection of the Environment Operations Act 1997 (NSW). 

These DCP and LEP planning instruments are limited in their effectiveness in that they 

apply only to future developments whereas asset managers also have a number of 

responsibilities under the POTEO Act 1997 to increase the effectiveness of their current 

systems.  Specifically for the greater Sydney metropolitan area, the asset managers are 

predominantly statutory authorities such as the Sydney Water Corporation or local 

government authorities and the discharges are made through wet weather sewer 

overflows or uncontrolled stormwater runoff.  Traditionally the level of funding that 

was available for retrofits has been less than that for developments.  However, to 

address this imbalance some local government authorities, for example Hornsby Shire 

Council, have implemented catchment remediation levies (Hornsby Shire Council, 

2009), which tax residents to provide funds for retrofits and developments that are not 

associated with activities that would nominally be covered under LEPs or DCPs. 

Both of these scenarios – green/brownfield development or retrofitting – suffer from the 

same problems.  Firstly, while the planning and legislative instruments provide detailed 

mechanisms to assess and specify the level of discharges that are allowed from specific 

sites, they do not specify the methods that designers must use to meet those 

requirements.  Secondly, there is only so far that source controls of pollutants can be 

used successfully and then the only remaining choice is to treat the effluent prior to 

discharge with the use of overflow type devices.  Thirdly, if stormwater and overflow 
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devices must be used, the individual devices must be designed or evaluated to test their 

efficacy. 

While physical laboratory testing of scaled devices is, and will no doubt for some time 

remain an effective method of evaluating alternate designs, there are a number of inherent 

difficulties associated with laboratory scale testing.  Firstly, performing a parametric 

study with a large number of models to investigate a distribution of variables can be 

very costly due to the time and labour that is intrinsic to the experimental process.  

Secondly, as with all similitude problems, not all parameters can be scaled in the same 

way.  Specifically in the case of free surface flows, the experimenter can generally scale 

either the free surface (Froude scaling) effects or the turbulent (Reynolds scaling) 

phenomena but not both simultaneously.  For example, changing the length scale while 

keeping a constant Re changes Fr, and similarly for a constant Fr alters Re, as shown in 

Table 1-1. 

Table 1-1 – Example of the limitations of simultaneously scaling both Re and Fr. 

Parameter Bridge Pier 50mm Scale 

Constant Red 

50mm Scale 

Constant Frd 

Units 

d 1 0.05 0.05 m 

U 2 40.00 0.45 m/s 

 1.00 ×106  1.00 ×106  1.00 ×106  m2/s 

Red 2.00 ×106  2.00 ×106  2.24 ×104   

Frd 0.41 3261.98 0.41  

 

Finally, there are some fluids which, due to their hazardous nature, cannot be easily 

employed in a laboratory.  Therefore, selected laboratory physical investigations must 

be exploited in conjunction with computational methods.  Further, it must then be asked 

if the software available to civil designers is capable of working in the range 

10 2m lc 101m . 
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1.3. The Scales and Types of Civil Engineering Simulations 

In civil design work in Australia there are three classes of simulation software used with 

the classification based on the mathematical approximations they employ.  

Unfortunately, as the level of the “approximations” is increased there is, generally, a 

corresponding decrease in the detail of the simulation results.  These approximations 

were introduced to overcome a, perhaps perceived, lack of computational resources and 

the axiom “any answer is better than no answer”. 

Primarily these approximations are based on a reduction of the spatial dimensions of the 

simulation and a corresponding simplification of the mathematical model used within 

the simulations.  At the largest scales, such as a river basin, one-dimensional models 

will generally be used, whereas for street scale flood routing two- and three-dimensional 

models are now commonly used*.  There are a number of commercial and open source 

codes that are in common use in Australia (listed by their spatial approximations) 

including: 

1. One dimensional: HEC-RAS (U.S. Army Corps of Engineers, 2008), 

MIKE11 (DHI Group, 2008b) and SOBEK River (Delft Hydraulics 

Software, 2008b); 

2. Two dimensional: TUFLOW (TUFLOW, 2008), MIKE21 (DHI Group, 

2008c), SOBEK Urban (Delft Hydraulics Software, 2008c), RMA-2 

(Coastal and Hydraulics Laboratory, 2008a) and ANUGA (ANUGA, 

2008); 

3. Three dimensional: MIKE3 (DHI Group, 2008a), RMA-10 (Coastal and 

Hydraulics Laboratory, 2008b) and DELFT3D (Delft Hydraulics 

Software, 2008a). 

                                                

* With all these methods, time is not included as a dimension but is implicitly assumed to be present.  
Therefore, a one-dimensional simulation is linear in space even though it will generally be run in an 
unsteady temporal configuration. 
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These codes all have a specific focus in that they are designed for the simulation of 

flows at scales of  lc 1m  and are of no use for detailed design and analysis at scales in 

the order of 10 2m lc 101m .  Therefore, as specific software techniques must be 

developed to fill this void the characteristics of the flows and devices should be 

thoroughly understood prior to examining any numerical approaches. 

1.4. Sewer Overflows and Stormwater Discharge Devices 

1.4.1. Characteristics of Flows to Be Simulated 

For sewer overflow structures and stormwater gross pollutant traps* (GPT) there are 

three broad classes of pollutants that must be managed, namely physical, chemical and 

biological (Shon et al., 2006).  Each of these pollutants possesses different properties 

that, in turn, require different treatment or capture procedures to manage. 

The first class of pollutants, physical pollutants, include items such as suspended 

sediments and particulate matter as well as anthropogenic litter such as discarded drink 

bottles, plastic bags and syringes (Wong, 2005).  However, because the size distribution 

of the suspended sediments, while varying significantly between individual catchments, 

ranges from O 1 m( )  to O 10mm( )  (Walker et al., 1999), as illustrated in Figure 1-2, 

the simultaneous separation of all the components within one device is non-trivial. 
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Figure 1-2 – Particle size distribution of solids recovered from stormwater runoff 

from road catchments, extracted from a meta-study by Walker et al (1999). 

                                                

* For the remainder of this chapter generic overflow structures and stormwater gross pollutant traps will 
be referred to as “devices”. 
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In addition to the suspended solids, many devices are also required to trap gross 

pollutants, which are generally human litter and, in the case of stormwater devices, 

include waste such as drink cans and wrapping paper that has been discarded.  In 

contrast, sewer overflow devices may have to deal with smaller objects such as 

condoms, tampons and “grit” from faecal waste (United States Environmental 

Protection Agency, 2004).  Figure 1-3 shows an image of the sump of a continuous 

deflection type stormwater device that is full of gross pollutants.  A typical location for 

a device of this type would be downstream of a shopping precinct or dense urban 

precinct. 

 
Figure 1-3 – Photograph of the full sump of a continuous deflection device prior to 

cleaning (Rocla, 2009). 

Sewer overflow devices, in particular, can be expected to deal with high concentrations 

of both of the remaining two classes of pollutants, i.e. chemical and biological.  Some 

of these pollutants are dissolved within the effluent and, hence, cannot be removed 

during the, nominally, short residence time in an overflow device.  However, the 

remaining pollutants are either physically or chemically bonded to the suspended solids 

(Wong, 2005) and, therefore, can potentially be removed through filtration. 



 8 

While the sources of chemical and biological pollutants are remarkably common across 

different catchments, as listed in Table 1-2, the corresponding concentrations may vary 

significantly.  For example, the coliform load for raw sewage would be several orders of 

magnitude higher than for urban stormwater runoff.  With these typical pollutants in 

mind, there are a number of devices and systems currently in place to manage these 

flows. 

Table 1-2 – Major types of chemical and biological pollutants in sewage and 

stormwater and their principle sources, from Wong (2005) and Shon et al (2006). 

Type of Pollutant Major Source/s 
Biochemical Oxygen 
Demand 

Oxidation of sulphides and ferrous irons 

Carbohydrate Domestic, commercial and agricultural wastes 
Chemical Oxygen Demand Empirically related to organic carbon or organic matter 
Coliforms Faecal contamination; domestic wastes 
Endocrine Disrupters Domestic, commercial and agricultural wastes 
Fat, Oil and Grease Domestic, commercial and industrial wastes  
Heavy Metals, e.g. lead and 
cadmium 

Industrial wastes 

Nitrogen Domestic and agricultural wastes  
Pesticides Agricultural runoff 
pH Industrial wastes; natural runoff 
Phenols Industrial wastes 
Phosphorous Domestic, commercial and agricultural wastes; natural 

runoff  
Surfactants Industrial wastes 
Total Organic Carbon Natural organic substances 
Viruses Domestic wastes 

1.4.2. Common Overflow Management Devices Installed 

For the management of overflows there are several devices in common use which can 

be classified in two general types namely physical filtration devices or chemical and/or 

biological treatment devices.  Despite the clear distinction between these devices the 

best practise for stormwater management is to include both types in a two-stage 

treatment system (Wong, 2005).  These best management recommendations were 

recently implemented by Hornsby Shire Council at the Clarinda Street stormwater 
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discharge where a three stage, primary gross pollutant trap (GPT) and two-stage 

macrophyte pond for nutrient removal and aeration, was installed with associated 

stream way rehabilitation.  A schematic representation of this system is shown in Figure 

1-4. 

 
Figure 1-4 – Schematic representation, with indicative photographs, of a three 

stage offline stormwater treatment system and associated creek rehabilitation. 

As suitable sites, and sufficient funds, are generally not available to install such 

extensive treatment systems, smaller scale filtration only devices are often installed in a 

stand-alone configuration where the chemical and biological contaminant loads are low 

relative to the physical pollutant load, as shown in Figure 1-5 for a typical system. 

 
Figure 1-5 – Trash rack GPT, with trapped leaf litter and low flow outlet. 
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In contrast, sewer overflows are often unfiltered and discharge into natural and 

engineering waterways, as shown in Figure 1-6, where the sewage is discharged into a 

concrete lined creek near Punchbowl in the west of Sydney, NSW. 

 
Figure 1-6 – A photograph of sewer overflow structure in Sydney that is designed 

to discharge effluent directly into a concrete lined stormwater channel near 

Punchbowl (Avis, 2001). 

For all mechanical filtration systems, the flows are essentially chemically frozen in that 

the devices perform no direct treatment on the dissolved contaminants.  Some 

researchers have proposed that chemical dosing could be installed (Wojtenko et al., 

2002) to treat the discharges but installations such as these would be relatively 

expensive to implement and maintain for low-frequency events.  By definition overflow 

devices only operate infrequently at high flows when the biological and dissolved 

chemical loads are at their lowest, having been diluted, but when the physical pollutants 

are highest after they have been mobilised in the high flows (Beecham, 1991, Wong, 

2005).  Therefore, to reduce operating costs and improve functionality the design of 

discharge devices could be improved. 
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1.4.3. Sewer and Combined Sewer Overflow Design and Research 

Research into sewer overflow management, or at least the presentation of case studies 

of field sites, was presented in an annual literature review by Moffa et al (1983) who 

examined over 50 papers published, predominantly in the USA, in the previous year.  

They identified six key areas of research, namely: 

1. “Characteristics” or descriptions of the runoff constitution. 

2. “Hydrology” which is, apparently a misclassification, in that most of the 

research listed applied hydraulic routing models to sewer systems instead of 

hydrologic computations of system load. 

3. “Receiving water” that investigated the effect of sewer overflows on 

environment that the overflows discharged into. 

4. “Control” that detailed case studies and research target at developing control 

systems for the management of sewer systems that contained sewer overflow 

structures. 

5. “Treatment”, which as the name suggests lists papers that detail research into 

devices designed to treat rather than just filter sewage. 

6. “Management” that listed papers detailing case studies of regional, 

predominantly local government, administration authorities dealing with the 

operation of sewer overflow devices. 

None of the 54 papers listed appeared to discuss or investigate design methods or 

operating flow patterns of sewer overflow devices. 

Alternatively, in the United Kingdom at the University of Sheffield with researchers 

such as Adrian Saul the focus was more on the design of individual devices.  In 1996 

this research group formed the core of the loose coalition titled the “Combined Sewer 

Overflow Research Club” (Thompson, 2006).  The “club” swiftly increased its 

membership base to include the major research institutions engaged in sewer overflow 

research and “every UK water company” (Thompson, 2006) and was incorporated in 

March 1997 under the auspices of the UK Water Research organisation (Thompson, 

2006). 
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Initial research into the use of sewer overflows, primarily as flood control mechanisms, 

was performed by Saul and Delo (1983) however focus soon shifted to pollution control 

rather than flood management.  As sewer overflow devices do not moderate chemical or 

biological pollutants, research focussed on the efficiency of the removal of “aesthetic” 

pollutants where aesthetic pollutants are the gross pollutants visible to the general 

population, that is the grits, rags and suspended solids.  Beecham (1991) therefore, 

investigated the split between retained and discharged solids using laboratory-based 

experiments that counted the distribution of seed particles between the two outlets of 

model flumes and devices, as shown in Figure 1-7.  Research such as this, while 

producing useful data for the design and operation of sewer overflow devices, is 

necessarily limited to the usual laboratory approximations, in particular: scale 

reductions, idealised fluids and model pollutants.  Consequently, to avoid scale 

similarity problems, CFD can be used to model full-scale devices with real fluids. 

 
Figure 1-7 – Photograph of a scale model of a single side weir sewer overflow 

chamber (Beecham, 1991).  The overflow outlet is the wooden chute shown in the 

foreground while the low flow outlet pipe is located on the bottom right of the 

image. 
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The increase in the availability of both computational resources and CFD packages in 

the 1990’s lead to an increase in the use of, and publication of results from, CFD based 

research into sewer overflow structures.  From the University of Sheffield, Stovin and 

her colleagues focussed on investigating particulate settlement within sewer storage 

chambers using a mixture of CFD and laboratory experimentation (Stovin and Saul, 

1996, 1998, 2000, Stovin et al., 2002a, Stovin et al., 2002b). 

A 2 × 0.972 × 0.196 m  (long by wide by high) chamber was used in their numerical 

simulations, as shown in Figure 1-8.  With the entry flow rate fixed at 15.9 L/s, and the 

statement that this was a steady condition, the mean inlet velocity was 0.561 m/s and a 

Reynolds number of 

 Redinlet =
Uinletd

water

100 ×103  (1.2) 

in which d is the pipe diameter.  Similarly, the mean velocity at the outlet pipe was 

0.90m/s with a corresponding Reynolds number of 135 ×103 .  Hence, at a minimum the 

inlet and outlet pipe flow would be turbulent but as no velocity distributions were 

described it is not known if the chamber flows would be fully turbulent.  

Flow
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Figure 1-8 – Sketch of the centre plane of the sewer storage chamber used by 

Stovin and Saul (1996), dimensions in metres. 

Conceptually, it is hard to envisage that the flows throughout the chamber would be 

fully turbulent as Stovin and Saul (1996) themselves describe an offset jet with two low 

speed recirculation regions, as sketched in Figure 1-9.  Therefore, it is highly likely that 

the central jet would remain turbulent while the majority of the chamber would be 

laminar with transition regions in between. 
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Jet Flow

Large Recirculation

Small
Recirculation

 
Figure 1-9 – Dominant flow regime identified by Stovin and Saul (1996). 

As the CFD mesh that was developed by the researchers was 82 x 32 x 12 (long x wide 

x high) it is highly likely that the solution was severely under resolved.  That is, with 32 

cells that were uniformly distributed across the width* the average cell length would be 

in the order of 30mm or, assuming the diameter of the jet is in the order of the inlet pipe 

diameter, 6 cells across the jet.  While Roache (1998a) and Chung (2002) argue that 5 

cells is the absolute minimum requirement to resolve a wave it is likely that to 

adequately resolve the jet many more cells are required. 

Despite the promise of improved data from these CFD simulations over physical 

models, the results have been severely limited by a number of factors including low 

mesh resolution, the turbulence modelling assumptions and the treatment of the free 

surface as a zero-friction fixed wall.  Unfortunately, the under-resolved mesh detailed in 

the primary paper (Stovin and Saul, 1996), discussed above, was subsequently in the 

subsequent work by Stovin and her co-workers.  In addition to the mesh being under-

resolved no data was presented on the independence of the solution to the mesh used. 

A k-  turbulence model was used for all the simulations performed by this group, which 

was probably employed more because it was available in the package rather than being 

applicable to the problem.  Firstly, the k-  model is known to incorrectly calculate the 

reattachment of separated flows and such flows are present within this device.  As 

previously discussed, it is highly likely that the majority of the flows in the 

computational domain would be laminar.  Since the k-  turbulence model does not allow 

                                                

* Based on a visual inspection of Figure 4 from Stovin and Saul (1996). 
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“re-laminarisation” it would produce an artificially high dissipation in the low velocity 

regions further damping the already laminar flows. 

In conjunction with Stovin, Harwood (Harwood and Saul, 1999, Harwood, 2002), who 

was also based at the University of Sheffield, investigated weir type sewer overflow 

structures using CFD.  As with the studies of Stovin, Harwood treated the free surface 

as a rigid, zero-friction fixed plane and the use of a specific turbulence model was not 

discussed.  As well, a review paper by Harwood and Saul (2001) does not discuss either 

the free surface or a turbulence model. 

Further to the research into settlement chambers and end weir separators Harwood and 

Saul (1996) and Faram and Harwood (2002) developed models to investigate the flow 

and particle traces within hydrodynamic vortex type separators.  These studies also 

treated the free surface as rigid, zero-friction boundaries but these boundaries had been 

derived from experimental data while the shape of the plunging inlet was 

“…approximated based on projectile theory” (Faram and Harwood, 2002).  While both 

of these approximations are better than a fixed rigid plane, it is unlikely that they 

correctly capture the dynamics of the free surface.  For example, the interface in the 

region of the intersection of the main fluid body and the plunging jet would be highly 

deformed and most likely include splashing and entrainment neither of which is 

captured with rigid, zero friction boundaries. 

Hence, there are two areas of research, both of which were specifically excluded by the 

assumptions, that have not been adequately addressed in these studies, namely the 

treatment of the free surface and the development of a turbulence model that is capable 

of dealing with laminar and turbulent regions.  This formed the fundamental task for 

this research: that was to develop a method of modelling both the free surface 

numerically and to properly account for the turbulent and non-turbulent regions of the 

flow.  Naturally, any simulation technique would also have to account for factors such 

as the modification of turbulence close to the free surface.  In order to develop such 

techniques a more fundamental approach was instigated so that through the use of 

simpler, but extensively studied, geometric configurations the turbulence and free-

surface mathematical models could be isolated and reviewed in detail. 
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1.5. Flow Features to be Simulated 

In order for the simulations of the simplified geometric configurations to be effective, 

they must be representative of a particular aspect of the flows encountered in overflow 

devices.  What then, are the key flow features related to overflow type structures? 

From an inspection of the research into sewer overflows, described above, combined 

with the present author’s personal experience as a practicing hydraulic engineer, three 

key flow features were identified that would need particular attention: 

1. Simultaneous simulation of at least two immiscible fluids, for example air and 

water. 

2. Simultaneous simulation of separated and attached flow regions, such as would 

occur with flow around obstructions and for jets from inlet pipes into chambers. 

3. Simultaneous simulation of mixed turbulent and laminar regimes. 

In addition to these three flow criteria the availability of computational resources 

enforced a further criterion, namely to limit the Reynolds number.  That is, as the 

Reynolds number is increased, so the cell size must be concurrently decreased in order 

to simulate the smaller turbulent structures and, hence, the cell count must necessarily 

be increased to simulate the same volume (Versteeg and Malalasekera, 1996, Chung, 

2002).  For example, Wilcox (1998) estimated that the minimum cell count required to 

simulate open channel flow at ReH 30 ×103 , in which H is the channel height, would 

be   

 ncells = O 4 ×107( )  (1.3) 

for direct numerical simulations and 

 ncells = O 3×106( ) , (1.4) 

for large eddy simulations, which was beyond and close to, respectively, the limits of 

the computational resources available at the start of this research.  Therefore, the 

Reynolds number was initially limited to less than 30 ×103  but with the caveat that this 

upper limit would increase as additional computational resources became available. 

With these three flow requirements for any simulation software and the computational 

resources specified the program of investigation that was followed can be presented. 
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1.6. Outline of the Research Program 

Despite the intrinsic appeal of attempting to simultaneously simulate all three of these 

flow components, the research program presented within this dissertation took a slower 

path and followed the axiom of building up to complexity via studies designed to 

investigate particular fundamental aspects of the larger problem.  Hence, the first step to 

reduce the complexity of the flow field was to eliminate the second fluid.  This allowed 

for the research to first focus on the correct simulation of flows with features of type 2 

and 3 from the list presented in §1.5, that is combined separated/un-separated and 

laminar/turbulent flows. 

The reader would have noted that the present author could have further simplified the 

configuration and eliminated the separated/un-separated region.  This would have then 

focused the work purely on the mixture of laminar and turbulent regimes and, hence, 

possibly lead to the development of a novel turbulence model.  A new turbulence 

model, such as the k- , was not specifically developed in this dissertation because of the 

extensive body of work already conducted within both the CFD research community 

and the research group based at both UTS and UNSW of which the present author was a 

member.  It just remained for the present author to decide which turbulence model or 

simulation technique would meet these requirements. 

Therefore, the research program discussed for the remainder of this dissertation 

followed the trajectory of: 

1. Identification of fundamental physical and numerical studies that could be used 

to validate the flow regimes that were identified above. 

2. Identify the appropriate CFD techniques that could be combined to simulate the 

configurations described in the validation studies. 

3. Validation of the software technique to combined separated/un-separated and 

laminar/turbulent flows. 

4. Validation of final configuration with the software extended to include the 

simulation of flows with a free surface. 

Despite the elegance of a four-step research project questions remained such as what 

criteria would be used to determine if the software had indeed been validated?  How 
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would it be determined if the software performed better than the alternative 

programmes?  Therefore, the following two criteria were proposed: 

1. Does the method simulate the validation parameters against which the code was 

to be tested to the same standard or better than the alternative techniques? 

2. Is the method faster than, or at least as quick as, the alternative approaches? 

With these four steps conducted, the validated software could then be used with 

confidence to investigate similar flow phenomena and configurations.  Naturally, the 

fundamental studies that will underpin the validation studies must be identified. 

1.7. Selection Criteria for the Validation Studies 

Before discussing the search for a set of studies from which the validation configuration 

would be drawn, it is necessary to identify the requirements that must be considered for 

validation, namely: 

• Fully described configuration: any studies must fully describe the conditions 

measured or simulated so that the simulations can be a very close match. 

• Extensive and detailed measurements: the configuration must be extensively 

measured and documented so that as many varied parameters can be used for 

comparison. 

Unfortunately, from the present author’s experience, the first condition is rarely met in 

modern papers with some key detail usually missing.  In contrast, the second 

requirement can generally be met with reference to different publications as one journal 

publication rarely contains sufficient detail.  With these requirements for validation 

studies and the flow requirements documented in §1.5, the specific configurations to be 

used can be identified. 

From the observation of civil flow structures, a list of structures that could potentially 

be used as validation configurations is: 

1. Flow through sewer overflow structures; 

2. Flow around piers; 

3. Open channel flows, in particular at channel junctions; 

4. Hydraulic jumps. 
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Of these possibilities, only the second and third cases can be simulated without a free 

surface.  That is, the flow around a pier could be reduce to single-phase flow around an 

obstruction while the flow through open channel junctions can be reduced to wall 

bounded flows such as those at pipe junctions.  Since pier flows have massively 

separated regions and, depending on the Reynolds number, a mixture of turbulent and 

laminar regimes as well as a deformed free surface it follows that this thesis is focussed 

on flows in the vicinity of piers. 

1.8. Selection of the Single Phase Validation Configuration 

Therefore, with the decision to use flows around piers as the free surface case, the single 

fluid validation study would have to be the flow around an obstacle.  Further, to reduce 

the complexity of the computational geometry – a perennial problem with CFD – the 

obstruction ideally should be a simple geometric shape that extends across the entire 

width of the domain.  The simplest geometric shapes is either a right triangular or 

rectangular or circular cylinders in which the “right” indicates the orientation of the 

prismatic face relative to the long axis of the cylinder. 

The literature overflows about triangular cylinders but this shape was discarded because 

the majority of publications were concerned with either cavitation or supersonic flows, 

so that the previous research had not been focussed on the issues with which validation 

was required.  In addition, triangular cylinders would be an unusual shape for a pier. 

While rectangular cylinders are simpler to grid than circular cylinders, circular cylinders 

are more appropriate with respect to the pier analogy.  Hence, it would be preferable to 

work with single-phase flows in the neighbourhood of circular cylinders.  Despite the 

extensive monograph of Zdravkovich (1997) the highlighted the breadth of research into 

right circular cylinders, the volume of literature dedicated to flows near right circular 

cylinders that would be suitable for the present validation is dwarfed by that focussed 

on flows in the environs of right square cylinders.  Therefore, the validation of the 

single-phase techniques was focussed on flows around right square cylinders. 

Historically, for flows in the vicinity of right square cylinders there has been great 

interest in the pressure forces and their fluctuations with a focus on physical studies 

(Lee, 1975, Bearman and Obasaju, 1982, Okajima, 1982) but also some numerical 

investigations (Clements, 1973, Nagano et al., 1982).  Publications and research based 
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on right square cylinders accelerated markedly following the publications of Lyn and 

Rodi (1994) and Lyn et al (1995)* whose extensively described experimental study of a 

right square cylinder, mounted in cross flow at a Reynolds number of 

 Red =
Uref d = 22 ×103  (1.5) 

in which d is the side length of the cylinder was meets the first requirement for use as a 

validation study.  They also presented some data based on LDA measurements within 

their water tunnel but these were either time and/or phase averaged. 

Following the specification of the L&R configuration as the basis for two workshops – 

described by Voke (1996) and Rodi (1997), respectively – numerous results have been 

published on this configuration.  A recent, brief, survey by the present author revealed 

over 50 publications, for example Bouris and Bergeles (1999), Fureby et al (2000), 

Srinivas et al (2006) and Song and Park (2009), with different turbulence models of the 

same configuration yet, somewhat surprisingly given the specifications by L&R and the 

two workshops, there was also notable variation of the geometric configurations. 

1.9. Selection of the Two-Phase Validation Studies 

For the validation of the two-phase flows, the choice was not as simple as using the 

L&R geometry and being able to use all the studies that were subsequently based on it.  

Instead, the two-phase validation was based on a combination of studies that when 

grouped together provided the necessary data across a number of individual papers. 

The laboratory experiments of Inoue et al (Inoue et al., 1993) were originally selected 

because they published detailed measurements of both the free surface and velocity 

profiles and were at a Reynolds number based on the cylinder diameter of 27 ×103 .  

Three numerical investigations were also based on this configuration, namely 

1. Chen et al (2000); 

2. Kawamura et al (2002); 

3. Yu et al (2008) 

                                                

* To avoid extensive repetition during the remainder of this chapter these two studies will be referred to 
only as L&R. 
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However, if the validation study was to be completely focussed on these studies it 

would ignore the most extensive experimental data set recorded of free surface flows, 

namely that of Hay (1947).  Within this excellent study Hay measured over thirty 

combinations of cylinder diameter and depth of submergence were tested with 

diameters that ranged from 3.175mm (1/8”) up to 203.2mm (8”) and depths of 

submergence from 25.4mm (1”) up to 812.8mm (32”), as listed in Table 1-3. 

Table 1-3 – Cylinder depth and diameters investigated by Hay. 

 Cylinder Diameter (mm) 

 3.175 6.35 12.7 25.4 50.8 101.6 203.2 
25.4 25.4 25.4 25.4 50.8 101.6 203.2 
50.8 50.8 50.8 50.8 101.6 203.2 406.4 
101.6 101.6 101.6 101.6 203.2 406.4 812.8 

 203.2 203.2 203.2 406.4 812.8  
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In addition to the drag data collected, the tow tests were photographed from three 

different locations to measure and describe the changes in the free surface over different 

Reynolds and Froude numbers.  To provide a perspective view of the width of the wake 

region, the first camera was located behind the cylinder and looking upstream.  The 

second two cameras were placed perpendicular to the direction of cylinder movement 

with one slightly above the free surface shooting generally downwards and the second 

camera side on.  Of these two cameras, the upper camera was used to provide indicative 

images of the free surface deformation – much as with the first, downstream, camera.  

In contrast to the purely visual data collected by the first two cameras the third camera 

also collected images that could be used to estimate free surface positions via 

photogrammetric techniques.  Sample images from the three cameras are shown in 

Figure 1-10. 
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Figure 1-10 – Example images from the three camera locations: (a) the camera 

behind the cylinder showing a perspective of the wake; (b) the camera side-on and 

above the free surface, and; (c) the camera side-on and parallel with the free 

surface, an image suitable for photogrammetry. 

While the Reynolds number to be used in the present simulations with a free surface set 

to match that of Inoue et al (1993), the data of Hay must also be included.  Therefore, 

with the free surface validation configuration decided the particular turbulence model 

and the technique that will be used to simulate the free surface must be decided, 

discussed in §2 and §1, respectively. 

1.10. Mapping of the Research Program to this Document 

It has been identified that previous numerical studies of turbulent flows with a free 

surface have been inadequate in the treatment of both the turbulence and the free 

surface.  Therefore, the work described within the reminder of this thesis describes a, 

successful, attempt to remedy this gap.  Of the four tasks identified for this research 

program, as discussed in §1.6, the first has already been presented in §1.7, namely the 

selection of the validation studies.  The remaining three tasks will be distributed though 

out the body of this dissertation. 

The second task that is to identify the appropriate CFD techniques can be developed 

along similar lines as that used in the selection of the studies to be used for validating 



 23 

the code.  Firstly, the selection of the method that will be used to simulate the mixed 

laminar and turbulent flows must be presented, as discussed in §2.  Secondly, the 

numerical techniques that will be used to implement this flow simulator need to be 

critically examined in §1 because the results depend on the accuracy of the numerical 

approximations used to implement the theoretical models.  Lastly, both the 

mathematical model and numerical methods that will be used to simulate the free 

surface must be critically examined, as presented in §1. 

With the theoretical foundations presented, the validation studies can then be examined 

first for the single-phase simulations in §5 and §6 and then for the two-phase systems.  

As the extension from single to two-phase simulation introduced a number of new 

physical effects some preliminary studies were undertaken in order to examine some 

specific features, as discussed in §8.  These preliminary studies were then used as 

guides in the development and analysis of the two-phase validation studies and 

explorations, which are documented in §9 to §11.  
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2. Mathematical Models of Single Phase Fluids 

2.1. Introduction  

The single-phase flow computations described within this dissertation were based on 

two fundamental equations based on the assumption of there being a continuum, 

namely: 

1. The continuity equation that describes the conservation of mass, and 

2. The Navier-Stokes Equations that describe the conservation of momentum 

equations (Constantin and Foias, 1988, Drazin and Riley, 2006). 

As both of these equations are continuum equations they must, therefore, be discretised 

prior to performing any computations.  Before an informed decision can be made as to 

which, if any, simplifications and implementations should be used in the work described 

in this dissertation the fundamental equations and the alternatives must be presented and 

discussed*. 

2.2. Conservation Equations 

2.2.1. Conservation of Mass 

The conservation of mass for an incompressible fluid requires that the volumetric strain 

be zero 

 u = 0 , (2.1) 

in which u  is the fluid velocity vector and  is the divergence operator.  As noted 

with a certain dry humour by White (1991), and repeated here, there is a fashion to add 

the clarification that as the research described in this dissertation does not deal with 

nuclear reacting flows, mass is always conserved.  To complete the description of the 

                                                

* Because the derivation of the Navier-Stokes equations and turbulence models is extensively described in 
the literature, the derivations presented below are brief.  Instead, the discussion will focus on the merits of 
each method and their application to the present work.  The interested reader is referred to monographs 
such as those by Tennekes and Lumley (1972), White (1991), Wilcox (1998) or Pope (2001) if they 
require a more thorough review. 
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non-nuclear flows in the current work, Equation (2.1), must be supplemented with a 

description of the forces and momentum involved. 

2.2.2. Conservation of Momentum 

The conservation of momentum for a fluid observed from within an inertial frame of 

reference (White, 1991) can be written as 

 
ui
t
+ uj

ui
x j

= gi + ij , (2.2) 

in which  is the fluid density, g  is the gravitation vector and ij  is the fluid stress 

tensor.  With the assumptions in this research of constant properties, incompressibility 

and Newtonian fluids an expression of the stress tensor in Equation (2.2) can be 

developed such that Equation (2.2) becomes 

 
ui
t
+ uj

ui
x j

= gi
p

xi
+

2ui
x j xi

 (2.3) 

in which p  is the thermodynamic pressure and  is the coefficient of dynamic 

viscosity.   

While Equations (2.1) and (2.3) can provide a complete description of the motion of an 

incompressible, constant property Newtonian fluid, the non-linear inertial term means 

that as the velocity changes there can be huge changes in the flow regime.  Following 

the dimensional reasoning of Bird, Stewart and Lightfoot (2002), namely that “typical” 

values of the terms in Equation (2.3) can be estimated by replacing the variables with 

characteristic “yardstick” estimates, the effects of the non-linear inertial term in 

Equation (2.3) can be estimated as 

 fi
uc
2

lc
 (2.4) 

in which uc  is a characteristic velocity and lc  is a characteristic length.  Similarly the 

effects of the viscous term in Equation (2.3), 
2xi
x j xi

, can be determined from 



 27 

 f
uc
lc
2

. (2.5) 

Further, for a given case the fluid thermodynamic properties, that is the density and 

viscosity, and the length scale can be assumed constant.  Therefore, the estimates in 

Equations (2.4) and (2.5) reduce to functions of the characteristic velocity only: 

 fi uc( ) = ci uc
2

lc
 (2.6) 

and 

 f cc( ) = c uc
lc
2

 (2.7) 

in which ci  and c  are constants of proportionality.  It can be deduced from an 

inspection of Equations (2.6) and (2.7), that when the characteristic velocity is very 

large the inertial effects will be proportionally larger than the viscous effects and vice 

versa.   

By inspection, both Equations (2.4) and (2.5) have the same dimensions.  Therefore, 

they can be divided to produce a non-dimensional number, 

 Re =
lcuc , (2.8) 

that is indicative of which forces, inertial or viscous, are dominant for a given flow 

configuration.  This parameter is referred to as the Reynolds number (Rott, 1990) and 

was named in honour of Osborne Reynolds who originally proposed the grouping in 

1883 (Reynolds, 1883).  At small Reynolds numbers viscous damping is dominant and 

the flows are called laminar since one layer, or “lamila”, slides on the next lamila 

without mixing.  Conversely for flows at high Reynolds numbers the inertial stresses 

dominate so that the viscous stresses cannot damp out the inherent instabilities resulting 

from the non-linearity of the Navier-Stokes equation, leading to turbulence that is 

characterised by unsteady, perhaps, chaotic motions with significant mixing.  These 

limits are shown in Figure 2-1 where the ci c = 1 , lc = 0.05m  for water at room 

temperature and pressure. 
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Figure 2-1 – Plot of Equations (2.6), (2.7) and (2.8) with constants of 

proportionality of unity and a characteristic length of 0.05m for water at 20°C. 

Nearly all flows of practical interest to engineers are turbulent but, unfortunately, as the 

physical understanding of turbulence is still limited, turbulence has been described as 

one of the great remaining challenges of physics and engineering (Yaglom, 2001). 

2.3. Introduction to Turbulence 

A general definition of turbulence quoted by Wilcox (1998) and attributed to an 

amalgamation of the work of pioneers such as G. I. Taylor, von Kármán and, more 

recently, Bradshaw is that: 

“Turbulent fluid motion is an irregular condition of flow in which the 

various quantities show a random variation with time and space 

coordinates, so that statistically distinct average values can be 

discerned.  Turbulence has a wide range of scales.” 

However, conclusions from recent studies indicate that the above definition may not be 

a complete description of turbulence, where in fact turbulent flows may actually be 

chaotic (Sreenivasan, 1999), that is, turbulent flows show an order of scale similarity, a 

pointer to chaos, which can be interpreted as an indicator of an underlying order to the 

apparently random macro-scale fluid motions. 

An alternative, descriptive, conceptualisation of turbulence captured by a rhyme 

attributed to L. F. Richardson (Batchelor and Towsend, 1949) is that 



 29 

“Big whirls have little whirls, 

That feed on their velocity; 

And little whirls have lesser whirls, 

And so on to viscosity.” 

That is, a turbulent flow is composed of a multitude of randomly rotating eddies, or 

vortices, of different sizes superimposed on each other as illustrated in Figure 2-2. 
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Figure 2-2 – Schematic illustration of the vortex-on-vortex conceptualisation of 

turbulence. 

While the Reynolds number can be used to classify flows into either the laminar or 

turbulent regimes, it provides no insight as to the range of length scales, or eddy sizes, 

within a particular flow.  Fortunately, the conceptualisation of turbulence described in 

the rhyme above can be formalised with the introduction of a wave number, 

 =
2

, (2.9) 

in which  is the wave length of a given eddy, that is the characteristic “size” of the 

eddy, to provide a general purpose spatial length scale.  The wave numbers, or indeed 

wave lengths, are generally not directly measured, instead they are calculated using a 

Fourier transform (Tennekes and Lumley, 1972).  For example, a Fourier transform of 

time domain data will result in a frequency spectrum, which must be converted to a 
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wave number spectrum using Taylor’s frozen turbulence hypothesis.  A similar 

transform of data extracted from the spatial domain gives a wave number spectrum 

(Pope, 2001). 

If the eddy size analogy were to be further extended to include the energy contained as a 

function of eddy size, it would be logical to suppose that the larger eddies, which are 

described by small wave numbers, would contain more energy.  That is, since rotating 

kinetic energy is defined as 

 Ek ,  rotating =
uc

2dm

2
, (2.10) 

in which m is mass, then a larger eddy which can be imagined to, simultaneously, be 

comprised of more mass that is in turn spread over a larger area will contain more 

energy.  By extension then the smaller eddies – at larger wave numbers – will contain 

less energy per vortex than the larger vortices. 

In the first definition of turbulence given above, it was noted that turbulence possessed 

“statistically distinct averages” and as such, with all averages the general variable can 

be split into averages and fluctuations.  In turbulence research this generally refers to 

velocity averages and fluctuations that can be written as 

 ui =Ui + ui  (2.11) 

in which the three terms represent the instantaneous, averaged and fluctuating velocity 

components, respectively.  Further, it should be noted that in turbulence studies, the 

kinetic energy described here is referred to as turbulence (or turbulent) kinetic energy 

(Wilcox, 1998) which can be written as 

 k =
1

2
uiui  (2.12) 

rather than the general form of kinetic energy in Equation (2.10). 

Finally, as the rhyme suggested, if the smaller eddies are superimposed on top of the 

larger eddies it therefore follows that there must be a larger number of smaller eddies 

than larger eddies.  Perhaps the count of smaller vortices is exponentially greater than 

larger vortices.  Unfortunately, the total turbulent kinetic energy of the system cannot be 

estimated simply from a summation of all the energy containing eddies. 
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Therefore, with the use of spectral methods it is possible to examine the distribution of 

energy as a spectrum of turbulence kinetic energy in wave number space (Wilcox, 

1998).  This is generally referred to as the energy spectral density or power spectral 

density and is conveniently computed from velocity distributions, in either temporal or 

spatial domains, via Fourier methods (Tennekes and Lumley, 1972, Pope, 2001).  The 

shape of the turbulence kinetic energy spectrum was first posited in the ground-breaking 

theoretical investigations of both Taylor (1935) and Kolmogorov (1941) who 

investigated flows of homogenous turbulence at very large Reynolds numbers, as 

sketched in Figure 2-3. 
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Figure 2-3 – Idealised turbulent energy spectrum as a function of wave number on 

log-log scales, adapted from Wilcox (1998) and Nezu and Nakagawa (1993). 

Numerous experimental results have confirmed these predictions such that the shape of 

the spectrum, as sketched in, has assumed the significance of a physical law (Rogallo 

and Moin, 1984). 
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As can be seen in Figure 2-3 the majority of the turbulence kinetic energy is contained 

in the largest eddies, that is the smallest wave numbers, therefore this region of the 

spectrum is referred to as the energy-containing region (Wilcox, 1998, Pope, 2001).  

Conversely, at the largest wave numbers, or the smallest vortices, viscous forces 

dominate and the turbulence kinetic energy is transformed into heat via molecular 

dissipation.  This high wave number region is termed the viscous range.  The region 

between the viscous range and the energy containing range is referred to as the inertial 

sub-range and is defined as the region in which the turbulent kinetic energy spectrum 

decays as a power law function of wave number.  Kolmogorov (1941) showed by a 

dimensional argument that in this region the energy density and the wave number were 

related by 

 E ( )
5

3 . (2.13) 

This power law has become so entrenched in the study of fluid dynamics that 

“compatibility with [Kolmogorov’s power law decay theory] is required of any theory or 

simulation” (Rogallo and Moin, 1984). 

As already noted, the majority of the energy is contained at small wave numbers yet is 

dissipated at the high wave numbers.  Therefore, given that energy is always conserved, 

energy must in turn be transferred from the small wave numbers to the large.  In 

turbulence research, this supply of energy from small wave numbers to the large wave 

numbers and its subsequent dissipation into heat is known as the turbulent energy cascade 

and is referred to as Kolmogorov’s universal equilibrium theory (Pope, 2001). 

Thus far, only qualitative descriptions of small and large have been used to describe eddy 

sizes but, as with the dimensional arguments in the derivation of the Reynolds number, 

dimensional reasoning can be used to quantify the length scales of turbulent flows.  From 

an inspection of the turbulent energy cascade it would appear that there are two quantities 

that are important in the transfer and dissipation of energy: 

1. The kinematic viscosity that describes the rate at which kinetic energy can be 

transferred into thermal energy. 

2. The rate at which energy can be transferred through the inertial sub-range. 

These two quantities do not operate completely independently.  For example, if the rate of 

transfer can be thought of as a number of railroad trains that transport energy, then the 

viscosity can be considered to be handling facility at the end of the line.  Therefore, the 
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viscosity can limit the cascade in that only the amount of energy handled by the end 

facility can be shipped through the network.  In contrast, if the rate of transfer is less than 

the dissipation – if the handling facility is more efficient than the transportation network – 

then all the available energy can be dissipated. 

Kinematic viscosity ( )  has the units of m2s 1  but in contrast to viscosity, the dissipation 

rate has not been formally defined yet in this dissertation.  The dissipation rate must be the 

rate at which turbulence kinetic energy is transferred therefore it is defined as 

 =
dk

dt
, (2.14) 

which is in units of m2s 3 .  These two quantities,  and , can be combined into three, 

dimensional groups: 

 =
3

1

4

, (2.15) 

 =
1

2
 (2.16) 

and 

 = ( )
1

4  (2.17) 

that are the Kolmogorov scales of length, time and velocity, respectively (Kolmogorov, 

1941, Wilcox, 1998).  These three parameters are used to quantify the smallest scales of 

turbulent flows at the largest wave numbers. 

As an example of how small these parameters are Wilcox (1998) quotes a value of 

  5 m at the windscreen for a car travelling at approximately 100km/h that, for 

standard temperature and pressure.  This length is only 72 times the mean free path of 

the air molecules. 

Conversely for the largest eddies, at small wave numbers, Taylor (1935) proposed that 

the integral length scale, 

 l
k
3

2

, (2.18) 
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would be the appropriate descriptor.  Both of these length scales,  and l, are shown 

diagrammatically on Figure 2-3 for comparison. 

With this very brief description of turbulence, and assuming that suitable discretisation 

and solution schemes have been developed, the first step in computing general flows 

would be to directly model the continuity and momentum equations, Equations (2.1) 

and (2.3) respectively. 

2.4. Direct Numerical Simulation 

Direct Numerical Simulation (DNS) is, as the name suggests, the process of directly 

modelling the continuity and Navier-Stokes equations – Equations (2.1) and (2.3) – 

within a computational solver.  Therefore, DNS is based on the assumption that both the 

computational mesh and numerical schemes are of sufficient accuracy to correctly 

capture all of the physics of the flow problem being studied.  This leads immediately to 

the primary problem with DNS: that in order to capture all the physics (that is the entire 

turbulence cascade), the mesh must be fine enough to resolve structures with wave 

numbers at, if not larger than, the Kolmogorov length scale, and diagrammatically in 

Figure 2-3.  In practice, the computational requirements for not only the numerical 

operations as well as the storage of the resultant data are too expensive for most flows 

of engineering interest.  For example, Wilcox (1998) estimated that for a DNS of 

channel flows at ReH 30 ×103  the cell count would be O ncells( ) = 40 ×106 , while Wu 

and Moin (2008) utilised O ncells( ) = 630 ×106  cells to simulate a single phase pipe flow 

at a Re = 44 ×103 , in which  is the pipe diameter.  Suppose that = 200 mm  and 

that the fluid was water at room temperature and pressure, then the mean velocity would 

be in the order of 0.2 m/s, which is equivalent to a volumetric flow rate of only 7 L/s.  

Further, the authors stated that each snapshot data file was approximately 25GB in size 

while the simulation required 1024 processing cores distributed across 128 computers.  

No wall times were discussed, only simulation times* but the wall time was likely to 

have been in the order of 6-12 months. 

                                                

* Simulation time is the time that is simulated within the model whereas wall time is the total 
computational time required that includes input/output wait, processing times and other operating system 
overheads. 
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With these computational limitations DNS remains, essentially, a research only 

approach with computational requirements in excess of practical, industrial use.  Even 

with the extensive computational infrastructure associated with large research 

institutions, DNS is still limited to simplistic geometries of low speed flows.  However, 

it can be noted from an inspection of Figure 2-3, with its logarithmic scales, that the 

majority of the turbulence kinetic energy is carried at wave numbers at or below the 

inertial sub-range – that is for wave number scales several orders of magnitude smaller 

than the Kolmogorov microscale (measured as a wave number) shown in Figure 2-3.  

Therefore, the next approach, in an attempt to reduce the cell count, would be to assume 

that a grid could capture the flow features up to the inertial-sub range, on which the 

majority of the flow physics could be calculated.  A sub-grid model would be employed 

to generate the necessary diffusive effect. 

2.5. Large Eddy Simulation 

2.5.1. Filtering the Navier-Stokes Equations 

Large Eddy Simulation (LES) is based on the assumption that the majority of the 

turbulence kinetic energy is contained within the larger eddies and therefore it is only 

these eddies that must be captured by the computational grid.  The remainder of the 

turbulence kinetic energy can then be accounted for with a suitable sub-grid scale 

model.  With these assumptions, Wilcox (1998) estimated that the required number of 

cells for the same DNS configuration discussed above would be n cells = O 3×106( ) , 

which is an order of magnitude reduction to the DNS requirements. 

Logically, using Figure 2-3 as a reference, all the energy containing eddies must be 

simulated by an appropriate numerical method at a grid scale.  Further, to obtain any 

reduction in the cell count the physics of the viscous range must be captured by a 

suitable model.  Therefore, the break between the grid resolved and the sub-grid scale is 

traditionally assumed to fall into the inertial sub-range and towards the larger wave 

numbers therein (Sagaut et al., 2006). 

While it is conceptually simple to say which components of the flows are simulated by 

which method, in order to obtain the grid resolved/sub-grid scale split the Navier-Stokes 
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equations must be filtered.  Filtering is usually performed with a generalised filter 

function defined as a convolution integral (Leonard, 1974) such as 

 ûi x,t( ) = G x ;( )ui ,t( )d 3 , (2.19) 

in which  is the filter width and  is a distance vector from the general point x .  The 

filter function, G, is normalised by requiring that 

 G x ;( )d 3 = 1 . (2.20) 

Therefore, with the filtered velocity defined in Equation (2.19), the sub-grid scale (SGS) 

velocity can be calculated as 

 ui x,t( ) = ui x,t( ) ûi x,t( ) . (2.21) 

in which ui x,t( )  is the instantaneous velocity at point x and time t.  Numerous filters 

have been proposed but one of the earliest, and simplest, is the volume averaged box 

filter proposed by Deardoff (1970) 

 G x ;( ) =
1

3
, xi i <

xi
2

0, otherwise      
. (2.22) 

With a suitable filter function defined, the resolvable-scale continuity and momentum 

equations, with body forces ignored, become (Wilcox, 1998) 

 ûi
xi

= 0  (2.23) 

and 

 
ûi
t
+

x j
ûiû j( ) = 1 P

xi
+

x j

ûi
x j

+ ij  (2.24) 

respectively, where 

 

ij = Qij

1

3
Qkk ij

P = p +
1

3
Qkk ij

Qij = Rij + Cij

. (2.25) 
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Equations (2.24) and (2.25) have been simplified from that which is obtained directly 

from filtering by noting that the convective flux term 
 
uiu j( )  is a summation of four 

components 

  uiu j = ûiû j + L ij + Cij + Rij  (2.26) 

in which (Wilcox, 1998) 

 

 

Lij = ûiû j ûiû j

Cij = ûiu j + û jui

Rij = uiu j

 (2.27) 

and that the contribution of the Leonard stress tensor Lij( )  is negligible (Shaanan et al., 

1975).  The remaining tensors listed in Equation (2.27) are the cross-term stress Cij( )  

and the SGS Reynolds stress tensor Rij( ) .  It must also be noted that filtering differs 

from standard averaging in that (Wilcox, 1998) 

 ˆ̂ui ûi . (2.28) 

Therefore, the fundamental problem of Large Eddy Simulation is that the tensor Qij  

must be modelled (Wilcox, 1998). 

2.5.2. LES Models 

There are numerous sub-grid scale (SGS) LES models available for the CFD user but 

only the Smagorinsky model (1963), probably the most popular model, will be 

explicitly described.  The Smagorinsky model was developed from the assumption that 

the dissipation at sub-grid scales, are similar to the gradient diffusion mechanism of 

molecular motion (Wilcox, 1998) and that they can, therefore, be computed from the 

local strain rate (ESI CFD Inc., 2007a).  It therefore follows that the sub-grid scale 

stress can be defined in terms of a turbulent viscosity, T , so that the stresses can be 

written as 

 ij = 2 T Sij  (2.29) 

in which 
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 Sij =
1

2

ûi
x j

+
û j

xi
. (2.30) 

Sij is known as the “resolved strain rate” tensor and 

 T = CS( )2 SijSij  (2.31) 

is the “Smagorinsky eddy viscosity”, conceptually akin to a turbulent viscosity, and CS  

is the Smagorinsky constant that commonly ranges from 0.05 to 0.2 (ESI CFD Inc., 

2007a). 

Despite cell counts in the order of 10% of that required for DNS, the computational 

requirements for LES are still large.  Therefore, for larger Reynolds number flows, 

which are generally of more interest in practical situations, a method to further reduce 

the cell count is, at present, required.  Having already moved down the wave number 

spectrum to the inertial sub-range the next step is to further expand the mesh to such a 

size that the computational cells are comparable to the energy producing length scales.  

At this scale only the largest flow features would be simulated and the remainder would 

be averaged due to the large mesh size.  Averaging methods at this scale promise much 

lower cell counts than either LES or DNS and despite being discussed second are more 

often used in industry than either LES or DNS. 

2.6. Is Averaging A Solution to the Resolution Requirements of 

DNS and LES? 

2.6.1. Averaging the Navier-Stokes Equations 

As noted in the description of turbulence in §2.3, turbulence is characterised by 

variations with “…statistically distinct average values…” therefore an alternative to 

either LES or DNS would resolve only the average values at the grid scale and 

statistically, or otherwise, model the fluctuations.  Hence as the average structures are 

relatively large, being comparable to the largest of the energy containing eddies that are 

at or near to the integral length scale, shown in Figure 2-3, the corresponding cell size 

can be very large compared with both LES and DNS scales.  Computational solvers 

based on this technique are referred to as Reynolds Averages Navier-Stokes (RANS) 
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solvers and since closure models are needed to “close” the equations.  These  include 

such well-known models as the k-  and k-  models (Wilcox, 1998) and many others. 

Three forms of averaging were originally introduced by Reynolds (1895) namely: (1) 

temporal averaging; (2) spatial averaging and (3) ensemble averaging. 

1. Temporal averaging 

Temporal averaging is appropriate for stationary turbulence, which is a flow where the 

mean values do not change over time.  The temporal mean for a quantity is defined as 

 FT x( ) = lim
T

1

T
f x,t( )dt

t

t+T
 (2.32) 

2. Spatial averaging 

Spatial averaging is used with homogenous turbulence; turbulence that is, on average, 

uniform in all directions and is defined as 

 F t( ) = lim 1
f x,t( )d  (2.33) 

3. Ensemble averaging 

Ensemble averaging is the most general form of averaging and is suitable for all flow 

types including flows that decay in time or have non-uniform periodic fluctuations.  An 

ensemble average is an average of a quantity measured as a result of N identical 

experiments that differ by random infinitesimal perturbations of the initial and boundary 

conditions (Wilcox, 1998), 

 FE x,t( ) = lim
N

1

N
fn x,t( )

n=1

N

. (2.34) 

It should be noted that the averages defined by Equations (2.32), (2.33) and (2.34) 

represent the “perfect” averages in that T, V, and N, respectively, all tend to infinity.  

However, in real numerical or physical experiments the average will, perforce, be 

always taken over a finite time, computational volume or number of experiments.  

Therefore, it is the responsibility of the experimenter to both test for and to justify the 

choice in length of time used in the averaging process, the size of the volume averaged 

employed or the number of repetitions undertaken, respectively. 
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Once a suitable method of averaging has been chosen the instantaneous value of each 

variable can then be decomposed from instantaneous values into a mean and a 

fluctuating component, for example with the velocity vector, 

 ui x,t( ) =Ui x( ) + ui x,t( )  (2.35) 

respectively. 

Prior to deriving the averaged Navier-Stokes equations, it is necessary to note the effect 

of averaging combinations of quantities, that is correlations.  Since the average of any 

fluctuating component has to be zero, the product of two quantities is 

 = +( ) +( ) = + + + = + , (2.36) 

while the average of the product of three quantities becomes 

 = + + + + . (2.37) 

The simplifications that are not immediately obvious in Equations (2.36) and (2.37) 

were made by utilising the mathematical identity that an average of an average is itself 

(Wilcox, 1998). 

To average the Navier-Stokes equations, Equation (2.3), will be recast in conservative 

form using tensor notation and with the viscous stress tensor defined as 

 tij = 2 sij , (2.38) 

in which 

 sij =
1

2

ui
x j

+
uj

xi
 (2.39) 

is the strain-rate tensor.  Therefore, for an incompressible fluid, the continuity and the 

momentum equations, ignoring body forces, become 

 ui
xi

= 0  (2.40) 

and 

 
ui
t
+

x j
u jui( ) = p

xi
+

x j
2 s ji( ) , (2.41) 
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respectively.  Performing a time average of Equations (2.40) and (2.41) yields the time 

averaged continuity and momentum equations, namely 

 Ui

xi
= 0  (2.42) 

and 

 
Ui

t
+

x j
U jUi + uju i( ) = P

xi
+

x j
2 Sji( ) , (2.43) 

respectively*.  Equation (2.43) can be rewritten 

 
Ui

t
+ Uj

Ui

x j
=

P

xi
+

x j
2 Sji u jui( ) . (2.44) 

Equation (2.44) is generally referred to as the Reynolds-Averaged Navier-Stokes 

(RANS) equation and the quantity u ju i
 as the Reynolds stress tensor, from which 

the “specific Reynolds stress tensor” is defined as 

 ij = uiu j . (2.45) 

By inspection, the specific Reynolds stress tensor is symmetric and it therefore has only 

six unknowns rather than nine, which, when combined with the primitive variables (u, v, 

w and p) results in ten unknowns but only four fundamental equations to solve.  Hence, 

the system of equations is not closed, which forms the definition of the problem with 

Reynolds-averaging: that a method or model is required to solve for the specific 

Reynolds stress tensor, Equation (2.45).  There are two methods available to attempt to 

close the equation/variable imbalance, either: 

1. Develop additional equations to solve so that the equation/unknown system can 

be closed, or; 

2. Directly model the specific Reynolds stress tensor. 

                                                

* The process for averaging with either the spatial or ensemble methods is essentially the same and, 
therefore, will not be repeated. 
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2.6.2. The Closure Problem 

If the first option is attempted then, in an effort to develop additional equations, 

moments of the Navier-Stokes equations can be taken: that is the Navier-Stokes 

equations can be multiplied by a fluctuating quantity with the resultant expression time 

averaged to develop a differential equation for the Reynolds-stress tensor*.  To 

demonstrate this procedure a “Navier-Stokes operator” (Wilcox, 1998) is defined for the 

constant properties Navier-Stokes equation, such that 

 
 

ui( ) = ui
t
+ uk

ui
xk

+
p

xi

2ui
xk xk

 (2.46) 

and noting that from mass conservation and for incompressible flow sij = ui,kk  the 

viscous term can be simplified.  Using the new notation the Navier-Stokes equation 

becomes 

  ui( ) = 0 . (2.47) 

To derive an equation for the Reynolds stress tensor a time average can be performed 

such that 

 
 
ui u j( ) + uj ui( ) = 0 . (2.48) 

In the following section, subscript comma notation will be used to represent derivatives, 

for example 

 ui( )
,t

ui
t

. (2.49) 

Therefore, proceeding term by term: 

1. The unsteady term 

                                                

* The derivations presented in this section follow closely from that given by Wilcox (1998). 
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ui u j( )
,t
+ uj ui( )

,t
= ui U j + uj( )

,t
+ u j Ui + ui( )

,t

= uiU j ,t + uiu j ,y + u jUi,t + u jui,t

= uiu j ,y + u jui,t

= uiu j( )
t

= ij

t

 (2.50) 

2. The convective term 

 

uiuku j ,k + u jukui,k = ui Uk + uk( ) Uj + uj( )
,k
+ u j Uk + uk( ) Ui + ui( )

,k

= uiUku j ,k + uiuk U j + uj( )
,k
+ u jUkui,k + u juk Ui + ui( )

,k

= Uk uiu j( )
,k
+ u jukU j ,k + u jukUi,k + uk uiu j( )

,k

= Uk
ij

xk
ik

U j

xk
jk

Ui

xk
+

xk
uiu juk( )

(2.51) 

3. The pressure gradient term 

 

ui p, j + uj p,i = ui P + p( ), j + ui P + p( ),i
= ui p, j + uj p,i

= ui
p

x j
+ uj

p

xi

 (2.52) 

4. The viscous term 

 

uiu j ,kk + ujui,kk( ) = ui U j + uj( )
,kk

+ u j Ui + ui( )
,kk

= uiu j ,kk + u jui,kk

= uiu j ,k( )
,k
+ u jui,k( )

,k
2 ui,ku j ,k

= uiu j ,k( )
,kk

2 ui,ku j ,k

=
2

ij

xk xk
2

ui
xk

u j

xk

 (2.53) 

Collecting the four terms detailed above, the equation for the Reynolds stress tensor 

becomes 
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ij

t
+Uk

ij

xk
= ik

U j

xk
jk

Ui

xk
+ 2

ui
xk

u j

xk
+
ui p

x j
+
uj p

xi

+
xk

ij

xk
+ uiu juk

.

 (2.54) 

Hence, an additional six equations have been generated: being one for each unknown 

quantity in the Reynolds stress tensor.  However, an additional 22 unknown correlations 

have simultaneously been generated.  This illustrates the closure problem for turbulence 

modelling, which is that, due to the non-linearity in the Navier-Stokes equations, as 

higher moments of the Navier-Stokes equations are taken, additional correlations are 

generated at an increasing rate.  Therefore, as it is apparent that the equation/unknown 

system cannot be closed, that models must be developed instead to account for the 

unknown correlations. 

2.7. Turbulence Models for the Reynolds Averaged Formulation 

There are numerous models that have been designed to close the Reynolds stress 

equation that vary from simple algebraic models such as the Prandtl mixing length 

model (Prandtl, 1925) to complex multi-equation models such as the k- - 2 model 

proposed by Durbin (1995).  However, perhaps the most popular model of the RANS 

class is the k-  model (Wilcox, 1998), which was originally proposed by Jones and 

Launder (1972) and subsequently revised by Launder and Sharma (1974), or it’s 

derivatives such as the RNG k-  model (Yakhot et al., 1992).  As it is probably the most 

popular RANS model k-  model will be briefly described. 

The k-  model is a two-equation model in which additional transport equations are 

solved for two turbulence quantities (Pope, 2001), namely the turbulence kinetic energy, 

k , and the turbulent dissipation rate, .  However, despite the potential elegance of a 

solution derived from, apparently, rigorous transport equations Wilcox (1998) cautions 

that the CFD user must “…avoid modelling the differential equations rather than the 

physics of turbulence…”.  That is, with the k-  model as there are five empirical 

coefficients that must be adjusted for the particular simulation, it is entirely possible for 

any desired solution to be found with appropriate “tuning”. 

Nevertheless, the standard the k-  model consists of the turbulence kinetic energy 

equation 
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k

t
+Uj

k

x j
= ij

Ui

x j
+

x j
+ T

k

k

x j ;
 (2.55) 

the dissipation rate equation 

 
t
+Uj x j

= C 1 k ij

Ui

x j
C 2

2

k
+

x j
+ T

x j ;
 (2.56) 

and the kinematic eddy viscosity equation 

 T =
C k2

.
 (2.57) 

The five closure coefficients for the standard model are (Launder and Spalding, 1974): 

 C 1 = 1.44;  (2.58) 

 C 2 = 1.92;  (2.59) 

 C = 0.09;  (2.60) 

 k = 1.0  (2.61) 

and 

 = 1.3.  (2.62) 

The compromise for the significant reduction in computational expense with RANS 

models is a corresponding reduction in the flow physics that can be captured; or an 

average based solver can only produce average results.  For example, a flow that is 

known to contain separated flow regions and a fluctuating, separated wake zone will 

become steady, and thus provide no, or limited at best, data on the periodic shedding 

phenomena, but may still accurately compute the average drag on the body.  Therefore, 

in an attempt to increase the accuracy of RANS models but without the full 

computational cost of LES or DNS a number of hybrid techniques have been developed, 

which strive to combine the increased accuracy of LES methods with the speed of 

RANS models. 
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2.8. Hybrid Turbulence Models: Detached Eddy Simulation 

Methods of computing turbulent flows that allow for the application of alternate 

modelling techniques at differing wave numbers is commonly referred to as hybrid, or 

multi-resolution, turbulence modelling (Sagaut et al., 2006).  Popular multi-resolution 

methods include both multi-level large eddy simulation and detached eddy simulation 

(DES).  Detached eddy simulation is a method that applies both RANS and LES models 

in different flow regions.  A recent review of, and introduction to, scale separation 

methodologies has been published by Sagaut et al (2006) and the reader is referred to 

that work for more detail. 

DES is a hybrid turbulence model that uses RANS in the near wall region and LES in 

the bulk of the flow domain.  Because the near wall resolution requirements for RANS 

models are significantly smaller than LES, that is RANS models demand larger cells, 

using RANS models in the near wall region can significantly reduce the required cell 

count.  Simultaneously, the cells in the body of the domain where the majority of the 

flow energy is contained are computed by the LES solver, which allows for the majority 

of the flow physics to be captured and computed rather than averaged. 

One of the earliest DES models was proposed by Spalart et al (1997) and was based on 

the Spalart-Allmaras one equation RANS model (Spalart and Allmaras, 1992).  The 

original RANS model was modified with an alternate distance function to facilitate the 

transition between the RANS and LES regions. 

It has been noted that despite the promise of increased speed of DES, actual 

computations may not achieve these increases ('Detached Eddy Simulation,' 2009).  

That is, the increased computational cost associated with splitting the regions into either 

RANS or LES zones may outweigh the savings from the reductions from the RANS 

solver. 

2.9. ILES: The Alternative Used in this Research 

Of these methods discussed above all have their strengths and weaknesses but it is the 

present author’s opinion that LES provides the most promise because: 

1. LES does not suffer from the averages introduced with RANS. 
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2. It approaches the grid resolved “accuracy” of DNS. 

3. It does not suffer from the computational cost of DNS. 

The limitation of LES is, therefore, the quality of the sub-grid scale model that is 

chosen for the simulation.  Unfortunately, or perhaps fortunately depending on the 

position of the observer, it appears that a primary goal of the turbulence modelling 

community to develop “…more complex subgrid-scale models [and is therefore the] 

raison d’etre” of the turbulence modelling community (Grinstein et al., 2007).  The 

present author would argue that it is not always better to have a more complex model, 

which will almost certainly increase the computational requirements, for a potentially 

marginal, if any, increase in the accuracy of the solution.  Hence the appeal for simpler 

methods that utilise the properties of the spatial difference scheme that would be 

required for the grid resolved components to approximate the SGS contribution.  These 

are the so-called Monotone Integrated Large Eddy Simulations (MILES) or Implicit 

Large Eddy Simulations (ILES). 

Interest has been growing in disparate research groups, including our own based loosely 

at the University of Technology Sydney, Australia; the University of NSW, Australia 

and the University of Rome 1 la Sapienza, Italy, despite the entrenched resistance of the 

turbulence community.  Grinstein et al (2007) argue that this resistance is natural given 

the focus on developing new, more complex models rather than, relatively simple, 

numerical difference schemes.  The specific method used in the research described in 

this dissertation has been used with great success within our group (Horrocks, 2001) 

and is based on an implementation of a 2nd Order Upwind with limiter numerical 

scheme for the convective term in the momentum equation.  As this scheme includes a 

limiter which is designed to preserve the monotonicity of the solution (Barth and 

Jespersen, 1989) the present author would argue that it meets the definition of a MILES 

scheme (Boris, 2007).  It is, however, a lower order than most schemes (Boris, 2007) 

and it remains to be seen as to the applicability of the 2nd order scheme to the flow 

configurations proposed for this research.  A presentation of a numerical scheme would 

not be complete without a simultaneous introduction to the finite volume method used. 
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3. The Finite Volume Method 

3.1. Introduction and Conventions 

Because the mathematical models used to describe fluid flow that were presented and 

discussed in the previous chapter are non-linear, partial differential equations, there are 

generally no analytic solutions to realistic flows (Constantin and Foias, 1988, Drazin 

and Riley, 2006).  Therefore, solutions for flows that are of practical interest to 

engineers and scientists require the introduction numerical methods.  The first step in 

developing a numerical method is to transform the continuum equations developed 

above from partial differential equations to algebraic equations by an appropriate means 

of discretisation.  Then, the discretised equations must be solved with an appropriate 

solution algorithm.  Again, as both of these procedures are thoroughly documented in 

the available literature, for example Verseteeg and Malalasekera (1996) or Roache 

(1998a), the discussion in this chapter will be brief and limited to introducing the major 

methods used in this research.  

The general procedure for any finite volume based solver is to:  

1. Integrate the conservation equations over the finite volumes;  

2. Apply finite difference approximations to the integrated conservation equations, 

including the boundary conditions and; 

3. Solve the finite difference equations iteratively until the desired level of 

convergence is obtained; 

4. For unsteady problems repeat step three as required until the desired simulation 

time is reached. 

The integration step is usually only performed once at the development stage of a CFD 

code.  Once the integration has been performed, the finite difference approximations are 

applied at run time to the computational mesh that has been developed for the 

simulation. 

For each specific geometric configuration, a computational mesh must be developed to 

map the discretised equations to.  There is a number of requirements that must be met to 
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ensure a high “mesh quality” such as the resolution requirements in regions of high 

curvature (for both geometric curvature and flow gradients) and suitable expansion 

ratios from small cells to larger cells.  Therefore, the process of mesh generation is an 

optimisation process to balance the need for a highly accurate mesh, that is a high-

resolution grid with many cells, with the need to restrict computational resources.   

For this discussion of numerical methods, the standard CFD convention of using 

cardinal directions to identify faces will be used (Versteeg and Malalasekera, 1996), as 

illustrated in Figure 3-1.  That is, the sides facing the positive x-direction and the  
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Figure 3-1 – Definition sketch for a finite volume cell using standard cardinal 

directions to identify cell faces. 

negative x-direction are categorised as the east, e, and the west, w, faces respectively.  

Similarly, in the y-direction the sides are referred to as north (n) and south (s), while the 

z-direction faces are called top (t) and bottom (b).  The cardinal direction convention is 

further defined to differentiate between adjacent cells and faces with the use of 

uppercase and lowercase letters respectively.  The general cell-centre point under 

consideration is denoted as P. 
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In order to preform the finite volume integration the Navier Stokes equation, Equation 

(2.3) developed previously, is first recast into the form of a conservation law for the 

transport of a generic scalar  ð( )  in unsteady flow 

 

  
t
ð( )

1

+ uð( )
2

= ð( )
3

+ Sð
4

, (3.1) 

in which the numbered terms represent: (1) the unsteady term; (2) the convective term; 

(3) the diffusion term and (4) the source term.  Recasting the Navier-Stokes equation in 

this format allows for, with careful selection of the primary variable  ð( ) , the diffusion 

coefficient ( )  and the application of sources, a single finite difference equation to 

represent any transported property such as an individual component of momentum, 

mass or passive scalars.  For example, if  ð= u , =  and with zero sources then 

Equation (3.1) becomes 

 
t

u( ) + uu( ) = u( ) , (3.2) 

which is the x-direction momentum equation with no sources.  Further, if  ð= 1, = 0  

and with no sources Equation (3.1) becomes 

 
t
( ) + u( ) = 0  (3.3) 

which is the continuity equation for unsteady, compressible flow. 

Therefore, to develop a general method that is applicable to all flow types and variables 

a general method to discretise the four terms of Equation (3.1) must be developed.  This 

general method would proceed through the four steps listed above with the first task to 

integrate the continuum equations – Equation (3.1) – over both a suitably small control 

volume and, for an unsteady simulation, a short time increment. 

3.2. Integration of the General Conservation Equation 

The fundamental step of the finite volume method is the integration of the general 

transport equation over a control volume (Versteeg and Malalasekera, 1996), that is 

 
 t

ð( )d + uð( )d = ð( )d + Sðd . (3.4) 
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The volume integrals that contain divergence terms in Equation (3.4) are difficult to 

evaluate numerically compared to surface flux integrals.  Therefore, as the Gauss 

divergence theorem provides a link between divergence volume integrals and surface 

flux integrals, an application of Gauss’ theorem to the divergence terms in Equation 

(3.4) results in 

 
 t

ð( )d + n̂ uð( )
A

dA = n̂ ð( )
A

dA + Sðd  (3.5) 

in which n̂  is the outward pointing surface normal vector.  Then, for unsteady 

problems, Equation (3.5) must be also integrated over a small time step, t , 

 

 

t
ð( )d

t

t+ t

dt + n̂ uð( )
A

dA
t

t+ t

dt

= n̂ ð( )
A

dA
t

t+ t

dt + Sð d dt
t

t+ t

.

 (3.6) 

Equation (3.6) is the result of the integration of the general transport equation over both 

a control volume and a suitably small time step but is still a continuum equation.  It 

must therefore be transformed into a discrete equation by converting the integrals into 

summations. 

3.3. Discretisation of the General Conservation Equation 

3.3.1. The Surface Flux Integral Terms 

Numerically*, surface flux integrals are computed with the assumption that the variable 

value at the face acts uniformly over the same face.  For example, using the one-

dimensional control volume, shown in Figure 3-2, and the naming convention outlined 

in §3.1 the mass transferred through the east face of the element over a given time 

increment, t , 

 me = ueAe t  (3.7) 

in which ue  is the velocity at the east face and Ae  is the area of the east face. 

                                                

* For this and the next subsection the integration over time will be ignored to focus on a discussion of the 
spatial terms. 



 53 

P EW

w e

Nodal Points

Control Volume
Faces

δxwP δxPe

δxWP δxPE

δxwe

x

 
Figure 3-2 – Sketch of the nodes and faces used in a one-dimensional control 

volume, adapted from Versteeg and Malalasekera (1996). 

While it is a computationally trivial task to compute the face areas, the velocities – and 

all the other flow variables such as the pressure are stored in a “co-located cell-centred 

variable arrangement” (ESI CFD Inc., 2007b).  Therefore, the next step in the 

discretisation process is to develop suitable expressions to transfer the cell centred 

values to cell faces, where the surface flux integrals are computed.  From an inspection 

of the surface integrals in Equation (3.5) there are two quantities that must be moved 

from the cell centre: (1) a variable and (2) a gradient of a variable. 

With the variables, perhaps the simplest method to transfer a value from the cell centres 

to the intermediate cell face is to assume a linear distribution between the nodes, 

 e =
P + E

2
, (3.8) 

that is an average of the nodal values. 

The gradient term can be computed directly from first principles: that the slope is equal 

to the change in the variable divided by the distance over which the change takes place.  

Hence, the gradient at face e in Figure 3-2 would be evaluated as 

 
 
ð=
ðE ðP
xEP

. (3.9) 

This gradient is then assumed to act uniformly across the interval between the nodes 

and is therefore directly applicable at the east face. 
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Next, the surface integral itself is discretised into a summation over the faces of the cell.  

Continuing with the one-dimensional example, the summation is 

 
 
n ð( )dA

A

= ðA( )e ðA( )w  (3.10) 

in which the terms on the right hand side of the equation are to be further expanded 

using the rules discussed above.  This procedure is then repeated as required for further 

surface integral terms in Equation (3.5).  Of the spatial terms, a technique to evaluate 

the volume integrals needs to be developed. 

3.3.2. The Source and Volume Integral Terms 

The volume terms are evaluated by assuming that the cell-centred variables act over the 

entire cell volume.  Hence, the required integrations are reduced to a multiplication of 

the variable and the cell volume.  Continuing with the one-dimensional example from 

the volume integral term of Equation (3.5), term (1) becomes 

 
 
ðd = PðP cell . (3.11) 

As the source term in Equation (3.5) is also a volume integral it can be evaluated in a 

similar manner such that 

 
 
Sðd = S cell  (3.12) 

in which S  is the volume averaged source term.  However, as there are numerous cases 

where the source term is a function of the dependent variable (Versteeg and 

Malalasekera, 1996) it is convenient to approximate the source term in Equation (3.5) 

using a linear form 

  S cell = Su + SPðP  (3.13) 

in which both the Su  and SP  terms are assumed to be volume averaged values 

(Patankar, 1980, ESI CFD Inc., 2007b).  The Su  and SP  coefficients must be evaluated 

for each particular case and their specific implementation will not be discussed further, 

rather the interested reader is referred to the treatise by Patankar (1980) for a fuller 

discussion of source term linearisation.  At this point in the discussion of the finite 

volume method, all the terms have been discretised in space but the effect of the 
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integration over time has been ignored.  Therefore, suitable methods for computing the 

unsteady effects must be developed. 

3.3.3. The Unsteady Term and Time Integrals 

To discretise the unsteady term, term (1) in Equation (3.6), the order of the integration 

is reversed so that the time integral becomes the inner integral.  Then, it is necessary to 

assume that the value of the general variable at the next forward time step can be 

linearly projected in time as 

 
 
ðP=ðP

o+
ð

t

o

t  (3.14) 

in which the superscript, o , indicates the current time step with values of the variable at 

the forward time step not superscripted.  Equation (3.14) can then be re-arranged such 

that 

 
 

ð

t

o

=
ðP ðP

o

t
, (3.15) 

which, when substituted into the unsteady term of Equation (3.6), combined with the 

change of order of the integrals and an assumption that the cell centred variables act 

over the entire cell gives 

 

 

t
ð( )d

t

t+ t

dt =
ð

t
dt

t

t+ t

d

=
ð

t
t

t

t+ t

d

=
ð

t
t d

=
ðP ðP

o

t
t

= ðP ðP
o( ) .

 (3.16) 

A similar argument to that expressed in Equation (3.15) for the unsteady term can be 

used to develop expressions that describe the change over time for the nodal variables 

already discretised in the spatial terms, as discussed in §3.3.1 and §3.3.2.  However, to 

generalise these terms a blending factor,  X , that is defined for 
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  0 X 1  (3.17) 

will be introduced so that the general integral over time of a spatial variable becomes 

 

  

Ið = ðP dt
t

t+ t

= XðP 1 X( )ðPo t.

 (3.18) 

At this point suitable discretisation schemes have been developed for all the spatial 

terms and the effects of the unsteady term and integration over time have been 

accounted for.  The discretisations discussed that were designed to transfer the variables 

from cell centred to face centred values have assumed linear distributions of the 

adjacent cells.  Clearly there are other schemes not based on the assumption of linearity 

that could instead be used. 

3.4. Finite Difference Schemes 

3.4.1. Spatial and Temporal Schemes in CFD-ACE+ 

In the discussion of discretisation of the Navier-Stokes equations in §3.3, finite spatial 

differences have been implicitly used, for example the central difference in Equation 

(3.9), but their strengths, weaknesses or alternatives have not been discussed.  There are 

a number of discretisation schemes available but the discussion in this section will be 

limited to the specific schemes used in the research presented in this dissertation*. 

The specific discretisation of the diffusion term and the source term that was used in the 

work described herein is no different from that given in the general description given 

above in §3.3.  In contrast, there are some additions to the unsteady term over the 

method previously described.  The crux of this research lies with the MILES scheme 

implemented to discretise the convection term, which will be presented after the 

discretisation of the unsteady term. 

                                                

* For full details on additional numerical schemes the reader is referred to the treatises by Roache (1998a) 
or Chung (2002). 
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3.4.2. The Unsteady Term 

The unsteady term has already been discretised in §3.3.3 and this is the dominant 

scheme used in CFD-ACE+.  However, there are a number of temporal differencing 

schemes implemented within CFD-ACE+, which are based on varying the blending 

factor,  X , in Equation (3.18).  Three separate cases of X can be considered. 

Firstly, suppose that 

  X = 0  (3.19) 

then the time integration scheme is described as explicit because the forward in time 

values depend only on the known, explicit, values from the current time.  Conversely, 

when 

  X = 1 (3.20) 

the scheme is known as a “fully implicit”, or backward in time, scheme because the 

forward in time values can not be explicitly computed and iterative numerical methods 

must be used.  

For the final case where  

  0 < X < 1  (3.21) 

the time integration method is known as a semi-implicit scheme because it is neither 

fully implicit nor fully explicit.  However, there is a special case when 

  X = 0.5  (3.22) 

which is known as the Crank-Nicolson scheme (Crank and Nicolson, 1947). 

Although the value of X can be specified across the entire range of values defined by 

Equation (3.17) within CFD-ACE+ the developers have set the defaults to either a 

Crank-Nicolson scheme or fully implicit backward Euler scheme (ESI CFD Inc., 

2007a).  This decision appears to have been made because for both these schemes, and 

indeed for any time integration scheme with 

 
 

1

2
X 1 , (3.23) 
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the solution is unconditionally stable (Fletcher, 1991, Roache, 1998a) for all values of 

the time step size.  However, as noted by Roache (1998a) the accuracy of the backward 

Euler scheme is low with errors in the  

 O t, x2( )  (3.24) 

while the errors from the Crank-Nicolson scheme are in the  

 O t 2 , x2( ) . (3.25) 

Therefore, the Crank-Nicolson scheme, while still being unconditionally stable (for 

simple equations), has higher time accuracy than the fully implicit backward Euler 

scheme.  Roache (1998a) further notes a caveat to the unconditional stability of the 

Crank-Nicolson scheme: specifically that for large t , while remaining stable, the 

accuracy of the solution will be reduced to O t, x2( )  or worse. 

Finally, the forward Euler scheme is not available because although it has the same 

order of magnitude error as the backward Euler scheme – Equation (3.24) – it is 

conditionally stable dependent on the time step size.  That is, the forward Euler scheme 

is stable, according to Roache (1998a), if the Courant-Freidrichs-Lewy number 

(Courant et al., 1967), 

 
 
CFL

uc t

x
 (3.26) 

in which uc  is the velocity in the cell in question and is restricted to the range 

 CFL 1 (3.27) 

and 

 t
2

uc
2

 (3.28) 

in which 

 =
1

Re .
 (3.29) 

Therefore, if the CFL inequality is not met the solution is unstable and may result in 

unpredictable solutions. 



 59 

3.4.3. Convection Term 

Following the general procedure outlined above, the convection term is discretised as 

 

  

uð( ) = uði( )d

= n̂ u ði dA
A

= n̂i ui ði Ai
i=1

n faces

= Ciði
i=1

n faces

.

 (3.30) 

in which Ci  is the mass flux across the face i.  Therefore, the variable  ð  must be 

transferred from the cell centre to the face prior to being evaluated.  In the example 

above, the variable at the face was evaluated via an average of the two adjacent cell 

centred values.  An alternative to this method is to estimate the gradient of variable 

across the cell then, with the assumption that the gradient was constant across the entire 

cell, project from the known cell centred value to the face in question.  Barth and 

Jespersen (1989) developed such a method with an additional limiter to constrain the 

projected value such that it would remain within the certain bounds.  It is the Barth and 

Jespersen scheme that was used in this research and the discussion of the method 

necessarily follows closely with their original paper (Barth and Jespersen, 1989).  It 

should be noted that to reduce extensive repetition, Barth and Jaspersen (1989) may be 

referred to as B&J. 

Suppose that it is required to calculate the gradient across a general cell P that was 

located in a two-dimensional grid, as shown in Figure 3-3. 
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Figure 3-3 – Regular two-dimensional grid for the explanation of the Barth and 

Jespersen gradient estimation technique (Barth and Jespersen, 1989). 

To compute the gradient across the cell P, B&J noted that the Green theorem is 

 
  
ðdA = ðn̂d ŝ  (3.31) 

in which  is an arbitrary area and  is the path around that area.  Therefore, the cell 

averaged gradient can be computed from 

 
  
ðP=

1

A
ðn̂d ŝ . (3.32) 

As  is an arbitrary area both the “path and numerical quadrature” (Barth and 

Jespersen, 1989) must be chosen with care.  B&J therefore defined two requirements 

which must be met for any path: 

1. The gradient must be calculated exactly when there is a liner variation of the 

variable. 

2. The gradient must be defined for arbitrary meshes. 

Barth and Jespersen (1989) recommended the 

…centroid-centroid path tracing the convex hull of the neighbor [sic] 

set of all centroids that share a common vertex with face [P] and 

compute the gradient via the trapezoidal rule…” 
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that for the present two-dimensional example is the path 

 NW N NE E SE S SW W NW . (3.33) 

With the gradient computed the cell centred value could simply be projected to any 

point,  ð x, y( ) , including the face centred that is required, using 

  ð x, y( ) =ð xP , yP( ) + ðP r . (3.34) 

However, they further suggested that the gradient should be “limited” 

  ð x, y( ) =ð xP , yP( ) + P ðP r  (3.35) 

in which  

 0 1 . (3.36) 

Then  must be maximised but still conserve the monotonic principle that the 

“…values of a linearly reconstructed function must not exceed the maximum and 

minimum of neighboring [sic] centroid values (including the centroid value at P)…” 

(Barth and Jespersen, 1989).  With these constraints on  the calculation is relatively 

straight forward.  First it is necessary to define 

 
 
ðP
min= min ðP ,ðneighbours( )  (3.37) 

and 

 
 
ðP
max= max ðP ,ðneighbours( ) , (3.38) 

so that  

  ðP
min ð x, y( ) ðPmax . (3.39) 

Next, after it was noted that for all linear reconstructions the extrema would occur at the 

vertices, the value of the variable can be computed at each face, 

  ði=ð xi , yi( )  (3.40) 

in which  

  i = 1,2…,nvertices , (3.41) 

and then minima of P  in Equation (3.35) are computed from the vertices as 
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P =

min 1,
ðP

max ðP
ði ðP

if ði ðP> 0

max 1,
ðP

min ðP
ði ðP

if ði ðP< 0

1 if ði ðP= 0 .

 (3.42) 

Thus far the evaluation of the mass flux at the cell face, Ci , has been ignored but this 

will be remedied later in the discussion of the coupling of the velocity and the pressure 

fields. 

3.5. The General Finite Volume Equation 

As the continuum equations have been discretised in both the spatial and temporal 

domains in the preceding sections the individual terms must be brought together and 

combined in a form suitable for the numerical solver.  This condensed form, where like 

terms are collected with faces on the right hand side and cell centred on the left hand 

side, is referred to as the general finite volume equation (Patankar, 1980).  Further, the 

general equation can be arranged in a form that is considerably simpler to read than that 

obtained by expanding the rules described above.  That is, a coefficient summation 

convention can be implemented such that the notation reduces to (Patankar, 1980) 

 
 
aP SP( )ðP= afaceðface

faces

+ SU  (3.43) 

in which a is a general coefficient.  The coefficients identified with the subscript face 

depend on the neighbouring cells and are also known as link coefficients.  Although it is 

arguably not part of a discretisation process, the final step that will be discussed here is 

the application of boundary conditions. 

3.6. Boundary Conditions 

3.6.1. Application of Boundary Conditions 
Boundary conditions within CFD-ACE are all implemented as modifications to the 

source terms of the momentum equation, Equation (3.1), and these are internally 

classified as “Fixed Value Boundaries” (ESI CFD Inc., 2007b).  Wall boundaries present 

a particular problem in computing the source term coefficients in that the cell centre 
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velocity is usually computed from wall function approximations, either laminar or 

turbulent, rather than directly specified. Laminar wall functions fit the cell centre 

velocity based on an assumption of a linear increase in velocity from the wall. 

3.6.2. Fixed Value Boundaries 

Fixed value boundaries are those where the boundary condition, for example pressure or 

velocity, is fixed at a defined value.  However, to add confusion the “fixed” value may 

change over time as a prescribed rate – it is merely fixed, as far as the solver is 

concerned, for the immediate time step.  A two-dimensional control volume adjacent to 

a boundary, shown in Figure 3-4, will be considered for the discussion of fixed value 

boundaries. 

w

n
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s
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Figure 3-4 – Wall Adjacent Computational Cell Example Sketch 

The finite volume equation for the cell is defined as 

  aPðP= aeðe+anðn+asðs+S  (3.44) 

in which S  is a general source term and ai  are general source terms.  The west 

coefficient, aw , was set to zero and the effect of the boundary is transferred to a 

linearised source term, previously described in Equation (3.13), 

  S = SU + SPðP . (3.45) 

For fixed boundaries, the source terms in Equation (3.45) are redefined to include the 

wall term as 
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SU = SU + awðb
SP = SP aw

, (3.46) 

in which  ðb  becomes the value of the variable to be set at the west face of the cell due 

to the boundary.  The terms SU  and SP  are repeated in Equation (3.46) to allow for the 

application of sources in addition to the boundaries.  Special treatment is required for 

wall-bounded cells to compute the velocity sources via wall functions. 

3.6.3. Wall Functions 

Wall functions are used to provide an estimate of the velocity at a cell centre yP  from 

the wall, as shown in Figure 3-5.  To aid in the discussion of wall functions two non-

dimensional groups will be defined: (1) the non-dimensional wall velocity 

 
 
u+ U

u
, (3.47) 

in which 

 
 
u w  (3.48) 
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Figure 3-5 – Assumed Laminar Velocity Distribution at a Wall, Reproduced from 

Versteeg and Malalasekera (1996) 

and w  is the wall shear and (2) the non-dimensional wall distance 
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y+

u y
. (3.49) 

In laminar flows, the velocity in the vicinity of non-slip walls is assumed to be a linear 

function of the distance from the wall and the wall shear stress 

 w =
uP
yP

, (3.50) 

with the distances and velocities shown in Figure 3-5. 

The wall shear force is computed as 

 
Fs = wACell

=
uP
yP
ACell

 (3.51) 

in which ACell  is the wall area of the wall bounded cell.  The volume averaged source 

term for the u-momentum equation is then computed as 

 SP = yP
ACell . (3.52) 

With this description of the implementation of boundary conditions for the finite 

volume method, the discussion of the discretisation of the continuum equations is now 

complete.  However, it remains to discuss the implementation of an iterative solver that 

is at once robust, fast and has the numerical capability to solve the non-linear equations 

developed in the preceding sections. 

3.7. Coupling of the Velocity and Pressure Fields 

3.7.1. Continuity and Mass Conservation 

As noted by the developer of the CFD-ACE+ code (ESI CFD Inc., 2007b) the 

continuity equation requires special attention because it is a 1st order partial differential 

equation so that it cannot be written in the form of a general convection diffusion 

equation, as in Equation (3.43) for the momentum equations.  Suppose that the 

continuity equation, Equation (2.1), is rewritten in its most general form, 

 
 t

+ u( ) = m . (3.53) 
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Then, if the general finite volume method is followed, as discussed previously in this 

section, Equation (3.53) would be integrated and transformed to face centred values, 

where appropriate, to give 

 
 

o o

t
+ in̂i uiAface

i=1

n faces

= m . (3.54) 

As with the previous discussions, the cell centred variables need to be transformed to 

the face centred Equation (3.54) can be solved.  Unfortunately, linear interpolation 

would result in the velocity and pressure fields becoming decoupled, which can give 

rise to the checkerboard instability (Roache, 1998a, Chung, 2002).  Fortunately, 

numerical methods are available that can avoid the checkerboard effect with the method 

used herein originally proposed by Rhie and Chow (1983) and improved by Peri  et al 

(1988).  Detailed derivations of this method will not be given, instead the interested 

reader is encouraged to review the original papers. 

Now through the use of Peri ’s scheme (Peri  et al., 1988) the mass flux evaluation at 

the faces is complete.  It just remains to present the iterative solver that was used to 

solve the discretised momentum and continuity equations. 

3.7.2. SIMPLEC for Transient Problems 

The CFD-ACE+ solver used in the numerical investigations outlined in this dissertation 

is a SIMPLEC based code.  SIMPLEC, or Semi-Implicit Method for Pressure Linked 

Equations – Consistent, is a pressure corrector type algorithm and was proposed by Van 

Doormal and Raithby (1984) as an improvement of the SIMPLE algorithm of Patankar 

and Spalding (1972).  Although the algorithm will not be discussed in detail, the 

interested reader is referred to the original papers or an introductory text for more 

details. 

SIMPLEC employs a guess and correct approach shown as a block diagram in Figure 

3-6.  That is, the initial pressure field is guessed and the momentum equations solved 

using the initial pressure field.  A pressure correction equation is then solved and the  
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Figure 3-6 – Flow Diagram of the Transient SIMPLEC Algorithm 
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pressure and velocity fields adjusted using the correction factors.  Finally, any 

additional transport equations are solved and the variables are checked for iterative 

convergence.  This process is repeated for each time step until the maximum time is 

reached with the general algorithm. 

3.8. Fluid Properties 

For the entirety of this dissertation the fluids used will be, unless specifically noted 

otherwise, either air or water with both phases assumed to be isotropic and 

incompressible.  The physical properties of the water phase, specifically the density ( )  

and the kinematic viscosity ( ) , were assumed to be 1000 kg/m3  and 1×10 6  m2 /s , 

respectively.  Similarly, the properties of the air phase were fixed at = 1.16 kg/m3  and 

= 1.59 ×10 5  m2 /s .  For all the simulations with two phases, the coefficient of surface 

tension, , was set to 0.0725 N/m  with a fixed contact angle, for the meniscus, of 

76° . 

This chapter presented the numerical methods that will be used to solve the continuum 

equations introduced in §2.  However, the mathematical models and methods that can 

be used to deal with an interface between the two fluids, in this case the free surface, 

need to be discussed as it is a vital component of this research they must be presented. 
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4. Numerical Simulation of Free Surfaces  

4.1. Model Requirements  

The physics in and around the free surface are complex yet, as with a turbulence model, 

any free surface model must be as simple as possible while still having the capability to 

capture the requisite details.  Of the required physics, the primary requisite is to track 

the location of the free surface to a resolution of, at least, the size of a computational 

cell.  In addition to tracking the location of the free surface, and depending on the “size” 

of the problem surface tension effects may need to be included that are categorised by 

the Weber number, which is defined as 

 We =
uc
2lc , (4.1) 

in which  is the surface tension coefficient and lc  is a characteristic length.  If the 

Weber number is sufficiently small the curvature and surface tension effects must also 

be considered.  Further, when considering surface tension the contact angle of the 

meniscus must be modelled as a boundary condition.  Naturally, with a specification of 

the requirements of a numerical model capable of handling free surfaces there will be 

numerous methods to achieve these requirements. 

4.2. Numerical Models of Free Surfaces 

There are numerous types of mathematical models that attempt to compute the physics 

of free surface flows, which vary from the simplest grid based rigid lid approach to 

complex Volume of Fluid (VOF) models with advanced advection schemes including 

meshless smoothed particle hydrodynamic simulations.  Prior to a detailed discussion of 

the specific free surface models the reader should be reminded of the concept, most 

recently enunciated by Shepel and Smith (2009), that no model is perfect and 

compromises must be made with each model having its own strengths and weaknesses. 

The primary classification of numerical models that are designed to simulate free 

surface flows is the same as that within single fluid CFD simulations, namely whether a 

mesh is used or not: that is Eularian or Lagrangian approaches. 
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Fully meshless Lagrangian methods, such as smoothed particle hydrodynamics (SPH) 

and lattice-boltzman models*, have not been considered in this research because it is 

only recently that turbulence models have been investigated, let alone incorporated into, 

these models (Violeau and Issa, 2007).  For example the very recent studies of blunt 

objects falling into fluids using SPH described by Shao (2009) who implemented a 

Smagorinsky type LES model (Smagorinsky, 1963). 

In terms of the Eularian methods, Scardovelli and Zaleski (1999) proposed that grid 

based free surface models could be classified by the method used to grid the free surface 

boundary.  Broadly, this distinction split free surface numerical models into two distinct 

groups namely interface capturing and interface tracking models.  Despite the apparent 

simplicity of this arbitrary division, the boundary is somewhat blurred, especially in the 

light of recently described hybrid models, such as the Front Tracking/Level Set model 

proposed by Shin and Duric (2009). 

Interface capturing methods are based on the premise that the interface can be computed 

implicitly from the distribution of a scalar that is computed over a fixed grid system.  In 

this case a passive scalar, commonly identified by F, is introduced into the model and is 

subsequently advected as part of the iterative procedures.  The location of the interface 

can then be computed as part of the iterative cycle based on the distribution and 

gradients of F.  Common models of the interface capture type include the Volume of 

Fluid (VOF) model (Hirt and Nichols, 1981, Rider et al., 1995, Kothe et al., 1996), the 

Marker and Cell (MAC) model (Amsden and Harlow, 1970, Harlow and Welch, 1965, 

Harlow and Amsden, 1970) and the Level Set models (Sussman et al., 1994, Sethian, 

1999, Sussman and Fatemi, 1999, Losasso et al., 2006, Sussman et al., 2007). 

In contrast to the fixed meshes of the interface capture methods, interface tracking 

models explicitly track the position of the free surface, either by re-meshing the grid at 

each time step or by introducing tracer particles distributed across the interface.  

Therefore, as the interface is tracked no reconstruction step is needed.  However, re-

griding the computational domain at each time step can be very computationally 

                                                

* Technically with lattice-boltzmann models the fluid particles are constrained to a “lattice” that can be 
considered as a mesh.  However, as the fundamental consideration is a fluid particle rather than a control 
volume (Buick, 1997) LB models have been considered as particle based Lagrangian methods for this 
thesis. 
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expensive.  An example of the re-meshing procedure is shown diagrammatically in 

Figure 4-1 where a number of structured cells have been cut by the interface and will be 

re-grided into unstructured cells along the interface boundary.  Some interface tracking 

models contain elements of both interface tracking and capturing methods and, as such, 

could be classified as hybrid models, for example single, value height functions (Hirt et 

al., 1975) and particle finite element methods (Tang et al., 2008). 

Air phase

Water phase

Interface

Re-meshed cells

Background mesh

 
Figure 4-1 – Schematic of a selection of cells that are cut by an interface that would 

in turn need to be re-meshed with an interface tracking scheme (Bai et al., 2009). 

Interface tracking methods have a major advantage over interface capturing methods in 

that the location of the interface is accurately prescribed by the grid (Scardovelli and 

Zaleski, 1999), which allows the boundary conditions to be specified exactly rather than 

being smeared or redistributed (Bai et al., 2009).  However, this formulation leads 

directly to the major limitation of interface tracking methods: that the computational 

grid must be re-meshed at each time step to the new interface location, which for large 

or complex topologies is a difficult, computationally intensive step.  As an extension of 

the computational cost problem the topological complexity of the interface can be 

limited with interface tracking methods as the re-meshing algorithm cannot cope with 

highly deformed and complex surfaces.  Recent research into interface tracking 

methods, for example the Level Contour Reconstruction Model (Shin and Juric, 2002, 

Shin and Juric, 2009), sought to reduce the computational complexity with limited 

results: re-meshing the interface grid at each time step remains computationally 

prohibitive. 
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Interface capturing methods are generally superior to interface tracking methods due to 

their conceptual and programmatic simplicity (Scardovelli and Zaleski, 1999).  That is, 

interface capturing algorithms can generally handle complex interface topologies, are 

programmatically simpler and computationally cheaper than alternate interface tracking 

methods (Hirt and Nichols, 1981, Rider et al., 1995, Scardovelli and Zaleski, 1999, Bai 

et al., 2009).  However, despite the attraction of interface capturing methods the 

computational cost of the grid re-meshing has been replaced with an alternate, albeit 

reduced, CPU cost to compute the shape of the interface across the fixed grid (Bai et al., 

2009).  Further, as noted by the original proponents, the interface, and hence the fluid 

properties in the region of the boundary, can become smeared across a number of 

adjacent cells (Hirt and Nichols, 1981), as shown in Figure 4-2.  Attempts to reduce this 

 

 
Figure 4-2 – Inclined free surface showing smearing of the interface due to the 

interface capturing method used in VOF. 

smearing by reducing the cell size and the time step can, in some cases significantly, 

increase the computational requirements (Bai et al., 2009).  For example if the grid is 

too large in the region of the free surface the discretisation errors can become large 

enough that “spurious currents”, or unphysical flow features, develop (Scardovelli and 
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Zaleski, 1999).  Further, the time discretisation scheme used to advect the interface is of 

critical importance (Hirt and Nichols, 1981) with higher order schemes a requirement 

(Rider et al., 1995, Rider and Kothe, 1998 ). 

Due to the reduced computational complexity and the ability to handle complex 

topologies, interface capturing is an appropriate compromise.  In addition to the usual 

CFD constraint of grid care, and as noted above, extra care must be taken with the 

selection and implementation of the advection scheme  

Therefore, the Volume of Fluid (VOF) model was chosen for the work described in this 

dissertation because it is one of the most studied and simplest of the interface capturing 

models.  In addition to the theoretical advantages of the VOF formulation, our research 

group has extensive experience with this model, for example Chen et al (1999) and 

Gaston et al (2002).  The VOF model must then be presented for critical examination by 

the reader. 

4.3. The Volume of Fluid Model 

There are two major components in the application of the volume of fluid model* (Hirt 

and Nichols, 1981): 

1. The distribution of the two fluids. 

2. The reconstruction of the shape of the interface to evaluate the effects of surface 

tension. 

The distribution of the two fluid phases is tracked via the spread of a passive scalar (F) 

that is a real number defined over the range 

 0 F 1  (4.2) 

in which F = 0  and F = 1  represents either 100% of fluid one or two, respectively.  It 

follows then that computational cells that have a non-integer value of F must contain an 

interface. 

The transport of F is computed by introducing an additional passive transport equation 

                                                

* Please note that the term “Volume of Fluid” may be abbreviated to the VOF acronym. 



 74 

 
F

t
+ uF = 0 . (4.3) 

Equation (4.3) must be solved in conjunction with the Navier-Stokes equations because 

the local value of F is used to determine the cell fluid properties.  For example, if  ð  is 

defined as a general fluid property of both fluids, such as the density, then the volume-

averaged value is evaluated from 

  ðcell= Fð2+ 1 F( )ð1 . (4.4) 

Hence, the mixture dependant parameters must be fed back into the Navier-Stokes 

equation for the next iterative cycle.  While the transport of the two fluids is 

accomplished through the action of Equation (4.3) this equation contains no information 

about either the location of the free surface within the cell or the orientation of the free 

surface.  The surface orientation must be reconstructed from the distribution of F within 

the computational domain. 

4.4. The PLIC Method for Surface Reconstruction 

4.4.1. Overview of the PLIC Method 

The Piecewise Linear Interface Construction (PLIC) method is a surface-tracking 

algorithm that computes the volume flux components geometrically (Kothe et al., 

1996).  With PLIC methods the interface is locally described in each cell as either a 

plane (in 3D) or a straight line (in 2D), as sketched in Figure 4-3 for two-dimensions.  

The general expression of the plane, or line, is expressed in vector notation as 

 x n̂ csurf = 0 , (4.5) 

in which csurf  is the interface coefficient that must be computed, n̂  is the surface normal 

vector and x  is an arbitrary point on the surface.  The interface constant is a real 

number defined over the range 

 < csurf < , (4.6) 

while the surface normal vector is defined according to the gradient of the volume 

fraction scalar 
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 n̂ =
F

F .
 (4.7) 

0.000 0.000 0.000 0.000

0.943 0.576 0.029 0.000

1.000 1.000 0.576 0.000

1.000 1.000 0.943 0.000  

Figure 4-3 – Reconstruction of a circular arc using the PLIC approximation, 

numbers are cell volume fractions (Kothe et al., 1996) 

By convention the directions of “in front of” and “behind” the interface are based on the 

interface normal with the positive direction being in front and vice versa (Kothe et al., 

1996).  This then allows the cell to be divided into three regions, for a general point, x0 , 

 xo n̂ csurf

< 0,

= 0,

> 0,

if xo  is behind the interface

if xo  is on the interface

if xo  is in front of the interface.

 (4.8) 

With these conventions the solution process for VOF calculations follows from the 

basic template provided by Kothe et al (1996), namely to: 

1. Compute the interface normal, n , from the volume fraction distribution; 

2. Detect interface cells; 

3. Reconstruct the interface; 

4. Compute the volume fluxes in interface cells by truncating the total volume flux 

with the interface; 

5. Advance the volumes in time; 
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6. Apply a bounds check to restrict volume fractions to the limit specified by 

Equation (4.2). 

4.4.2. Computation of Truncation Volumes 

The key step in using the VOF model is the reconstruction of the interface, which 

requires an efficient method to calculate the truncation volume (Kothe et al., 1996) that 

are, in turn, a function of csurf .  Because there are no explicit solutions to the truncation 

volume calculation, efficient iterative methods must be employed*. 

As the gradient of the free surface and the fractional volume of the phases k( )  are 

directly supplied by the solver an iterative approach must used to compute the location 

of the free surface such that 

 k = cut = F cell . (4.9) 

On most two- and three-dimensional meshes the truncation volume is a non-linear 

function of csurf  and must be solved iteratively.  Therefore, in a manner reminiscent of 

the limiter computations of the gradient discussed in §3.4.3, the range of csurf  can be 

limited by looping over the cell vertices and computing a set of bounds for csurf .  With 

these bounds established iterative methods must be used to solve for csurf  and Kothe et 

al (1996) recommend the Brent solver over the Newton method because the Brent 

method does not directly evaluate the gradient, and is therefore generally quicker than 

Newton’s method. 

For example, the truncation volume shown in Figure 4-4, behind the interface can be 

computed using the line integral, 

 Axy =
1

2
xiyi+1 xi+1yi( )

i=1

n

, (4.10) 

over the path 

 1 5 6 4 1. (4.11) 
                                                

* The derivations presented for the remainder of this section rely heavily on the publications by Rider et al 
(1995), Kothe et al (1996) and Rider and Kothe (1998). 
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n̂

1 5 2

34 6
 

Figure 4-4 – Two-dimensional cell for a sample truncation volume computation. 

Clearly, the position of the line 56 is unknown in advance, whereas the area it must 

enclose is.  Therefore, csurf  is iteratively adjusted to evaluate the two-dimensional 

equivalent of Equation (4.9). 

The extension to 3D is more complicated but can be simplified by noting that 

 = d =
1

3
xd =

1

3
x ncsurf( )d  (4.12) 

(Zemach, Unpublished Manuscript).  Converting the volume integral in Equation (4.12) 

to a surface integral and confining the surface integral to only the portions behind the 

plane gives 

 TR =
1

3
x ncsurf( ) dAf x ncsurf( ) dAp , (4.13) 

where dAf  and dAp  are elemental areas on the faces and plane respectively.  As the dot 

product in the plane integral is zero Equation (4.13) reduces to 

 TR =
1

3 f ,TR
f

, (4.14) 

where 

 f ,TR = x ncsurf( ) dA . (4.15) 
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4.5. Surface Tension and Contact Angles 

4.5.1. Surface Tension 

The method used to compute the surface tension forces is a three-step process 

specifically (ESI CFD Inc., 2007a): 

1. Find the fluid-fluid interface in each cell. 

2. Compute the surface normal vector to the interface in each cell 

3. Integrate over the surface to find a volume averaged force 

As steps (1) and (2) must already be performed as part of the surface reconstruction of 

the PLIC method, step (3) is the only additional step required.  The volume averaged 

total force is equal to the integral of the tangential forces along the faces of the cell 

 pds = fst dx , (4.16) 

in which the tangential forces due to surface tension are defined as 

 Fst = n ×
dx
dx

. (4.17) 

As above in §4.4, n  is the surface normal vector computed as 

 n = F  (4.18) 

however, x  is the cell edge vector.  Substituting Equation (4.17) into Equation (4.16) 

gives 

 pds = n × dx , (4.19) 

which results in a volume averaged force expressed in terms of the fluid boundaries.  

These fluid boundaries have been computed via the surface reconstruction algorithm 

discussed above.  This volume-averaged force can then be included as a source term 

directly in the momentum equations. 

4.5.2. Wall Contact Angle 

The wall contact angle is calculated explicitly as either a fixed value or a real valued 

function of the wall parallel velocity (ESI CFD Inc., 2007a).  Once the contact angle has 
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been evaluated, its effect is imposed on the surface tension computations via the wall 

boundary source terms.  As the evaluation of the contact angle is computed after the 

curvature and associated momentum source terms have been computed these source 

terms do not explicitly account for the presence of the wall.  Therefore, the boundary 

condition is imposed by rotating the surface momentum source terms in the contact cell 

so that the computed force vector, Equation (4.19), is aligned to the interface normal 

(ESI CFD Inc., 2007a). For contact cells the surface normal is computed as 

 n = nw cos + tw sin , (4.20) 

in which nw  and tw  are the unit wall and tangent vectors, respectively, and  is the 

computed contact angle, as sketched in Figure 4-5. 

Wall
Fluid 1

Fluid 0

Contact
Point

θeval

θ
xw nw

n
tw

 
Figure 4-5 – Sketch of Contact Angle and Wall Vectors (ESI CFD Inc., 2007a). 

The presentation of the numerical methods that will be employed in this research is now 

complete and, therefore, the discussion can turn to the numerical tests.  As previously 

mentioned in §1 the validation process for this novel MILES solver will begin from the 

simplest, but still realistic configuration, of a right square cylinder in cross flow.  After 

which attention can be turned to the two-phase simulations of right circular cylinder. 
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5. Single Phase Validation: Configuration and Flow 

Field 

5.1. Introduction  

The geometric configuration used in the single-phase validation component of this 

research was based on the extensively studied test case of a right square cylinder 

mounted through the cross flow in a water tunnel, shown in Figure 5-1.  The Reynolds 

number for this configuration is defined as 

 Red =
U d

 (5.1) 

in which U  and d represented the average cross sectional velocity in the working 

section upstream of the cylinder and side length of the cylinder, respectively, was set to 

22 ×103 . 
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Figure 5-1 – Sketch of the square cylinder in a duct configuration with the 

principle coordinate axes and naming scheme identified. 

Despite most of the details of the experimental conditions having been published by 

Lyn and Rodi (1994) and Lyn et al (1995), the majority of the previous numerical 

simulations utilised a number of simplifications designed to reduce the spatial extent of 

the computational domains that therefore also reduced the computational requirements.  

Therefore, two distinct geometric configurations were investigated in the research that 

formed the basis of this dissertation.  The first configuration was envisioned to 

reproduce the simplified configuration generally used in the published literature, while 



 82 

the second geometry was intended to represent the conditions of the actual, physical 

water tunnel.  For the remainder of this dissertation these two configurations will be 

referred to as the spanwise periodic and water tunnel simulations, respectively. 

The differences between the spanwise periodic simulations and the physical water 

tunnel appear to have occurred following their use as a test case in a workshop held in 

1995 as described by Rodi et al (1997).  Specifically the approximations introduced 

were: 

1. that the length of the cylinder in the spanwise direction was reduced from 9.75d 

to 4d; 

2. that the spanwise tunnel non-slip walls were replaced by periodic boundary 

conditions; 

3. that the lateral (top and bottom) boundaries were extended to y = 314 mm  

from y = 280 mm  in the physical water tunnel and were set as zero friction 

walls; 

4. that the outlet boundary was to be located at least 14d downstream of the 

downstream face of the cylinder; 

5. the inlet boundary was to be located at least 4.5d upstream of the upstream face 

of the cylinder. 

Whilst the geometric configuration of the periodic models was specified, as discussed 

above, the layout of the mesh within the computational domain was left to the 

participants.  Therefore, to evaluate the effect of mesh size and layout the present author 

investigated a number of two-dimensional tests cases prior to developing the three-

dimensional meshes. 

5.2. Preliminary Two-Dimensional Investigations 

Two, two-dimensional parameter studies, were undertaken as part of this preliminary 

study* that were designed to investigate: (1) the effect of varying the length to the outlet 

                                                

* The preliminary investigations are fully described in Appendix C, therefore only a brief discussion of 
the tests conducted, results obtained and conclusions drawn will be presented within this section. 
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boundary, L, and (2) the effect of changing the size of the cell adjacent to the 

cylinder, F, shown in Figure 5-2 and Figure 5-3, respectively.   

296

29
4

29
4

Variable

40 x: streamwise

y: lateral

Length to the Outlet, L

Flow

 
Figure 5-2 – Diagram of the two-dimensional geometry used as the basis for the 

preliminary tests. 

Wall normal
cell length, F

Cylinder

Example section
of adjacent grid

 
Figure 5-3 – Sketch of the definition of the wall normal cell length. 

For the L parameter study, L was varied over 

  160 mm L 1600 mm  (5.2) 

in uniform 160 mm increments while F was tested through 

  50 m F 5 mm  (5.3) 

in non-uniform increments. 

The results from both parametric studies were similar in that there was a region in the 

respective parameter spaces, namely  F 1 mm  and  L 400 mm , where the simulated 
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flow field was independent of changes to the parameter.  Further, the simulated flow 

fields over this range were “acceptable”, subject to the caveats that will be discussed 

below.  Conversely, the flow fields and results from the simulations outside these 

parameter spaces, that is  F > 1 mm  and  L < 400 mm , resulted in unphysical and, 

hence, unacceptable flow fields and results.  These bounds were identified through the 

appraisal of three criteria specifically defined to compare the results namely, a visual 

inspection of the flow field, a visual examination of CD t( )  and CL t( )  and an 

evaluation of the statistical properties of the force coefficients, which will be presented 

in order. 

The simulated flow field from the majority of the simulations was characterised by a 

von Kármán vortex street.  However, the resultant vortex street from the present 

simulations was observed to be irregular and contain large, high-speed blobs of fluid 

that were ejected laterally from the wake, as shown in Figure 5-4.  Because these lateral 

fluid ejections have not been reported elsewhere, for example see the uniform yet 

periodic results of Johansen, Wu and Shyy (2004) as shown in Figure 5-5, and that they 

were observed in 15 of the 16 present simulations they were deemed to be an unphysical 

manifestation of the underlying assumptions of two-dimensional flow. 

 
Figure 5-4 – Image of the velocity magnitude showing a high-speed event that was 

subsequently ejected out of the wake towards the top wall. 
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Figure 5-5 – Velocity magnitude visualisation of a von Kármán vortex street 

behind a square cylinder, reproduced from Johansen, Wu and Shyy (2004). 

The remaining simulation where a von Kármán vortex street was not observed was the 

 F = 5 mm  simulation.  In this simulation, the resolution of the boundary layer was so 

poor, that is F was so large, that shedding could not develop, let alone compute the 

detail required to resolve recirculation zones, as shown in Figure 5-6. 

 
Figure 5-6 – Comparison of the resolved flow features in the F=5mm (a) and the 

F=50 m (b) simulations with the flow visualised by the velocity magnitude and 

instantaneous streamlines to indicate the recirculation zones. 

The effective elimination of the vortex street as F was increased was also observed in 

the plot of CD t( )  in which the values of CD t( )  from the  F = 5 mm  simulation are 
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simultaneously smoother with the amplitudes of the fluctuations reduced compared to 

the results from the shorter F simulations, as shown in Figure 5-6.  For example, the 

“smoothness” is particularly visible in the development time, roughly for a simulation 

time of t 9 s  with the virtual elimination of small scale shedding in the  F = 5 mm  

simulation. 
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Figure 5-7 – Drag coefficients as a function of time for F=5mm and F=50 m. 

Given that the flow field from the two-dimensional simulations is unphysical, the 

present author questioned what the real value of these two-dimensional simulations 

was?  In an attempt to answer this question it was noted that the majority of papers 

surveyed by the author that reported results on the two-dimensional flow around a 

square cylinder at Red = 22 ×10
3 , only average flow fields and statistical 

representations of the force coefficients were presented.  Therefore, as no average flow 

fields were computed in these parametric studies the distributions of the force 

coefficients were examined. 

The distributions were computed and examined with the result that the distribution of 

CL  provided the clearest indicator of the effect of changing L and F, as shown in Figure 

5-8 and Figure 5-9, respectively.  As alluded to above with the comparably little 
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Figure 5-8 – Probability distribution function of the lift coefficients computed 

across the simulation time interval of 10  t  100 s from the ten L simulations. 
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Figure 5-9 – Probability distribution functions of the lift coefficients computed 

across the simulation time interval 10  t  100 s from the seven F simulations. 
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discussion there was no strong effect of L on CL , as shown in Figure 5-8.  It could be 

argued that the distribution of CL  for  L 400 mm , or when non-dimensionalised 10d, 

is slightly more peaky than the remaining simulations of L. 

In contrast to the results from the simulations of L, the distributions of CL  from the 

simulations of F are markedly peaky for  F > 1 mm .  Both sets of results support the 

observations of the flow field discussed first in that there are marked changes in the 

flow either side of the respective critical points. 

There are several conclusions from these preliminary investigations concerning the 

applicability of two-dimensional studies and the size and layout of the computational 

domain.  With respect to the applicability of the assumptions of two-dimensionality to 

the modelling of a square cylinder, the present author has concluded that two-

dimensional methods are not generally applicable to this configuration for accurate 

simulation.  However, despite the unphysical flow field, distinct trends were observed 

in the coefficients that should transfer to the three-dimensional models.  Specifically the 

length from the downstream cylinder face to the outlet boundary should be longer than 

400mm and that the wall normal cell length adjacent to the cylinder face should be 

shorter than 500 m. 

With these conclusions, which are more fully outlined together with detailed results in 

Appendix C, the next section will present the three-dimensional models that were 

developed for the investigations set out in this dissertation. 

5.3. Configuration of the Three-Dimensional Simulations 

5.3.1. Geometry and Computational Mesh 

The three-dimensional computational domains that were used in the present work were 

designed to firstly include the recommendations from the preliminary studies.  

Secondly, the domains were intended to represent either the physical water tunnel used 

by Lyn and Rodi or to, at least, meet the specifications of the two LES workshops 

described above.  Therefore, the inlet boundary was located at x = 316 mm  while the 

outlet boundary was located at x = 652 mm  with d = 40 mm , as shown in Figure 5-10.  

The lateral and spanwise boundaries were set to match the specific configuration, that is 

either the spanwise periodic or water tunnel configuration and are shown in Figure 5-10. 



  89 

Top View

Section A−A

x: streamwise

z: spanwise

x: streamwise

y: lateral

A A
16

0

39
0

968

296 40 632

26
0

26
0

29
4

40
29

4

O
utlet

Water tunnel
Spanwise periodic

Simulation Boundaries

Periodic
Boundaries

Flow

Flow

Non-Slip
Walls

Non-Slip Walls

Non-Slip Wall

OutletsInlets

Outlets

Zero Friction Wall

Zero Friction Wall

Inlets

Non-Slip
Wall

 
Figure 5-10 – Comparative diagram of the geometry of the spanwise periodic and 

water tunnel configurations showing the cylinder centred coordinate origin. 

In addition to the meshes based on the spanwise periodic assumptions being close to 

those of published simulations, they were also designed for a mesh refinement study to 

be undertaken.  Therefore, the computational volume was constructed with a common 

domain and edge layout as sketched in Figure 5-11*.  Each of the four computational 

domains was composed of structured, hexahedral cells. 

                                                

* The edges that are not specifically labelled in Figure 5-11 are identical to their corresponding labelled 
edge via block mirroring, that is the opposite edges of a given block are the same. 
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From this common framework for the periodic simulations, three different resolution 

grids were developed, herein referred to as the Low, Medium and High Resolution or 

LR, MR and HR cases, respectively.  One further mesh, based on a modification of the 

medium resolution spanwise periodic configuration, was designed to represent the water 

tunnel geometry and is abbreviated as the WT simulation. 
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Figure 5-11 – Grid and domain layout for the right square cylinder models. 

To minimise the cell count across all the computational meshes while still maintaining 

the accuracy of the solution, a non-uniform mesh with two zones of refinement was 

constructed.  The first zone of refinement was close to the cylinder and was designed to 

capture the small-scale wall effects while the second zone of refinement was 

constructed within the predicted wake zone to ensure a sufficiently high resolution to 

capture the Kármán vortex street present behind bluff body (Nakamura, 1993).  Outside 

these refined regions, the cells were kept at a constant but larger size.  The nodal 

spacing along edges with non-uniform nodal spaces was adjusted using a hyperbolic 

tangent function defined by Vinokur (1980, 1983).  Briefly, as the spacing function is 

fully detailed in Appendix B, the location of the nodes along a given edge were 

computed from a non-dimensional spacing function 

 
 
s( ) = Q( )

A + 1 A( )Q( )  (5.4) 

in which  
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Q( ) = 1
2
1+

tanh
n 1

1
2

tanh
2

. (5.5) 

where  is an integer index vector defined for 

  = 0,1,2,…,n 3,n 2,n 1 . (5.6) 

The stretching factor, , in Equation (5.5) is defined from the implicit relation 

 
sinh( ) = B . (5.7) 

which must be solved iteratively.  The constants A and B depend solely on the size of 

the spacing between the end nodes that is 

 A =
send
sstart

 (5.8) 

and 

 B =
1

n sstart send
. (5.9) 

Therefore, from these equations it is clear that there are three parameters that the user 

must specify, namely n, sstart  and end , which for the spanwise periodic meshes is 

listed in Table 5-1 while the specifications for the water tunnel mesh is listed in Table 

5-2.  The application of these node parameters resulted in four meshes with 468 550, 

993 792, 1 492 128 and 2 496 880 cells for the low, medium, high and water tunnel 

meshes, respectively, as shown in Figure 5-12.  Within Table 5-1 and Table 5-2 the 

edge ends are labelled according to the node schema in Figure 5-11. 
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Table 5-1 – Edge details for the spanwise periodic meshes with Dist = Distribution 

type; HT = Hyperbolic tangent distribution; U = Uniform node distribution. 

Low Resolution Medium 
Resolution 

High Resolution Edge End 

Spacing 

(mm) 

Nodes Spacing 
(mm) 

Nodes Spacing 
(mm) 

Nodes 

Dist 

ab, fg Symmetrical 0.32 26 0.32 33 0.21 37 HT 

b, f 0.32 0.32 0.21 
bc, ef 

c, e 10.00 

21 

6.29 

29 

6.90 

30 HT 

- 
de 

- 
10.30 22 6.35 35 6.75 32 U 

- 
cd 

- 
10.20 22 6.29 35 6.90 32 U 

g 0.32 0.32 0.21 
gh 

h 6.40 
30 

4.00 
41 

4.20 
50 HT 

- 
hi 

- 
6.40 87 4.00 139 4.28 130 U 

- 
z-dir 

- 
6.40 26 6.67 25 4.40 37 U 
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Table 5-2 – Edge details for the water tunnel mesh. 

Edge End Spacing (mm) Nodes Distribution 

ab, fg Symmetrical 0.32 33 HT 

b, f 0.32 
bc, ef 

c, e 6.40 
29 HT 

- 
de 

- 
6.35 35 U 

- 
cd 

- 
6.43 35 U 

g 0.32 
gh 

h 4.00 
100 HT 

- 
hi 

- 
4.00 109 U 

- 
z-dir 

- 
6.61 60 U 
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Figure 5-12 – Total cell count for the four square cylinder models and their size 

relative to the low resolution mesh. 

These three parameters – n, sstart  and end  – were selected so that there was a smooth 

transition from the small cells adjacent to the cylinder wall to the large cells with no, or 

at least very small, discontinuities as shown in Figure 5-13 and Figure 5-14.  
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Figure 5-13 – Lateral cell size as a function of y coordinate for the meshes. 

−0.4 −0.2 0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

X Coordinate (m)

G
rid

 S
iz

e 
(m

)

 

 

Low Resolution
Medium Resolution
High Resolution
Water Tunnel

 
Figure 5-14 – Streamwise cell size as a function of x coordinate for the meshes. 

As already mentioned above, the water tunnel mesh was based on the MR spanwise 

periodic mesh.  However, due to the combination of the slightly reduced lateral domain 
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and the greatly extended spanwise domain in the water tunnel mesh, the number of cells 

in the near wake was reduced in conjunction with an increase in the spanwise direction. 

5.3.2. Boundary and Initial Conditions 

The inlet boundary condition was specified with a constant velocity, which was 

computed from the Reynolds number, of U = 0.535 m/s .  No allowance was made for 

the free stream turbulence fluctuations or the development of the flow along the full 

water tunnel duct prior to the computational inlet.  All the faces of the cylinder were 

defined as non-slip, impermeable walls.  The spanwise, z-direction, boundary conditions 

were either defined as periodic, creating an infinite length cylinder, or non-slip, 

impermeable walls, thereby creating an approximation of the laboratory water tunnel.  

The outlet boundary was set as a constant pressure boundary.  The lateral boundaries, in 

the y-direction, were defined as either zero friction walls for the spanwise periodic 

simulations or as non-slip, impermeable walls for the water tunnel simulation.  For 

reference, these boundaries are shown on Figure 5-10 together with the dimensions of 

the models. 

For CFD simulations of bluff body geometries and their associated shedding flows, 

there can be a significant computational requirement to develop from the constant input 

state into the unsteady, shedding regime.  Therefore, to reduce the computational time 

of the start up transient, an artificial disturbance was introduced by starting the transient 

calculations as if the flow were steady.  Then the solution from the un-converged steady 

state simulation was used as a “better” approximation of the initial conditions for the 

unsteady simulations. 

5.3.3. Solver Parameters 

All the unsteady runs were computed with a time step size of 1ms.  Further, while 

balancing the use of computational resources, including CPU time and storage 

allocation, the models were allowed to run for a minimum of 40s of simulated time, that 

is 40 000 time steps.  The convergence of the solver, detailed in Appendix A, was 

controlled by a maximum of 25 iterations, four orders of magnitude reduction in the 

residuals and a limit of the minimum residuals to 1×10-18.  A conjugate gradient solver 

with preconditioner was set for the velocity solver while and adaptive multigrid solver 

was used for the pressure corrector. 
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5.4. Convergence of the Solver During the Simulations 

As with all numerical simulations, including the single-phase development studies 

summarised above and detailed in Appendix C, the level of numerical convergence of 

the solver must be examined prior to a detailed description of the computed solutions.  

All four of the simulations described in this chapter converged within the specified 

maximum of niter = 25  as shown in Figure 5-15. 
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Figure 5-15 – Cumulative distribution functions of niter for the four simulations. 

Therefore, as the configuration of the models has been completely described (§5.3) and 

as the simulations converged for all time steps, the results of the simulations can be 

critically examined. 

5.5. Observations of the Global Flow Field from the Spanwise 

Periodic Meshes 

5.5.1. Three Dimensional Structures 

The flow around the square cylinder is characterised by a predominantly uniform shear 

layer that is attached to the separation point on the leading edge of the cylinder.  This 

shear layer then rolls up and over top of the cylinder towards the rear face* as shown in 

                                                

* Because the flow is predominantly symmetric around the y=0 plane, the descriptions presented in this 
chapter, unless specifically noted, should be interpreted as equally applicable for the top, positive y, as the 
bottom, negative y, directions 
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Figure 5-16.  Within the separated region between the shear layer and the top face of the 

cylinder there is a recirculation region visible in Figure 5-16 as the dark blue coloured 

vorticity surfaces attached to the grey cylinder face. 

 
Figure 5-16 – Flow visualisation of isosurfaces of vorticity magnitude at | |=25s-1 

surfaces coloured by velocity magnitude from the high-resolution mesh at a 

simulation time of t=34.0s. 

As the separated shear layer extends beyond the downstream face of the cylinder, 

depending on the shedding phase, it either wraps around and down behind the cylinder, 

or continues in a gradual arc upwards towards the free stream.  However, as shear layers 

are inherently unstable, the shear layer attached to the cylinder quickly breaks apart in 

to a series of streamwise ribs and spanwise rolls, indicated in Figure 5-16 and Figure 

5-17. 

The notations of “ribs” and “rolls” follows from the naming schema adopted by Dobre 

and Hangan (2004) who performed a series of hot wire laboratory experiments with the 

probes placed at 

 
x

d
= 26 , (5.10) 

which they defined as within the intermediate wake. 
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Figure 5-17 – Three perspective views of the simulation time of t=8.6s from the 

high-resolution mesh with two ribs and two rolls identified and annotated. 
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While Dobre and Hangan (2004) performed their experiments at the same Red  as the 

present work, their configuration was different in that their tunnel measured 0.12m in 

the lateral direction.  No details of the spanwise dimension were given by the authors.  

With their 30mm square cylinder, this resulted in a reduced blockage ratio of 25% 

compared to the blockage ratio from the present work which is only 6.3%.   

Both the ribs and rolls break up as they are transported downstream but from the single 

images* presented in Figure 5-16 and Figure 5-17 it is unclear as to the exact cause.  

Dobre and Hangan (2004) identified that there are “strong non-linear” interactions 

between these two structures that led to their decay and a corresponding increase in the 

homogeneity of the far wake.  However, this effect is unlikely to be the cause because 

the computational domain used for these investigations does not extend into the wake 

region investigated by Dobre and Hangan (2004).  Therefore, it is more likely that the 

observed break up of the ribs and rolls is due to a combination of grid size in the 

downstream region and the location of the outlet boundary.  The present author has been 

unable to confirm if the decay in the current models is consistent with the results of 

Dobre and Hangan as they did not quantify their observed rate of the decay caused by 

the “strong non-linear interactions”. 

While the dominant flow is characterised by the formation and transport of ribs and 

rolls, there is an alternate, transient flow regime in which the ribs elongate and extend 

downstream, as shown in Figure 5-18.  During this period, the formation of rolls is 

suppressed while any rolls already formed continue to be transported downstream.  The 

alternate flow regime lasts for approximately one second and is spaced at intervals of 

ten to 15 seconds and to the knowledge of the present author, this alternate flow regime 

is not discussed elsewhere in the published literature.  

                                                

* A number of time series animations are available on the DVDs that accompany this thesis, therefore it is 
suggested that these movies should be examined in conjunction with reading this chapter. 
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Figure 5-18 – Flow visualisation of isosurfaces of vorticity magnitude at | |=25s-1 

coloured by velocity magnitude, from the high-resolution model at a simulation 

time of t=35.0s. 

Song and Park (2009) undertook numerical investigations using Partially Averaged 

Navier-Stokes equations, in fact modified k-  equations, on a grid similar, but 

marginally shorter in the spanwise direction, to the water tunnel configuration discussed 

above.  They, as with the present work, used Red = 22 ×10
3  and, while they did not 

explicitly discuss the feature, a number of elongated ribs were visible in their results, as 

shown in Figure 5-19. 

 
Figure 5-19 – Q criterion vortex structures adapted from Song and Park (2009). 
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Because there are significantly fewer published topological studies of the square 

cylinder than the right circular cylinder (Zdravkovich, 1997) it is unclear if this alternate 

flow regime is a real effect or a numerical artefact in the present work.  For example, 

Dobre and Hangan (2004) only discuss the curved rib and roll mode.  However, as the 

elongated flow features are visible in the published images of Song and Park (2009) it is 

likely that this alternate regime is a real flow feature not previously described. 

5.5.2. Velocity Magnitude Distribution along the z=0 Plane 

When the flow field is visualised by the velocity magnitude on a plane at z=0 the 

characteristic rolls and ribs are visible, as shown in Figure 5-20.  However, the effect of 

the ribs on the flow field is subtle because the ribs are predominantly streamwise 

structures.  Since they may not fall exactly on the selected plane their visibility as a 

velocity perturbation is not assured. 

 
Figure 5-20 – Flow visualisation on the z=0 plane from the high-resolution 

simulation, time t=34.4s. 

As noted above for the three-dimensional analysis, the flow regime periodically swaps 

to the alternate, elongated ribs regime, shown in Figure 5-18.  This alternate flow 

pattern is also visible, and is plotted in Figure 5-21, as a region of uniform flow in the 

near wake.  Because the elongated rib is both lengthened and not inline with the plane 

the flow field appears to be more uniform. 
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Figure 5-21 – Flow visualisation of the velocity magnitude across a z=0 plane from 

the high-resolution model at a simulation time of 35.0s. 

In contrast to region of uniform flow identified in Figure 5-21, the near wake between 

the cylinder and the uniform region is highly irregular and disturbed, which is visible as 

convoluted three-dimensional isosurfaces shown in Figure 5-18.  This disturbed region 

in the near wake is similar to a velocity magnitude plot published by Hoffman (2005), 

shown in Figure 5-22. 

 
Figure 5-22 – Flow visualisation on the centre plane of the fully developed flow 

computed by Hoffman (2005). 

Hoffman claimed that the flow shown in Figure 5-22 was the result of an adaptive 

DNS/LES simulation and is fully developed (Hoffman, 2005).  However, by a visual 
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comparison with the present work, for example a comparison of the flow field shown in 

Figure 5-21 with that in Figure 5-22, Hoffman’s flow field is not developed.  That is, 

there is no vortex shedding that is characteristic of the wake in square cylinders at this 

Red.  Therefore, the flow visualised in Figure 5-22 does not appear to be developed as it 

is different from either the visualisations in the present work, Figure 5-16 or Figure 

5-20, and it does not match the flow schematic described by Dobre and Hangan (2004), 

shown in Figure 5-23. 

 
Figure 5-23 – Idealised 3D wake topology from the horizontal perturbation model 

(Meiburg and Lasheras, 1988), reproduced from Dobre and Hangan (2004). 

The visualisations of both Dobre and Hangan (2004) and Song and Park (2009) lend 

strong credibility to the present results with excellent agreement of the large scale flow 

structures visible. 

So far, the vorticity and velocity fields have been examined, almost, separately whereas 

they are in fact intimately linked via 

 = × u . (5.11) 

Therefore, simultaneously visualising the flow field with both the velocity magnitude 

and vorticity fields can provide additional observations to either support or refute the 

present simulations. 
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5.5.3. Vorticity and Velocity Magnitude Cut Planes 

As has been discussed above there is an interaction between the ribs and rolls visualised 

by isosurfaces of vorticity and the velocity field.  However, because of the compromises 

that were made when the mesh for these simulations was developed, there are some 

small artefacts in the computed vorticity, shown in Figure 5-24, which are restricted to 

the smallest cells with the largest size gradients.  Further, as there is no visual indication 

of corresponding defects in the velocity field, the vorticity artefact must be due to the 

numerical inaccuracies of the post processing operations. 

 
Figure 5-24 – Cut plane at z=0 from the high-resolution model at t=35.0 showing 

velocity magnitude in grey scale and vorticity magnitude contours in colour and a 

three-dimensional view with an isosurface of =25s-1. 

The combined vorticity and velocity magnitude plots in both Figure 5-24 and Figure 

5-25 show that the vorticity magnitude increases towards the centre of both the rolls and 

the ribs.  Simultaneously for the roll that is cut across the plane, highlighted in Figure 

5-25(b), the velocity magnitude drops to almost zero, indicating that, at this time 

instant, the roll core is almost stationary.  This low velocity magnitude is most likely 

due to the chaotic fluctuations temporarily slowing the vortex core because the time 

series, shown in both Figure 5-16 and Figure 5-20 and in the animations on the DVDs 

attached to this dissertation, show that in general the vortices are transported 
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downstream.  This temporary low speed region would also explain the apparent pause in 

the movement of the roll adjacent to the cylinder in Figure 5-20 before it moves 

downstream. 

 
Figure 5-25 – Cut plane at y=0 from the high-resolution model at t=34.6 showing 

velocity magnitude in grey scale and vorticity magnitude contours in colour (b) 

and a three-dimensional view with an isosurface of | |=25s-1 (a). 

Finally, in Figure 5-25, while the spanwise rolls appear independent of the domain 

width, they extend across the entire span, the ribs appear to be affected by the proximity 

to the spanwise periodic boundaries.  For example, the collection of ribs above the cut 

plane in the downstream half of the domain appear to show significant variation across 

the domain with the central two ribs fully formed and wrapped over the spanwise roll.  

In contrast to the central ribs, the ribs that are located closest to the boundaries with a 

periodic specification appear stunted and malformed.  If the domain were truly periodic, 

then there should be no noticeable affect from the location of the periodic boundaries on 
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the flow structures observed, in contrast to the images in Figure 5-25.  Further, if the 

vortex field from the high-resolution, spanwise periodic simulations, shown in Figure 

5-25, is compared with a similar visualisation from the water tunnel model shown in 

Figure 5-26 there are two points of note.  First, that the spanwise rolls, as with the 

spanwise periodic models, cross the entire spanwise width of the domain.  Second, that 

in contrast to the spanwise periodic simulations, the structure of the ribs is different.  As 

would be expected because of the increased width of the domain there is a higher count 

of ribs that form across the domain.  However, their structure, compared with the 

spanwise periodic models is more regular, even in the regions near the side walls. 

 
Figure 5-26 – Flow visualisation of the vorticity magnitude (colour contours) and 

the velocity magnitude (greyscale) on the y=0 plane from the water tunnel 

simulation, time t=41s and the isosurfaces at | |=25s-1
. 

These comparative, visual observations indicate that there is a potential problem with 

simulations that utilised the spanwise periodic boundary conditions; namely that the 

spanwise width is not large enough which, when combined with the assumption of 

periodicy, leads to the development of an unphysical flow field.  That is, the spanwise 

width of the domain must be wide enough to allow the development of a large region of 

uncorrelated flow in the centre of the domain (O'Neill et al., 2004).  Fortunately there is 
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a large body of work, for example the treatises of Tennekes and Lumley (1972) and 

Yaglom (1987), to provide direction for the computation of the velocity correlations as 

a function of both time and space. 

5.6. Spanwise Velocity Correlations 

5.6.1. Description and Validation of the Sampling Technique Used in 
the Present Work 

A correlation where the variables are separated in space but measured at the same time 

instants is referred to as a cross correlation (Orfanidis, 1996), with the correlation 

coefficients, Rlm , computed from 

 Rlm r,t( ) = ul x,t( )um x + r,t( )
ul

2um
2

 (5.12) 

in which r is the spatial separation of point m from point l whose absolute position is 

denoted by x , adapted from Pope (2001).  Due to the application of the Cauchy-

Schwarz inequality, Rlm  is limited to the range 

 1 Rlm +1 . (5.13) 

A special case, that is known as the autocorrelation, occurs when r tends to zero, that is 

l = m , in which the maximum correlation occurs at zero time lag, t = 0 . 

The cross correlations computed from the present work were, necessarily, limited to 

discrete values of r due to the discretisation of the computational mesh.  However, in 

the time domain two sets of data were available to evaluate Equation (5.12), which 

related for the time step size, 1 kHz, and the frequency at which the total flow field data 

were saved at 10 Hz, respectively.  Due to the restrictions on the data storage facilities, 

only 85 points were distributed throughout the computational domain that sampled at 

1kHz.  These 85 points were neither numerous enough, nor located in positions that 

would allow for, a spanwise correlation analysis.  Hence, the data used in the correlation 

analysis presented in this section were sampled from the 10Hz, flow field data. 

Because a 10Hz sampling rate is simultaneously 1% of the time step frequency and is 

only 5.6 times larger than the published shedding frequency of 1.8Hz (Lyn and Rodi, 

1994, Lyn et al., 1995) there was a concern as to the accuracy of resultant correlations.  
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That is, the 10Hz sampling frequency may be too low to capture the high frequency 

events.  Therefore, the autocorrelation function from the velocities sampled at 1kHz at 

the point probe located at (0.025, 0, 0) m was compared with data from the same 

location that was sampled at the lower, 10Hz, rate. 

Despite the expected lower resolution, for both the u and v-velocity autocorrelation 

functions there is no appreciable difference at the common points between the 1kHz and 

10Hz sample rates, shown in Figure 5-27 to Figure 5-29.  There is a less than 2% 

difference in the w-velocity autocorrelation functions which is due to the comparatively 

small w-velocity.  That is, because the w-velocities are so small, a comparatively 
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Figure 5-27 – Autocorrelation function for a point located at (0.250, 0, 0)m 

showing the affect of a change of sample rates for the u-velocity. 

smaller difference in the sampled velocity can produce a significantly larger change in 

the autocorrelation function.  These two observations are also valid for the comparison 

with the water tunnel results that were sampled at 1 kHz and are presented for 

comparison with the spanwise periodic models.  Therefore, as there is essentially no 

change in the u and v-velocity autocorrelation and only a minor change in the w-

velocity autocorrelation functions, it can be assumed that, despite the loss of detail, the 

major flow field features are still captured at a sample rate of 10 Hz.  Hence, the 

spanwise correlations from the present work can be investigated at any point, not just 

the points for which a full data set is available. 
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Figure 5-28 – Autocorrelation function for a point located at (0.250, 0, 0)m 

showing the affect of a change of sample rates for the v-velocity. 
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Figure 5-29 – Autocorrelation function for a point located at (0.250, 0, 0)m 

showing the affect of a change of sample rates for the w-velocity. 
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5.6.2. Correlation Analysis of the Data from the Present Work 

It was noted above in the quantitative evaluation of the flow visualisations that different 

results were obtained from the simulations with alternative treatments of the spanwise 

domain.  Therefore, to quantify any possible differences between the different spanwise 

simulations, the results from the simulations were sampled at 10 Hz along spanwise line 

probes, as shown schematically in Figure 5-30, and subjected to correlation analyses. 
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Figure 5-30 – Schematic of the spanwise distribution of sampling points used in the 

correlation analysis. 

For the analyses presented in this section the reference point l, in Equation (5.12), was 

set at z = 0  while point m was varied to compute the distribution of Rlm .  Therefore, the 

autocorrelation, Rlm = Rll = 1 , also occurs at z = 0 .  In total, six spanwise lines were 

sampled with one located upstream of the cylinder, one located downstream of the 

cylinder but above the boundary of the mean wake while the remaining four probes 

were distributed in the wake region, as shown in Figure 5-31 and detailed in Table 5-3. 

Table 5-3 – List of the locations of the spanwise line probes. 

Sample Line x (m) y (m) 
UC1 -0.20 0.00 
SC1 0.20 0.16 
WC1 0.10 0.00 
WC2 0.20 0.00 
WC3 0.40 0.00 
WC4 0.60 0.00 
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Figure 5-31 – Location of the point probes chosen for the correlation analysis with 

the computational boundaries and an indicative location of the wake boundary. 

For the line probes within the wake region the correlations were also compared with 

those computed by Dobre and Hangan (2004), who took spanwise correlation 

measurements within the wake of a square cylinder flow at the same Red  but for a 

cylinder that was longer in the spanwise direction. Dobre and Hangan (2004) computed 

their correlations in one direction only with the implicit assumption that they would be 

symmetrical around the centre of their tunnel; their zero point.  In contrast, while the 

correlation functions computed from the present work were also computed relative to 

the z=0 plane, they were not assumed to be symmetrical around this plane.  Hence, the 

single sided correlation functions of Dobre and Hangan (2004), when present on the 

graphs plotted below have been mirrored to match the two-sided data from the present 

work.  Finally, the correlations published by Dobre and Hangan (2004) were computed 

from data that was measured at x = 26d  compared with the limit of x 15d  for the 

present work.  Therefore, due to the difference in the measurement locations, some 

differences would be expected. 

The flows from both the spanwise periodic and the water tunnel simulations remain 

highly correlated for both the upstream line, UC1, and the lateral point, SC1, as shown 
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in Figure 5-32 and Figure 5-33, respectively.  These correlation results were expected 

from an inspection of the flows namely, that as there is almost no disturbance in these 

regions the correlation function should be high.  However, while a high correlation was 

expected, the correlation coefficients for the spanwise periodic models are all above 

0.98 which indicates an almost perfect, and seemingly unphysical, similarity in the flow 

across the entire spatial and time sample windows.   
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Figure 5-32 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line UC1. 
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Figure 5-33 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line SC1. 

In contrast to the spanwise periodic simulation, Rlm  for the water tunnel simulation 

dropped to 0.5 as m approached the walls, which indicated a lower, but still positive, 
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correlation of the flows.  Intuitively this result seems more realistic because Rlm 0.98  

seems to be impossibly high for a “real” flow. 

Despite minor differences in the absolute value, both the shape and trend of Rlm  as a 

function of r are consistent for all four points tested in the wake, that is points WC1 to 

WC4 as shown in Figure 5-34 to Figure 5-37, respectively.  From the central peak at 

r = 0 , the values of Rlm  for both the water tunnel and spanwise periodic simulations 

drop quickly to 0.5, which is inline with the experimental results of Dobre and Hangan 

(2004).   
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Figure 5-34 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line WC1. 
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Figure 5-35 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line WC2. 
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However, with the sample line WC1, which was closest to the cylinder, as r was further 

increased the results from the simulations diverged with the spanwise periodic results 

stable at Rlm = 0.5  for r > 0.03 m .  In contrast to the stability of the spanwise periodic 

simulations, the results from both physical experiment and the present water tunnel 

simulation continued in a similar downward trend toward Rlm = 0 , or no correlation. 

As the sample location was moved downstream to points WC2, 3 and 4, in Figure 5-31, 

Rlm  for the water tunnel simulations is a consistent match with the experimental results 

from Dobre and Hangan (2004).  However, the stable region of Rlm  that was observed 

in the results from WC1, shown in Figure 5-34, and to a lesser extent from WC2, shown 

in Figure 5-35, was reduced as the distance of the sample line from the cylinder was 

increased.  It was noted that when the downstream sampling location reached x = 15d , 

or at WC4 as shown in Figure 5-37, there was no stable region and Rlm  as a function of 

r was almost coincident with both the water tunnel simulation and the experimental 

results. 
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Figure 5-36 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line WC3. 

Finally, it must be noted that the results from the present numerical simulations show a 

degree of asymmetry that was not expected from the authors conception of the flow, 

which was that there would be no left/right bias.  As such, this result warrants 

subsequent investigation that was not the subject of this research.  However, the effect 

is most likely due to a combination of the lower sampling rate and a sampling window 

that was too short. 
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Figure 5-37 – Rlm correlation coefficients for both the water tunnel and the HR 

spanwise periodic simulations as a function of separation over the line WC4. 

There are two main observations presented above that are particularly relevant to the 

present work: firstly that for all the samples taken in the wake Rlm  dropped from one to 

0.5 by r ±0.04m ; and, secondly, that for the samples in the wake closest to the 

cylinder, the spanwise periodic correlations remained stable at 0.5.  These two results 

are both intimately linked and simultaneously important because the region of highly 

correlated flows for the spanwise periodic simulation in the centre of the domain was 

equal to half the spanwise width with no surrounding region of uncorrelated flow.  This 

result violated a fundamental tenant of periodicy that there must be a sufficiently large 

region of uncorrelated flows within the domain (O'Neill et al., 2004). 

Recommendations for the domain size vary from two to six times the integral length 

(O'Neill et al., 2004) and although the spanwise integral length was not computed for 

the present work, Dobre and Hangan (2004) estimated the spanwise integral length as 

approximately one cylinder diameter.  Further, Dobre and Hangan also noted that this 

integral length was about half the “cross-wake extent” that indicated that the size of the 

large-scale flow structures is in the order of two cylinder diameters.  Therefore, as the 

conclusions drawn by O’Neill et al (2004) were taken from the results of simulations of 

homogenous turbulence with no large scale structures such as ribs, rolls or a wake, it is 

the present author’s opinion that the estimated size of the flow structures should also be 

considered when estimating the width of the domain.  From the present work, it is 

unclear what the recommended number of structures should be but at a minimum, three 

structure widths would seem to be a reasonable lower limit.  Therefore, for this 



 116 

configuration, the flow structure criterion would define a minimum spanwise width of 

six cylinder diameters of uncorrelated flow, whereas the integral length benchmark 

would suggest a minimum uncorrelated extent of three cylinder diameters.  In contrast, 

neither the spanwise periodic simulations of the present work nor the vast array of 

published numerical results based on the same assumptions met the six diameters of 

uncorrelated flow criterion. 

5.7. Review of the Flow Visualisations 

With this visual examination of the flow field, visualised by both the vorticity and 

velocity magnitudes, and the spanwise correlation results it is clear that there is a 

difference in the simulated flow patterns between the spanwise periodic models and the 

water tunnel model.  It is then a reasonable assumption that the simulated flow from the 

water tunnel model would be a better approximation of the experimental data of Lyn 

and Rodi (Lyn and Rodi, 1994, Lyn et al., 1995).  However, as the vast majority of the 

numerical results that are available for validation are from models based on the 

spanwise periodic assumptions the remainder of the single fluid validation presented in 

this dissertation will deal with the observations from both spanwise periodic models and 

the water tunnel model simultaneously. 
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6. Single Phase Validation: Point and Integral Data 

6.1. Introduction 

It has been shown in §5 that the assumptions that underpin the vast majority of the 

published simulations, whose results have become the de facto standard for square 

cylinder flow at Red = 22 ×10
3 , are wrong in that the assumption of periodicy 

combined with an inadequate spanwise width resulted in the computation of unphysical 

flows.  Despite the differences in the results of the simulations developed in the present 

research, the majority of the validation data available for comparison was developed 

from simulations using the spanwise periodic domain.  Because of the ease of 

comparison between numerical simulations, in particular with respect to the inherent 

uncertainties of laboratory experiments, these data will predominantly be used in the 

following discussions, subject to the caveats already outlined.  The present discussion 

will, therefore, proceed with a more “traditional” validation comprised of an analysis of 

the grid convergence followed by a critical examination of the statistical characteristics 

of a number of time domain parameters.  

6.2. Grid Convergence 

6.2.1. Methodology 

There are numerous rigorous mathematical methods available to undertake a grid 

convergence study that include the methods outlined in the treatise of Roach (1998b).  

A particular method, which is based on a Richardson extrapolation has been 

recommended by the editorial board of the ASME Journal of Fluids Engineering (Celik 

et al., 2008), was used to test the convergence of the different parameters as a function 

of the change of the grid size. 

Despite the apparent rigour of a mathematical method, oscillatory convergence is a 

known limitation, which can lead to artificially high confidence bounds, and occurred 

for the majority of the parameters tested in the present work.  Ideally, if oscillatory 

convergence were to be encountered during a grid convergence investigation, additional 

simulations on different meshes should be computed.  These additional data should 

provide the further refinement necessary to quantify the oscillatory convergence.  
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Additional simulations were not undertaken due to the lack of computational wall time, 

instead a qualitative analysis of the statistical characteristics of the velocity from a point 

that was common to all the simulations was used to assure the present author, and by 

extension the reader, of the consistency of the simulations.  It should be noted that this 

process was designed to assess the consistency of the results of the simulations but not 

the accuracy of the numerical results relative to other, published, studies. 

6.2.2. Velocity Components as a Function of Time 

A point probe that tracked all three velocity components as a function of time was 

located within the wake region at (0.078, 0, 0)m as shown in Figure 6-1.  The boundary 

of the wake was defined as the locus of 

 U = 0.99U  (6.1) 

in which U  is the time averaged velocity field and the constant, 0.99, was selected with 

consideration to boundary and mixing layer analyses (White, 1991). 
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Figure 6-1 – Location of the point probe in relation to the square cylinder and the 

approximate boundary of the wake region. 

The traces of the u-velocities as a function of time, as shown in Figure 6-2, are 

impossible to distinguish via a visual comparison.  Both the mean and the amplitude of 
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the signal around the mean appear to be the same and all four signals include occasional 

“blips” such as that for the low-resolutionsimulation at t 17 s .  The corresponding 

plots of the v and w-velocities are not shown because they are also similar to each other. 
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Figure 6-2 – u velocity as a function of time for the point probe at (0.78,0,0)m. 

Therefore, as the visual comparison has indicated that the three velocity components 

from the four simulations are broadly consistent, a more rigorous approach was required 

to formally evaluate the similarities, and differences, between the simulations. 

6.2.3. Statistical Characteristics of the Velocity Traces 

As a first attempt to apply a more rigorous approach to the comparison of the velocity 

component data, the distribution functions were computed.  In conjunction with the 

histograms, a number of fundamental statistical quantities such as the mean and 

standard deviation were evaluated for further comparison. 

All the distribution functions are self similar, for example, the shape of the histogram 

for the u-velocities are skewed to the right with a peak at approximately 0.3 m/s, as 

shown in Figure 6-3.  However, the distributions from the three velocity components 

are markedly different to each other with the u-velocity being right hand skewed, as 
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shown in Figure 6-3, the v-velocity functions being bi-modal, as shown in Figure 6-4, 

and the w-velocity functions peaked symmetric, as shown in  Figure 6-5. 
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Figure 6-3 – Distribution function of the u-velocities from the four simulations. 
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Figure 6-4 – Distribution function of the v-velocities from the four simulations. 

To quantify the visual similarities of the histograms, the statistical characteristics of: 

global minimum; global maximum; mean, standard deviation, mode, median, skewness 

and kurtosis were computed for the u-, v- and w-velocity time series data across the four 

simulations.  For the first four parameters, there is no discernable trend in the results 

across either the configurations or velocity components, as shown in Figure 6-6.  For 
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 Figure 6-5 – Distribution function of the w-velocities from the four simulations. 

example, the minimum velocities increase for the u-component but decrease for the w-

component, despite the similarity in their absolute values, shown in Figure 6-6(a).  

Further, the maximum and standard deviations are consistent with a less than 10% 

variation within the individual velocity components computed, Figure 6-6(b) and (c), 

while the mean for the u-velocity shows an increasing trend as the model resolution is 

increased. 
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Figure 6-6 – Minimum, maximum, mean and the standard deviation for the 

principle velocities from the point probe at (0.078, 0, 0)m, see Figure 6-1. 
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With the exception of the mode, shown in Figure 6-7, the other four parameters are 

broadly consistent and show differences of less than 20% across the four simulations.  

However, because the mode is more indicative of a change in skewness of the 

distribution rather than a gross statistical variation, the discrepancy of the mode does 

not indicate a statistically significant difference in the time series data.  Examination of 

the corresponding u-velocity skewness shows a large difference, for example from -0.5 

to -0.3 or 40% relative to the LR grid, which supports the possibility of a skewed 

distribution.  In contrast to the u-velocity results, the w-velocity mode variance is low 

compared with a correspondingly huge difference in the w skewness and as this result 

does not invalidate the previous explanation of the different modes, both results are 

statistically consistent. 
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Figure 6-7 – Mode, median, skewness and kurtosis for the principle velocities from 

the point probe at (0.078, 0, 0)m. 

6.2.4. Outcome of the Grid Convergence Study 

The combination of the qualitative examination of the velocities as a function of time 

and the time domain statistics of the velocities has indicated that there is little difference 

between the results obtained from the three different resolution meshes.  Therefore, the 
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results from the grids are converged, although, as discussed above, no precise 

confidence estimate is available for these results. 

While the remainder of this chapter will be presented as if it were part of a validation 

study, and thus the results from the present simulations will be compared with published 

data, it is in fact more than a validation study.  The comparisons can also serve as a 

more detailed grid convergence check than the brief grid convergence study performed 

in this section. 

The data that was available, and was therefore used, for validation fell into three broad 

categories: time averaged velocity data; statistical spectral data and averaged integral 

parameters, such as the drag and lift coefficients.  Therefore, the remainder of the 

chapter will be arranged to reflect these three broad classifications. 

6.3. Spatial Domain Analysis of Time Averaged Data 

6.3.1. Motivation for Time Averaging 

It is the opinion of the present author that the majority of the characteristics in bluff 

body flows, such as that discussed herein, are contained within the interactions that 

occur in simulation time and that most of this is lost when averages, be they spatial or 

temporal, are taken.  However, it is also acknowledged that very few, if any, journals 

allow for the publication of the full colour flow visualisations that would be required to 

present arguments based on the time domain interactions.  Hence, the necessity to 

reduce the time domain data to averaged values. 

Although the time series data presented previously were discussed in the context of a 

grid convergence study, the same data, or more specifically, its time averaged values, 

are more relevant within a validation study.  More specifically, because the majority of 

the published data sets detail time averaged quantities, the time domain data presented 

in §6.2 can be averaged for direct comparison.  For example Lyn and Rodi (1994) and 

Lyn et al (1995) both presented their experimental data as time averaged values aligned 

in z=0 plane.  However, the method of averaging the data, and in particular the 

computation of the fluctuating quantities could make a difference to the computed 

parameters. 
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6.3.2. Method to Compute the Online Averages 

The averaged flow field results, in contrast to the point probe results, presented in this 

dissertation were not calculated as a post processing operation but rather directly within 

the solver as the run progressed.  Further, the averages were computed using a three-

stage process that was designed to, firstly, let the flow transition from the initial 

conditions into the fully developed regime.  During the second stage, the averages were 

computed while the third stage calculated the fluctuating quantities based on second 

stage averages, shown diagrammatically in Figure 6-8. 

Time (t)

Averages
start

Higher averages
start

All
Stop

Computation window for average

Window for fluctuations

0

1

2

Run
start

f t( ) = sin 2π t( ) + 1

F t( ) = 1

n
f i( )

i = to

i = t

∑

t0 t1

ʹf t( )2
=

1

n
f i( ) − F i( )⎡⎣ ⎤⎦

2

i = t1

t

∑

 
Figure 6-8 – Diagram of the development of the averages and the three phases of 

online averaging. 

To illustrate this process, suppose that a general quantity, f, at a particular point within 

the domain is approximated as 

 f t( ) = sin 2 t( ) +1 . (6.2) 

As the simulation progressed and the flow developed into the shedding regime, t0 , the 

average* would be computed as 

                                                

* The convention of the lower case, upper case and prime notations that represent the total, time average 
and the fluctuations, respectively, is in effect here and is fully detailed in §2.6. 



  125 

 F t( ) =
0 for t<t0

1

t t0
f t( )dt

t0

t

for t to
.

 (6.3) 

Finally, when the averages had sufficiently stabilised, at t = t1 , the mean squared 

fluctuations, 

 f t( )2 =

0 for t < t1
1

t t1
f t( ) F t( )( )2

dt
t1

t

for t t1
,

 (6.4) 

can be computed.  The source code for the Fortran 95 routine developed to compute this 

online average is included in Appendix D. 

However, a close inspection of Figure 6-8 illustrates the limitation of this, and in fact 

any, average in that the final value of the average is dependent on the size of the 

window over which the averages were computed.  Therefore, a method, or methods, is 

required to test the quality of the averages. 

6.3.3. Methods to Test the Quality of the Average Statistics 

Three approaches were developed that were based on the assumption that the average 

flow was symmetrical about the y = 0  plane.  The first method was a visual technique 

that examined the visualisation of an averaged quantity displayed on a plane with a 

normal vector of n = 0,0,±1[ ] .  Clearly there are an infinite number of distinct planes 

with this normal vector; therefore, for the work described herein the z = 0  plane was 

used.  To apply a more rigorous basis instead of a quick, visual examination of the 

averaged field, the second and third methods were based on data collected from the 

point probes.  These data were available in real time while the simulation was being 

computed and, hence, were the primary indicators of the quality of the averaged 

statistics. 

With the second method Equations (6.3) and (6.4) were evaluated using the simulation 

data, an example of which is shown in Figure 6-9.  These results were evaluated for 

their consistency: for example if the average was less than five percent different from 
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half a second previously.  Therefore, if the averages are stable, then the computation of 

the fluctuations can begin or if the fluctuations are stable then the simulation can stop. 
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Figure 6-9 – Example of the development of the averages and fluctuating statistics 

as a function of time. 

The third method, however, can be considered as a formalisation of the first, visual 

check.  In this case suppose that we are interested in the u-velocities at points on the 

z = 0  plane and further consider that for every point above the y = 0  plane there is a 

corresponding mirror point below the plane, referred to as upper and lower, 

respectively.  Next, the average velocities measured at the upper and lower points can 

be plotted as the abscissa and ordinate, respectively.  Finally, for a perfectly 

symmetrical average, all the upper and lower pairs would have symmetrical velocities 

and would be coincident with the line defined by the coefficients 

 
a = 1
b = 1

c = 0
 (6.5) 
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of a general two-dimensional line 

 axlower + bxupper + c = 0 . (6.6) 

Therefore, the perpendicular distance of the coordinates from this line can be used as a 

measure of the inaccuracy of the average.  That is, the general form of the two-

dimensional distance of a point a line is (Weisstein, 2008) 

 
 
D =

axlower + bxupper + c

a2 + b2
, (6.7) 

then with our line Equation (6.7) becomes 

 
 
D =

xlower xupper

2
, (6.8) 

which is shown in  

D

xlower , xupper( )
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x lo
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Figure 6-10 – Definition sketch of the line and the perpendicular distance. 

6.3.4. Quality of the Averages from the Present Work 

The length of the three stages of averaging for the four simulations described in the 

present work is detailed in Table 6-1.  Because both the length of the averages and the 

location in simulations where the averages were computed was different in all four 

simulations, the quality of the averages must be critically examined. 
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Table 6-1 – Details of the averaging stages from the present work. 

Model Length of Phase 1 (s) Length of Phase 2 (s) Length of Phase 3 (s) 
Low 

Resolution 
11.731 9.388 29.809 

Medium 
Resolution 

8.974 8.659 42.367 

High 
Resolution 

30.001 6.994 7.005 

Water 
Tunnel 

10.797 5.189 24.016 

 

As discussed in §6.3.3 the first method used to test the quality of the averages, which 

was defined as the level of symmetry around the y = 0  plane, was a visual examination 

of the average velocity field.  For the present simulations, the time averages have 

converged, as shown in Figure 6-11 and Figure 6-12, because the flow field appears to 

be symmetrical.  

 
Figure 6-11 – Visualisation of the time averaged u-velocity on the z=0 plane for the 

LR, MR, HR and WT simulations, subplot (a) – (d) respectively. 
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Figure 6-12 – Magnification of the near cylinder regions of Figure 6-11. 

It should be noted that while there are differences in the structure of the time averaged 

flow fields between the simulations, these differences can be examined once the quality 

of the time-averages has been established.  To continue with the second quality check, 

point probes four and eight, shown in Figure 6-13, were selected for detailed analysis. 
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Figure 6-13 – Sketch of the location of point probes four and eight relative to the 

domain boundaries and the indicative wake extent. 
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Of these, the two extremities of the averages occurred in the low-resolution simulation 

with the longest averaging window and the high-resolution simulation with the shortest 

averaging window.  Hence, with a longer window the data from the LR simulation 

should be the best to test the stability of the averages as a function of time. 

Both the average and the fluctuations computed from point four of the LR simulation 

stabilised to within five percent of the their final values in less than five seconds of the 

average starting, as shown in Figure 6-14.  However, the value of the fluctuating 

components is more unstable and is more dependent on the changes in the flow field, 

and hence the changes in the average, than the average itself.  For example with the v-

components at point four, shown in Figure 6-14(b) the average remains constant at 

approximately zero over the time interval of t 20 s  whereas the fluctuations respond 

to a change in the flow between 35 t 38 s  by dropping from 0.4 m/s to 0.35 m/s. 
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Figure 6-14 – The development of the averages and mean squared fluctuations as a 

function of time for the LR simulation at point probe four. 
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These results indicated that a minimum of five seconds is needed to stabilise the 

averages for these flows to better than five percent accuracy.  Therefore, all the 

windows used in the present work for the water tunnel simulation, as detailed in Table 

6-1, met this requirement. 

The results from the high-resolution simulation support the conclusion that the 

averaging window must be at least five seconds long because the results also stabilise to 

within five precent within five seconds, as shown in Figure 6-15.  Intriguingly, the v-

velocity trace in Figure 6-15 appears to be transitioning in the several seconds before 

the simulation was terminated.  It would have been interesting to continue the 

simulation and examine both the potentially alternate flow regime and the 

corresponding effect on the averages computed. 
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Figure 6-15 – The development of the averages and mean squared fluctuations as a 

function of time for the HR simulation at point probe eight. 
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As both the initial visual check and an examination of the point probe data has showed 

that the averages are converged, the final check was to perform the scatter analysis and 

examine the distribution of the distance from symmetry.  From a visual inspection of 

the scatter plots, almost all of the points fall within 0.02 m/s of the symmetry line, as 

shown in Figure 6-16 for the medium-resolution simulation*, or to better than four 

percent error. 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lower (m/s)

U
pp

er
 (

m
/s

)

 

 

U Scatter
V Scatter
Equality Line
±0.02m/s

F
ig

ur
e 

cr
ea

te
d:

 2
9−

N
ov

−
20

09
 1

8:
43

:3
1,

 fr
om

 n
um

er
ic

al
_t

op
_b

ot
_a

pp
_c

 
Figure 6-16 – Scatter plot of the upper and lower points for the time averaged u- 

and v-velocities from the medium-resolution simulation. 

To quantify the results of the visual inspection of the scatter plot, the distance of the 

scatter points from symmetry, the D parameter, can be examined with a plot of the 

histogram, as shown in Figure 6-17.  For all four simulations, more than 55% of the 

points fall within 0.002 m/s, or 0.3% ×U , of symmetry.  Because of the shorter length 

of the windows used to compute the high-resolution averages, there is a broader 

                                                

* Only the scatter plot of the medium resolution simulation data is shown because the scatter plots from 
the three other simulations are, essentially, indistinguishable from each other.  Hence, a single plot is 
enough to convey the thrust of the argument. 
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distribution of D, in particular for the v-velocities.  Therefore, it is expected that the 

spread of the results from the high-resolution simulation would reduce if the data were 

averaged for longer. 
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Figure 6-17 – Histogram of D for the u- and v-velocities from the four simulations. 

Intriguingly five percent of the points for the average u-velocities from the water tunnel 

simulation are at  D 0.02 m/s , which was unexpected given the length of the 

computation windows used.  However, given that nearly 90% of the points are within 

 D 0.01 m/s  this large outlier will be considered as an anomaly and not subjected to 

further analysis.   

Therefore, as the three methods envisaged as checks of the quality of the averages all 

returned results that indicated high quality averages, the results from the present 

simulations can be compared with published experimental and numerical data.  Further, 

as the grid comparison study discussed in §6.2 indicated that there was relatively little 

difference between the results from all four simulations, the future examinations can 

focus on the medium resolution spanwise periodic and water tunnel simulations. 
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6.3.5. Comparison with Averaged Experimental Data 
The experimental data published by Lyn and Rodi (1994) and Lyn et al (1995) is based 

on Laser Doppler Anemometry data measured at approximately 500 points on the upper 

half of a z = 0  plane in a water tunnel.  Further periods of up to one hour or “in terms 

of shedding cycles [a count of] O 104( ) ” (Lyn and Rodi, 1994) were used to compute 

the averages.  To compare the experimental and numerical data a similar approach to 

the scatter plots that were introduced above can be used.  Whereas the previous method 

plotted upper and lower halves of a plane, the current approach can plot the 

experimental and numerical data instead, as shown in Figure 6-18. 
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Figure 6-18 – Point-by-point comparison of the high resolution simulation data 

from the present work with the experimental data of Lyn and Rodi (1994). 

As would be expected from the results discussed above, the u and v-velocity scatter 

plots from both the medium-resolution and water tunnel simulations, are similar when 

compared with the same experimental data, as shown in Figure 6-18 for the high-

resolution and in Figure 6-19 for the water tunnel simulations respectively.  For both 

simulations, the u-velocities consistently fall towards the numerical side of symmetry, 

which indicates that the simulation velocities are underestimated relative to the 

laboratory.  In contrast to this result, the v-velocities are skewed towards the 

experimental data, which lead to the opposite conclusion: that the solver systematically 
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overestimated the v-velocities.  Crucially, then, the question becomes: is this degree of 

scatter acceptable as a part of a validation study?  An inspection of the scatter patterns 

alone cannot provide enough detail to answer that question, whereas the distribution of 

D can provide an indication of the quality, and hence acceptability, of the simulations. 
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Figure 6-19 – Point-by-point comparison of the water tunnel simulation data from 

the present work with the experimental data of Lyn and Rodi (1994). 

To aid an examination of the scatter suppose that Equation (6.8) were redefined as 

 
 
D =

xsim xexp

2

1

xsim
 (6.9) 

to express D as a distance relative to the numerical point, which can then be interpreted 

as a percentage error.  For example, the ten percent error bounds are shown in Figure 

6-18 and Figure 6-19.  Then, with the u-velocities over 90% of D fall within the 10% 

error bound, as shown in Figure 6-20.  Despite the good agreement of the u-velocity 

scatter, the v-velocity scatter is significantly higher with over 50% of D greater than 

10% and 25% greater than 100%.  These v scatter are somewhat overestimated due to 

the low magnitude of simulation velocities that significantly magnify a very small 

absolute error. 
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Figure 6-20 – Histogram of D as a function of the percentage error defined in 

Equation (6.9). 

The results from the comparison with the experimental data of Lyn and Rodi (1994) 

indicate that the u- and v-velocities, with a caveat related to the magnitude of the 

v-velocities, compare well.  There is, however, a limitation to this approach in that there 

are two inherent errors in the experimental data: (1) the precision of the measurement of 

the boundary conditions and (2) the precision of the position of the LDA measurement 

window.  Therefore, the simulations, to within the limits of the experimental 

uncertainty, are validated. 

In contrast to experimental data, numerical data is, in some aspects, superior because 

the researcher has total control over all parameters in the study.  Therefore, the intrinsic 

inaccuracies with experimental procedures can be overcome by comparing the present 

results with those obtained from similar numerical simulations. 

6.3.6. Comparison with Averaged Numerical Data 
Despite the volume of publications concerned with numerical simulation of the right 

square cylinder at Red = 22 ×10
3 , the most comprehensive collection is that compiled 

by Voke (1996).  Somewhat surprisingly, although not demonstrated within this 
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dissertation, the spread of numerical results has not decreased over the years since the 

publication of the DLES2 results.  Therefore, the combined results from the DLES2 test 

case remain an appropriate data set for comparison with the present simulations.  Voke 

(1996) selected eight results for detailed comparison and discussion yet acknowledged 

that one of the data sets had not been averaged for a sufficient window for the higher 

order statistics to have converged sufficiently, hence they have not been included in the 

comparisons with the present work.  The time-averaged velocity statistics were 

compared along four lines within the z = 0  plane, shown in Figure 6-21, which 

coincided with the laboratory sampling plane and locations of Lyn and Rodi (1994). 
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Figure 6-21 – Location of the four comparison lines within the z = 0 plane used at 

the DLES2 conference described by Voke (1996). 

The U-velocities* from the four present simulations followed the general trend of the 

reference works, as shown in Figure 6-22 and in higher detail for the region close to the 

cylinder in Figure 6-23, and were consistent with each other.  That is, from an initial 

velocity of zero at the downstream face of the cylinder, the U-velocities decrease to a 

                                                

* The reader is reminded of the convention, introduced in §2.6, for labelling the time averaged, 
instantaneous and fluctuating velocities with capital letters, lower case letters and lower case letters with a 
prime, respectively.  An over bar also indicates a time average quantity. 
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minimum at x 0.75d  m  before increasing to become positive near x 1.25d  m .  As 

x was further increased, the time averaged velocity recovered to U 0.75U  m/s  for 

x 7d  m . 
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Figure 6-22 – U-velocity plot along the y=0, z=0 line of the present results 

compared with results from the DLES2 workshop (Voke, 1996) and the 

experimental data of Lyn and Rodi (1994). 

In the region x 7d  m  the results from the present simulations are within the centre of 

the numerical data but are faster than the experimental results of Lyn and Rodi (1994).  

However, in the gradient region, over approximately 

 1.5
x

d
4 , (6.10) 

where the U-velocities increase from small negative to large positive the present results 

are a good match to the experimental data.  The recirculation zone, roughly x 1.5d  m , 

adjacent to the downstream face of the cylinder from the water tunnel simulation is both 

shorter than the spanwise periodic simulations, 0.4m and 0.7m respectively, and with 

higher negative velocity, -0.03m/s and -0.1m/s, respectively.  Further, all four 

simulations underestimated the length of the recirculation zone, lr , defined as the 
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distance from the rear of the cylinder at which the U-velocity recovers from negative to 

positive. 

The reason for the contrast of the under estimation of the negative velocities close to the 

cylinder and the corresponding over estimation further from the cylinder is unclear but 

the two are most likely intimately linked.  A possibility is that the model is overlay 

dissipative, which would explain the near cylinder results.  However, this conjecture 

does not support the higher velocity that was simulated further downstream because an 

overly dissipative model would be expected to also reduce the far field velocity. 
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Figure 6-23 – Magnification of the U-velocities in near cylinder region of Figure 

6-22. 

Alternatively, the constant pressure outlet boundary may have been too close to the 

cylinder that could have forced the increase in the downstream velocity to overcome the 

applied pressure.  This increased velocity closer to the outlet may have then propagated 

upstream and caused both the more positive recirculation velocity and shorter 

recirculation length.  However, the preliminary studies, which are summarised in §5.2 

and presented in detail in Appendix C, indicate that for this length to the outlet there 

should be no effect on the flow field at these distances from the cylinder.  Nevertheless, 

as the preliminary studies were performed in two-dimensions their applicability to the 
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three-dimensional results is questionable.  Therefore, a test of the length to the outlet 

boundary should be undertaken in three-dimensions but this was not computationally 

feasible.   

The interpretation of the water tunnel results is complicated, as noted above, by the 

lower length of time for the averages, hence the incorrect recirculation zone results may 

be due solely to the lower window available for the computation of the average.  While 

the U-velocity* results are generally encouraging, a major argument for using large eddy 

simulation instead of Reynolds-averaged models is in the computation of the fluctuating 

quantities. 

When the v v  fluctuations from the present simulations are compared with themselves 

along the y = 0  line, the results are remarkably consistent in the region of x 2d  m , as 

shown in Figure 6-24.  In contrast, over the range of x 2d  m , the v v  fluctuations  
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Figure 6-24 – Centreline plot of the time average of the v’v’ fluctuations. 

                                                

* Neither the V nor W-velocities were compared because the experiments of Lyn and Rodi (1994) only 
measured the U-velocity. 
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from the three spanwise periodic models are also consistent with each other, whereas 

the fluctuations from the water tunnel simulation are much higher than the equivalent 

spanwise periodic simulations.  This is due to the shorter length of the averaging 

window used for the water tunnel simulations. 

Close to the downstream face of the cylinder, over approximately 

 0.5
x

d
1.7 , (6.11) 

the magnitudes of the v v  fluctuations from the present simulations are both higher 

than the experimental results of Lyn and Rodi and the majority of the numerical data, as 

shown in Figure 6-25.  Sufficient experimental data was not captured in 
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Figure 6-25 – Zoom of the near cylinder results plotted in Figure 6-24. 

the very near wake region so that neither the shape nor the trends of the numerical data 

could be compared.  However, over the region of 

 1.9
x

d
4  (6.12) 
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the v v  fluctuations are an excellent match with the experimental data and fall within 

the spread of the numerical data.  At downstream distances greater than those of 

Equation (6.12) the v v  fluctuations are consistently higher than the experimental data 

of Lyn and Rodi but towards the centre of the numerical data.  The inconsistency of the 

v v  results is, as with the U-velocities, puzzling as no single theory posited by the 

present author could explain the mix of overestimation close to the cylinder and towards 

the outlet combined with the excellent agreement between these two zones. 

In contrast to the v v  fluctuations, the u u  fluctuations are within the spread of the 

numerical data yet consistently larger than the experimental results, as shown in Figure 

6-26.  Nevertheless, the general profile of the curves is consistent with a large peak near 

 

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

 

 
LR
MR
HR
WT
Lyn
UK1
UK3
UOI
NT7
IS3
TIT
ST5

F
ig

ur
e 

cr
ea

te
d:

 2
2−

Ju
l−

20
09

 0
8:

09
:3

6,
 fr

om
 s

f_
dl

es
_c

om
p_

m
sv

f_
a2

x

d

ʹ
u

ʹ
u

U
∞2

 
Figure 6-26 – Centreline plot of the time average of the u u  fluctuations. 

x 1d  m  that quickly drops before a striking discontinuity at x 3d  m .  After the 

discontinuity the value of the u u  fluctuations steadily decrease with the results from 

the present simulations close to those from the laboratory experiments. 

The w w  fluctuations from the present work are broadly consistent with the published 

numerical data as shown in Figure 6-27.  That is, all the models have a peak 
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immediately adjacent to the cylinder, followed by a trough and a gradual rise and fall as 

x is increased.  The near wake trough and following peak in w w  does not appear to be 

related to the location of the recirculation zone.  As Lyn and Rodi (Lyn and Rodi, 1994) 

used a two-component LDA that was configured to measure the u- and v-velocities 

there is no experimental data for comparison. 
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Figure 6-27 – Centreline plot of the time average of the w w  fluctuations. 

In addition to the time averaged u-velocity and fluctuating components that were 

measured along the y = 0, z = 0 line, discussed above, measurements were also taken 

along three constant x lines in the z = 0 plane at x = 0 m, x = d m and x = 5d m, as 

shown in Figure 6-21.  Of the measurements taken by the experimenters (Lyn and Rodi, 

1994) four were to be compiled for comparison at the DLES2 conference (Voke, 1996), 

namely: 

1. The time averaged u-velocity, U, as shown in Figure 6-28; 

2. The time averaged, squared u-velocity fluctuations, u u , as shown in Figure 

6-29; 

3. The time averaged, squared v-velocity fluctuations, v v , as shown in Figure 

6-30, and; 
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4. The time averaged, squared w-velocity fluctuations, u v , as shown in Figure 

6-31. 

When all 12 comparison plots (that is four parameters at three locations) were subjected 

to a visual analysis, it was noticed that the plots at common x locations could be 

differentiated into two regions.  The first region was characterised by recirculating 

flows and was located closer to the cylinder and the y = 0 plane while the second zone 

was associated with more uniform flows reminiscent of a deformed and accelerated free 

stream.  Not surprisingly, the free stream zone was located further away from both the 

cylinder and the y = 0 plane.  Within the recirculating zone, the values of all four 

parameters varied, sometimes significantly.  In contrast, but with the notable exception 

of the NT7 simulation, the parameter values in the free stream zone were very similar 

between all the numerical and experimental results.  The transition between the 

recirculating and free stream region occurred over the range d y 1.25d m  for both 

the x = 0 m and the x = 1d m lines.  While the transition for the x = 5d m line was more 

difficult to define it was estimated to occur over the range 2d y 2.5d  m .  These two 

boundaries, which were estimated from the plots in Figure 6-28 to Figure 6-31, are in 

good agreement with the time-averaged extent of the wake discussed in §6.2.2 and 

shown in Figure 6-1. 

As the flow in the free stream region is predominantly uniform, but perhaps turbulent, it 

is relatively “simple” to compute, hence the majority of the numerical experiments, 

including the present work, correctly simulated the averages and fluctuations in this 

region.  In contrast, the recirculation/wake region is subjected to both turbulent 

fluctuations and the large-scale velocity variations that are associated with a von 

Kármán vortex street.  This increased complexity is computationally “harder” to 

simulate, which explains the differences between the numerical simulations. 

The time averaged u-velocity U( )  plots, shown in Figure 6-28, for the x = 1d  m  and 

the x = 5d  m  are unremarkable in that the results from the present simulations are 

consistent with the majority of the comparison simulations and the experimental values.  

However, for the region close to the cylinder on the x = 0  line there is a striking 

difference with a second recirculation zone computed in all of the present simulations 
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Figure 6-28 – Time average u-velocities from the present simulations, the experimental data of Lyn and Rodi  (1994) and the 

compiled results of Voke (1996) along constant x lines in the z = 0 plane. 

 



 
146 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

 

 
LR
MR
HR
FWT
Lyn
UK1
UK3
UOI
NT7
IS3
TIT
ST5

0 0.1 0.2 0.3 0.4 0.5
 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
 

 

y d

ʹu ʹu

U
∞

2

F
ig

ur
e 

cr
ea

te
d:

 0
6−

D
ec

−
20

09
 1

7:
23

:0
5,

 fr
om

 s
f_

dl
es

_c
om

p_
b2

_m
sv

f_
sm

l

ʹu ʹu

U
∞

2

ʹu ʹu

U
∞

2

(a) x = 0d m (b) x = 1d m (c) x = 5d m

 

Figure 6-29 – Time average u’u’ fluctuations from the present simulations, the experimental data of Lyn and Rodi  (1994) and the 

compiled results of Voke (1996) along constant x lines in the z = 0 plane. 
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and two of the DLES2 simulations.  In contrast, the remaining DLES2 simulations and 

the experimental data of Lyn and Rodi (1994) do not show the second recirculation 

zone.  Voke (1996) does not discuss the near cylinder differences merely noting that the 

“agreement for U is adequate”.  Alternatively, the experimental data close to the wall 

may be erroneous as the experimenters were forced to use specialist LDA apparatus to 

measure close to the wall (Lyn and Rodi, 1994, Lyn et al., 1995) and the values 

measured with LDA can be affected in regions close to the wall (Durst et al., 1995, 

Stoots et al., 2001).  The remaining simulations from the literature provide no further 

clarification as they also show similar variation with respect to the recirculation region.  

Therefore, this inner recirculation zone will remain an anomaly subject to further 

research. 

Interestingly, and in stark contrast to the values of U, the u u  fluctuations from the 

present simulations over the line x = 0  are in remarkably good agreement with three of 

the DLES2 simulations and the experimental data.  In addition, the simulations whose 

results were good approximations of U, were simultaneously in poor agreement with the 

experimental values of the u u  fluctuations.  Voke (1996) noted, when discussing these 

results that “…no simulation shows a clear advantage in all the quantities [examined]”, 

which is supported by the disparity between the values of U and the u u  fluctuations 

from the present work.  For u u  fluctuations over the x = 1d  m  line all the simulations 

have the same general shape as the experimental data but again, no single simulation, 

including the present work, correctly capture all aspects of the u u  curve as a function 

of y.  By the x = 5d  m  line, despite an order of magnitude reduction in the magnitude 

of the, for y < 1.5d  m  no simulation is in good agreement with the experimental data.  

It could however be argued that, by this distance downstream combined with the 

fluctuations being in the order of eight percent of the free stream velocity, these 

differences are negligible. 

The results for both the v v  and u v  fluctuations are consistent with the U and u u  

fluctuations in that no single simulation accurately captures all the features of the curves 

at all of the three locations investigated.  Again, the results from the present simulations 

are within the spread of the DLES2 data and are a good agreement, subject to the caveat 

of experimental uncertainty, with the experimental data. 
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Figure 6-30 – Time average v’v’ fluctuations from the present simulations, the experimental data of Lyn and Rodi  (1994) and the 

compiled results of Voke (1996) along constant x lines in the z = 0 plane. 
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Figure 6-31 – Time average u’v’ fluctuations from the present simulations, the experimental data of Lyn and Rodi  (1994) and the 

compiled results of Voke (1996) along constant x lines in the z = 0 plane. 
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Therefore, of the one average and the three fluctuations examined despite some minor 

differences the results from the present simulations are in generally good agreement 

with DLES2 simulations and the experimental data of Lyn and Rodi (1994).  Indeed an 

additional recirculation zone was identified on the top face of the cylinder, which was in 

contrast with several of the DLES2 simulations yet supported a further group of 

simulations.  This feature was not observed in the experimental results but this may be 

due to experimental limitations rather than the recirculation being unreal.  Further work 

will be required to resolve this dilemma.  However, the results from the present 

simulations are in good agreement and the spectral quantities can be examined. 

6.4. Spectral Analysis of Turbulence Statistics 

6.4.1. Introduction 

Statistical spectral analysis allows for the transformation of time domain data into the 

frequency domain and is a valuable method of calculating the shedding frequency and 

various microscale lengths that are useful in describing turbulence.  Values of the 

quantities obtained from the present work can then be used both for a comparison with 

published results and for checking the consistency of the models across different grid 

sizes.  Of the many parameters it is possible to evaluate in the frequency domain, only 

three will be discussed in detail in this section: 

1. Dominant frequency: although the dominant frequency, often normalised to the 

Strouhal number (Sr), is an important validation parameter, the results from a 

number of studies indicate that the dominant frequency is somewhat 

independent of the turbulence model (Voke, 1996, Rodi, 1997, Rodi et al., 1997, 

Sohankar et al., 1999). 

2. Slope of the power spectral density (PSD) plot at high frequencies: this is an 

important validation of the models as there is a strong history of experimental 

data (Lumley and Yaglom, 2001, Yaglom, 2001) and theoretical work, e.g. 

Kolmogorov (1941), that predict what the shape of the PSD plot should be. 

3. Turbulent length scales as related to the grid scales: it is important to evaluate 

the Kolmogorov lengths as they define the smallest scales of motion that direct 

numerical simulations must approximate.  As the present simulations were 
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targeted as LES scales the mesh sizes used were envisaged to be an order of 

magnitude larger than the Kolmogorov lengths. 

6.4.2. Specific Method of Computation 

The first step to computing the frequency domain representations of the present data 

was to evaluate the peak-to-peak frequency of the v-velocity data by hand, which was 

approximately 1.67 Hz.  Next, the frequency resolution for the Fourier transform was 

arbitrarily assumed to be one tenth of this frequency, or f = 0.167 Hz/sample .  

Further, the sampling frequency, fs , was fixed at 1 kHz, which is the inverse of the time 

step size used for all four simulations.  Therefore, as the window length, n, is related to 

the sampling frequency and frequency resolution by 

 f =
fs
n

, (6.13) 

the nominal window length for the specified frequency resolution was 5988 points.  

However, the implementation of the digital Fourier transform within MATLAB is 

optimised for windows whose length is equal to a power of two (Mathworks, 2002), 

therefore the window length was increased to 8192, or 213, with a resultant increase in 

the frequency resolution 0.122 Hz/sample.  Further, with a window length of 213 the 

approximate error in the frequency spectrum due the digital Fourier transform process 

alone was ±0.06 Hz/sample , which is plus or minus half the limit of measurement. 

As the power spectral density is a statistical quantity it must be averaged over a number 

of realisations (Orfanidis, 1996).  Therefore, 100 realisations of the power spectral 

density were calculated using a rectangular window 213 samples long with the 

periodogram spectral estimation method in the Signal Processing Toolbox of MATLAB 

2008a (The Mathworks, 2008) and were averaged.  The windows were evenly 

distributed over the range 

 5 t 40 s . (6.14) 

6.4.3. Power Spectra and Dominant Frequencies 

All the power spectral densities as a function of frequency were computed from the 

v-velocities at eight points located along the wake centreline, i.e. the line y = 0, z = 0 for 

x  0.5d m.  The plots were characterised by a plateau at frequencies below 3 Hz; a 
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distinct peak at approximately 1.6 Hz and a tail that decayed for frequencies above 

3 Hz, as is shown in Figure 6-32 for the point 0.078,0,0( )  m *. 
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Figure 6-32 – Power spectral density of the v-velocity for a point on the wake 

centreline at x=0.078 m from the high-resolution simulation. 

Intriguingly, at approximately 5 Hz a second smaller, less defined but distinct peak was 

observed to rise out of the decay slope.  The present author is not aware of any 

discussion of the second peak and further investigation will be required to firstly 

confirm the veracity of the result but also the cause, specifically whether the peak is a 

harmonic of the dominant shedding or is due to an alternate unknown cause. 

The peak shedding frequency, that is the frequency at which the tallest peak occurs, 

computed from the PSD calculations was 1.77Hz, 1.59Hz, 1.65Hz and 1.65Hz for the 

low, medium and high-resolution and the water tunnel simulations respectively.  When 

converted to the non-dimensional Strouhal number defined as 

 Sr =
d × f

U
 (6.15) 

                                                

* More examples are not shown because the difference in the plots is sufficiently small that the 
presentation of additional plots would not add to the quality of the argument. 
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the results become: 0.132, 0.119, 0.123 and 0.120 with an error of ±0.004, respectively.  

These results from the present simulations are exceptionally close to the published 

numerical results that range from 0.066 to 0.161 but are clustered around 0.130, for 

example the numerical simulations of Sohankar et al. (1999) and the experimental 

results of Lyn and Rodi (1994) of 0.132. 
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Figure 6-33 – Comparison of Strouhal numbers from published data and the four 

simulations of present work. 

Interestingly, the results from the present simulations follow the trend discussed by 

Rodi et al (1997) in that the Strouhal number appears to have a low dependence on the 
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particular combination of turbulence model and numerical mesh, as is readily seen in 

Figure 6-33.  It therefore follows that the Strouhal number is not a good parameter for 

validation studies.  For example, the numerical studies of both Bosch and Rodi (1998) 

and Grigoriadis et al (2003), also shown on Figure 6-33, showed little dependence of Sr 

on either different grids or the numerical model used. 

Further evidence of the insensitivity of Sr to the choice of the turbulence model is that 

all the RANS results shown in Figure 6-33 are also acceptably close to the laboratory 

result.  Therefore, given the otherwise bad results when RANS computations are used, 

the apparent quality of the results for Sr indicates that Sr is very insensitive to the 

choice of numerical model. 

6.4.4. Decay Slope Estimation 

Theoretical studies based on dimensional arguments (Kolmogorov, 1941) indicate that 

the power spectral density should decay as 

 PSD f
5
3  (6.16) 

for very large Reynolds numbers and in the inertial subrange, as shown in Figure 2-3 is 

a schematic plot of the relationship between the slope and inertial subrange.  For 

comparison, four triangles with indicative power law slopes based on the assumption 

that 

  PSD f  (6.17) 

in which 
 

= 2, 5 3,
4
3, 1{ } , are shown in Figure 6-32.  Using these reference 

triangles the slope of the power spectral density curve at high frequencies (herein the 

decay slope) is close to the theoretical minus five-thirds slope.  However, a more 

rigorous examination in place of a visual inspection was developed to directly quantify 

the decay slope. 

From a visual inspection of the data, the linear power-law region is between the 

frequency range 150 f 300 Hz .  The PSD coefficients and frequencies that resulted 

from the Fourier transform and averaging process described above were linearised by 

performing all the computations in log10 space and the regression model was applied to 

eight points along the wake centreline. 
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To describe the regression model suppose that the PSD as a function of frequency can 

be described as 

  PSD = Cf + D  (6.18) 

in which C and D are constants.  Then, taking the logarithm of Equation (6.18) and 

rearranging results in 

  log PSD D( ) = log f( ) + log C( ) . (6.19) 

Now suppose that 

 Y = log PSD D( )  (6.20) 

and 

 X = log f( ) . (6.21) 

Equation (6.19) can now be generalised to 

 Yi = 0 + 1Xi1 + i . (6.22) 

at any frequency, fi , where 

 0 = log c( )  (6.23) 

is the intercept when Xi = 1  and i  is the error which is assumed to be normally 

distributed,  i N 0, 2( ) , with a zero mean and a variance of 2 .  The estimator can 

then be computed by 

 ˆ = XT X( ) 1
XT y , (6.24) 

in which the T  is the matrix transpose operator and X is the observed values matrix of 

the regressors.  Terms with a hat indicate values estimated from the regression while 

terms without a hat represent an ideal value.  An unbiased estimator of the variance of 

the errors can then be computed from 

 ˆ 2 :=
S

n p
 (6.25) 
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in which n is the number of samples and p is the apparent order of the regression.  In 

this model p = 2, see Equation (6.22) and n=4195.  S is defined as the sum of the 

squared errors 

 S := ˆ
i
2

i=1

n

. (6.26) 

Confidence intervals on the estimator ˆ j  can be calculated from the standard deviation 

 ˆ
j ± ˆ jt

2
,n p

 (6.27) 

in which the confidence level parameter ( )  is defined as 100 1( )  and the t 

parameter is taken from a Student T table, or other suitable source, for the requisite 

degrees of freedom and level of confidence.   

For the four simulations tested over the defined frequency band the power law decay 

slope fell within 0.35% of the theoretical slope, shown in Table 6-2.  The perfect slope 

value of  1.6666  fell within the 95% confidence bounds for all four models. 

Table 6-2 – Power law slope calculated via a linear regression of the point probe 

discussed in §6.4.3.  The frequency range was for 4195 points over 150-300Hz. 

Model Slope j 95% Confidence Interval 

LR -1.6634 0.0049 [-1.6742, -1.6525] 

MR -1.6678 0.0025 [-1.6733, -1.6622] 

HR -1.6517 0.0090 [-1.6716, -1.6318] 

WT -1.6545 0.0082 [-1.6727, -1.6364] 

 

The standard deviation from the models increased inline with the model resolution from 

a low of 0.0030 to a high of 0.0090 for the LR and HR simulations, respectively.  This 

is most likely due to the higher resolution model capturing more of the “physics” and 

thus showing a greater variability in the v-velocity as a function of time, which in turn 

flowed through to the slope estimation. 
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This regression model was applied to the other seven monitor points located close to the 

wake centreline.  As with the results shown in Table 6-2 all eight points had 

approximately the same slope, which was very close to the theoretical decay slope, 

shown in Figure 6-34.  Again, confidence bounds were computed but were so small as 

to be indistinguishable from the marker at the scale used in Figure 6-34 and were 

therefore not plotted. 
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Figure 6-34 – Indicative slope of the PSD traces in the power-law decay regions for 

eight points located in the wake along the y = 0, z = 0 line. 

A potential question with the present simulations is that in order to minimise the total 

cell count the mesh in the far field was increased in size.  Further, since it is a trivial 

matter to show that if the cells become too large, or the change in cell size is too great, 

the apparent order of the computation scheme is reduced to first order (Pourquie et al., 

1996, Roache, 1998a).  Moreover, as first order models have been shown to be overly 

dissipative (Roache, 1998a), the power law decay slope would significantly increases 

from the -5/3 value.  Therefore, a point of possible concern for the present simulations 

was that the size of the far field cells and/or the rate of change of the cell sizes might be 

too large.  However, as may be seen in Figure 6-34, because the decay slope remains 

constant downstream through both the wake and increasing cell size, the simulation 

technique appears to have not increased dissipation.  Therefore, as the slope of the 
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power spectral density curves is in good agreement with the theoretical predictions, the 

turbulent length scales, which are based on the spectral calculations, can be evaluated. 

6.4.5. Turbulent Length Scales 

The final parameter to be discussed in this section is the Kolmogorov microscale length 

defined as: 

 
3

1

4

 (6.28) 

in which  is the average dissipation rate.  As the dissipation rate was not directly 

calculated in these simulations an experimental method described by Mallinson et al 

(2004) and designed for hot wire anemometry data was used.  Mallinson et al tested 

three methods of computing the dissipation rate and hence  and concluded that there 

was little difference in the results.  Therefore, with the ready availability of the spectral 

data, their third method based on spectral calculations was adopted for the work 

described herein. 

With the spectral method, the average dissipation (Pope, 2001) is 

 = 15 2E ( )d
0

 (6.29) 

in which  is the wave number given by 

 =
2 f

Uref

 (6.30) 

and E ( )  is the power spectrum in wave number space that is related to the power 

spectrum in frequency space, E f( ) , by the relation 

 E ( ) = E f( )Uref

2
 (6.31) 

Here Uref is a reference velocity scale, which was taken to be the time-averaged 

u-velocity at the point where the calculations were being performed.  The Kolmogorov 

length calculations were performed using the same spectral averaging method as 

outlined above but were based on the u-velocity, so the reference velocity scale was 

assumed to be the mean of the u-velocity in the time domain.  These computations were 
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performed over the same set of points as the power-law decay computations and the 

results are shown in Figure 6-35. 
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Figure 6-35 – Kolmogorov lengths computed along the wake centre line. 

As an order of magnitude comparison, Dobre and Hangan (2004) estimated, albeit via a 

slightly different method,  to be 64 m at a point on the wake centreline at x = 26d  m , 

which is in good agreement with the 20-140 m computed within the present work. 

Dobre and Hangan (2004) estimated  using the inviscid approximation (Tennekes and 

Lumley, 1972) that assumes the dissipation rate to be 

 =
u( )3
d

 (6.32) 

in which “…u  is the maximum streamwise velocity standard deviation at the 

measurement location and d is the cross square cylinder width” (Dobre and Hangan, 

2004).  However, the limitation of this method, as discussed conceptually by Mallinson 

et al (2004) and examined with DNS data (Del Álamo and Jiménez, 2009, Moin, 2009) 

is that Taylor’s hypothesis is implicitly used with the assumption that the velocity is 

constant over time, which is clearly incorrect for the flows observed at this location, for 

example see Figure 6-2.  Despite the additional caveat when interpreting this result the 

similarity with the present work is very encouraging. 
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As  is an estimate of the smallest scales of turbulence, and as the turbulence decays 

and the wake grows,  should therefore first increase as the wake, and turbulence, 

intensity increases in the near wake, for example, as the u  components increase in 

Figure 6-26.  Then as the far wake decays,  should further decrease in conjunction with 

the trend of the flow towards uniformity.  These trends are visible in Figure 6-35 with 

an initial sharp increase in the near wake before levelling off at around =130 m in the 

far wake.  There is a discontinuity to this trend at x 0.04m, which is close to the 

recirculation length where on the average the flow velocity tends to zero.  The lower 

average u-velocity and corresponding lower level of fluctuations at this location is the 

most likely cause in the discontinuity of  as it will lead to a lower power spectral 

density curve and hence, via the integral, a lower final value for . 

Because the present simulations have been shown to adequately represent the 

time-averaged and turbulent-spectral parameters the so-called integral quantities, such 

as the average drag and lift coefficients, which are dependant on the geometry of the 

object, and the Reynolds number can be examined. 

6.5. Single Parameter Validation: Integral Quantities 

6.5.1. Quantities Considered 
To continue the reductive validation process, whereby the examination began with 

visualisations of the flow field and reduced the complexity with the use of averages, the 

final step is to compare the integral quantities.  For this study, six parameters were 

considered, namely the mean force coefficients, that is CD  and CL ; the root mean 

squared force coefficients CD  and CL ; the recirculation length, lr  and the coefficient of 

base pressure, Cp .  The following sub-sections will briefly discuss the results, in the 

above order. 

6.5.2. Mean CD and CL 
The mean CD  from the spanwise periodic models appear to converge to approximately 

2.5 as the cell count is increased, with values of 2.42, 2.50 and 2.51 for the low, 

medium and high-resolution simulations respectively.  In contrast to the results from 

spanwise periodic simulations, the mean CD  from the water tunnel model is 25% higher 

at 2.66, as shown in Figure 6-36. 
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Figure 6-36 – Comparison of mean drag coefficients from published data and the 

four simulations of present work. 

It is noted that while all four of these results are within the bounds of the published CD  

results, they are close to the upper limit and are 20% and 27% higher than the 

experimental CD  of 2.1 (Lyn and Rodi, 1994) for the spanwise periodic and the water 

tunnel simulations, respectively. 

The values of the mean CL  for the present work are all within the bounds 

 0.06 CL 0.03 , (6.33) 
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which is acceptably close to zero, as shown in Figure 6-37.  That is, over the simulation 

time windows used to compute CL , the computed value will move slightly around zero 

as a function of the vortex shedding phase.  Hence, small deviations from zero, as 

shown in the limits of Equation (6.33), are due to the location in the shedding cycle 

where the average computation stopped rather than to an incorrect non-zero mean. 
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Figure 6-37 – Comparison of mean lift coefficients from published data and the 

four simulations of present work. 

6.5.3. Root Mean Squared CD and CL 

The root mean squared drag, CD , results from the spanwise periodic simulations and as 

with CD  were towards the higher end of the published results at 0.28, 0.31 and 0.26 for 

the low, medium and high-resolution simulations respectively, as shown in Figure 6-38.  

Somewhat surprisingly given the substantially higher CD  that the benchmarks for the 

water tunnel simulation, the corresponding CD  was 40% lower than the medium 

resolution simulation.  This lower CD  for the water tunnel simulation was near to the 

centre of the reference LES data and the combined conference LES results, as shown in 

Figure 6-38, which if taken by itself would indicate perfect validation.  No results from 

laboratory experiments for CD  were available to the present author for comparison. 
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Figure 6-38 – Comparison of root mean squared drag coefficients from published 

data and the four simulations of present work. 

As with CD  for the spanwise periodic simulations, CL  for the same simulations was 

also higher than, yet still within the bounds of, the majority of the comparison 

simulations, as shown in Figure 6-39, at 1.47, 1.59 and 1.60 for the low, medium and 

high-resolution simulations respectively.  In contrast to the high results from the 

spanwise periodic models, and in parallel with the CD  results, CL  for the water tunnel 

simulation is both lower than the spanwise periodic results at 1.19 and closer to the Lyn 

and Rodi (1994) result of 1.3. 

In addition to the laboratory result of 1.3 from Lyn and Rodi (1994), Cheng et al. (1992) 

published a CL of 0.5 for an equivalent configuration as the present work, also shown in 

Figure 6-39.  This result is particularly puzzling because it is some 60% lower than the 

Lyn and Rodi result around which the majority of the numerical results, including the 

present work, cluster.  The present author cannot explain the discrepancy of this result 
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as the blockage ratios and turbulence intensity ratios were in the same ranges for both 

studies, with the only significant difference being that Lyn and Rodi performed their 

experiments in a water tunnel, while Cheng et al. utilised a wind tunnel. 
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Figure 6-39 – Comparison of root mean squared lift coefficients from published 

data and the four simulations of present work. 

It is interesting to again note the poor performance of RANS based solvers in resolving 

both the mean and, particularly, the RMS quantities.  That is, while there is a spread of 

results for the mean CD , the majority of the RANS results are lower than the 

experimental data, as shown in Figure 6-36.  In turn this, if the results were taken out of 

context, could result in a non-conservative estimate of the drag forces.  However, the 

RANS models, with the notable exception of a cluster of results from Lee (1997) which 

are overestimated by 50%, are unable to resolve the fluctuations, as shown in Figure 

6-39.  Therefore, with RANS models apparently unable to resolve either the drag or the 
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fluctuations to a reasonable degree, the axiom of “any answer is better than none” must 

be questioned.  In contrast, the high order methods such as large eddy simulations and 

DNS, as well as the approach used in the present work all capture, to a varying extent, 

both the mean and fluctuations. 

6.5.4. Recirculation Length 

The recirculation length was computed from the averaged flow field data and was 

defined as the length from the downstream face of the cylinder to the point, xlr , where 

 
 
U(x) = 0 for x

d

2
 (6.34) 

and for the major recirculation zone.  That is, secondary recirculation zones were 

observed very close to the cylinder but were ignored for these comparisons.  lr from the 

present simulations was 1.38, 1.31 and 1.34 for the low, medium and high-resolution 

spanwise periodic simulations and 1.02 for the water tunnel simulation, as shown in 

Figure 6-40. 
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Figure 6-40 – Comparison of recirculation lengths. 
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These results from the spanwise periodic model compare favourably with the 1.38 

measured by Lyn and Rodi (1994).  However, lr computed from the water tunnel 

simulation is some 25% lower than the benchmark laboratory and numerical data. 

6.5.5. Base Pressure Coefficient 

The base pressure coefficient presented in this dissertation was computed as 

 CP =
Pi

i=1

Nnodes

1
2

v2
 (6.35) 

in which Pi  represents the time averaged pressure at a node i on the downstream face of 

the cylinder.  The results from the spanwise periodic models of -1.48, -1.55 and -1.54 

for the low, medium and high-resolution models compares favourably with the spread 

of reference numerical results, as shown in Figure 6-41. 
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Figure 6-41 – Comparison of coefficients of base pressure from published data and 

the four simulations of present work. 

However, CP  from the water tunnel simulation is, with the exception of one result, 

lower than the benchmark data. 
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6.5.6. Discussion of the Single Parameter Results 

In general, the results are acceptable for the purposes of this validation study.  That is, 

as the work presented in this dissertation is designed to reduce the computational 

requirements for modelling it was anticipated that there might be a corresponding loss 

in accuracy. 

The model results for the coefficient of base pressure and the recirculation length must 

be related in that the larger negative base pressure, or suction, which would probably 

draw the downstream recirculation region closer to the cylinder.  Naturally, this would 

then also reduce the recirculation length. 

The smaller recirculation length and higher base pressure coefficient could also explain 

the higher lift forces and the higher lift and drag RMS coefficients.  In this case it is 

conjectured that the amount of energy contained in the recirculation region is 

approximately consistent with the reference data but is contained in a smaller volume.  

It then follows that the fluctuations, although at approximately the same dominant 

frequency as the reference data sets, would be more violent, hence the higher RMS 

values.  Unfortunately, the relatively high value of the drag coefficient is not compatible 

with this hypothesis as a higher base pressure should balance the already high upstream 

pressure and therefore reduce the drag felt by the cylinder. 

Alternatively the 2nd order upwind model may be overly dissipative, which would be a 

direct contrast to the spectral results presented in §6.4.  Further investigation, rather 

than validation per se, will be required to quantify the causes, and possible remedies, for 

these variances. 

6.6. Wall Time 

Although wall time is not, strictly speaking, a validation parameter, as a central 

hypothesis of the present work is that the subgrid models may be replaced by the use of 

a 2nd order upwind discretisation scheme that is faster than the alternative turbulence 

models, run times must be discussed.  The difference in computational speeds was 

evaluated on the medium resolution grid with several different subgrid scale models.  

All the simulations were run within the CFD-ACE+ computation fluid dynamics solver 

and all used the default settings for the respective turbulence models as specified by the 

code developers.  All the models were started from rest and the inlet velocity was 
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accelerated using a sinusoidal acceleration function over two seconds.  The models were 

allowed to run for 2000 time steps, or 2s of model time, before being stopped and the 

wall time calculated. 

Of the six models tested five were LES type models and one was a k-  RANS type 

model.  The models are listed in order of increasing computation complexity and are 

discussed below: 

1. 2nd Order Upwind Model (2nd Order): the model used in the present work; 

2. Smagorinsky based LES (LES Smag): the Smagorinsky subgrid scale model 

(Smagorinsky, 1963) is used for a LES simulation; 

3. Detached Eddy Simulation (DES): a mixture of LES and RANS computations, 

which therefore requires a splitting algorithm to determine the appropriate solver 

to use in each zone before computing the turbulence quantities; 

4. Dynamic LES Model (LES Dyn): the dynamic model used in this simulation is 

based on Lilly’s modification (1992) of the dynamic Smagorinsky LES model 

proposed by Germano (1991) and evaluates the Smagorinsky stress tensor with a 

double filtering process; 

5. Locally Dynamic LES Model (LES LD): utilises Menon’s locally dynamic LES 

model (Menon and Kim, 1996); 

6. k-  with Renormalised Groups: this model is based on the Renormalised Group 

k-  model of Yakhot and Orszag (1986) and is perhaps an unfair comparison 

because RANS models have a significantly higher computation workload than 

Smagorinsky type LES models but are designed to run on grids with smaller cell 

counts.  Therefore, a RANS model should, by definition, run more slowly on a 

LES scale mesh than a LES type model. 

The results of the model speed tests are shown in Figure 6-42 and three trends are 

visible, firstly that the 2nd Order LES model was significantly faster than all the other 

models.  Second, that as the theoretical computation complexity increased so did the 

model run time and thirdly that the k-  RANS model was slower than the majority of the 

LES type models. 
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Figure 6-42 – Comparison of model run speeds for different LES subgrid models 

and an indicative k-epsilon RANS model. 

However, despite the k-  performing worse than 2nd Order Upwind, DES and LES 

models it was still faster than both of the dynamic LES models.  This is somewhat 

surprising as the author was expecting the RANS type models to perform far worse than 

any of the LES models.  Instead, it would appear that the dynamic models were 

incurring a significant computational penalty for the required additional computations. 

6.7. Discussion of the Single Phase Validation Studies 
The validation studies presented in this, and the previous, chapter were primarily 

intended to show that the 2nd order upwind technique was capable of simulating the 

massively separated, turbulent flows around a bluff body at a Reynolds number of 

Red = 22 ×10
3 .  However, in addition to this pure validation exercise a number of new 

discoveries were made that simultaneously cast doubt on the reliability of previous 

numerical simulations and offer an alternative to improve future numerical experiments. 

As a preparation exercise for the main validation study, which was discussed in §5.2, a 

number of two-dimensional simulations were undertaken to quantify the requirements 

for both the maximum mesh size adjacent to the cylinder and the minimum length from 

the cylinder to the outlet.  The flow field, as visualised with velocity magnitudes, was 

interpreted to be “unphysical” in that instead of the expected von Kármán vortex street 

irregular blobs of fluid were ejected from the nominal wake, as shown in Figure 5-4.  

This interpretation cast significant doubt on the validity, and hence applicability, of the 

majority of the published data that was computed using two-dimensional meshes and 

was intended to be used for the validation of the three-dimensional simulations of the 

present work. 
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Despite the interpretation that the results from the two-dimensional simulations were 

unphysical, this was not the primary purpose of the two parametric studies.  Instead 

these investigations were envisaged to test the effect of independently changing the 

distance from the cylinder to the outlet boundary and the length of the cell, normal to 

the cylinder, for the cell adjacent to the cylinder, as shown in Figure 5-2 and Figure 5-3.  

In this regard, a clear effect was observed as the value of the parameters was changed 

with a critical for both parameters after which the simulations were largely independent 

of the value of the parameter.  To examine this the probability distribution functions 

were examined as shown in Figure 5-8 and Figure 5-9 for the L and F simulations, 

respectively.  The simulations of L were independent for  L 400 mm , while the 

results from the F simulations were independent for  F 500 m .  Therefore, these 

results were used to guide the development of the three-dimensional meshes. 

With these recommendations, two configurations of three-dimensional meshes were 

constructed.  The first was designed to match the workshop specifications detailed by 

Rodi et al (1997) while the second was envisaged to represent the close circuit water 

tunnel used by Lyn and Rodi (1994).  Interpretation of the flow field from the spanwise 

periodic simulations hinted that the spanwise width was too narrow.  That is, the 

streamwise rib structures appeared to be compressed in the spanwise direction when 

compared to the same visualisations from the water tunnel simulations, as shown in a 

comparison of Figure 5-25 and Figure 5-26, respectively.  An examination of the 

spanwise correlation coefficients, discussed in §5.6, confirmed the suspicion that the 

region of uncorrelated flows in the centre of the spanwise periodic domain was too 

small.  Further, the simulations with the water tunnel largely ameliorated these 

problems for two reasons.  Firstly, no periodic boundaries were required because this 

configuration exactly matched the experimental configuration and, secondly, 

irrespective of the match with the experimental configuration there was a large enough 

region of uncorrelated flow in the centre of the domain.  Despite these problems 

discovered with the spanwise periodic simulations the vast majority of the numerical 

data available for validation is based on this configuration, therefore the validation that 

progressed and was discussed in §6 focused on the results from the spanwise periodic 

simulations. 
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The validation began with an examination of the grid independence, discussed in §6.2, 

but as a number of the parameters tested showed oscillatory convergence a formal 

mathematical procedure would be inappropriate (Celik et al., 2008).  Instead a 

qualitative analysis of the velocity data as a function of time, presented in §6.2.2, and 

the reduced, statistical properties of the velocity components at a point, presented in 

§6.2.3, was performed.  The interpretation of these two distinct forms of data indicated 

that the three spanwise periodic simulations were “converged” in that there was little 

difference between the simulations.  In an apparent confirmation of the initial estimate 

of oscillatory convergence, there was no clear trend in the eight statistical properties 

examined across the simulations.  Therefore, as the results from the simulations were 

“converged” the component of the validation study with the published data could 

proceed. 

The majority of the data available for validation was time averaged and split between 

spatial data, that is the time averaged velocity along a line, and the so called “integral” 

quantities, such as the time averaged CD  and CL  as well as the recirculation length and 

peak frequency.  Therefore, to convert the unsteady results from the present simulations 

an online average method was presented and validated in §6.3.2 and §6.3.3, 

respectively.  In a similar trend to the results already discussed all of the integral 

parameters were close to, and within the spread of, the references.  Further, there was no 

single trend from low to medium to high resolution for all the parameters. 

Given that the technique has not only been successfully validated to simulate bluff 

body, transitional flows with single phases, but also revealed a significant limitation in 

many of the present simulations, as well as providing a strategy to ameliorate the 

defects, the method can be extended to two-phase, bluff body flows.  However, as the 

extension to two-phase flows will introduce a number of new physical effects this 

extension should also be validated prior to using the method to investigate, general 

turbulent, two-phase flows. 

 





 173 

7. Flows with a Free Surface 

7.1. Introduction  

In a manner similar to the validation of the square cylinder discussed previously, two 

selection criteria were primarily used to decide if a particular configuration would be 

suitable for a validation exercise, namely: 

1. Was the quality of the description of the geometric configuration sufficiently 

high to be reproducible? 

2. Was there suitable physical and numerical data available for detailed 

comparison? 

Initially the tow tank experimental results of Inoue et al (1993) appeared to meet these 

criteria.  In addition to providing extensive data on the time averaged free surface 

elevation, four velocity profiles, both inside and adjacent to the wake region, were taken 

using a hot film probe that was submerged behind the cylinder. 

Both Chen et al (2000) and Kawamura et al (2002) used the Inoue study as the basis for 

their Large Eddy Simulation, as detailed in Table 7-1.  Both of these groups reported 

favourable results with different dimensions and boundary conditions.  Therefore, with 

these positive results from simulations with different geometric configurations, the right 

circular cylinder that pierced a free surface was adopted as the configuration for the 

present validation study.  As the present work was being finalised Yu et al (2008) 

published their results of a Large Eddy Simulation of the same configuration, which 

provided further validation data. 

All research programs are subject to a certain degree of “evolution” as new results are 

published or, more likely, are simply discovered by the primary researcher.  This 

investigation was no different in that a specific geometric configuration was initially 

chosen, yet subsequently, as the present research, and in particular the scope of the 

literature review, expanded, further published data were discovered and incorporated 

into the current project. 
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Table 7-1 – Key parameters of the benchmark right circular cylinder studies to be used to validate the present work. 

Paper Type Turbulence 
Model 

Wall 
Function 

Ncells 
LR 

Ncells 
MR 

Ncells 
HR 

Water 
Depth 

Air 
Height 

US 
Distance 

DS 
Distance 

Width 
from 

Cylinder 

Topology 
Type 

Inoue et al  

(1993) 

Tow 

Tank 
N/A N/A N/A N/A N/A 

Not 

Known 
N/A N/A N/A 30D N/A 

Chen et al 

(2000) 
LES 

RNG 

Smagorinsky 
None - - 132,680 2D 

Not 

Specified 
10D 20D 10D 

Un-

structured 

Kawamura 

et al (2002) 
LES Smagorinsky 

Yes but 

unspecified 
67,473 142,545 525,987 4D 

Not 

Specified 
10D 15D 10D 

Structured 

O-Type 

Yu et al 

(2008) 
LES Smagorinsky Van Driest - 1,647,459 3,395,651 4D 4D 20D 20D 20D 

Structured  

O-Type 

Present 

Work 

Coarse 

DNS 
N/A None 245,430 373,340 588,500 8D 4D ~14D ~19D ~14D 

Structured 

O-Type 
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With the geometric configuration apparently fixed, a number of preliminary studies 

were developed to test unknown variables such as the location of the side walls – 

variables that differed between all three of the numerical papers and the experimental 

investigation of Inoue.  While these two-dimensional, preliminary studies were being 

undertaken the literature review continued in parallel and the extensive experimental 

data set of Hay (1947) was discovered by the present author. 

Hay conducted an exhaustive program of tow tank tests that were designed to 

investigate the “resistance of simple geometrically-shaped formes towed through the 

water surface” (Hay, 1947).  Unlike Inoue, Hay exhaustively described the experimental 

conditions that were of particular relevance for the present work, namely the dimensions 

of the tow tank.  In line with the stated aim of the tow tank experiments, Hay made a 

staggering 900 measurements of drag coefficients for combinations of three variables: 

1. The depth of immersion, L. 

2. The diameter of the cylinder, d. 

3. The speed of the cylinder through the otherwise quiescent tank. 

Thus, this data set provides a superlative reference source for trends as well as definitive 

measurements of specific depth/diameter/speed combinations, as shown in Figure 7-1. 

In addition to the phenomenal record of drag forces, Hay also shot over 730 

photographs of these depth/diameter/speed combinations from three different angles.  

Two of the images were perpendicular to the direction of travel with one above the free 

surface looking down and the other below the free surface.  The third set of images was 

taken from behind and to the side of the cylinder looking upstream at the wake.  Hay 

then applied photogrammetry techniques to these images and made 1500 measurements 

of six different wave shape parameters.  Specifically, wave shapes parameters were 

lengths such as the height of the bow wave and the distance to the top of the rooster tail 

from the cylinder. 

There is no velocity profile data nor are there free surface contours at the smaller 

diameter, lower speeds investigated by Inoue.  However, as the available Hay data is so 

extensive, the trends are readily apparent and, thus, results from the present work can 

still be compared.  Therefore, the focus of the present work was varied slightly to  
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Figure 7-1 – All 900 drag coefficients measured by Hay (1947) plotted as a function of Froude number relative to the diameter. 
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remain with the diameter/speed configuration investigated by Inoue et al (1993), but 

with the computational geometry configured to match the fully described tank used by 

Hay (1947).  However, there are a few caveats to be considered with the numerical 

simulation of tow-tank experiments. 

7.2. The Cylinder Centred Inertial Frame of Reference  

The tow tank that was used by Hay in his landmark investigations was located at the 

David Taylor Model Basin, Maryland, USA, shown schematically in Figure 7-2.  In 

total seven diameters that ranged from 3.175 mm to 200 mm were dragged through the 

tow tank at speeds up to 4.6 m/s.  Concurrently, the depth of immersion of the cylinder, 

relative to the at rest free surface, ranged from 25.4 mm to 800 mm. 
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Figure 7-2 – Diagram of a sub-section of the David Taylor Model Basin with the 

surface piercing circular cylinder and the free surface shown. 

For this present work because of a combination of limitations of the CFD-ACE+ 

computational fluid dynamics code and, despite the availability of state of the art 

computational resources, the lack of a sufficiently large computational facility made it 

impossible to directly simulate the tow tank utilised by Hay.  Therefore, in order to 

reduce the size of the computational domain, the inertial frame of reference was 

changed such that instead of being based relative to the outside of the tank, it was 
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centred on the cylinder.  This allowed the streamwise length of the computational 

domain to be reduced to only a 1/25th length of the full tunnel. 

To reverse the inertial frame of reference, suppose that, instead of the cylinder moving 

through otherwise stationary fluid and walls, the cylinder was fixed within the 

computational geometry and the fluid and wall boundaries were accelerated around the 

cylinder, as shown in Figure 7-3 compared with Figure 7-2.  This was an approach 

originally that was originally suggested by Leonardo di Vinci (Anderson, 1997). 
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Figure 7-3 – Diagram of the configuration of the cylinder centred reference frame. 

This change in the reference frame is not, however, a perfect solution because of the 

difference in the turbulence levels that the cylinder will experience in the alternate 

configurations.  That is, if the cylinder were towed through quiescent fluids, as was the 

case for the laboratory experiments of Hay, the cylinder would encounter fluids with 

negligible turbulent fluctuations.  Arguably, the turbulent fluctuations should be zero 

but it could reasonably be expected that due to the minor action of convection currents, 

or residual currents from previous experiments, there would be some small movement 

in the fluid.  In contrast to the physical conditions, the numerical cylinder would 

experience turbulent fluctuations because, although the water would be injected into the 

numerical model with no turbulent fluctuations, the velocity is sufficiently high that 

turbulent fluctuations would develop upstream of the cylinder. 
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This effect should be sufficiently small such that any resultant error would be 

insignificant compared with that generated from the other numerical assumptions and 

methods.  In order to maintain the highest similarity between Hay’s experiments and the 

present numerical simulations and simultaneously minimise disturbances due to 

changed inertial frame of reference, the wall boundary and volume conditions that were 

to be imposed on the fluids needed to be carefully specified. 

7.3. Cylinder Centred Boundary Conditions 

Within the present simulations, five distinct boundary conditions had to be considered, 

namely:  

1. The inlet. 

2. The outlet. 

3. The cylinder faces. 

4. The spanwise walls. 

5. The two boundaries at the vertical extents of the computational domain. 

It was presumed that in the physical experiments the towing carriage was initially at rest 

and subsequently accelerated up to the test speed before the measurements were taken.  

As Hay did not publish information regarding the acceleration phase of his experiments, 

the present author assumed a velocity profile in time of the form 

 uinlet t( ) = U sin
t

4

2

for 0 t 2

U for t > 2

, (7.1) 

in which t is the time in seconds.  This profile is shown for the non-dimensional case in 

Figure 7-4 and was uniformly applied over the entire inlet face at a given time instant, t. 
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Figure 7-4 – Plot of the normalised inlet velocity as a function of time. 

The outlet to the computational domain was set such that the fluid could flow freely out 

as the simulation progressed.  In contrast to the physical experiments where the cylinder 

moved through the tank, the cylinder is stationary for the numerical simulations.  

Therefore, the cylinder faces were set as non-slip, stationary walls. 

In the room centred frame of reference the spanwise walls are nominally described as 

non-slip walls that are fixed in space.  However, within the cylinder centred inertial 

frame of reference the walls “appear” to move past the cylinder at the same rate as 

Equation (7.1).  Therefore, these walls were specified to be non-slip walls that 

accelerated at the same rate as the inlet. 

With the physical experiments conducted at the David Taylor Model basin the lower 

boundary would be a wall at the bottom of the tank while the upper boundary would be 

the roof of the facility.  However, it was not feasible to simulate to these spatial extents 

so the vertical domain was artificially reduced and bounded with zero friction walls. 

7.4. Cylinder Centred Volume Conditions 

In contrast to the room centred inertial frame of reference where the cylinder was 

accelerated through the nominally quiescent fluids, in the numerical simulations both 

the fluids, the air and the water, must be accelerated simultaneously with the sidewalls 

around the stationary cylinder.  Therefore, to match the velocity profile specified at the 

inlet, the acceleration of the fluid volume as a function of time was calculated as the 

derivative of Equation (7.1), namely; 
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duinlet
dt

t( ) =
U

4
sin

t

2
for 0 t 2

0 for t > 2

. (7.2) 

This acceleration as a function of time, as shown in Figure 7-5, was applied to every 

computational cell as a user defined gravitational acceleration in the streamwise 

direction.  In addition to the applied streamwise acceleration, the gravitational 

acceleration due to the mass of the earth was set at a constant 9.81m/s that acted in the 

negative y-direction, as shown in Figure 7-2. 
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Figure 7-5 – Plot of the normalised acceleration as a function of time. 

7.5. Non-Dimensional Numbers 

The final step to maximise consistency between the experiments of Inoue and those of 

Hay was to define a common non-dimensional parameter.  In the simulation of turbulent 

free surface flows, both the Reynolds number and the Froude number are important as 

the first is used to characterise the turbulence while the second is used to characterise 

the free surface.  To add further confusion there are two definitions of the Froude 

number and two possible length scales: the cylinder diameter and the depth of 

immersion. 

For the present work and for most of the comparisons, including the step from the single 

fluid simulations, the interest is in the turbulent quantities.  Therefore, the Reynolds 

numbers is the critical non-dimensional number that was defined relative to the cylinder 

diameter, 

 Red =
U d

water

 (7.3) 



 182 

in which d is the diameter of the cylinder and U  is the velocity with which the cylinder 

was towed through the water.  For the remainder of this dissertation if it is not 

specifically mentioned in the discussion the reference fluid is water.  In contrast, if the 

air phase were chosen instead the resultant Reynolds number would be lower.   

Finally, of the two definitions of the Froude number, unless specifically mentioned 

otherwise, this non-dimensional number was assumed to be 

 Frd =
Uref

2

gd
 (7.4) 

in which g is the magnitude of the gravitational vector.  As with the square cylinder 

investigations a number of preliminary studies were undertaken to investigate some of 

the numerical and geometric assumptions that were presumed to influence the three-

dimensional, two-phase simulations. 
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8. Two-Phase Preliminary Studies 

8.1. Introduction  

Firstly it should be noted that two conclusions from the square cylinder investigations 

were assumed to be especially relevant to the circular cylinder studies, namely that both 

the location of the outlet boundary and the grid resolution in the region close to the 

cylinder surface would affect the computed flow field.  For example, when the outlet 

boundary was located too close to the square cylinder, the computed flow field 

structures, and by extension the forces felt by the cylinder, were different from those 

found when the outlet boundary was located further from the cylinder.  Further, as the 

distance from the cylinder to the outlet boundary was increased the flow field stabilised 

into a periodic shedding regime.  Moreover, observations from the square cylinder 

studies indicated that as the cell size adjacent to the cylinder increased, poor solutions of 

the flow field resulted.  Further, and in contrast to the square cylinder where the sharp 

corners provided well-defined separation points, the location of the separation points for 

the circular cylinder change as a function of Reynolds number (Zdravkovich, 1997).  

Therefore, it could be supposed that the affect of the grid size in the region close to the 

circular cylinder would be much more significant than is the case with the 

corresponding square cylinder flow and, hence, warrants further detailed investigation. 

In fact, this effect was observed by Fröhlich and Rodi (2004) who numerically 

investigated finite height circular cylinders in single phase flows at a Red = 43×10
3  

and described the consequence of insufficient resolution as “drastic”.  As they reduced 

the grid resolution, the drag coefficient similarly reduced from 0.88, consistent with 

published results that were collated by Fröhlich and Rodi, to 0.32.  Further, although 

they did not include the streamline images to which they referred, they argued that, as 

the grid resolution was reduced, the flow patterns around the cylinder deviated from a 

“reasonable match” with experimental PIV data to a narrower wake with the “shear 

layers…shifted towards the symmetry plane” (Fröhlich and Rodi, 2004). 

Therefore, in order to develop strategies to ameliorate these potentially adverse effects, 

a number of preliminary studies were performed on simplified models that reduced the 

complex, three-dimensional problem into a series of two-dimensional configurations.  

These simplifications reduced the required computational effort, thereby allowing for a 
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larger number of variations in a parametric study.  The conclusions drawn from the data 

obtained from these parametric studies could then used to guide the development of the 

three-dimensional models. 

Three studies were performed with the first investigation designed to determine the 

influence of different hydrostatic pressure distributions across the inlet and outlet 

boundaries.  The second study was envisaged to explore the grid requirements adjacent 

to the cylinder, while the third was aimed at probing the affect of the location of the 

outlet boundary position downstream of the circular cylinder. 

8.2. An Inquiry into the Influence of a Hydrostatic Pressure 

Variation at the Inlet and Outlet Boundaries 

8.2.1. Motivation for this Study 

As the density ratio of the water and air used in the present studies was nearly 1000:1, 

the hydrostatic effect from the air phase at both the inlets and outlets is in most cases 

assumed to be negligible and, therefore, is often ignored.  Hence, the first investigation 

in the preliminary studies of the two-phase flows was designed to test the effect of 

different inlet and outlet pressure boundary conditions that are, of course, merely 

alternate assumptions of the hydrostatic pressure distribution.  The hydrostatic pressure 

distribution in a quiescent fluid is given by 

 ph = p0 + gh , (8.1) 

in which p0  is a pressure at the highest point in the region of interest.  For example, in 

an open body of water, such as a lake or river, po  can be used to describe the pressure 

on the free surface that is due to atmospheric pressure, which can then change over time 

as different weather systems move over the water body.  Therefore, while the 

hydrostatic component within the water phase, the second term on the right hand side of 

Equation (8.1), will be invariant, the pressure felt at any point in the water body will 

change because of the change in p0 . 

Suppose that the hydrostatic pressure effect in the air phase is assumed to be negligible, 

then the pressure distribution over the air phase boundary faces will be uniform.  

Alternatively, if the hydrostatic pressure effect is assumed to be significant then the 

pressure distribution across the same boundary faces will be of the form described in 
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Equation (8.1).  To test the validity of these alternate assumptions, a two-dimensional 

numerical model was designed to represent a vertical slice of an open channel that was 

flowing half full of water and air without an obstacle such as the right circular cylinder.  

Two tests were then conducted on this common computational mesh with the first based 

on the assumption of a hydrostatic pressure variation in the water boundary face only 

while the second was specified with a hydrostatic pressure variation across both the air 

and water boundary faces.  For the remainder of this chapter these two tests will be 

referred to as the no air (NA) and with air simulations (WA). 

8.2.2. Geometric Design, Grid Layout and Solver Configuration 

In order to address the alternate hypotheses described above, a two-dimensional mesh 

envisaged to represent a vertical slice through an open channel was developed, as 

shown in Figure 8-1. 
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Figure 8-1 – Sketch of the two-dimensional channel model and the edge and 

boundary layout used for testing the hydrostatic pressure assumption. 

Further, to maintain similarity with the surface piercing circular cylinder simulations, 

the Reynolds number, Reh , was defined as 

 Reh =
U h

water

= 27 ×103 , (8.2) 

in which U  is the inlet velocity and h is the depth of the water phase.  The 

computational mesh was created from one block that consisted of square cells with a 

side length 2.5mm.  Due to a requirement with the CFD code that a single inlet (or 

outlet) be specified per phase, the inlet and outlet boundaries were split into a pair of 
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boundaries with one for the water and the other for the air, as illustrated in Figure 8-1.  

The edge layout and dimensions are also shown in Figure 8-1 while the number of 

nodes per edge is detailed in Table 8-1, which resulted in a computational mesh with 

16 000 cells. 

Table 8-1 – Edge node count and spacing for the edges sketched in Figure 8-1. 

Edge Number of Nodes Uniform Spacing (mm) 

ab, bc, de, ef 41 2.5 

cd, af 401 2.5 

 

As an initial condition the domain was split vertically* into water and air phases, as 

shown in Figure 8-1, but there was no corresponding split in the computational block.  

The time step was arbitrarily set to 100 s that, with U = 0.27m/s , resulted in a CFL 

number of 0.01.  U  was specified as a constant velocity for both the air and water 

inlets, shown in Figure 8-1, as well as for the initial velocity within the entire 

computational domain. Both the outlet boundaries were set as constant pressure outlets† 

with the appropriate fluid should the flow appear to be entering rather than leaving the 

computational domain.  The pressure distributions on all the inlets and outlets were 

based on the hydrostatic profile being tested with zero pressure assumed to act at the top 

of the domain. 

The same second order upwind with limiter spatial differencing scheme as was 

proposed for the circular cylinder studies was implemented in these trials.  Because the 

time step was so small, it was assumed that there would be relatively little change of the 

flow between successive time steps.  Therefore, to reduce the computation 

requirements, the solver was restricted to a maximum of ten iterations; a maximum of 
                                                

* The relative descriptors of “top” and “bottom” are defined relative to the gravitational vector along the 
vertical axis, shown in Figure 8-1, whereas “left” and “right” refer to the negative x and positive x-
directions, respectively. 
† The description of a boundary as a “constant pressure boundary” is somewhat confusing because, as 
discussed above, the aim of these tests was to investigate boundaries with and without pressure gradients.  
However, while the pressure may vary in space, as in these tests, or indeed in time as well, as far as the 
solver is concerned the pressure is “constant” for a particular time step and spatial coordinate.  This 
particularly confusing nomenclature is reminiscent of the, then, U.S. Secretary of Defence, Donald 
Rumsfeld’s, perplexing, yet appropriate “unknown unknowns” press briefing (Rumsfeld, 2002). 
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three orders of magnitude of convergence or a minimum residual of 1×10-8, whichever 

occured first.  A conjugate gradient solver with preconditioner was specified for the 

velocity while an adaptive multi-grid solver was used for the pressure corrector. 

8.2.3. Convergence of the Solver During the Simulations 

Prior to discussing the results from the simulations, the convergence of the solver 

throughout the two simulations must be discussed to assure the reader of the numerical 

accuracy of the data.  That is, irrespective of the computed flow being physically 

improbable it is required to demonstrate that the solver has converged.  For this 

discussion, suppose that niter  represents the number of internal iterations per time step 

to convergence, then for all, with one notable exception, of the time steps computed the 

solver converged to the specified limits for both simulations, as shown in Figure 8-2.   
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Figure 8-2 – Cumulative probability distribution of niter for both the no air and 

with air simulations. 

The one exception to the otherwise excellent convergence was for the last time step of 

the no air simulation where the solver diverged.  Indeed for all of the WA simulation 

and for 95% of the NA simulation the convergence criteria were reached by niter = 5  

with the remaining five percent of the no air time steps converged by niter = 6 .  

Therefore, to the limits of the specified numerical precision, both the simulations have 

converged and the flow results can be examined in detail. 

8.2.4. Observations and Discussions from the Hydrostatic Tests 

As presented above, the initial conditions for both simulations was specified with a 

uniform velocity equal U  and an even air-water split as shown in Figure 8-3. 
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Figure 8-3 – Snapshot of the flow field at time, t = 0, for both simulations with the 

domain coloured by the fluid velocity magnitude and the free surface a blue line. 
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Figure 8-4 – Snapshot of the pressure distribution at time, t = 0, for the no air (a) 

and the with air (b) simulations. 

Despite the complete specification of the boundary conditions, the initial pressure 

distribution within the domain was computed by the solver, with the results being 

shown in Figure 8-4.  The vertical pressure gradient from the base of the domain to the 

free surface is indicative of the expected hydrostatic pressure variation within the water 

phase.  Because the expected hydrostatic variation in the air phase is small relative to 

that in the water, any changes in the air region are not visible in Figure 8-4.  By a 

similar argument, any small differences in the pressure within the water phases will be 

disguised by the relatively high pressure at the deepest point of the water phase.  
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Therefore, to explore the differences between the NA and WA initial conditions a 

pressure difference function within the two-dimensional domain, x , was defined as 

 P x( )t=0.0s = P x( )NA P x( )WA + airghair , (8.3) 

in which hair = 0.1  is the height of the air column above the free surface and the 

subscripts NA and WA represent the no air and with air simulations, respectively. 

Because at a simulation time of t = 0 the solver had not computed the pressure gradient 

within the air phase for the no air simulation, the last term in Equation (8.3) was 

introduced such that P xwater( )
t=0.0s

0  for the region of the domain that contained 

water.  In contrast, for the with air simulation the solver had computed the hydrostatic 

pressure variation for the entire domain.  Despite the difference in the hydrostatic 

profile in the air phase and the constant offset, there was only a very small difference in 

the hydrostatic profile for water phases, as shown in Figure 8-5.  Therefore, at least for 

the initial time step, the pressure specification at the boundaries has propagated into the 

domain, instead of the solver computing a hydrostatic profile. 
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Figure 8-5 – Contour plot of the pressure differential defined in Equation (8.3). 

By a simulation time of t = 0.1 s  the velocity field had developed from the uniform 

initial conditions, shown in Figure 8-3, into the predominantly uniform flow field 

shown in Figure 8-6.  Both the simulations developed velocity defects in the region of 

the air phase outlet but as the magnitude of the anomaly in the with air case was less 

than 0.1m/s, or one third of U , it will be neglected for the remainder of this analysis.  

However, in contrast to the with air case, the maximum velocity defect in the no air case 

was in the order of 1.3 m/s or nearly five times the free stream velocity as shown in the 

top right of Figure 8-6(a). 
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Figure 8-6 – Visualisation of the velocity magnitude and the location of the free 

surface at a t = 0.1s for the no air (a) and the with air (b) simulations. 

The main disadvantage of velocity magnitude visualisations is that there is no indication 

of the direction of the velocity, whereas velocity vectors can provide further information 

to quantify the flow features.  In the present simulation with no hydrostatic pressure in 

the air phase boundaries, the velocity disturbance observed in Figure 8-6(a) was in fact 

a recirculation zone, as shown in Figure 8-7(a).  That is, with the velocity vectors at the 

top of the domain observed to be pointing into the domain, air was being transported 

across what was nominally an outlet face and into the domain.  Due to the interaction 

with the upstream flows, this incoming air was then turned around and accelerated out 

of the domain approximately parallel to the water surface.  In contrast, no such 

recirculation was observed in the simulation with the hydrostatic pressure variation in 

the air outlet boundaries, as shown in Figure 8-7(b). 
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Figure 8-7 – Velocity vectors coloured by their magnitude at the air and water 

outlets at time t = 0.1s for the no air and the with air cases, (a) and (b) respectively. 

It seems highly unlikely that a recirculation type flow feature such as that visible in 

Figure 8-6(a) and Figure 8-7(a) would occur naturally.  Therefore, as a similar 

unphysical flow feature was not observed in the with air simulation it must be due to the 

non-hydrostatic boundary conditions in the no air simulation.  With the benefit of 

hindsight, this conclusion should have been apparent, as the non-hydrostatic boundary 

is itself an unphysical assumption.  Therefore, if the pressure is the driver of the 

recirculation it must be investigated later in the analysis of these experiments. 

By t = 0.1s  both the no air and with air simulations had developed hydrostatic pressure 

profiles across the air and water phases, as shown in Figure 8-8, whose differences were 

indistinguishable at the scale used in Figure 8-8. 
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Figure 8-8 – Indicative pressure distribution at t = 0.1 s for the two simulations. 
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Therefore, to quantify the differences in the pressure field a difference function, similar 

to Equation (8.3), was defined as 

 P x( )t=0.1s = P x( ) NA P x( )WA + c P  (8.4) 

in which c P = 0.3029Pa  was defined such that 

 P x( )t=0.1s 0  (8.5) 

for the majority of the computational region.  The exception to this generally uniform 

pressure difference was close to the outlet boundaries, where there was a positive 

pressure difference across the upper half of the air outlet and a negative pressure 

difference over the lower half, as shown in Figure 8-9.  These pressure differences are 

indicative of, and in fact are, the drivers of the recirculation zone at the outlet.  The 

difference in the pressure in the water phase is due to the hydrostatic effect described in 

Equation (8.1) where the high pressure at the lower side of the air outlet has increased 

p0.   
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Figure 8-9 – Contour plots of the pressure differential defined in Equation (8.4). 

Further, the constant pressure difference in the majority of the computational domain is 

a result of the solver enforcing continuity.  That is, because of the recirculation zone at 

the outlet the air flows coming from upstream have to work harder to exit the domain.  

Therefore, as the pressure has been specified at the outlet, the upstream inlet was forced 

to increase the incoming pressure to overcome the constriction at the outlet.  However, 

both the simulations computed the flows for simulation times greater than 0.1 s. 

By t = 5.1 s  the recirculation zone had both expanded, Figure 8-10(a) compared with 

Figure 8-6(a), and strengthened, Figure 8-11(a) compared with Figure 8-7(a), which 
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provided further support for the pressure imbalance explanation as the leading cause of 

the instabilities observed in the results from the no air simulation.   

 
Figure 8-10 – Snapshot of the flow field at t=5.1s for the no air (a) and the with air 

(b) simulations with the domain coloured by the velocity magnitude and the free 

surface by a solid blue line. 

In the no air simulation near the centre of the domain, at x = 0.5m , free surface waves 

developed to an amplitude in the order of 5mm and were associated with maximum 

velocities of 0.4m/s, as shown in Figure 8-10(a).  In contrast, waves of this scale were 

not observed in the with air simulation, instead small amplitude, so small as to be 

invisible in Figure 8-10(b),  and low velocity disturbances in the air phase were 

observed as shown in Figure 8-10(b).  However, the formation of small ripples and 

associated velocites, such as those observed in the present work, were expected and 

further were assumed to be analogous to the “boils” observed in open channel and river 

flow (Nezu and Nakagawa, 1993, Sturm, 2001).  From these observations that were 

made for t 5.1 s , the recirculation zone that was observed in the no air simulation 

should continue to expand upstream before stabilising and the associated recirculation 

zone would drive the formation of more unphysical free surface waves.  However, 

because the computational solver used with the no air simulation diverged shortly after 

t = 5.1s  these projections could not be tested. 
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Figure 8-11 – Velocity vectors along constant x lines for the no air simulation – 

subplots (a) and (c) – and the with air model – subplots (b) and (d). 

When the free surface waves formed, the maximum velocity of the fluid close to the 

free surface was in the order of double the inlet velocity.  Because of this increased 

velocity, the free surface CFL would also be double that which had been originally 

assumed.  Since the VOF model is known to be very sensitive to the rate of movement 

of the free surface (ESI CFD Inc., 2007a), which may differ significantly from the local 

velocity of the fluid, it is not surprising that the computations diverged. 

To test the sensitivity of these free surface waves to changes in the solution scheme the 

numerical damping and relaxation parameters within the solver were both increased.  

However, despite the increased damping the unphysical waves still developed, which 

indicated that they are independent of the solution algorithm and numerical damping. 

The with air simulation was arbitrarily stopped at t = 40s  because there was no 

appreciable change in the observed flow patterns. 

With these observations that were made over 5.1 s and 40 s of simulation time for the 

no air and with air simulations, respectively, it can be concluded that the pressure 

imbalance that results from the incorrect specification at the air phase outlet boundary is 

the cause of the recirculation zone.  That is, because of the relatively high-pressure 

difference in the region of the free surface, air will be driven out of the domain faster 

than it is supplied from the upstream channel and inlet.  Therefore, to satisfy continuity, 
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air must be drawn in through the upper zone of the outlet boundary where there is a 

lower pressure differential: an affect that is sketched in Figure 8-12.  Then, as the 

incoming flow from the outlet boundary moves upstream and interacts with the fluid 

flowing downstream from the inlet and because both the zero friction wall and the free 

surface act as a fixed boundaries, the flows will be directed down and towards the 

outlet.  Hence, the returning flows have created the recirculation zone, observed in 

Figure 8-7(a).  By extension, the upstream extent of the recirculation zone would be 

controlled by the energy balance between the fluid travelling downstream from the 

entrance and the fluid moving upstream from the inlet. 

Hydrostatic pressure
profile in the air
from the solver

Forced pressure
 profile from the BC

Centreline between
FS and Roof

Relative imbalance
=

Inflow

Relative imbalance
=

Outflow

 
Figure 8-12 – Sketch of pressure imbalances causing unphysical boundary flows. 

Several observations were made from both these simulations, namely that (1) a large, 

high speed recirculation zone located adjacent to the air phase outlet boundary 

developed early in the simulation and (2) that large and growing free surface waves 

developed in the domain.  The recirculation zone was observed at the air phase outlet 

boundary at low simulation times and was characterised by velocities in the order of 

five times U .  As the simulation progressed, the effects of this recirculation zone 

extended upstream and impinged on the free surface, which initiated large amplitude 

waves with high trough velocities.  Both of these observed flow features are unphysical 

and neither the large recirculation zone nor the large free surface waves were observed 

in the simulation designed with a hydrostatic pressure variation in both the water and air 

phases.  Therefore, these twin but interrelated phenomena ultimately caused the solver 

to diverge.  It follows that the full hydrostatic pressure distribution must be specified at 

the outlet boundaries.  In contrast to the outlet boundaries, for inlets that are specified as 
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constant velocity inlets, the solver adjusts the pressure as required.  Having completed 

the first preliminary study and determined the appropriate boundary conditions at the 

inlet and outlet of the computational region, the details of the mesh needed for accurate 

solutions needed to be determined. 

8.3. A Study of the Grid and Geometric Configurations 

8.3.1. Motivation for these Studies 

The remaining two preliminary studies are presented consecutively in §8.3 because they 

were both based on the same two-dimensional simplification of the three-dimensional 

tow tank, as shown in Figure 8-13(a).  These two parametric studies were designed to, 

separately, quantify the affect of varying the distance to the outlet boundary from the 

cylinder, L, and changing the size of the cell adjacent to the wall, F, on the simulated 

flow fields.  Both of these parameters is shown in Figure 8-13, 
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Figure 8-13 – Sketch of the two-dimensional plane used in the geometry tests with 

the length to the outlet boundary, L, and the wall normal cell size, F, shown. 

Within each study a number of test simulations were conducted where the parameter 

under investigation was modified.  For the L tests, the distance was varied from 400mm 

to 2998mm in non-uniform increments.  Separately, in the F simulations the cell side 

length was varied from 50 m to 5mm in, similarly, non-uniform steps.   

The Reynolds number, Red , for these two studies was defined as 

 Red =
U d

= 27 ×103 , (8.6) 
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which was based on the cylinder diameter, d, and the free stream velocity, U .  Because 

for a given velocity in the three-dimensional simulations with a free surface, the water 

phase would be at a higher Reynolds number, that is as  water air  then 

 Rewater Reair , and hence be more turbulent, the fluid used in these two studies was 

water. 

Finally, as the two parametric studies described in this section were each carried out 

simultaneously, there was no data on L that could be used as an input for the parametric 

study of F and vice versa.  Hence, an arbitrarily small F was used for the L tests and, 

similarly, an intermediate L was chosen to place the outlet boundary for the 

determination of F.  With these common specifications for the basis of the parametric 

tests a computational domain was developed that, with suitable minor amendments, 

could be used as the foundation for the projected simulations. 

8.3.2. Geometric Design and Grid Layout: Common Parameters 

The computational mesh used as the basis for all the tests described in this section was 

designed to represent a horizontal slice of the David Taylor Model Basin, shown in 

Figure 8-13(a).  With the fluid specified as water and Red = 27 ×10
3 , the characteristic 

velocity was fixed at U = 0.54 m/s , which was the same as the three-dimensional 

simulations with a free surface.  With the exception of the grid for the shortest L 

simulation, all the grids consisted of six structured blocks and one unstructured block, 

as shown in Figure 8-14.  The cells within the structured blocks adjacent to the outer 

walls, the inlet faces and the outlet faces were composed of uniform square cells while 

the two, inner structured blocks adjacent to the cylinder were developed as an O-Type 

topology, shown in Figure 8-15. 

To create a smooth transition from the inner O-Topology blocks to the outer square 

cells a single unstructured domain, shown in Figure 8-15, was created.  The 

unstructured domain was constructed with quadrilateral cells whose spacing was 

controlled using the paving algorithm available in the code (ESI CFD Inc., 2007c).  

Further, the cells adjacent to the structured blocks were fixed to the nodes to enforce a 

smooth boundary between blocks. 
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Figure 8-14 – Dimensional sketch (in millimetres) and grid layout for the two-

dimensional mesh used in testing the size of the inner cylinder cell. 

The nodes along the four radial edges that emanated from the central cylinder, for 

example edge gk as shown in Figure 8-14, were distributed using the hyperbolic tangent 

stretching function (Vinokur, 1980, Vinokur, 1983) described in §5.3, while the nodes 

along the remaining edges were uniformly distributed.  A list of the number of nodes 

distributed along each edge is given in Table 8-2, with edge ends identified in Figure 

8-14.  For the four edges with a hyperbolic tangent spacing, the outer nodal space was 

fixed at 20mm for all the tests whereas the inner nodal space was varied, for the F tests, 

as specified below. 
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Figure 8-15 – Magnification of the central structured O-Type domains adjacent to 

the cylinder and the transitional unstructured domain. 

Table 8-2 – Edge list and node count for edges that are common for all the models, 

with nodes spaced uniformly (unless noted otherwise) across all the listed edges. 

Edge/s Number of Nodes 

bc, cd 19 

de 52 

ml, lk, kn, nm, gh, ki, ij, jg 21 

ef 35 

jn, gk, hl, in – hyperbolic tangent distribution 37 
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8.3.3. Geometric Design and Grid Layout: Test Specific 
Modifications 

The only changes made to the base model described above in §8.3.2 for the F tests were 

to the four radial edges identified as gk in Figure 8-14.  The cell length at the end of the 

edge furthest from the cylinder was fixed at 20mm, while F was set to 0.05 mm, 

0.15 mm, 0.25 mm, 0.50 mm, 1.00 mm and 5.00 mm for the six simulations, 

respectively.  For the five shortest F simulations, the number of nodes along gk was 

constant at 37 whereas for the longest F there were 19 nodes that resulted in a cell count 

of 12 000 and 9 750 cells respectively, as shown in Figure 8-16.  Because of the six 

lengths of F chosen, the distribution of the cells and cell sizes along the edge also 

changed for each computational test as shown in Figure 8-17. 
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Figure 8-16 – Cell count and number of nodes along edge jn for the six F meshes. 

For all the L tests, F was fixed at 0.15mm and the length of the edge ef was changed to 

adjust L as per the list in Table 8-3 and Figure 8-18.  The number of nodes distributed 

along the edges was computed so that the nodal spacing in the downstream block was 

similar for all the tests. 
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Figure 8-17 – Plot of the radial cell size as a function of the radial distance for six 

tests of different wall normal cell sizes. 

 

Table 8-3 – Length and number of the nodes for the variable length edge ef shown 

in Figure 8-14 for the length to the outlet boundary tests. 

Length of Edge 
(mm) 

L 
(mm) 

Number 
of Nodes 

Cell 
Count 

0 400 0 8 240 
285 685 19 9 810 
542 942 35 11 200 
799 1199 52 12 700 

1056 1456 68 14 100 
1313 1713 85 15 500 
1570 1970 101 16 900 
1827 2227 117 18 300 
2084 2484 131 19 500 
2341 2741 150 21 200 
2598 2998 166 22 600 
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Figure 8-18 – Cell count and number of nodes along edge ef for the 11 simulations 

of L. 

8.3.4. Solver Configuration 

With the geometry of the computational models fully described, the configuration of the 

numerical solver can be discussed.  Because the time step of the simulations was set to 

2.5 s, it was assumed that there would be little change in the flow field between time 

steps.  Therefore, to reduce the computational requirements, the solver specified to have 

converged at a maximum of ten iterations per time step or at three orders of magnitude 

reduction in the residuals or a minimum residual of 1×10-8.  The detail of the application 

of these convergence criteria is presented in Appendix A. 

As with the simulations presented in §8.2, the same second order upwind with limiter 

spatial differencing scheme as proposed for the three-dimensional free surface models 

was used in these investigations.  A conjugate gradient solver with preconditioner was 

used for the velocity while an adaptive multi-grid solver was used for the pressure 

corrector scheme. 

Notwithstanding the two-dimensional approximations, these simplified models were 

thought to reasonably represent the situation below the water level of the three-

dimensional models.  Therefore, the boundary conditions in the present study matched 

those proposed for the three-dimensional models, as shown for the xz-plane in Figure 
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7-2.  Further, because of the change in the inertial frame of reference proposed for the 

three-dimensional simulations, the spanwise walls were set as non-slip but moving 

walls.  A full account of the change of the inertial frame of reference is presented in 

§7.3. 

8.3.5. Point Probe Locations 

After the grid geometry had been settled and solver parameters specified, seven point 

“probes” were distributed within the computational domain.  These points were 

distributed between the downstream face of the circular cylinder and the shortest outlet 

length,  L = 400 mm , at the locations shown in Figure 8-19, such that the data collected 

from these “probes” could be compared across all the simulations discussed in this 

section.  The two velocity components (i.e. u and v) and the pressure were recorded at 

all time steps for all the “probes”. 
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Figure 8-19 – Plot of the point probe locations. 
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8.3.6. Convergence of the Solver During the F Simulations 

Of the two studies described in §8.3, the F simulations will be discussed first however, 

as with the studies presented above, prior to a detailed discussion of the results the 

convergence of the solver will be examined first.  For the F simulations all the time 

steps computed converged within six iterations for all of the four million time steps 

computed per simulation, as shown in Figure 8-20. 
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Figure 8-20 – Cumulative probability distributions of niter for the six F simulations. 

Therefore, as all the simulations converged within six iterations the simulations were 

converged to the limits of the specified numerical accuracy.  However, despite the 

apparent numerical convergence the computed flow field still requires critical 

examination. 

8.3.7. Observations from the Parametric Tests of F 

After a development period of around two seconds, which agreed with the initial 

acceleration described in §7.3, the drag and lift coefficients from the simulation with the 

largest cell size –  F = 5.00 mm – stabilised at approximately 0.25 and zero, 

respectively, as shown in Figure 8-21(a).  Because these coefficients stabilised at fixed 

values with no periodic fluctuations that are the hallmark of cyclical vortex shedding it 

is highly unlikely that any periodic shedding from the cylinder occurred during the 

simulations. 
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As F was decreased to 1.00mm, some shedding was observed in the variation of the lift 

coefficients as a function of time, as shown in Figure 8-21(b).  However, the RMS of 

the lift coefficient of approximately 0.25 from this simulation is still lower than the 

published value of 0.66±0.13 (Zdravkovich, 1997).  The drag coefficient from the 

 F = 1.00 mm  simulation is very similar to that from the  F = 5.00 mm  simulation both 

of which are below the accepted drag value of 1.2 (Zdravkovich, 1997). 
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Figure 8-21 – CD and CL as a function of time from the F = 5mm and F = 1mm 

simulations, (a) and (b) respectively. 

Despite a lack of clear evidence of periodic shedding in the plot of CD t( )  and CL t( )  

from the F=5.00mm simulation, as shown in Figure 8-21(a), a small periodic shedding 

flow pattern was computed further downstream in the wake, as shown in Figure 8-22.  

The lack of shedding at the cylinder is because  F = 5.00 mm  is too large to capture the 

boundary layer around the cylinder, visible in Figure 8-22 by the relatively large region 

of low-speed blue and green coloured flow that completely surrounds the cylinder.  

Therefore, as the simulation could not capture the boundary layer adequately it could 

not possibly capture the separation points accurately and, by extension, develop realistic 

flow patterns. 
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Figure 8-22 – Velocity magnitude of the flow field from the F = 5mm simulation. 

In contrast, as shown in Figure 8-23, with F reduced to 0.50mm, fully developed vortex 

shedding and the associated von Kámán vortex street are observed.  This observation 

provides further support to the well-known numerical requirement that unless the 

boundary layer is adequately resolved the flow field will not be computed correctly. 

 
Figure 8-23 – Velocity magnitude of the image from the F = 0.50mm simulation. 

As would be expected with a flow field that is characterised by periodic vortex 

shedding, such as that shown in Figure 8-23, fluctuations in the corresponding lift and 

drag coefficients were observed and are shown in Figure 8-24.  The RMS lift coefficient 

from the  F = 0.50 mm  simulation was 0.54 that is within the range of published data of 

0.66±0.13 (Zdravkovich, 1997), albeit very close to the lower bound.  Despite the 

potential agreement of the RMS lift coefficient, the drag coefficient value of 

approximately 0.6 is well below the published value of 1.2 (Zdravkovich, 1997).  Both 

of these values are, however, improvements on the results computed from the 

 F = 5.00 mm  and  F = 1.00 mm simulations discussed above. 
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Figure 8-24 – CD and CL as a function of time from the F = 0.50mm simulation. 

As can be seen by comparing the simulated flow fields from the  F = 0.50 mm , Figure 

8-23, simulation with that from the  F = 0.05 mm  simulation, Figure 8-25, the shedding 

pattern is intensified and both the velocities and width of the wake increased.  It should 

be noted that while the velocity magnitudes shown in Figure 8-25 were taken from the 

 F = 0.05 mm  simulation, the results from the  F = 0.25 mm  and the F = 0.15 mm  

simulations were sufficiently similar that they are not presented. 

 
Figure 8-25 – Velocity magnitude of the flow field from the F = 0.05mm 

simulation. 

The intensification of the shedding is similarly reflected in the drag and lift coefficients 

of the three, shortest F simulations, as shown in Figure 8-26, where the mean drag has 

increased to approximately 1.15 and the RMS lift has increased to 0.82.  These force 

coefficients measurements are consistent across the three simulations with the shortest 

wall normal lengths and are approximately 5% below the published drag and 4% above 

the published RMS lift results (Zdravkovich, 1997), respectively.  Despite the close 

agreement with the mean drag and the RMS lift to published data, the trend of the CL  

and CD  as the mesh size in the vicinity of the obstacles is reduced is more important.   
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Figure 8-26 – CD and CL as a function of time from the F = 0.25mm (a), 

F = 0.15mm (b) and F = 0.05mm (c) simulations. 

 
Figure 8-27 – Zoom of the velocity magnitude in the region close to the cylinder for 

(a) F=5.00mm and (b) F=0.05mm simulations, respectively. 

The flow fields from the region near the cylinder at the two extreme values of F are 

compared in Figure 8-27.  The boundary layer extent in the  F = 5.00 mm simulation is 
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large and extends through the entire cell adjacent to the cylinder wall, as shown in 

Figure 8-27(a), whereas in the region upstream from separation for the  F = 0.05 mm  

simulation the boundary layer is almost invisible at the scale used in Figure 8-27(b). 

To allow for a quantitative discussion of the trends of CD  and CL  they are plotted as a 

function of F in Figure 8-28.  There are three regions of this plot, which have been 

alluded to in the structure of the discussion above.  The first region correlated to the 

longest wall normal cell lengths,  F 1.00 mm , characterised by low mean drag and 

RMS lift values and although there may be separation of the flow around the cylinder 

there is little, or no, vortex shedding from the cylinder itself. 
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Figure 8-28 – Average CD and RMS CL as a function of F. 

Conversely at the shortest wall normal cell lengths,  F 0.25 mm , the values of the 

mean drag and RMS lift plateau as F is decreased.  Between these upper and lower 

bounds there is a sharp transition region where the flow is, qualitatively, closer to that 

calculated with the simulations with a shorter F, for example the flow shown in Figure 

8-23 appears closer to that in Figure 8-25 rather than Figure 8-22.  Concurrently, the 

mean drag and RMS lift coefficients in this transition were midway between the values 
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for the longer and shorter wall normal regions.  As only one simulation in the present 

study fell within the transition region, the shape of the curve between the longer and 

shorter zones cannot be determined with any certainty.  However, as already mentioned 

above, the final shape of the curve is of less importance than the trend of the force 

coefficients because these results are from a two-dimensional study whereas the 

simulations with the cylinder that penetrates a free surface will be three-dimensional.  It 

is important, though, that the three-dimensional model be constructed in such a way that 

the cells closest to the cylinder are sufficiently small as to be in the shortest wall normal 

length F, plateau region in Figure 8-28, such that the boundary layer is adequately 

resolved. 

Finally, as discussed above in the description of the model configuration, §8.3.1, that 

because the wall normal cell length and the distance to the outlet boundary studies were 

performed in parallel, the wall normal cell length for the outlet tests was arbitrarily 

specified as  F = 0.15 mm .  From the discussion of the results presented above and, in 

particular, by an inspection of Figure 8-28 it is seen that this assumption is valid as 

 F = 0.15 mm  falls within the lowest, plateau region where the mean drag and RMS lift 

coefficients are unaffected by changes in the wall normal cell size. 

8.3.8. Convergence of the Solver During the L Tests 

As has been the procedure for the work presented so far in this dissertation, before the 

results from a group of simulations can be examined, the numerical convergence of the 

solver must be scrutinised in order to assuage concerns that the limits of numerical 

convergence have not been met.  The cumulative probability distribution functions of 

niter  for the eleven L simulations were similar with all of the available time steps 

converged within six iterations, as shown in Figure 8-29.  Therefore, the simulations 

have been shown to have converged to the specified level of numerical accuracy such 

that the flow results can be critically examined. 



 211 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

 

 

L=400mm
L=685mm
L=942mm
L=1199mm
L=1456mm
L=1713mm
L=1970mm
L=2227mm
L=2484mm
L=2741mm
L=2998mm

F
ig

ur
e 

cr
ea

te
d:

 1
7−

O
ct

−
20

09
 1

7:
08

:0
0,

 fr
om

 c
on

v_
pl

ot
s_

a1

n
iter

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e 
(%

)

 
Figure 8-29 – Cumulative probability distributions of niter for the 11 L simulations. 

8.3.9. Observations from the Parametric Tests of L 

As shown in Figure 8-30, all the simulations of L developed a characteristic von 

Kármán vortex street in the wake region with examples from the L = 400mm, 

L = 1199mm and L = 2998mm simulations.  While the three images are from different 

simulation times they show the broad similarity of the flow fields because they were all 

imaged after the simulations had developed and are approximately in phase.  For 

example, the location of the shed vortices and their transport downstream is generally 

consistent with the approximate locations of the shed vortices within the wake as is 

clearly seen in Figure 8-30. 

In the immediate vicinity of the cylinder, all three simulations appear to be broadly 

similar in that there is a region of high-speed flow that rolls off from the top of the 

cylinder, which then overtakes a slow speed region attached to the rear and bottom of 

the cylinder.  This high-speed roll off region then forms the next shed vortex made 

visible by its high-speed region in the wake. 
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Figure 8-30 – The von Kármán vortex street visualised with the velocity magnitude 

for the L = 400mm (a), L = 1199 (b) and L = 2998 (c) simulations. 

In addition, all the vortices, with the exception of the vortex closest to the outlet in the 

 L = 400 mm  simulation, Figure 8-30(a), have the same magnitude and size.  However, 

the outlet boundary in the  L = 400 mm  simulation appears to have an effect on the 

vortex street because the vortex that is closest to the outlet is both larger in size and has 

a higher velocity magnitude than the corresponding vortices in the other simulations. 

Because the velocity fields shown in Figure 8-30 are approximately in phase and, 

visually at least, overlap for the range 

 0.2 x 0.4  (8.7) 

the velocity magnitudes from different simulations can be subtracted to quantify the 

magnitude of the difference between the vortex spread..   

When the velocity field for  L = 1199 mm  simulation was subtracted from the field 

extracted from the  L = 2998 mm  simulation, there is a region of high difference close 

to the cylinder that was surrounded by a larger region of low difference, as shown in 

Figure 8-31(a).  The high difference region is not necessarily indicative of an effect 
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from the boundary but, more likely, is due to rather smaller errors in the phase of the 

local velocity field.  That is, because the wake close to the cylinder is characterised by 

comparatively high velocities in a relatively compact area, small differences in the 

phase can account for the large differences which are visible in Figure 8-31(a).  Outside 

of these regions that are close to the cylinder, the differences in the flow field are less 

than 0.01m/s, which indicates that the both the flows are in phase and that there is no 

effect from the reduction of L to 1199mm from 2998mm. 

 
Figure 8-31 – Difference in the velocity fields between the L = 2998 mm and the 

L = 1199 mm simulations; and the L = 2998 mm and the L = 400 mm simulations, 

(a) and (b) respectively. 

In contrast to the excellent agreement of the results from the longer L simulations, when 

the flow field from the  L = 400 mm  simulation was subtracted from the  L = 2998 mm  

simulation the far field differences were up to 0.1m/s, as shown in Figure 8-31(b), or ten 

times the maximum difference between the  L = 1199 mm  and the  L = 2998 mm  

simulations.  There were two high defect regions observed with the first located close to 

the cylinder which was, as with the discussion of the  L = 1199 mm  simulation above, 

due to the slight errors in phase.  However, the second high defect region was much 

larger and was located adjacent to the outlet boundary and is therefore due to the 

presence of the boundary.  Given that the outlet boundary has an effect on the velocity 

field which is reduced as the boundary is moved further from the cylinder, it should 
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then be possible to further examine this affect with a statistical analysis of the point 

probe data. 

All the simulations started from the same initial conditions and were subject to the same 

development, namely quiescent fluids and a two second acceleration, respectively.  This 

effect was observed in the velocity data that was recorded at the seven point “probes”, 

as shown in Figure 8-32 and Figure 8-33 for the u- and v-velocities.  In addition, these 

coincident velocity traces were continued beyond the initial two second start-up period 

until approximately four seconds of simulation time after which the traces diverged. 
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Figure 8-32 – Plot of the four of the length test u-velocities as a function of time for 

the seven point probes. 

As the simulations progressed, the flow field developed from the quiescent initial 

conditions into the fully developed shedding regime and the wake had not fully 

extended to the outlet boundary.  Therefore, any reflections from the outlet boundary 

had not had sufficient time to move upstream and affect the flow around the cylinder.  

This result can be interpreted as supportive of the common practice to allow 

computational fluid dynamics computations to run for a sufficient time such that 

multiple “flow lengths” can pass and allow the effect of any boundary conditions to 

propagate into and throughout the domain. 
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Figure 8-33 – Plot of the four of the length test v-velocities as a function of time for 

the seven point probes. 

In addition, the results from the three longest L simulations plotted are remarkably 

consistent for their entire run time.  In contrast, the traces from the L = 400 mm 

simulation, at the point probed furthest from the cylinder, and hence closest to the outlet 

boundary, differ noticeably from the other three traces*.  Given that a visual inspection 

of both the flow field and velocity traces for the simulations of  L 1199 mm  revealed 

little difference in the respective data, it could be concluded that the outlet boundary is 

sufficiently far downstream to have little effect on the flow field in the vicinity of the 

cylinder.  Therefore, the mean of the u-velocity and the RMS of the v-velocity can be 

used to quantify the differences in the velocities due to changing the location of the 

outlet boundary. 

Both the mean and RMS of a fluctuating variable are statistical properties that are valid 

over a given window of the data, therefore for the present work these parameters were 

computed over the time window 

 5 t 10 s . (8.8) 

Since both the mean u-velocities and the RMS v-velocities for the simulations with 

 L 1970 mm  were identical to three significant figures, the velocity fields were 
                                                

* Only two point probe traces are shown in Figure 8-32 and Figure 8-33 because at the closest point 
probe, the traces are visually similar, whereas by the furthest point probe there is a noticeably difference.  
Over this range the longer L simulation data remain coincident while the L = 400 mm traces steadily 
diverge. 
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assumed to be converged for the longer L.  It is interesting to note that the mean and 

RMS values for the three point probes closest to the cylinder differed by less than 1% 

from the values obtained from the longer L simulations while the remaining four points 

are within 4% of the benchmark values, as shown in Figure 8-34 for the x=28mm probe 

only. 
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Figure 8-34 – Plot of U-velocities (circle symbols and solid lines) and the RMS v-

velocities as a function of L for point probe located at x=28mm. 

Therefore, there is no noticeable effect from the outlet at the points for x 150 mm .  

However, as the point probe approached the outlet boundary both the mean and RMS 

decreased for the shorter L simulations relative to the longer L simulations, as shown in 

Figure 8-35. 
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Figure 8-35 – Plot of U-velocities (circle symbols and solid lines) and the RMS v-

velocities as a function of L for the point probes located at x = 200mm. 

While the plot of the mean u-velocities and the RMS v-velocities in Figure 8-35 

indicated that the proximity of the outlet boundary adversely affects the flow field, the 

effect should be quantified to provide guidance as to the minimum separation distance 

required.  Therefore, to further quantify the magnitude of this affect the error in the 

mean, and RMS, was computed as 
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UPt =
UPt UBM

UBM

 (8.9) 

in which  UPt  is the error at a given point, UPt  is the mean (or RMS) computed at a 

given monitor point over the window defined in Equation (8.8) and shown in Figure 

8-34 and Figure 8-35.  The quantity UBM  is the benchmark value of the mean, or RMS, 

for a particular monitor point that was computed from the simulations with 

 L 1970 mm  as discussed above. 

For all point probes, as the distance of the probe from the outlet boundary was increased 

the error,  UPt , decreased, as shown in Figure 8-36 and Figure 8-37.  This trend is 

particularly apparent for point probes six and seven that both started with  UPt  in the 

order of 50% when they were located less than 100mm from the outlet boundary.  This 

high  UPt  then dropped rapidly so that when the distance to the outlet was greater than 

600mm the error, relative to the large L simulations, was less than one percent.  While 

the point probes that were closer to the cylinder, for example probes one and two, start 

from considerably lower errors that are in the order of four percent, they also reduced to 

less than one percent error when the distance to the outlet was greater than 600mm. 
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Figure 8-36 – UPt for the mean u-velocity as a function of the distance of the point 

probes from the outlet boundaries. 
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These observations suggest that for the flow field to converge the outlet boundary must 

be placed further than 600mm, not from the cylinder, but from the region of interest in 

the flow.  With this limitation under consideration, there should be little effect on the 

lift and drag values on the cylinder because at a minimum L value of 400 mm the 

cylinder is close to the 600mm limit.  Significantly as was observed both above for 

circular cylinder and in the square cylinder preliminary studies described in Appendix 

C, the force coefficients are not too sensitive to changes in the numerical configuration. 
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Figure 8-37 – UPt for the RMS v-velocity as a function of the distance of the point 

probes from the outlet boundaries. 

In fact, there is so little difference in the lift and drag coefficients as a function of time 

for all L values that when plotted together they appear collinear.  All the traces are 

therefore characterised by the same regions being: a development phase during the first 

four seconds that was then followed by a quickly developing quasi steady regime of 

periodic vortex shedding, as shown in Figure 8-38. 
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Figure 8-38 – CD and CL as a function of time from the L = 685mm simulation. 

Little difference is seen in the lift and drag coefficients as a function of time hence, only 

CD t( )  and CD t( )  is shown for the L = 685 mm simulation.  However, given the 

inaccuracies inherent in a visual comparison, to facilitate a rigorous comparison the 

coefficients were averaged over the same window as above and plotted as a function of 

L.  The mean drag and the RMS lift coefficient at the shortest L are both 10% lower 

than the equivalents from the simulations with a longer L, as shown in Figure 8-39.  

Further, the values of the mean drag and RMS lift coefficients plateau as L is increased 

beyond 942mm. 
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Figure 8-39 – Plot of the mean drag and the RMS lift coefficients as a function L. 

8.4. Recommendations for the Development of the Three-

Dimensional Models from the Two-Phase Preliminary 

Studies 

From these three two-dimensional studies three recommendations can be made to guide 

the development of the three-dimensional models: 

1. That the hydrostatic pressure distribution must be applied across both the air and 

water outlet faces; 

2. That the distance on the outlet from the flow region of interest should be at least 

600 mm, and; 

3. That F  25 mm. 

Of these, the second recommendation is potentially the most interesting and because it 

was not specifically being tested, was a somewhat serendipitous discovery.  The test 
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was designed to investigate the effect of the distance from the cylinder to the outlet but 

instead showed that the distance from the flow region of interest is more important.  For 

example with the three-dimensional simulations that are designed to compute flow 

features that extend a significant downstream from the cylinder, such as the rooster tail, 

the length of these features should become the reference length to set the location of the 

outlet. 

With these preliminary studies conducted and analysed development and investigation 

of the three-dimensional computational models can be discussed.  As has been the 

practice of this dissertation the particular combinations, in this case the combination of 

a three-dimensional grid, a free surface model and the numerical solver to approximate 

the turbulent decay, must be fully validated before a thorough investigation can proceed 

with confidence. 
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9. Three-Dimensional, Two-Phase Simulations: 

Configuration and the Simulated Free Surface Shape 

9.1. Introduction  

As discussed in §7 for the three-dimensional tow tank simulations, the inertial frame of 

reference was transformed such that the cylinder remained fixed and the other 

computational elements were instead translated, as shown in Figure 9-1.  In the present 

research, two Reynolds numbers were numerically investigated, namely 

Red = 27 ×10
3 and Red = 54 ×10

3 , with the first being similar to that used in both the 

square cylinder validation study and the studies based on Inoue’s tow tank experiments 

(1993).  The second, larger Reynolds number, was envisaged as an extension to push 

the limits of the proposed computational technique and yet remain within the extensive 

data reported by Hay (1947). 
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Figure 9-1 – Sketch of the cylinder centred domain, repeated from Figure 7-3. 

As well, two different depths of immersions of the cylinder, relative to the elevation of 

the initial rest free surface were investigated.  Their exact configuration will be 

discussed shortly.  As with all CFD research, the square cylinder work presented within 

this dissertation was no exception, the geometric and solver configurations must be 
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specified prior to any critical examination of numerical results.  By convention, a 

validation would then follow with an application of the technique to an additional 

problem/s to finish.  Despite the present research being conducted using this process, 

the results will be presented differently because the validation data was such an 

excellent match with the validation studies that it could simultaneously be used as part 

of the investigations. 

9.2. Configuration of the Simulations  

9.2.1. General Geometric Configuration 

The tow tank used by Hay (1947) was located at the David Taylor Model Basin, 

Maryland, U.S.A. and measured 1.37m wide by 1.52m deep by 40.54m long.  Clearly, a 

cross-section of 1.37 ×1.52m  could not be simulated, to sufficient detail, for the full 

40.54 m, hence the need to translate the inertial frame of reference while simultaneously 

reducing the length.  As the present researcher assumed that the full width of the tank 

should be simulated it remained to define both the horizontal and vertical extents of the 

computational domain. 

With respect to the horizontal extent of the computational domain, there were two 

boundaries to be placed, namely the outlet and the inlet.  To aid in the placement of the 

outlet, three criteria were examined: 

(1) Recommendations from the preliminary length to the outlet test, the “L” 

parameter. 

(2) Estimation of the flow field features to be captured. 

(3) Grid development requirements. 

The first criterion can be succinctly expressed by the inequality 

  L 600mm . (9.1) 

With respect to the second criterion, Hay (1947) observed that the top of the rooster tail 

had the longest downstream extent, which for the present conditions would be expected 

to occur at approximately 250 mm.  Therefore, as it was observed in the preliminary 

studies that there should be a buffer of at least 600 mm from the flow region of interest, 

the outlet should be at least 850 mm from the cylinder. 
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With due consideration to these three criteria, the outlet was placed at 

  L = 942mm , (9.2) 

which exceeded both the first and second requirements and simplified some aspects of 

the third, as shown in Figure 9-2. 
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Figure 9-2 – Sketch of the geometry, boundary conditions and coordinate origin 

used in the circular cylinder investigations, all dimensions are in millimetres. 
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In contrast to the outlet, no specific test or tests were undertaken to determine the effect 

of the location of the inlet relative to the cylinder.  Therefore, based on the criterion 

expressed in Equation (9.1) and with the supposition that the upstream region of interest 

is very close to the cylinder then the upstream length should be greater than 600 mm.  

Finally, the upstream boundary was placed at 685 mm from the centre of the cylinder, 

which exceeded the criterion of Equation (9.1).  Further, this distance “squared” the 

upstream portion of the domain with the distance from the cylinder to the side walls and 

thus significantly simplified the creation of the grid. 

In the absence of definitive data in the form of preliminary tests or reference studies the 

upper and lower walls were located such that it could be assumed that their location 

would have no effect on the free surface.  Therefore, they were placed 200 mm above 

and 400 mm below the elevation of the still water level.  No data was available 

concerning the upper wall but the depth exceeded both the depth of velocity 

measurements by Inoue (1993) and the numerical simulations of Chen (2000), 

Kawamura (2002) and Yu (2008). 

9.2.2. Configuration of the Computational Meshes 

Four separate computational meshes were constructed for the two distinct cylinder 

configurations.  In the first instance, referred to as the “full depth” simulation, the 

cylinder extended the entire distance from the upper to the lower zero friction walls.  

Whereas in the alternate configuration, referred to as the “cut off” simulation, the 

cylinder extended from the top wall but stopped 200 mm from the lower wall, that is the 

cylinder stopped at the coordinate origin in Figure 9-2.  This allowed for water, or 

perhaps even air, to flow under as well as around the cylinder. 

Three different resolution meshes of the full depth configuration were created to allow 

for a mesh refinement study.  In contrast, only a single mesh that was based on the 

medium resolution full depth configuration was created for the cut off configuration, as 

shown in Table 9-1. 
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Table 9-1 – Matrix of meshes constructed per configuration of cylinder depth. 

 Full Depth Cut Off 

Low Resolution   

Medium Resolution   

High Resolution   

The layout of the edges and the node counts used in the construction of the full depth 

configuration is shown in Figure 9-3 and Table 9-2, respectively, while Figure 9-4 and 

Table 9-3 contain the same data for the cut off configuration. 
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Figure 9-3 – Geometry and edge sketch for full depth configuration with all dimensions in millimetres. 
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Table 9-2 – Edge details for the full depth cylinder configuration.  Dist = 

Distribution type; HT = Hyperbolic tangent distribution; U = Uniform 

distribution. 

Low Resolution Medium Resolution High Resolution Edge End 

Spacing (mm) Nodes Spacing (mm) Nodes Spacing (mm) Nodes 

Dist 

l 50.00 50.00 40.00 
lc 

c 80.00 
11 

80.00 
11 

64.00 
14 HT 

d 50.00 50.00 40.00 
dc 

c 80.00 
11 

80.00 
11 

64.00 
13 HT 

d 50.00 50.00 40.00 
de 

e 120.00 
13 

120.00 
13 

96.00 
16 HT 

f 60.00 60.00 48.00 
ef 

e 100.00 
9 

100.00 
9 

80.00 
11 HT 

b 22.00 22.00 17.60 
bi 

i 58.00 
12 

58.00 
15 

40.00 
19 HT 

h 22.00 22.00 17.60 
hd 

d 56.00 
12 

56.00 
15 

40.00 
19 HT 

g 22.00 22.00 17.60 
gf 

f 130.00 
12 

130.00 
15 

95.00 
19 HT 

j 0.20 0.15 0.10 
jh 

h 20.00 
30 

20.00 
37 

0.16 
37 HT 

- 
jk 

- 
1.77 21 1.77 21 1.41 26 U 

- 
hg 

- 
14.14 21 14.14 21 11.31 25 U 

b 2.00 2.00 1.60 
bc 

c 20.00 
27 

12.00 
31 

9.60 
39 HT 

b 2.00 2.00 1.60 
ba 

a 20.00 
47 

20.00 
55 

16.00 
69 HT 
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Notes:
For the edges not specifically 
indicated, the number of nodes and 
the end spacing can be inferred from 
the following conditions:
-the cylinder possesses π/2 rotational 
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around the z=0 plane;
-horizontal edges are vertically 
consistent;
-vertical edges are horizontally 
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Figure 9-4 – Geometry and edge sketch for the cut off cylinder configuration with all dimensions in millimetres. 
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Table 9-3 – Edge details for the cut off cylinder configuration.  Dist = Distribution 

type; HT = Hyperbolic Tangent distribution; U = Uniform distribution. 

Edge End Spacing (mm) Nodes Distribution 

a 15 
am 

m 2 
20 HT 

m 2 
mb 

b 2 
51 HT 

b 2 
bc 

c 12 
31 HT 

c 80 
cl 

l 50 
11 HT 

c 80 
cd 

d 50 
11 HT 

d 50 
de 

e 120 
13 HT 

e 100 
ef 

f 60 
11 9 

d 56 
dh 

h 22 
15 HT 

f 130 
fg 

g 22 
15 HT 

l 58 
li 

i 22 
15 HT 

 N/A 
ih 

 N/A 
21 U 

h 20 
hj 

j 0.15 
37 HT 

j N/A 
kj 

k N/A 
21 U 

n N/A 
no 

o N/A 
21 U 

p 0.15 
po 

o 0.8 
11 HT 
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The application of these nodes per edge, edge end spacing and distribution functions 

resulted in nodal spacing that varied smoothly across the edges as shown in Figure 9-5 

and total cell counts for the four meshes as detailed in Table 9-4. 
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Figure 9-5 – Plots of the cell size along lines that contain the point (0,0,0) and are 

parallel to the x-, y-, and z-axes (a), (b) and (c) respectively.  Due to the mirror-

symmetry around the z=0 plane, only the positive z-axis is shown in (c). 

Table 9-4 – Total cell count for the three grids. 

Full Depth 

Low Resolution 

Full Depth 

Medium Resolution 

Full Depth 

High Resolution 

Partial Depth 

Medium Resolution 

245 430 373 340 588 500 418 800 
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To assist in the blending from the inner circular grid to the rectangular boundary, the 

four, radial edges in the outer region, highlighted in Figure 9-6, were set as orthogonal 

edges.  That is, any mesh lines into any of those four edges were forced to join the edge 

at right angles. 

Forced
orthogonal

edges Magnification
of the inner
grid region

The inner O-Topology
is not shown at this
scale

 
Figure 9-6 – View of a y-plane taken from the medium resolution model with the 

dashed, purple lines showing the forced orthogonal edges. 

With the specific geometric configuration described and the block and edge layout used 

to discretise the domain also presented, the discussion can turn to the time step and 

solver specifications implemented with the present work.  Please note that the boundary 

conditions have already been discussed in §7.3. 

9.2.3. Time Step and Solver Configuration 

The time step that was used for the simulations described in the present work was set 

using the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967), 

 NCFL =
Uref t

x
, (9.3) 
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as a guide.  However, despite the original definition of 

 NCFL 1 (9.4) 

for stability, numerical experiments conducted in preparation for this work, not 

discussed in this dissertation, indicated that for the VOF model 

  NCFL 0.1  (9.5) 

was more appropriate and which is in agreement with the recommendations of the code 

developer (ESI CFD Inc., 2007a).  Hence, the time steps that were used were all less 

than 16 s as detailed in Table 9-5. 

Table 9-5 – Time step size for the different resolution and speed combinations. 

Red=27×103 Red=54×103 

Medium 

Resolution 

Low 

Resolution 

Medium 

Resolution 

High 

Resolution 

16 s 10 s 8 s 5 s 

 

With the time step set as shown in Table 9-5, the spatial discretisation was configured to 

use the same second order upwind with limiter scheme with zero blending as used 

previously in this dissertation.  A conjugate gradient squared solver with preconditioner 

(Saad, 1996) was used as the velocity solver while an adaptive multigrid solver 

(Lonsdale, 1993) was used for the pressure correction.  To reduce the occurrence of free 

surface artefacts such as the generation of small, isolated regions of air within the 

predominantly water phase, and vice versa, a flotsam and jetsam filter was used (ESI 

CFD Inc., 2007a) at the end of each time step. 

The iterative cycle was controlled by three parameters: (1) a maximum iterative count 

per time step of ten iterations, (2) a convergence criteria of 10-3, or three orders of 

magnitude reduction in the “error” and (3) a minimum residuals of 10-6.  Details of the 

interactions and meanings of these parameters is detailed in Appendix A.  Prior to an 

examination of the flow features to validate the numerical approach, the convergence of 

the solver must be inspected to ensure the minimum level of numerical accuracy, the 

solver precision, has been reached. 
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9.3. Convergence and Stability of the Numerical Solver 

As with all numerical simulations that rely on an iterative solver the convergence of the 

solver must be examined.  For all three simulations at Red=54×103 over 99% of the time 

steps converged, whereas for the simulation at Red=27×103 the convergence rate 

dropped to 92%, as shown in Figure 9-7. 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

P
er

ce
nt

 F
re

qu
en

cy

 

 

Re =27x10 , Medium Resolution
Re =54x10 , Low Resolution
Re =54x10 , Medium Resolution
Re =54x10 , High Resolution

F
ig

ur
e 

cr
ea

te
d:

 1
4−

O
ct

−
20

09
 1

0:
14

:5
8,

 fr
om

 c
on

v_
pl

ot
s_

a1

3
d

3
d 3
d

3
d

n
iter  

Figure 9-7 – Cumulative probability distributions of niter for the four free surface 

piercing simulations. 

Therefore, as the numerical solver converged for the vast majority of time steps across 

all the simulations, the results can be deemed correct to the specified level of numerical 

accuracy.  Because numerical convergence does not guarantee that the solution is a 

correct representation of the intended physical configuration, the results must still be 

critically examined. 

9.4. Visual Examination of the Simulated Free Surfaces 

9.4.1. Case 1: Full Depth, Red = 27×103 

As has been the procedure of this dissertation the analysis of the results will start from 

the most general, for example a qualitative examination of the shape of the free surface, 

followed by successive refinements towards velocity measurements at specific 

locations.  Of the results introduced for comparison only Hay and Yu et al presented 
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oblique angle images of the free surface that were suitable for visual comparison with 

the present work.   

As discussed in §1.9 the most extensive visual record of the free surface elevation was 

that published by Hay (1947) yet Inoue et al (1993), which the present simulations 

match for Reynolds number, did not investigate a combination studied by Hay.  

Therefore, by extension, the velocities in the present Red = 27 ×10
3  simulations do not 

exactly match that of Hay.  The two configurations photographed by Hay that are 

closest to the present work were at speeds of 0.3 m/s and 0.6 m/s, as shown in Figure 

9-8(b) and (c), respectively.  Hence, as the free stream velocity in the current work was 

0.54 m/s, it would be reasonable to assume that the results from the present simulations 

would be closest to the 0.6 m/s observations from Hay.  This is in fact the case, where 

the results from the present work, as shown in Figure 9-8(a), are in excellent agreement 

with the 0.6 m/s Hay image, as shown in Figure 9-8(c), 

 
Figure 9-8 – Medium Resolution Grid, Low Speed Oblique Comparison with 

Experimental Photographs of the Free Surface in the Near Wake of the Cylinder 

Specifically, both the 0.6 m/s Hay image and image of the instantaneous free surface 

elevation from the present work have the same large-scale features, including 
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1. A small bow wave, in the order of 15mm high (scaled from the colour plot); 

2. Transformation of the bow wave in the near field to a Kelvin wake in the far 

field; 

3. A disturbed wake region with small wake waves but no obvious large scale 

rooster tail; 

In addition to the excellent agreement with the Hay data visible in Figure 9-8, the side 

view of the wake from the present simulations and the 0.6 m/s Hay data, as shown in 

Figure 9-9(a) and (c), are also in, again, excellent agreement.  The shapes of the bow 

waves in these two results are remarkably similar but the wake region in the Hay data, 

Figure 9-9(c), is noticeably extended downstream compared to the present results, 

Figure 9-9(a).  However, a degree of caution must be used when interpreting this last 

observation because there are a number of shadows in the Hay image that make a visual 

comparison of the wake extent difficult. 

 
Figure 9-9 – Medium Resolution Grid, Low Speed Side View Comparison with 

Experimental Photographs of the Free Surface in the Near Wake of the Cylinder 

While the present simulation does accurately, at least visually, capture the large-scale 

features of the free surface, it does not capture the small capillary waves that are visible 

in the photographs of the extended bow wave and near wake, for example Figure 9-8(c).  

This lack of resolution is due to the numerical limitations of the grid, which was large 
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compared to the wavelength of these capillary wave features.  In defence of the present 

simulations, it must be noted that to barely capture* these capillary waves the cell sizes 

would need to be in the order of 0.1 mm, which when extended to the entire domain 

would have resulted in an impossibly high cell count.  Therefore, more of these fine 

wave structures should be resolved if the resolution in the region of the free surface 

were to be increased.  This projection is supported with the simulation of additional free 

surface waves that are visible in the results of Yu et al (2008), as shown in Figure 9-10, 

who utilised O 1.6 ×106( )  cells relative to the O 373×103( )  cells in the present work.  

Yet, even with these additional cells Yu et al (2008) do not fully simulate the free 

surface as observed by Hay. 

 
Figure 9-10 – Shape of the instantaneous free surface from Yu et al (2008). 

Therefore, as the increased cell count has resulted in increased resolution of the free 

surface wave features it could be suggested that neither of these simulations have yet 

reached mesh independence with respect to these surface waves.  It would be natural 

                                                

* Based on the commonly held interpretation that a minimum of five points are needed to resolve a wave 
(Fletcher, 1991, Orfanidis, 1996, Roache, 1998a) and that the wavelength of the capillary waves are in the 
order 0.5 mm. 
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then to suppose that, as with an integral quantity such as the drag coefficient, there is a 

point of mesh independence for the free surface simulation.  This appears unlikely 

because, unlike a drag coefficient or averaged velocity, there is a continuum of free 

surface features that must be simulated.  To support this proposition, suppose that we 

consider the local radius of the free surface as the defining parameter that must be 

simulated with the VOF method, then the radius must vary over the range 

 0 < rsurface . (9.6) 

At the largest radii where the free surface is essentially flat, the radius tends to infinity 

and the free surface is relatively simple to simulate with large cells.  In contrast, at the 

smallest radii, of bubbles and droplets, the radii that must be simulated continually 

decrease in radius to be limited only by the molecular size of the fluid in question.  

Hence, 1/5th of a bubble that is only a few times the molecular scale is almost 

impossible to simulate to the scales of the work discussed in this dissertation and, by 

extension, VOF must be considered as impossible to achieve mesh convergence. 

 
Figure 9-11 – Sketch of the structure of a ship wake reproduced from ESA ('Ship 

Wakes,' 2009). 

To diverge from the current discussion momentarily, it appears that the Kelvin wake 

region identified by Yu et al (2008), for example the annotations visible in Figure 9-10, 

is incorrectly labelled.  Specifically, if standard nomenclature from the study of ship 

wakes (which appears to be the de facto standard) is to be adopted then what Yu et al 

(2008) have identified as a Kelvin wake would be better labelled as turbulent wake 
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within the centre of the Kelvin envelope ('Ship Wakes,' 2009), as shown in Figure 9-11.  

It should be noted that while the transverse and diverging waves appear to meet at their 

respective cusps, they are in fact out of phase by one quarter of a wavelength. 

Then, given that all the measurements for both the experiments and numerical 

simulations discussed in this dissertation were made within the local wave disturbance 

region, identified in Figure 9-11, it is highly unlikely that a fully developed Kelvin 

wake would have been observed.  More likely, the observations would record the 

turbulent structures that are the precursor of the developed, large-scale Kelvin wake. 

Returning to the current discussion, the excellent agreement of the results from the 

present work with the photographic records of Hay has been based on qualitative 

comparisons.  To add a degree of rigor to these comparisons Inoue et al (1993), Chen et 

al (2000), Kawamura et al (2002) and Yu et al (2008) all published measurements of the 

time averaged free surface, which can be contrasted with the present results. 

To develop the time averaged free surface elevation, recall that the VOF function, F, is 

defined over the range 

 0 F 1 . (9.7) 

Then the discrete time average for a general location in the computational domain, x , is 

 F x( ) = 1

nsteps
F x,tm( )

m=1

nsteps

 (9.8) 

in which F x,tm( )  is the value of F at point x  and time tm .  Again, by extension F  is 

only valid over the range 

 0 F 1  (9.9) 

therefore a value outside this range should be treated as an indicator of an error in the 

numerical method.  The location of the time averaged free surface was then assumed to 

be at the locus of 

 F x( ) = 0.5 . (9.10) 

To highlight the size of the, generally small, free surface waves relative to the initial 

elevation of the free surface the elevation coordinate, y, was transformed as 

 yFS = y 0.2 . (9.11) 
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There is a high degree of symmetry in the elevation of F  around the xz-plane, as shown 

in Figure 9-12 and three symmetrical features, high and low points, in the wake were 

specifically identified.  The high and low points are connected to the centre of the 

cylinder with radial lines, which form angles of 48°, 36° and 27° with the xz-plane for 

the “low and trough”, “high and ridge” and “low” features, respectively.  As was 

discussed above none of these angles are close to the 19° angle typical of a developed 

Kelvin wake ('Ship Wakes,' 2009), which supports the conjecture that the region under 

investigation in the present work is within the locally disturbed region instead of the 

developed Kelvin wake  

0.
00

15

0.
00

30

0.
00

15

-0
.0

01
5

-0.0015

-0.0015

-0.0015

0.
00

15

0.
00

30

0.
00

45

0.0045

0.0015

0.0015

-0.0015

0.0015

0.0015

-0
.0

01
5

-0.0015

-0.0030

-0.0030

0.0165
0.0150
0.0135
0.0120
0.0105
0.0090
0.0075
0.0060
0.0045
0.0030
0.0015

-0.0015
-0.0030
-0.0045
-0.0060
-0.0075
-0.0090
-0.0105
-0.0120
-0.0135
-0.0150
-0.0165

m
y_

co
lo

ur
_c

on
to

ur
s.

la
y

Lo
w and Tr

ough

High and Ridge

Low

 
Figure 9-12 – Contour plot of the time-averaged yFS (in metres) from the present 

work with annotations highlighting particular features. 

In contrast to the developed Kelvin wake, where the dominant wave pattern is the 19° 

“shockwave”, within the local disturbance region there are a number of different waves 

that can be thought of as precursors to the far field wake.  The predominant initiator 

waves are known to form at angles close to 35° (Yang, 2007), which is in remarkably 

close agreement to the “high and ridge” feature marked on Figure 9-12 that was 
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measured at close to 36°.  Thus, this interpretation of the wave shapes from the present 

work support the projection introduced above that the region of the present simulation is 

within the local disturbance region.  In addition, the region identified by Yu et al (2008) 

as a Kelvin wake is at best incorrectly labelled, but at worst is an artefact from an 

unreliable computation.  While the image of the time averaged yFS  shown in Figure 

9-12 is an interesting plot, by itself there is little validation value.  Therefore, the time 

averaged yFS  values from the present work must be compared with other published 

studies, preferably both experimental and numerical. 
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Figure 9-13 – Contour plot comparison of the time-averaged yFS from the present 

work and the tow tank results of Inoue et al (1993). 

The shape of the free surface from the present work is in excellent agreement with that 

measured experimentally* in a tow tank by Inoue et al (1993), as shown in Figure 9-13.  

All three of the features identified from the present work, Figure 9-12, are not only 

                                                

* All the contours presented within this thesis that are reproduced from other publications were digitised 
from the respective papers and therefore may, consequently, contain some inaccuracies. 
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present in both their work and Inoue’s but are of remarkably similar magnitudes and 

radial distances from the cylinder. 

As there is an excellent comparison between the present work and experimental data, 

we can now examine the alternate numerical results.  Because the results of Yu et al 

(2008) are simultaneously the most recently published and used the largest cell count, 

for similar domain sizes, it would be expected that their results would be the most 

accurate.  Interestingly, this is not the case as their time averaged yFS  data are distinctly 

different from the present work, as shown in Figure 9-14.  Specifically, none of the 

features observed in the wake from either the present study and the experimental data, 

as shown in Figure 9-12 and Figure 9-13 respectively, are visible in Yu et al (2008). 
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Figure 9-14 – Contour plot comparison of the of the time-averaged yFS from the 

present work and the tow tank simulation of Yu et al (2008). 

It is possible that they did not average their simulation for long enough to obtain a 

suitable average.  However, this is very unlikely though as it is stated in their paper that 

they averaged for 12 shedding periods, or 60 non-dimensional time units, and the 

averages were not started until 60 non-dimensional time units had elapsed (Yu et al., 

2008).  Alternatively, either their numerical method or domain configuration may not 

have been capable of capturing the free surface correctly.  Because the authors 

published no detailed comparisons of the free surface, such as contour plots similar to 

Figure 9-13 or Figure 9-14, and only stated that the bow wave height “agrees well” with 
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experimental data it seems much more likely that there were problems with their code 

or configuration.  Therefore, no further comparison with the Yu et al data will be 

undertaken in this dissertation. 

Despite the very poor results of Yu et al (2008) the time averaged yFS  contours 

published by Kawamura et al (2002) are in excellent agreement with both the present 

work and the experimental data of Inoue et al (1993).  These two results are somewhat 

of a surprise as the more recent code and larger cell count utilised by Yu would be 

expected to result in a better simulation.  Further both Kawamura and Yu claim to have 

used exactly the same Smagorinsky LES model and have similar domains so they 

appear to differ only in the choice of cell count and domain shape. 
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Figure 9-15 – Contour plot comparison of the time-averaged yFS from the present 

work and the tow tank results of Kawamura et al (2002). 

As Chen et al (2000) did not publish contours of the free surface no comparison is 

possible but they did publish a plot of the time averaged yFS  along the x = 0.035m  

plane for z 0 , as shown in Figure 9-16.  As can be seen, Chen’s results are also in 



 245 

good agreement with the experimental results of Inoue.  As expected from the visual 

comparison of the yFS  contours that were discussed above, both Kawamura’s results 

and the present simulations are also in excellent agreement with the experimental data.  
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Figure 9-16 – yFS as a function of z for x = 0.035 m with the error bars from the 

present work indicative of the spread rather than a measurement error. 

While it could be argued that a number of the data points from the present simulation in 

the region of  

 0 z < 0.05m  (9.12) 

are outside of the error bounds for the experimental data as the magnitude of these 

differences is O 1mm( )  they can be safely assumed to be within the bounds of the 

accuracy of the present simulations.  The method used to compute the average free 

surface in the present work can not compute an error estimate, instead the region 

enclosed by 

 0.05 F 0.95  (9.13) 

is shown in Figure 9-16.  Interestingly, the average free surface elevation over the range 

 0 z 0.1m  (9.14) 

from the present work is closer to the lower bound of the shaded region.  This could 

indicate that the average may have been started too early, while the free surface was still 

dropping to its average elevation.  Alternatively, and more likely, the larger spread to the 
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higher elevations was a result of splashing around the cylinder.  Irrespective, yFS  from 

the present simulations is in excellent agreement with the other experimental and 

numerical studies. 

In addition to the free surface measurements Inoue et al (1993) also measured four 

average velocity profiles as a function of depth at different locations, shown in Figure 

9-17, using a hot film probe.  Instead of a single component measurement, this probe 

would most likely have measured a value closer to the velocity magnitude (Bruun, 

1995) comprised of the intended component smeared with influences from the 

remaining two.  Therefore, it was assumed that, because of the smearing inherent in hot 

film anemometry, the most appropriate results from the present work would be the 

magnitude of all three velocity components. 
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Figure 9-17 – Plot of the horizontal location of the vertical traverse lines used by 

Inoue et al (1993) to measure the velocity relative to the entire computational 

domain of the present work (a) and a magnification of the cylinder region (b). 

Surprisingly, given the detail that the measurements of the free surface were presented 

by Inoue, error estimates of the velocity magnitudes were not included in the published 

data.  Perhaps this was a limitation of either the hot film probe or the data-logging 
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equipment used in the experiments.  In contrast to the experimental data, Kawamura et 

al (2002) did publish error estimates of their velocity profiles. 

For the three stations that were located on the z = 0  plane, marked as points “a”, “b” 

and “c” in Figure 9-17, the results from the present work for the velocities below the 

surface are in excellent agreement with the experimental and numerical results, as 

shown in Figure 9-18.  Kawamura et al (2002) did not publish their velocity profiles in 

the air phase.  However, if the trend of their results were to continue, the extrapolated 

velocity profile would differ from the present work.  This discrepancy is probably due 

to the boundary conditions, which may not have accelerated the air phase as discussed 

in §7.3 for the present work.  None of the papers adequately discussed their boundary 

conditions so this conjecture cannot be examined. 
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Figure 9-18 – Average velocity as a function of yFS  for the vertical station marked 

as “a”, “b” and “c” shown in Figure 9-17 for subplots (a), (b) and (c), respectively. 

The final station, labelled as “d” in Figure 9-17, was located to the side of the z = 0  

plane and the results from the present work are an almost perfect match to the numerical 

results described by Kawamura et al (2002).  Both numerical results match the 

experimental data for yFS 0.05 m( )  but otherwise the numerical results are 

consistently overestimated by approximately 15% relative to the experimental data.   
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Figure 9-19 – Average velocity as a function of yFS for the vertical station marked 

“d” in Figure 9-17. 

Based on a visual examination of the shape of the free surface there is an excellent 

agreement with the tow-tank results of both Hay (1947) and Inoue et al (1993) and the 

numerical date published by Kawamura et al (2002).  Therefore, the validation and 

investigation can continue with the second case, the full depth cylinder at the higher 

Reynolds number of Red = 54 ×10
3 . 

9.4.2. Case 2: Full Depth, Red = 54×103  

At this higher Reynolds number the only source of validation data for the shape of the 

free surface is from the extensive study described by Hay (1947), which is 

predominantly comprised of photographic images of the free surface.  Further, for the 

reasons discussed above and as this Reynolds number was double the lower speed 

configuration that was discussed previously, the free stream velocity was 1.08 m/s, 

which is midway between the 0.91 m/s and 1.22 m/s studied by Hay.  Therefore, the 
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flow features from the present work would be expected to contain features resembling 

aspects of both the higher and lower velocity results in Hay’s study. 

 
Figure 9-20 – Medium Resolution Grid, High Speed Oblique Comparison with 

Experimental Photographs of the Free Surface in the Near Wake of the Cylinder 

As visible in a comparison of Figure 9-20 and Figure 9-21, the results from the present 

simulations appear to be a better approximation of the 1.22 m/s experiment in 

preference to the 0.941 m/s test.  An examination of two key flow features was used to 

obtain this conclusion, namely: 

1. As the flow wraps around the cylinder the drop into the draw down hole is 

relatively steep and there is a rooster tail* formed as shown in a comparison of 

the sub-images of Figure 9-20.  

2. The shape of the bow wave from the present work is characterised by a lower 

roller section that spreads upstream of the cylinder and a battlement, that is a 

tall, and thin structure reminiscent of medieval English castles, type structure 

                                                

* “Rooster tail”, as defined and visualised by Brocchini and Peregrine (2001), will be used to describe the 
wake structure that extends downstream along the free surface and is symmetrical around the centreline.  
This structure is also known as a “roach” (Breslin and Skalak, 1959). 
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attached to the upstream edge of the cylinder.  These features are visible in the 

4ft/s experiment, in particular Figure 9-21(c), but not the 3ft/s experiment. 

 
Figure 9-21 – Medium Resolution Grid, High Speed Side View Comparison with 

Experimental Photographs of the Free Surface in the Near Wake of the Cylinder 

The observations from the simulations for which the cylinder extended across the entire 

vertical extent of the computational domain at both Red = 27 ×10
3  and Red = 54 ×10

3  

support the conclusion that the present numerical approach can correctly capture the 

large-scale flow features.  Therefore, the final configuration where the cylinder did not 

completely extend to the lower boundary of the domain can be examined. 

9.4.3. Case 3: Partial Depth, Red = 54×103  

As with the other high speed simulation discussed in §9.4.2 the only source of data 

available for comparison of the shape of the free surface from the present simulation is 

from Hay’s monograph (Hay, 1947).  Again, as the Reynolds number for the present 

work was defined relative to the cylinder diameter, the present results are mid-way 

between the two nearest photographs from Hay.  Therefore, it would also be expected 

that the shape of the present free surface be also mid-way between the two extremities. 
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In contrast to these expectations, and in line with the previous high-speed results, the 

present results more closely match the image from the higher speed configuration of 

Hay, as shown in Figure 9-22 and Error! Not a valid bookmark self-reference..   

 
Figure 9-22 – Oblique Comparison of the Free Surface Close to the Cylinder from 

the Present Partial Depth Simulation to the Experiments of Hay (1947). 

This conclusion was based on observations of the same two features as the full depth, 

high-speed simulation, namely the steep drop into the wake draw down and the taller 

bow wave shape.  Interestingly, these two features appear to be of similar size in both 

simulations, which indicates that both the height of the bow wave and the depth of the 

wake draw down hole are independent of the depth of the cylinder below the at rest free 

surface.  Precise measurements of these features, rather than the qualitative comparisons 

in this chapter, will quantify this possibility. 
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Figure 9-23 – Side View Comparison of the Free Surface Close to the Cylinder 

from the Present Partial Depth Simulation to the Experiments of Hay (1947). 
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10. Three-Dimensional, Two-Phase Simulations: Point, 

Time Domain and Spectral Results 

10.1. Wave Shape Parameters  

10.1.1. Introduction 

Following from the excellent agreement of the shape of the free surface discussed 

previously a detailed comparison of four of the six wave shape parameters measured by 

Hay (1947) can be performed.  As already introduced in §1 these distances were 

measured by Hay using photogrammetry and the two parameters not subject to 

investigation in the present work, namely D2  and L2 , were ignored because the 

ambiguity in their definition.  In contrast to this ambiguity, the remaining four 

parameters can be simply defined and measured from easily identifiable features, as 

shown in Figure 10-1. 
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Figure 10-1 – Sketch of the key lengths measured by Hay (1947). 

10.1.2. Bow Wave Height – D1  

At the end of the previous chapter it was suggested that, based on the observations of 

the present simulations, the bow wave height was independent of the depth immersion 

of the circular cylinder.  Fortunately to extend from the limited test cases simulated in 
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the present work the extensive data set collected by Hay (1947) provides additional data 

to test this hypothesis, independent of the present results.  Hay did not investigate these 

phenomena in detail, probably because he was more interested in the drag of the 

cylinders when towed, for which there is an extensive discussion (Hay, 1947). 

To investigate these effects the data were plotted as a function of the Froude number* 

based on the diameter of the cylinder, 

 Frd =
Uref

2

gd
, (10.1) 

instead of the Reynolds number†.  The data support the hypothesis because for a given 

combination of Froude number and cylinder diameter, for the majority of the 

measurements D1  is within 5%‡, as shown in Figure 10-2. 

The notable exception to this trend occurs for the cylinders with 

 d 6.35 mm  (10.2) 

and for 

 Frd 100  (10.3) 

where the spread is in the order of 50%.  However, from an inspection of the images of 

these flows there is huge splashing that would make an accurate measurement nearly 

impossible.  Hence, significant caution should be taken interpreting these results for 

small d at high Frd .   

 

                                                

* This definition of the Froude number would traditionally be referred to as the square of the Froude 
number.  However, this definition appears to be more “natural” to the present author as it is derived 
directly from an understanding of the physical systems being interpreted. 
† The alternate analysis pathway based on the Reynolds number relative to the diameter resulted in an 
identical conclusion, yet because the Froude number is more commonly used when discussing free 
surface flows it will be the non-dimensional number predominantly used within this section. 
‡ Although Hay did not specifically discuss the errors in the measurements of the free surface, these 
results would be close to the limit of the photogrammetry technique used. 
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Figure 10-2 – Bow wave height as a function of Froude number from all the measurements of Hay (1947). 
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Indeed by extension as the spread for all the results from the d = 6.35 mm  results is 

large, care should be taken with that entire curve, for example the L = 200 mm  curve 

deviates significantly from the other results and would warrant further investigation. 

With this functional dependence of D1  in mind the present results are an excellent fit 

with both the Hay data and that of Wikramasinghe and Wilkinson (1997)* as shown in 

Figure 10-3.  Further, as a number of measurements were made in the present study they 

were averaged with error bars representing the standard deviation.  As the reader would 

note, though, there are no error bars visible in Figure 10-3, which is because the 

magnitude of the standard deviation was less than the size of the point markers. 
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Figure 10-3 – Plot of the D1 as a function of Frd for the present work, Hay (1947) 

and Wikramasinghe and Wilkinson (1997) 

In contrast, the error bars of the Hay data in Figure 10-3 do not represent the 

experimental standard deviation.  Instead, all the measurements for a given Frd  in the 

50 mm diameter experiments made by Hay were averaged and displayed as the point on 

Figure 10-3.  The spread of the error bars is, rather than the standard deviation, the 

                                                

* The data of Wikramasinghe and Wilkinson (1997) was published in Yu et al (2008) and reproduced 
here.  Their original paper was not available to the present author. 
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bounds of the Hay data.  This simplified the plot by reducing the number of overlapping 

markers to display. 

10.1.3. Cavity Depth – L0  

The second wave shape parameter from the present work to be compared with that 

measured by Hay is L0 , as shown in Figure 10-1.  Hay observed that the cavity depth 

increased as a function of the velocity until FrL 3 , whereupon the bottom of the 

cavity coincides with the end of the cylinder.  That is, when 

 L0 = L  (10.4) 

the cylinder is fully ventilated and L0  remains essentially constant with only minor 

increases in depth due to the downward flows under the cylinder.  This behaviour is 

visible when the depth of the cavity is normalised by length and plotted against Froude 

number, 

 
L0
L

CL0

Uref
2

gL
 (10.5) 

in which CL0
 is a constant of proportionality, as shown in Figure 10-4. 
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Figure 10-4 – Plot of L0/L as a function of FrL, from Hay’s (1947) Figure 92. 
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Further, Hay suggested that for the subcritical flow range CL0
 as being between 1/2 and 

1/3.  In contrast, as the results from the present work were obtained using a zero friction 

wall at the base of the domain, the length L is undefined and the lengths L0  measured 

by Hay (1947) were plotted as dimensional quantities – the same as data from the 

current simulations.  Interestingly, Hay’s predictions of the slope in the subcritical 

regime still hold for Froude numbers relative to the cylinder diameter, d, as shown in 

Figure 10-5. 
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Figure 10-5 – Plot of the depth of the ventilated cavity as a function of Frd. 

Despite the large error in the measurements from the present simulations, the data is an 

excellent agreement with the Hay data.  Neither Chen at al (2000) nor Kawamura  et al 

(2002) published their measurements of L0 . 

The spread in the measurements from the present simulations that were made at the 

highest Froude number, shown in Figure 10-5 ranges from L0 = 0.022 m  to 

L0 = 0.063m  with a mean at L0 = 0.044 m .  This differentiation is not due to a lack of 

accuracy in the measurements themselves but rather the fluctuations of the cavity as a 

function of time.  Still, the spread of the data is predominantly within the bounds of 

Hay’s work but it poses an interesting question, namely would the plots of Hay be as 

“clean” had he been able to take more measurements?  Hay acknowledged the 
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possibility of errors while he discussed the break at FrL 3 , as he only took a single 

image per combination of speed, depth and diameter (Hay, 1947).  The size of the 

present data set is too small to investigate this supposition but it should be kept in mind 

for further work. 

10.1.4. Rooster Tail Height – D3  

From the measurements of Hay (1947) the length to the peak of the rooster tail, D3 , 

displays a similar trend to L0  in that the measurements appear to increase as a function 

of Frd  before they remain relatively constant beyond a critical Froude number.  

Intriguingly the data points for the all the measurements below the critical Froude 

number seem to fit the function 

 D3 =
Frd

1.5

250
 (10.6) 

as shown in Figure 10-6.  The data available from Hay (1947) in the sub-critical range 

by itself is too sparse to make definitive predictions of the functional form of D3 . 
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Figure 10-6 – Plot of the height of the rooster tail as a function of Frd. 

However, the addition of the three data points from the present work would appear to 

strengthen the argument for the functional form described by Equation (10.6) because 
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the present data fit almost perfectly.  As with the parameters presented above, the error 

bars are indicative of the spread of repeated measurements rather than representative of 

the precision of a single measurement.  Irrespective of the definitive functional form of 

D3  at subcritical Froude numbers, the present data fits within the trend of the Hay data 

hence, the present computational method appears to be adequately computing this 

parameter. 

10.1.5. Rooster Tail Length – L3  

During the analysis of the L3  parameter, the present author noticed that, of the images 

of the two-inch cylinders taken by Hay, three were suitable for measurement of L3  but 

were not included in his published tables of other L3  measurements.  The reason for this 

lack of measurement is unclear because although Hay ignored a number of 

measurements due to factors such as bad lighting or shadows that obscured a particular 

feature, these L3  lengths were clearly visible.  Subsequently, these three measurements 

were scaled from the images published by Hay, as shown in Figure 10-7 and which is 

discussed in detail in Appendix E. 

 
Figure 10-7 – Example of the scaled measurements made from Hay’s images. 

In his monograph Hay (1947) normalised his measured L3  results by L, and noted that 

the points fell close to 

 
L3
L

=
Frd
2

. (10.7) 
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However, as L is subject to debate in the present work, Hay’s measurements of L3  were 

plotted without normalisation, as shown in Figure 10-8.  The results from the present 

work, which were made at lower Frd  than those of Hay, are a very poor match to Hay’s 

measurements. 
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Figure 10-8 – Plot of the length to the peak of the rooster tail, L3 for d=50mm. 

In the alternate, non-dimensional plots the 50mm diameter data of Hay data can be 

approximated by 

 L3 =
Frd
20

for Frd 4.5  (10.8) 

rather than the 0.5 coefficient of Equation (10.7). 

The new photogrammetric measurements, which were all obtained for the same Frd , 

when plotted on the same graph deviate significantly from the trend described by 

Equation (10.8), also shown in Figure 10-8.  This result is interesting in itself as these 

three data points could represent an alternate flow regime that is only present at low 

Frd .  Again, the error bars in Figure 10-8 represent the spread of the three 

measurements rather than the precision of individual measurements.  However, without 

further data points the alternate flow regime at low Frd  was purely speculative. 
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When the results from the present simulations were plotted in conjunction with both the 

original measurements of Hay and the newly scaled Hay data, they were an excellent fit 

with the new measurements rather than a continuation of the original measurements.  

This is particularly exciting because these new data from the present simulations appear 

to confirm the presence of an alternate flow regime at low Frd  with a functional form of 

 L3 =
Frd
5

for Frd 2.3 . (10.9) 

It is unclear what the mechanism would be that could generate a longer L3  at lower 

Frd , particularly as the aim of this section is validation rather than investigation, but 

this topic should be the subject of both further numerical and experimental work.  For 

the current validation exercise, the L3  parameter was validated not because of its 

consistency with the tabulated Hay measurements but because of the agreement with the 

new measurements taken from the photographic images published by Hay. 

10.2. Spectral Validation 

As was introduced in §6.4, results from a spectral analysis can provide an indication of 

the turbulent decay and, hence, if the computational method is correctly accounting for 

the energy dissipation.  Therefore, as the free surface has been shown to have a 

dissipative effect on vortex shedding (Kawamura et al., 2002) two points were selected 

that were as far away from the free surface as allowed within the current computational 

domain.  These points were located on the z=0 plane at 5.8 cylinder diameters 

downstream at y = 0.102m  and y=0.370m to be representative of the water and air 

phases, respectively. 

The power spectral densities were computed using a similar method as was discussed in 

§6.4.2 with an assumed development time of two seconds and a rectangular window 

262 145 points long.  These parameters, with the sampling frequency of 125kHz 

resulted in a frequency resolution, or bandwidth, of 0.48Hz/sample. 

The resultant power spectral densities from the Red = 54 ×10
3  simulation on the 

medium resolution grid were comprised of a range of energetic frequencies below ten 

hertz, with a constant slope for frequencies above ten hertz, as shown in Figure 10-9.  A 

dominant shedding frequency of 4.8Hz and 4.3Hz was observed for the water and air, 
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respectively.  As would be expected, the shedding is more defined in the water phase 

with the peak rising almost 10 dB/Hz higher than the low frequency plateau.  In contrast 

to the result from the water phase, the power of the peak shedding frequency in the air is 

in the order of 3 dB/HZ higher than the next, low frequency peak.  
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Figure 10-9 – Power spectral density plots for the Red = 54×103 simulation. 

This result of the differences in the power at low frequencies was expected because the 

gas phase is flowing at a much lower Reynolds number than the liquid phase.  

Therefore, the flows are less energetic and the shedding more easily contaminated with 

low frequency noise.  

Similar power spectral density functions were computed for the same two monitor 

points whose results are shown in Figure 10-9 from the Red = 27 ×10
3  medium 

resolution simulation but are not shown because, qualitatively, they are very similar to 

those shown in Figure 10-9.  However, with the assumption introduced above, that the 

results from the points located in the air and water phases are representative of the local 

Reynolds number, that is the Reynolds number based on the respective viscosity, four 

combinations of Strouhal number and Reynolds number can be computed.  Three of 
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these four Strouhal numbers compare very well with the single-phase reference data 

compiled from the meta-analyses of Drescher (1956) and Etkin (1957), as shown in 

Figure 10-10. 
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Figure 10-10 – Strouhal numbers from the present simulations compared with 

results from two meta-analyses of single-phase experimental studies. 

While the Strouhal number from air-phase monitor point in the Red = 27 ×10
3  

simulation is 35% lower than the reference data there are a number of reasons why this 

single result will not invalidate the simulations as a whole.  Firstly, the corresponding 

measurement from the water phase is a close agreement with the experimental data.  

Second, there is an explicit assumption that allows the present data to be compared with 

single-phase results, namely that the free surface does not affect the flow at these two 

monitor points.  This assumption may be wrong at this lower Reynolds number in the 

air-phase.  Finally, to ensure the maximum distance from the free surface, the monitor 

points were located close the zero-friction top and bottom walls, which may also cause 

an effect in the air phase at this lower Reynolds number. 

In addition to the dominant shedding frequency analysis presented above, the power 

spectral density plots can also be used to estimate the turbulent decay rate as a function 

of wave number (Tennekes and Lumley, 1972, Wilcox, 1998).  For these four monitor 
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points the slope of the PSD plot did decay at the requisite -5/3 power law to describe the 

inertial sub-range, as shown in Figure 10-9, which was derived from dimensional 

arguments (Kolmogorov, 1941). 

If unquestioning acceptance of the -5/3 power law were sufficient to validate the present 

simulations then no further comment would be required (Rogallo and Moin, 1984).  

Further, as the inertial sub-range is defined by the extent of the -5/3 decay slope, then 

for the present simulations it would start at approximately 10Hz, which seems to be too 

low a frequency.  Further, the constant slope region is almost too constant over nearly 

five frequency decades that, again, seems to be an unlikely result that is too perfect for 

comfort.  It would appear that the oft forgotten assumptions of Kolmogorov’s work, 

namely homogeneity, do not always apply and in these situations the -5/3 law may not 

apply (Batchelor and Towsend, 1949, Jiménez, 2006).  Therefore, the unquestioning 

application of the -5/3 law to all turbulent flows should be treated with caution. 

Despite the caveats and cautions noted for the slope of the power spectral density plot 

for frequencies above ten hertz, the results from the spectral analysis support the 

validation of the proposed computational technique.  That is the peak shedding results, 

notwithstanding the single discrepancy from the air-phase of the lowest Reynolds 

number tested, were very close to the benchmark single-phase results. 

10.3. Computational Run Time Tests 

Although not technically a component of a validation study the computational run time 

is nevertheless important, as one of the major precepts of this thesis is that, in addition 

to equivalent accuracy, the 2nd Order method must be faster than alternate methods.  

This test was conducted in a similar manner to that described in §6.6 for the right square 

cylinder simulations and used identical turbulence models as described there but applied 

to the configuration of a right circular cylinder piecing a free surface. 

The results were generally consistent with those of the single-phase, square cylinder in 

that the 2nd Order method was faster than the five alternatives tested, as shown in Figure 

10-11.  In this case the 2nd order model was 16% faster than the DES method and 19% 

faster than the Large Eddy Simulation with a Smagorinsky model. 
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Figure 10-11 – Comparison of computational run times for the 2nd order model 

with alternate turbulence models. 

Because of the potential savings of the RANS calculations the DES model’s run time 

should be closer to that of the 2nd order model.  However, on the present grid, which is 

at the lower end of LES resolution, the increased computational cost of deciding which 

cells are LES or RANS is probably greater than the RANS savings. 

While it was not the aim of these run time tests to compare the quality of the results, the 

present author has supposed that the results would follow similar patterns to those of the 

square cylinder.  That is, that k-  simulations would produce poor results while the 

remaining methods should result in acceptable results.  The data available for validation 

partially supports this proposition in that of the three published large eddy simulations 

two produced good results and one poor.  There are no k-eps simulations of this 

configuration to compare. 

It is particularly interesting that the present simulations are not only at least 16% faster 

than the nearest alternative but in terms of the free surface shape and velocities has 

produced much better results.  However, the astute reader would have noted that, unlike 

the square cylinder validations, the drag force on the circular cylinder has not yet been 

analysed. 
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11. Three-Dimensional, Two-Phase Simulations: Drag 

Forces Experienced by the Cylinder 

11.1. Introduction 

In addition to investigating the shape of the free surface, the results of which are 

presented in §9, and measuring a number of wave shape parameters, that are discussed 

in §10, Hay (1947) also measured the drag force that is exerted on cylinders during his 

experiments on the forces and fluid movements generated when right circular cylinders 

that penetrate a free surface are towed at constant velocities.  For each combination of 

depth of immersion relative to the still water level, cylinder diameter and towing speed 

he gave only a single value of force, with no explanation of the exact meaning of this 

number.  Despite Hay not clarifying whether his results were time averaged or a single 

instantaneous measurement, in the present work Hay’s results have been assumed to be 

averages and are, therefore, compared with average results from the current simulations. 

To ensure that the force measurements from the present work are analogous to those 

taken by Hay the forces were integrated over the entire cylinder face with no attempt to 

split the components into wetted and dry areas.  The present author is not aware of the 

height of the circular cylinders above the free surface in Hay’s experiments but, the 

contribution of the air phase to the total force should be quite small.  Suppose that the 

force, SectionalF , on a section of cylinder due to profile effects is proportional to the 

pressure due to motion, that is, 

   FSectional U 2 dL , (11.1) 

it follows from Equation (11.1) that because the density of air is in the order of one 

800th of that of water, then the sectional forces should also be proportionally smaller in 

the air phase.  This means that the increase in the drag force due to the part of the 

cylinder exposed to air is about 0.1% of the force exerted by the water on a cylinder of 

the same length.  Therefore, the difference between the heights of cylinders from the 

free surface used by Hay (1947) and those employed in the present simulations have a 

negligibly small effect on comparisons of total drag force obtained in the two studies. 
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For consistency, all the force measurements from the present simulations, and the 

resistance measurements from Hay, will be presented as drag coefficients, defined as 

 CD =
FD

1
2 waterU

2Ld
, (11.2) 

in which FD is the total drag force and L  is the depth of immersion of the cylinder 

relative to the still water level.  

It is now therefore possible to discuss the development of the drag force as a function of 

time during the acceleration period, compare average values with those obtained 

experimentally by previous researchers and attempt to develop an understanding of the 

extra drag caused by the presence of waves generated by the motion. 

11.2. Forces on the Cylinders 

All of the drag coefficients from the present work exhibit a development period over the 

first two seconds, as shown in Figure 11-1, which is the direct result of the acceleration 

function used in the present work (described in §7.3). 
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Figure 11-1 – Drag coefficients as a function of time for the simulations at 

Red=27×103 and Red=54×103. 

The average drag from the low-resolution simulation at Red = 54 ×10
3  is noticeably 

higher than the medium and high-resolution simulations being 1.076, 0.838 and 0.782 
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respectively.  If these values are used as the basis for a grid convergence estimate of the 

average drag by the method recommended by the ASME Journal of Fluids Engineering 

(Celik et al., 2008), then the grid converged drag is 0.776±0.008, which is in reasonable 

agreement with the medium resolution data and very close to the high-resolution result.  

Too few simulations were run to allow a similar calculation for the Red = 27 ×10
3  

configuration. 

As shown in Figure 11-2, all three of the averaged drag coefficient values, namely the 

Red = 27 ×10
3  full depth simulation and the full and partial depth simulations at 

Red = 54 ×10
3 , are in excellent agreement with the Hay drag data. 
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Figure 11-2 – Comparison of the drag coefficients from the present simulations, 

with magnification of the present results, and the two inch measurements with 

different drafts from Hay (1947). 

The result of the averaged drag for the partial depth simulation at Red = 54 ×10
3 , 

which for increased clarity is shown in the magnification inside Figure 11-2, is an 

almost perfect match for the 200mm depth measurements made by Hay.  This is an 



 270 

exceptionally good result as both Hay’s 200mm results and the present partial depth 

simulations were computed at the same depth of immersion. 

The second of the results, shown in the magnification subplot of Figure 11-2, is from 

the present full depth simulation that is 400mm from the still water level to the lower 

boundary.  As can be seen in Figure 11-2 the present result is, again, an excellent match 

with the equivalent depth of immersion results made by Hay (1947). 

In general, Hay’s drag coefficient data are relatively constant, being between 0.8 and 

1.0, over the range 0.1 Fr 2 , as shown in Figure 11-2.  For larger Froude numbers, 

the magnitude of the drag coefficient dropped from these values to approximately 0.6 at 

the highest speed measured by Hay, which was at Fr 14 .  At the lowest Fr measured 

the values of CD  fluctuate widely but, as was noted by Hay, these measurements were 

at the lower accuracy limit of the equipment and, hence, “are probably an error” (Hay, 

1947). 
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Hay’s discussion of the change of CD  as a function of Re, as shown in Figure 11-3, is 

limited to 4 points, namely: 

1. Resistance is reduced when the flow is allowed to become three-dimensional 

and “move towards the ends”. 

2. As the depth to diameter ratio is increased, the drag tends towards that of an 

equivalent diameter two-dimensional, single-phase cylinder. 

3. The scatter indicates that that there is not a “simple” function of Re. 

4. Distinct changes in the CD  curve occur because of changes in the flow regime. 

From these four points Hay concluded that the Reynolds number does have an 

“appreciable effect” on the flow pattern but continued the bulk of his analysis of CD  on 

the assumption that Fr is the independent variable.  He concluded that definite trends 

can be observed and further suggested a number of empirical relationships to describe 

the shape and trends of the measurements plotted against various non-dimensional 

groups. 

It is clear from Figure 11-3 that the overall drag coefficient for a towed right cylinder 

which pierces a free surface obtained from Hay’s experiments and the present numerical 

work, is lower that the equivalent drag coefficient at the same Reynolds number in 

single phase. This is contrary to expectations as it is usually thought that the generation 

of waves leads to a large increase in drag. 

11.3. Drag due to the Presence of the Free Surface 

Hay’s reslts were no re-investigated for a long period of time until Chaplin and Teigen 

(2003) presented what they described as a “re-analysis” of Hay’s data with a particular 

emphasis on wave drag.  They proposed that the wave making drag force, or the free 

surface effect, could be separated from the total drag by proposing that the effects of the 

free surface expressed as the force, FFS , could be determined subtracting a “two-

dimensional” drag force obtained in a single phase fluid, FSF , from the total drag 

measurement obtained by Hay (1947), viz, 

 FFS = FD FSF . (11.3) 
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In this case, “two-dimensional” flows are those that would be observed around cylinders 

that are fully submerged either a large distance from the free surface or in the completed 

absence of a free surface, such as would be found in a water tunnel.  They further 

suggested that a surface resistance coefficient be defined as 

 

  

CFS =
FFS

1
2 waterd

2U 2

.

 (11.4) 

Their unexplained use of the area being equal to d 2  seems strange given that in all other 

cases familiar to the present author, the wetted frontal area of the cylinder relative to 

still water level has been used.  Therefore, for the present work the area will remain 

equal to the wetted frontal area, Ld , of the submerged cylinder relative to the still water 

level, that is Equation (11.4) becomes, 

 

  

CFS =
FFS

1
2 water LdU 2

.

 (11.5) 

Next Chaplin and Teigen (2003) argued that FSF  should be calculated in the “absence of 

the free surface”, which they directly computed from the integration of pressure tapping 

readings in their experiments.  These measurements were taken completely submerged 

and with large splitter plates in place in an attempt to force the flow to be two-

dimension and are arbitrarily taken as the values at a non-dimensional depth of -3 in 

Figure 11-4.   
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Figure 11-4 – Sectional drag coefficients from Chaplin and Teigen (2003). 

Additional measurements were taken at different depths of immersion relative to the 

still water level, without splitter plates, to develop the remainder of the curves shown in 

Figure 11-4. 

When they then computed the integral  

 CD =
1

L
Cd dy

L

 (11.6) 

in which  is the maximum elevation of the bow wave and Cd  is the sectional drag 

coefficient shown in Figure 11-4, their resultant values of CD  were similar to those 

measured by Hay.  That is they were, with the exception of the measurements at the two 

highest Reynolds numbers, below the equivalent single fluid drag coefficients, as shown 

in Figure 11-5. 
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Figure 11-5 – CD values computed by Chaplin and Teigen (2003) with additional 

data reproduced from Zdravkovich (1997). 

The method described in Equation (11.6) is very similar to that used in the present 

work, namely that CD  can be computed from the forces that act on the entire area of the 

cylinder yet are normalised by the wetted frontal area relative to the still water level.  

Chaplin and Teigen (2003), in contrast to the present work, stopped their integration at 

the maximum height of the bow wave yet, as argued above, the contribution of the air 

phase is tiny.  Therefore, the difference in the magnitude of CD  from Chaplin and 

Teigen’s data to the present will also be very small. 

Interestingly, in order to evaluate CFS in Equation (11.3) Chaplin and Teigen (2003) 

then chose to use their measured values of Cd  at a particular depth as CSF.  As shown in 

Figure 11-6, because CSF is significantly less than CD, positive values of the wave drag 

coefficient CFS  resulted. 
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Figure 11-6 – CFS as a function of Fr, reproduced from (Chaplin and Teigen, 

2003). 

It seems to the present author though that both Hay and Chaplin and Teigen missed the 

most interesting point, already mentioned above: that for certain configurations the drag 

of a right circular cylinder, which pierces a free surface, is less than that of the same 

cylinder moving at the same Reynolds number but which is fully submerged in a single 

fluid.  This would appear to be remarkably similar to the empirical usage, hitherto not 

satisfactory explained, of the use of a sharp transom to reduce the drag experienced by a 

ship.  Following this logic, Chaplin and Teigen’s positive values of CFS  are not tenable 

as an examination of Figure 11-5 indicates that CFS  should be negative for all but two 

of their points. It should also be noted that the majority of Hay’s and the present data 

would also yield negative values of CFS .  Clearly then, evidence must be presented in 

support of this supposition. 

11.4. Pressure Effects Due to the Presence of a Free Surface 
When Chaplin and Teigen (2003) computed their “deep” Cd  with the splitter plates in 

place they assumed that the combination of the depth of their measurement and the 

presence of the splitter plates would ensure the two-dimensionality of the flows.  This, 

however, seems unlikely.  First, based on his extensive and exhaustive study, 

Hay (1947) concluded that while the drag tends to that of the two-dimensional case as 

the draft was increased, there were three-dimensional effects.  Hence, it is unlikely that 

the depths used by Chaplin and Teigen are deep enough to ensure two-dimensionality of 

the flow.  Second, while the values of CD  calculated by Chaplin and Teigen are close to 
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that of a single fluid, they are generally less than equivalent single fluid values, as 

shown in Figure 11-5.  Hence, in order for CD  to tend towards CSF , Cd  must also tend 

towards CSF  as the depth is increased.  This effect is not observed in Chaplin and 

Teigen’s results, as shown in Figure 11-4. 

Neither Chaplin and Teigen nor Hay had sufficient data, data that is available from the 

present CFD simulations, to explain these anomalies.  To start this analysis suppose that 

the friction drag is negligible at these Reynolds numbers – as it is, at least, for cylinders 

that are completely immersed in single fluids (Zdravkovich, 1997) – then the drag 

forces experienced by the cylinder are due only to the action of pressure, which in turn 

is dependent on the wake downstream of the cylinder. 

To start the analysis of the influence that the free surface can exert on the pressure 

distribution it would be logical to first examine the case of a fully submerged right 

circular cylinder.  Therefore, a simulation based on the previously validated medium 

resolution grid, was performed with water only, that is no free surface and, as expected 

a high positive pressure at the leading edge that was coupled with a low negative 

pressure at the trailing edge was observed as shown in Figure 11-7.  By way of further 

explanation, Figure 11-7 shows the pressure on the cylinder as if it were unwrapped, 

such that the points with = 0  represent the leading edge and, by extension, points at 

= ±  are on the trailing edge.  Although pressure is a scalar quantity, the negative 

pressure on the downstream face of the cylinder can be considered to act as a suction 

force, which, instead of reducing, actually reinforces the positive forces on the leading 

edge to increase the drag force. 
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Figure 11-7 – Average pressure distribution on the face of a, nominally, two-

dimensional cylinder from a three-dimensional simulation. 

In contrast to the uniformity of the results from the single-fluid simulations, the pressure 

distribution from the two-fluid simulation, shown in Figure 11-8, is clearly non-

uniform. The average free surface is indicated as a solid line and the still water level 

was at y = 0.2m .  It can be clearly seen in Figure 11-8 that the pressure does not drop 

below the reference pressure anywhere as is the case in Figure 11-7.  This is due to the 

fact that there is a fall in the surface in the wake of the cylinder and that a cavity filled 

with air, essentially at atmospheric pressure, means that the pressure in the separated 

region is essentially atmospheric.  As expected, below the free surface the pressure rises 

with depth.  This means that the pressure difference between the front and rear of the 

cylinder when it moves normal to and astraddle the free surface, determined from the 

data shown in Figure 11-8, is less than that when the pressure difference is obtained 

from the data shown in Figure 11-7 for a fully submerged cylinder.  It follows that the 

drag force on a cylinder which pierces the free surface is less than the resistive force on 

a completely submerged cylinder well below the surface. 
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Figure 11-8 – Average pressure distribution on the face of a three-dimensional 

cylinder with a free surface, which is marked with the solid line.  Note that the still 

water level is at y=0.2m in this plot. 

While a visual examination of the pressure distribution as a function of y and  has 

indicated that there is an effect of the free surface on the vertical pressure distribution, 

the next step would be to investigate the sectional drag coefficient over a nominal 

vertical slice y , namely 

 Cd y( ) =
y P , y( ) n̂x ds
+

1
2

ydU 2
 (11.7) 

in which n̂x  is the component of the surface normal vector in the x-direction and s is the 

circumference of the circle.  The results from the present work are simultaneously close 

to and yet disparate with those of Chaplin and Teigen (2003), as shown in Figure 11-9.  

It should be noted that Chaplin and Teigen (2003) defined their Froude number as 
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 Frd =
v

gd
, (11.8) 

or the square root of that used in the present work, so the Froude number listed in both 

Figure 11-4 and Figure 11-9 is their form.  The reason for this duality is that with free 

surface flows two parameters are of interest: the Reynolds number and the Froude 

number, both of which cannot be simultaneously scaled, hence the work is both close to 

their Froude numbers but at significantly lower Reynolds numbers.  Despite this scaling 

problem the results from the present work are clearly close to those of Chaplin and 

Teigen and, subject to the scaling caveat already discussed, can be assumed to be 

correct. 
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Figure 11-9 – Reproduction of Figure 11-4 transposed into the present vertical 

coordinates with the sectional drag from the present work included. 

From an examination of Figure 11-9 it can be noted that all of the values of Cd  are 

lower than the nominal drag for a fully submerged cylinder, which is CD = O 1.2( ) .  

However, as Hay (1947) noted that the drag returned to that of the fully submerged CSF  
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as the depth was increased, then so must Cd  also tend to CSF  as the depth is increased.  

Clearly this effect has not been observed, because the depths to which measurements 

were taken was not enough, in either the present work or that described by Chaplin and 

Teigen (2003).  Therefore, the free surface must be exerting an influence on the 

pressure distribution around the cylinder. 

Hence, having shown that the drag coefficient can be reduced when a circular cylinder 

pierces a free surface, the investigation can now turn to a meaningful definition of wave 

drag. 

11.5. Alternative Wave Drag Values 

In view of the difficulties mentioned above with the definition of the drag coefficient, 

defined in Equation (11.4), the drag force defined in Equation (11.5),  

 
21
.2

FS
FS

water

FC
LdU

= , (11.9) 

repeated here for clarity, will be used.  CFS  can be evaluated from Equation (11.3), also 

repeated here for clarity, 

 CFS = CD CSF , (11.10) 

provided CSF  is evaluated from results obtained from the literature for fully submerged 

cylinders for example Zdravkovich (1997) rather than the “deep water measurement” of 

Chaplin and Teigen (2003).  The values of CD  used in Equation (11.10) are either those 

obtained in the present research or those presented by Hay (1947), as well the values of 

CD  calculated by Chaplin and Teigen (2003) by their integral method, as shown in 

Equation (11.6). 

Therefore, using the single fluid drag published in the meta-analysis of Zdravkovich 

(1997), as shown in Figure 11-10, the majority of CFS  values obtained from Hay’s and 

Chaplin and Teigen’s data as well as all the CFS  values calculated from the present 

results are negative.  It is not surprising that the values of CFS  from the present work 

match those of Hay – they are after all a good match for the raw values of CD , as may 

be seen in Figure 11-2 and Figure 11-3. 
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Figure 11-10 – Recomputed values of CFS from Hay (1947), Chaplin and Teigen (2003) and the present work. 
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It was a pleasant surprise to the present author that the re-computed values of CFS  from 

Chaplin and Teigen were such an excellent match to those of Hay.  Not only are the 

values of CFS  in excellent agreement but the jagged shape of the curve also matches the 

distribution of the Hay data.  Further Chaplin and Teigen’s measurements were made on 

a 200mm diameter cylinder – as were the measurements of Hay shown on Figure 11-10 

with left facing orange triangles – which are again the measurements against which the 

comparisons with Hay were made. 

Therefore, the present author is confident in the alternative method of calculating CFS  

and that for the Reynolds numbers investigated in the present work, CFS  should be 

negative.  Based on an inspection of Figure 11-10, as Re is increased the value of CFS  is 

similarly increased.  This is due to the reduction in the magnitude of the single phase 

fluid drag because the separation points move towards the back of the cylinder when the 

flow becomes turbulent. 

In particular the results from the partial depth simulation are exciting given that the 

depth of the cylinder is well defined and clear from the base of the computational 

domain and the results is an almost perfect match to Hay’s measurements.  Therefore, 

this remarkable agreement between the experimental results for the drag coefficient 

found in the literature and those obtained in the present study, combined with the 

previous examinations of the details of the flow confirm that the current simulation 

technique is capable of accurately computing all the features of the free surface flows 

and their effect on a body which pierces the free surface. 

It is, therefore, now clear that the MILES/VOF method implemented to simulate 

turbulent free surface flows is the most appropriate tool.  This conclusion was arrived at 

through not only the extensive validation studies undertaken but through the prediction 

of new flow features that matched those subsequently extracted from experimental data. 
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12. Conclusion 
A combined MILES/VOF numerical Computational Fluid Dynamics (CFD) code has 

been developed.  The code was extensively validated using flows both without and with 

free surfaces to test, respectively, the turbulence and the free surface models.  While the 

work progressed from the relatively simple to the more complex, the conclusions will 

not be discussed in that order. 

Two separate, two-dimensional investigations using wall-bounded simulations without 

free surfaces were conducted; namely one with a square obstruction and the other with a 

circular obstruction.  The results from these two-dimensional simulations provided 

guidance for both the development of the three-dimensional computational meshes and 

the application of correct boundary conditions, particularly the boundary conditions at 

the outlet of the computational domain.  However, a number of conclusions in addition 

to the desired recommendations were drawn from these simulations; of which the most 

significant relates to the general applicability of two-dimensional simulations at the 

Reynolds numbers investigated. 

In relation to the location of the outlet boundary, it was found that the axiom that the 

boundary must be placed far enough away from the obstruction is too specific.  Instead, 

a study of how the mean and RMS velocities, measured at fixed locations in the wake, 

changed as the boundary outlet boundary was moved further downstream showed that, 

to reduce their errors to less than 2% of the very long case, the outlet should be at least 

400mm from the specific point on interest.  Therefore, the axiom should be that the 

boundary must be sufficiently far away from the region of interest; which may extend 

much further into the wake than the bluff body itself. 

From a visual examination of the flow fields from both these simulations, it was 

observed that the standard von Kárman vortex street was not formed.  Rather, high-

speed vortices were intermittently ejected perpendicular to the nominal vortex street.  

Since these vortices had not been reported in any of the laboratory or numerical 

simulations, it is apparent that they were unphysical. 

This then raised the question as to why previous two-dimensional simulations, which 

added additional dissipation with a turbulence model such as the k-  model, had 

resulted in acceptable values for the parameters chosen for comparison in the validation 
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process?  When both the present two-dimensional simulations without a free surface 

were time averaged, the averaged parameters, such as the RMS lift and averaged drag, 

were within 1% of the published data.  Further, there was no visible effect on the time 

averaged flow field that could be attributed to the unphysical vortices. 

It is, perhaps, not so large a jump of the imagination to suppose that the numerically 

generated instantaneous flow fields have not previously been extensively investigated, 

hence unphysical flow features have not been observed, let alone reported.  Clearly 

then, extreme care must be used with two-dimensional simulations because in the two 

cases studied in this work, the time averages were in good agreement with published 

time averaged results, in stark contrast to the unphysical instantaneous flow field.  Two-

dimensional simulations can be used with confidence to predict average trends and 

assist in the development of three-dimensional computational meshes. 

The three-dimensional validation studies without a free surface were undertaken with 

the configuration of a right square cylinder mounted in cross flow with spanwise 

periodic boundaries.  The results were mixed but positive.  For example, the time 

averaged drag coefficient was in the order of 25% higher in the present work while both 

the recirculation length and the shedding frequency were both within 1% of the best 

estimates from the published literature. 

Further, the time averaged velocities through the domain were similarly mixed in that 

some regions were in better agreement with published data than others.  It is, however, a 

significant consolation that every other published dataset, both numerical and 

experimental, that was examined as part of this research showed similar variations being 

unable to simultaneously accurately predict every parameter.  On balance, the time 

averaged velocity distributions from the present simulations were towards the middle of 

the spread of the published data while, simultaneously, the majority of the integral 

parameters, such as the drag coefficient, were in good agreement with the same 

published data. 

While Power Spectral Density (PSD) plots have previously been extensively used in 

turbulence studies, a new method based on linear regressions was developed and 

applied to the results of the present simulations.  In contrast to previous methods where 

the slope of the PSD curve was estimated visually, this new method provided an 

increased level of rigour by explicitly estimating the slope using a linear regression 
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function.  The first step in the method is to compute the turbulent energy spectrum, 

otherwise known as the PSD, using a Digital Fourier Transform (DFT) after which the 

regression is applied to data at higher wave numbers.  All the results from the present 

simulations were within 0.6% of the theoretically derived value of 5 3  and were 

computed with confidence intervals in the order of ±0.02.  This excellent agreement was 

not isolated in a particular region of the grid but was observed throughout the wake. 

Secondly, using similar spectral methods based on the DFT, the Kolmogorov length 

scale was computed and was found to be within an order of magnitude agreement with 

the only available data.  That is, the values ranged from = 15 m , computed near the 

downstream face of the cylinder to a maximum of approximately = 110 m  at 7d 

downstream from the cylinder.  Suppose that from this furthest point the turbulence 

intensity and the wake itself would decay as the flows moved further downstream, 

therefore the value of  would be expected to simultaneously decrease.  This is 

precisely what was found with the published value of  measured at 26d being 64 m , 

which is clearly in line with the reasoning presented above. 

So far, the numerical calculations have been compared only with published results that 

had been time averaged; yet, as noted above the systematic averaging of potentially 

unphysical flows could reduce the quality of the results.  Therefore, an examination of 

the flow field was undertaken with a number of flow visualisation techniques that 

indicated that there were a number of distinct structures across the domain. This raised 

two interesting questions: 

1. Was the assumption of spanwise periodicy valid? 

2. Was the span between the periodic boundaries, assuming that spanwise 

periodicy is valid, large enough? 

To answer these two questions, the correlation coefficients between flow velocities 

measured at stations across the domain was computed.  The result was that there was a 

very high correlation across the spanwise periodic domain with the lowest value of the 

correlation coefficient observed at +0.5.  This is contrary to the established practice to 

provide a suitably large region of uncorrelated flow in the centre of the periodic domain.  

Therefore, the assumption of spanwise periodicy over a domain width of 4d was found 

to be invalid and the full width of the laboratory water tunnel should be simulated 
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instead.  Naturally, there are potential repercussions from this conclusion on all the 

studies previously based on the assumption of spanwise periodicy across a domain 4d 

wide. 

When a simulation using the dimensional of the actual water tunnel, which is wall 

bounded with a spanwise width of 9.75d, was run, the time averaged results had similar 

trends to those discussed above for the spanwise periodic simulations.  Interestingly, the 

flow visualisations revealed noticeably different flow structures and large regions of 

uncorrelated flow.  Therefore, for this configuration, the laboratory water tunnel 

configuration should have been used for all the computations based on this particular 

experiment. 

To extend this discussion of the different structures in the flow, all the previous work, 

which includes the experimental investigations, averaged the data on the centre plane of 

the domain.  However, it is evident from a visual examination of the data from the 

present work, that the flow structures do not align with the centre plane.  Given this 

clear visual evidence of structures within the flow, it is highly likely that there would be 

a variation in the values of the time averages across the span of the domain, which 

should be investigated in the near future.  Unequivocal visual evidence, such as with 

these structures, suggest that any future examinations must simultaneously investigate 

both the time-averaged values and the instantaneous flow field and supports the 

proposition that the MILES approach is superior. 

At the beginning of this research it was assumed that, because the gradient of the 

hydrostatic pressure in the air phase is approximately two orders of magnitude smaller 

than the gradient of the hydrostatic pressure in water, ignoring the hydrostatic pressure 

gradient in the air phase would produce no adverse results.  Prior to the development of 

the three-dimensional simulations with a free surface, this assumption was investigated 

using a number of two-dimensional simulations of a vertical slice of an open channel. 

In fact, exactly the opposite was discovered!  When the hydrostatic pressure gradient in 

the air phase was ignored, unphysical flow features developed.  These unphysical flows 

were manifested as high-speed air flows in the order of seven times the free stream 

water velocity which first developed at the exit from the computational domain and then 

propagated upstream.  As this high-speed zone extended upstream, large waves 

developed and grew so that finally the calculations diverged.  Therefore, in contrast to 
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the initial assumption, the hydrostatic pressure gradient must be included as part of the 

boundary conditions in the air-phase at the inlet and outlet of the computation region.  

In situations where the flow is nominally open to the atmosphere, this may significantly 

increase the complexity of the simulations. 

To validate the MILES/VOF solver for three-dimensional turbulent flows around a bluff 

body with a free surface, the configuration of a right circular cylinder that pierced the 

surface was used.  The long axis of the cylinder was parallel to the gravitational vector 

and the domain was designed to represent a tow tank.  Due to the limits of the 

computational resources, the entire tow tank was not simulated, instead the inertial 

frame of reference was moved to the centre of the cylinder so that rather than the 

cylinder being towed through the fluids, the fluids were moved around the cylinder.  To 

closely approximate the conditions present in the tow tank, the fluids at the inlet were 

injected with no turbulent fluctuations and the sidewalls were moved at the same rate as 

the inlet velocities. 

Three flow features were identified that were visible in both the present work and tow 

tank data and were named for their shapes, namely: a “low and trough”, a “high and 

ridge” and an isolated “low” point.  Interestingly, whilst these three features were found 

in both the present work and the laboratory data, they were not present in the results 

from a recent LES simulation that simultaneously utilised a recognised Smagorinsky 

LES model and many more cells than the present work.  Given that the present method 

can compute the shape of the free surface to a better approximation than more 

“established” techniques, this is more support for the efficacy of the MILES/VOF 

method. 

The time averaged velocity magnitudes along four vertical test stations were in 

excellent agreement with published results from both laboratory and numerical 

experiments.  21 of the points available for comparison with the laboratory experiments 

were within 2% of the published values, which is within the bounds of experimental 

uncertainty.  The remaining three points were near to 10% of the experimental data, 

which is still within excellent agreement.  Again, these excellent results support the 

conclusion that the MILES/VOF solver proposed in this work is capable of simulating 

turbulent bluff body flows with a free surface. 
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In addition to the evident success of the visual examination of the shape of the free 

surface, further rigour was added through a comparison of measurements of the shape 

of the free surface.  These measurements were compared with the extensive data set of 

Hay (1947) and, of the four parameters tested, three were within excellent agreement of 

Hay’s data set. 

Through this study a potentially new flow regime was identified with the length of the 

rooster tail double the length measured by Hay (1947) at slightly higher Froude 

numbers, for example Frd 1.5  compared with Frd 5 .  Initially this was identified as 

a possible error in the present simulations yet, when the raw images taken by Hay 

(1947) were checked the new flow feature was also present in three of his photographs.  

It is unclear why Hay (1947) in his exhaustive study did not document these three 

measurements and it is interesting to note that the present work is a near perfect match 

for the “new” data.  Since the new flow regime was first identified during the analysis 

of the numerical results generated as part of the work for this dissertation and then 

“discovered” to be part of large body of data generated by Hay (1947), this prediction is 

therefore a real validation of the numerical method proposed in this thesis. 

Further, Hay (1947) made over 900 measurements of the drag forces experienced by the 

cylinder as it was being towed and noted that most of the drag coefficients, when 

examined as a function of Reynolds number, were lower than the corresponding drag on 

a fully submerged cylinder.  He performed little additional analysis of the drag as a 

function of Reynolds number, rather preferring to investigate the changes as a function 

of Froude number.  Chaplin and Teigen (2003) re-examined the drag coefficients in an 

attempt to isolate a “wave” or “free surface” drag component.  Strangely, instead of 

choosing a value from the literature for a fully submerged cylinder, they chose to use a 

representative value of the “single fluid” drag measured deep within their tow tank.  As 

has been shown in the present work, the free surface does exert a considerable influence 

deep into the flow which resulted in Chaplin and Teigen’s “single fluid” drag value as 

less than that of a fully submerged cylinder.  As a result, the outcome of their analyses 

was that the values of their free surface coefficients was positive.  This logic seems 

strange as Hay noted, in agreement with the present work, that the drag was lower than 

that found in the fully submerged case. 
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The denser information generated by the numerical work allowed the reasons for the 

reduction in the drag coefficient in the presence of the free surface to be elucidated.  It 

is due to the fall of the free surface and the presence of an air bubble in the wake of the 

cylinder, thereby not allowing the pressure to reduce much below atmospheric pressure.  

Therefore, an alternative definition of the “free surface coefficient” proposed by 

Chaplin and Teigen was developed; namely, that the fully submerged value of the drag 

coefficient should be used as the reference case, which, when tested against Hay’s data 

and the results from the present simulations, resulted in negative values of the 

coefficient.  In addition, when the data published by Chaplin and Teigen (2003) was re-

evaluated using the new definition they aligned with both Hay’s data and the present 

simulations. It follows that this is the “correct” method of determining the free surface 

effect, because it simultaneously matches the conceptual requirement that the values 

should be negative and, when both Hay’s and the present data were processed, all the 

values are in excellent agreement. 

The present method is therefore not merely capable of simulating the flow around bluff 

bodies with the presence of a free surface but actually produces results which predict 

the shape of the frees surface and the velocity distributions more accurately that 

alternative methods. 

A number of tests were conducted using one common computational mesh in order to 

evaluate the speed of the new solver relative to the alternate methods.  All the boundary 

conditions, initial conditions and the parameters needed to run the simulations were 

fixed but, the solver configuration was changed to test different numerical and 

turbulence methods.  The MILES/VOF solver was at least 16% faster than any of the 

other methods tested. 

Because of the great success of the new MILES/VOF solver more areas of future 

research were discovered.  While the results from the validation of flows without a free 

surface are quite acceptable, they are not as good as the results from the three-

dimensional simulations with a free surface.  This is because the grid used to simulate 

the flows around a square cylinder without a free surface was chosen to match that of a 

published study and is not the grid of choice if it had been constructed within this work.  

Therefore, further work, perhaps using the prediction of the three-dimensional 
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Figure 12-1 – Comparison of the elevation of the free surface using no surface 

reconstruction and the PLIC method, (a) and (b) respectively. 

turbulence statistics in a different configuration, for example that described by Antonia 

and Browne (1986), would provide sufficient evidence to ensure the validity of the 

proposed MILES method. 
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Undoubtedly the most interesting future directions are with the free surface simulations.  

At the outset of the research described in this dissertation, it was argued that the VOF 

method with the PLIC surface reconstruction and surface tension was required for 

accurate simulation of the free surface.  However, since that time, additional 

improvements have been proposed, such as the STACS scheme (Srinivasan and Wang, 

2007), which could be tested.  Alternatively, it is entirely possible that increased 

precision in the simulation of the free surface may not be required for these length 

scales.  As may be seen in Figure 12-1, preliminary tests with no surface reconstruction 

and no surface tension, the so-called FOAM method, have shown promising results, 

As discussed in above the power spectral density computed from the present work was 

in almost perfect agreement with the theoretical value derived from dimensional 

arguments.  The present author must admit some discomfort with such excellent results 

and, hence, a degree of concern exists as to the validity of the result.  There are a 

number of paths that should be investigated, including the specific digital Fourier 

transform algorithm used through to the quality of the MILES solver itself. 

Finally, one of the most exciting discoveries of this research is the new, and in the 

opinion of the present author, the “correct” method to split the total drag that is 

experienced by a body subjected to flows with a free surface into the “free surface” and 

the “two-dimensional” components.  Much more work is needed in this area as it may 

lead to better design and understanding of diverse fields such as ship dynamics and 

stirring rod type mixing. 

It follows that the numerical solver based on a MILES/VOF formulation developed and 

extensively validated in this research can be used for the numerical simulation of free 

surface flows and is sufficiently accurate to open new areas of research and discovery. 
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Appendix A: Details of the Numerical Convergence 

Procedure within CFD-ACE+ 

A.1. Introduction  

There are numerous methods of computing the solver residuals that result from iterative 

numerical methods, some of which have been described in monographs such as Roach 

(1998) or Chung (2002).  However, as the specific method used within CFD-ACE+ is 

not described in either of those reference works this appendix aims to present an 

illustrated explanation the CFD-ACE+ algorithm.  The descriptions in this appendix are, 

necessarily, based heavily on the CFD-ACE+ user manual (ESI CFD Inc., 2007) and an 

explanatory fact sheet titled “Has your simulation converged?” (Thoms, 2004) 

published by ESI CFD, a division of ESI Group and the developer of CFD-ACE+, and 

therefore these documents will generally not be referenced further.  However, additional 

references will be provided as required. 

A.2. How the Residuals Are Computed within CFD-ACE+ 

The residuals computed in CFD-ACE+ “represent the absolute error of a particular 

solver variable” (Thoms, 2004), where the individual error for each cell, cell , is a real 

valued number defined over 

 < cell < , (A.1) 

and is defined as the difference of the particular variable, , between iterative cycles.  

Therefore, the total residual that is displayed by the solver is defined as 

 = cell
Cells

. (A.2) 

Consequently the value of the final residual, , will depend on the scale of the variable 

being solved.  An example from the ESI fact sheet is that “values for velocity are often 

on the order of 1-100 m/s while values for enthalpy may be on the order of 300x103 

J/kg” (Thoms, 2004).  Thoms further argues that with the residual definition presented 

in Equation (A.2) the absolute value of the residuals is not important for the 

convergence cycle rather the order of magnitude reduction.  That is, using the enthalpy 

example from ESI a three orders of magnitude reduction of  would be a reduction of 
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enthalpy from 300 000 J/kg to 300 J/kg, which is more important than the raw value of 

300 000 J/kg or 300 J/kg.  Further, it is then the responsibility of the user to determine 

what is the appropriate order of reduction for the model under consideration. 

A.3. User Specified Control of Residual Limits and the Iterative 

Cycle 

Within CFD-ACE+ there are three parameters that relate to the iterative cycle and that 

can be controlled by the user, namely: (1) the maximum iterative count; (2) the 

convergence criterion and (3) the minimum residual criterion.  The first parameter is an 

integer that specifies the maximum number of iterations the solver can complete before 

skipping to the next iteration.  That is if the user enters a maximum iterative count of 

ten then that is the most iterations per time step that the solver can compute. 

The second criterion or the convergence criterion, arbitrarily designated , is a real 

number that is valid over the range 

 0 < < 1. (A.3) 

However, by convention  tends to be an integer in logarithmic base ten space such that 

 = 10 , (A.4) 

where  is an integer over the interval 

 1 . (A.5) 

For example, if  were set to minus three then  would become 0.001.  The  notation 

of log space is a convenient analogy because =0.001 is also referred to as requiring at 

least three orders of magnitude of convergence. 

It must be noted that the reduction of orders is computed from the highest value of the 

residual.  That is, if the value of  at the second iteration is higher than in iteration 

one; then the magnitude at the second iteration will become the upper limit from which 

the order of magnitude reduction is computed. 

Finally, the third criterion, arbitrarily designated , specifies that when the residuals are 

less than or equal to a user specified value then the second criterion is no longer applied.  

That is, if the inequality 

  (A.6) 
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is met for all  then the current iterative cycle will terminate.  The fundamental 

assumption is that the solution is converged if the residuals are sufficiently small 

irrespective of the orders of magnitude reduction.   is a real number defined over the 

interval 

 0 < <  (A.7) 

but arbitrarily large values would be counterproductive as they could stop the iterative 

cycle before the solution had adequately converged. 

A.4. An Example of Iterative Convergence Control 

To illustrate the above discussion the plot shown in Figure A-1 is a sample of the raw 

residuals, , generated from the 2998mm outlet boundary test discussed in §8.3.  For 

this model the maximum iterations criterion was set to ten while = 10 3  and = 10 8  

were used.  Of note is the consistently downward convergence of the u and v-velocity 

residuals, especially in comparison to the pressure residual that displays a peak at the 

second iteration.  It is this peak at iteration two that will be the reference for the 

convergence. 
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Figure A-1 – Sample plot of numerical residuals from one time step of an unsteady 

computation. 
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Also of note is the absolute magnitude of the plotted residuals.  For this model there 

were 22 596 cells and the characteristic velocity was 0.54 m/s.  Therefore, although the 

total residual for both the u and v-velocities is approximately 500 m/s that equates to an 

average error per cell of around 2.3×10 2 m/s  or less than 4.3% of the characteristic 

velocity.  It could be argued that by itself an average error of 4.3% would be acceptable 

however by the third iteration the average error per cell has reduced to 9.0 ×10 11 m/s  

or 1.7 ×10 8%  of the characteristic velocity.  Clearly by the third iteration the velocities 

have converged. 

When the residuals are normalized by the maximum residual, as shown in Figure A-2, 

the pressure residual is observed to be the driver of convergence.  That is, of the three 

user defined criteria, neither the maximum iterative count nor the minimum residual 

specifications are met but rather the greater than three orders of magnitude of the 

pressure residual is the control.  The residuals of both the u and v-velocity components 

converge to below the three orders requirement by the second iteration and then exceed 

the minimum residual limit by the third. 
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Figure A-2 – Plot of the residuals from Figure A-1 normalised by their highest 

value together with the region of not converged and converged regions. 
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A.5. Notes and Observations on Convergence 

Finally, it must be noted that the CFD-ACE+ manual states that “the solver quits the 

iterative procedure if any of the two criteria [listed in §A.3] is satisfied” (ESI CFD Inc., 

2007).  However, in the author’s experience, and illustrated in the example in §A.4, the 

convergence criteria is the major driver of stopping before the maximum iterative limit 

is reached.  Then, when the maximum iterative limit is reached, the solver always 

breaks and moves to the next cycle.  These inconsistencies have been reported to the 

developer and are probably just one of the many typographic errors in the user manual 

that have been identified by the author and other UTS researchers in recent years. 
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Appendix B: Hyperbolic Tangent Stretching Function 

B.1. Derivation 

The derivations presented in this appendix follow closely from the original papers by 

Vinokur (1980, 1983) and an online explanatory note by “jasond” (2007).  Let  be a 

discrete index vector defined for 

  = 0,2,3,…n 3,n 2,n 1 (A.1) 

in which n is the number of nodes to be distributed across an edge of length l, as shown 

in Figure B-1. 

Node 1 Node 2 Node 3 Node nNode n-1Node n-2

l

lΔs
0

lΔs
n

ξ = 0 ξ = 1 ξ = 2 ξ = n − 1ξ = n − 2ξ = n − 3

 
Figure B-1 – Sketch of the coordinate notation used. 

However, for ease of computation a parametric space, s( ) , can be defined over the 

unit interval 

 0 s( ) 1  (A.2) 

such that the coordinates of the nodes along the line is 

 x( ) = s( )l . (A.3) 

With these conventions, Vinokur further defined the constants 

 A =
send
sstart

 (A.4) 

and 
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 B =
1

n sstart send
 (A.5) 

in which s0  and sn  are the first and last node spaces, respectively.  In conjunction 

with the number of nodes to be distributed across the edge, these end node spaces must 

be explicitly defined by the user.  With these two additional definitions, Vinokur 

proposed the stretching function 

 
 
s( ) = Q( )

A + 1 A( )Q( )  (A.6) 

in which 

 

 

Q( ) = 1
2
1+

tanh
n 1

1
2

tanh
2

. (A.7) 

The stretching factor, , is found from solving the transcendental equation 

 
sinh( ) = B . (A.8) 

It must be noted that while the Equations (A.6) and (A.7) can be computed explicitly, an 

iterative solver must be employed to compute  from Equation (A.8). 

B.2. Sample MATLAB Code to Compute the Nodal Coordinates 
% Hyperbolic tangent tests 
clear all 
close all 
  
% Inputs 
l = 1; % length of the edge in metres 
n = 51; % number of nodes but this is from n=1, for computations below 
% need from n=0, hence redefine n 
d1 = 0.001; % end 1 nodal spacing in metres 
d2 = 0.005; % end 2 nodal spacing in metres 
  
% Constants 
xi = 0:1:n-1; 
a = sqrt(d2) / sqrt(d1); 
b = 1 / ((n-1) * sqrt(d1 * d2)); 
  
% Iterate for delta 
% initial guess based on inverse sinh 
delta = log(b + sqrt(b ^ 2 - 1)); 
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iterCount = 1; 
maxIters = 500; 
endTolerance = 0.0001; 
while iterCount <= maxIters && abs(sinh(delta) / delta - b) >= 
endTolerance 
    % Project deltaNew via Newton’s method. 
    delta = delta - (sinh(delta) / delta - b) /... 
        (cosh(delta) / delta - sinh(delta) / delta ^ 2); 
     
    % increase the iterative count 
    iterCount = iterCount + 1; 
end 
display(iterCount) 
clear maxIters endTolerance iterCount 
  
qXi = 0.5 * (1 + tanh(delta * (xi / (n-1) - 0.5)) / tanh(delta / 2)); 
sXi = uXi ./ (a + (1 - a) * uXi); 
nCoord = sXi * l; 
  
clear sXi uXi 
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Appendix C: Square Cylinder Two-Dimensional Tests 

C.1. Introduction  

Despite a number of specifications that the computers were required to meet for 

submission of results at the 1995 workshop (Rodi et al., 1997), several parameters, for 

example the placement of the outlet boundary, were instead given as minimum 

distances.  Similarly, the fine details of the mesh construction were left to the 

researchers to decide what was appropriate.  Therefore, prior to developing the three-

dimensional meshes discussed in §5 and §6 two parameter studies were designed to test 

the effect of changing two unspecified parameters, namely the (1) distance to the outlet 

boundary from the downstream cylinder face (L), shown in Figure C-1 and (2) the wall 

normal length of the cell adjacent to the square cylinder (F), shown in Figure C-2. 
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Figure C-1 – Definition sketch of the length to the outlet boundary, L, parameter. 

Wall normal
cell length, F

Cylinder

Example section
of adjacent grid

 
Figure C-2 – Definition sketch of the wall normal cell length, F, parameter 
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C.2. Common Configuration for all the Parameter Studies 

C.2.1. Geometry and Mesh 

To simultaneously further simplify the flow physics, that is, to isolate the effect of 

specific parameters, and to allow for faster run times, hence, to gather more data from 

and increased number of tests in a parameter study, the already reduced geometric 

configuration was reduced to two-dimensions, as shown in Figure C-3.  With suitable 

modifications, such as the length of L and F, this two-dimensional geometry was then 

used as the basis for the two parametric studies discussed below. 
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Figure C-3 – Sketch of the common mesh configuration with the coordinate origin 

and axis direction names, all dimensions in millimetres. 

The geometrical domain, shown in Figure C-3, was split into four regions defined by 32 

edges, shown in Figure C-4, which, subsequently, formed four blocks consisting of 

structured rectangular cells.  The specifications of the edges that were common across 

all the tests described in this Appendix are listed in Table C-1, while the resultant of 

these parameters on the cell size distribution is shown in Figure C-5 and Figure C-6 for 

the y- and x-directions respectively.  However, the edges hi and bc were modified, as 

discussed below, for the L and F studies, respectively.  The distribution of the cell sizes 

for the F = 0.3 mm is shown in Figure C-5 and Figure C-6 for the x and y-directions, 

respectively. 
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Figure C-4 – Sketch of the template node and edge layout with dimensions in mm.  

The edges not identified are either mirror-symmetric around y = 0 or can be 

projected for block symmetry. 

Table C-1 – Node count and distribution type for the edges sketched in Figure C-4. 

Edge End Spacing 
(mm) 

Nodes Distribution 

ab, fg Symmetrical 0.32 33 Hyperbolic tangent 

b, f 0.32 
bc, ef 

c, e 6.29 
29 Hyperbolic tangent 

- 
de 

- 
6.35 35 Uniform 

- 
cd 

- 
6.29 35 Uniform 

g 0.32 
gh 

h 4.00 
41 Hyperbolic tangent 

- 
hi 

- 
4.00 139 Uniform 
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Figure C-5 – Plot of the cell size in the y-direction as a function of the y-coordinate. 

−400 −300 −200 −100 0 100 200
10

−1

10
0

10
1

C
el

l S
iz

e 
(m

m
)

Cell x Coordinate (mm)

−10 −7.5 −5 −2.5 0 2.5 5

0.0025

0.025

0.25

N
on

D
im

ensionalC
ellS

ize

Non−Dimensional Cell x Coordinate

F
ig

ur
e 

cr
ea

te
d:

 2
1−

A
ug

−
20

09
 1

2:
09

:5
8,

 fr
om

 g
rid

_c
om

p_
b

 
Figure C-6 – Plot of the cell size in the x-direction as a function of the x-coordinate 

with the cells at x 180mm not shown but kept at a uniform 4mm length. 
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C.2.2. Initial and Boundary Conditions 

At the start of the computations, the fluid within the domain was assumed to be 

quiescent.  Despite the modification of some simulation parameters – for example, the 

nodal count, the number of nodes per edge and the length of some of the edges – during 

the studies described below, the boundary conditions were unchanged and are shown in 

Figure C-7.  The outlet boundary was set to a constant pressure outlet, the upper and 

lower walls were set to zero friction walls and the cylinder boundaries were set to full 

friction walls.  No turbulent wall functions were used for any of the non-slip walls. 

In
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Non-Slip Wall

Flow

 
Figure C-7 – Sketch of the boundary conditions used across all the tests. 

The inlet boundary was specified with a velocity that was uniform across the entire inlet 

face but to mimic the assumed two-second acceleration of a physical water tunnel it was 

varied as a function of time.  The variation of the inlet velocity as a function of time was 

assumed to be a half sinusoid, 

 uinlet t( ) =
U

2
sin

2
t

2
+
U

2
for 0 t 2

U for t > 2

 (A.1) 

in which U  is the free stream velocity calculated from the Reynolds number, 
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 Red =
U d

 (A.2) 

where d is the cylinder side length and  the kinematic viscosity, as shown in Figure 

C-8.   
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Figure C-8 – Inlet velocity as a function of time for t  3 s. 

C.2.3. Solver Parameters 

The solver parameters used in all the parametric studies discussed in this appendix were 

the same.  Specifically, gravity was set to zero and the simulations were all run as 

unsteady with a time step, t , of 1×10 3  s  with a simulation time of 100 s.  A Crank-

Nicolson time stepping scheme (Crank and Nicolson, 1947) was implemented but 

instead of the nominal blending factor of 0.5, 0.6 was used as per the code developers 

recommendation. 

The computational solver used is a SIMPLEC based solver and the spatial differencing 

was undertaken using a 2nd order upwind with limiter scheme (Barth and Jespersen, 

1989) with a blending factor of zero on the advection terms in the Navier-Stokes 

equations.  The velocity equations were solved using a conjugate gradient solver with 

preconditioner (Saad, 1996) limited to 50 sweeps and a convergence criterion of 

1×10 4 .  Concurrently, the pressure correction equations were solved with an algebraic 

multigrid solver (Lonsdale, 1993) that was restricted to a maximum of 50 sweeps and 

convergence criterion of 0.1.  The iterative cycle was set to converge at a combination 

of a maximum of 30 iterations, three orders of magnitude reduction in the residuals or a 

minimum residual of 1×10 5 .  Because the explanation of these terms is required 
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several times throughout this thesis, the full explanation of these parameters is described 

in Appendix A.   

C.3. The Effect of Varying the Length to the Outlet Boundary, L 

C.3.1. Alterations to the Common Configuration for the L Tests 

The length to the outlet boundary, L, was defined as the distance parallel to the x-axis 

from the downstream face of the cylinder to the outlet boundary, as shown in Figure 

C-1.  For these tests, the only geometric changes made were to the length of the edge hi, 

shown in Figure C-4.  Because of the change in length of the edges, the number of 

nodes distributed across these edges was also amended to retain the uniform, 4mm 

nodal spacing.  The key distances, test identifiers and node counts for the ten tests run 

within this parametric study are detailed in Table C-2. 

Table C-2 – List of the key geometric and mesh parameters used in the tests with 

the number of nodes column for the edge hi. 

Test Downstream 

Length (m) 

L/d Length of Edge 

hi (m) 

Number 

of Nodes 

Number 

of Cells 

1 0.16 4 0.12 21 23 156 

2 0.32 8 0.28 61 29 369 

3 0.48 12 0.44 101 35 636 

4 0.64 16 0.60 141 41 876 

5 0.80 20 0.76 181 48 116 

6 0.96 24 0.92 221 54 356 

7 1.12 28 1.18 261 60 596 

8 1.28 32 1.24 301 66 836 

9 1.44 36 1.40 341 73 076 

10 1.60 40 1.56 381 79 316 
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C.3.2. Convergence of the Solver During the Simulations 

Prior to any scrutiny of the flow results the researcher, and the reader, must be satisfied 

that the iterative procedure has reached the specified level of convergence at each, or at 

least the majority, of the time steps.  For the discussion presented within this section 

suppose that niter  represents the number of iterations per time step for the solver to 

reach convergence.  For all the time steps in all ten simulations of L the solver 

converged within niter 15 , as shown in Figure C-9.  Within Figure C-9 the data points 

at niter = 0 , an otherwise nonsensical result, represent the time steps where the solver 

did not converge within the allocated 30 iterations. 
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Figure C-9 – Cumulative probability distribution of niter for the ten L simulations. 

Therefore, as the solver converged at each time step the results of the simulations are 

within the specified numerical precision.  However, the resultant data must still be 

critically examined to ensure that, despite the numerical convergence, the computed 

flows are realistic. 

C.3.3. Examination of the Instantaneous Flow Field 

In all the ten simulations of the parametric study into L, a von Kámán vortex street was 

formed in the downstream region behind the cylinder, shown in Figure C-10 for the 

 L = 20d  test at 24s of simulation time from the start of the run.  Because the vortex 

streets that formed in the other simulations are remarkably similar to that in Figure C-10 
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they will not be specifically presented in this thesis.  A number of animations that detail 

all the simulations are included on the DVD attached to this document. 

 
Figure C-10 – Snapshot of the flow field from the L = 20d simulation at a 

simulation time of t=24.0s visualised by velocity magnitude showing the von 

Kámán vortex street downstream of the square cylinder. 

Despite the formation of a von Kámán vortex street within the results of the 

simulations, occasionally, and for all the different L values tested, an asymmetric flow 

pattern would emerge where the flow diverged from the centre plane, as shown in 

Figure C-11.  The mechanism for the formation of this alternate, “ejection”, flow 

regime is unclear but the favoured hypothesis is that they are generated because of the 

restriction to two dimensions.  That is, the energy that would normally be transferred 

into the third dimension is constricted to the present two-dimensional plane.  Hence, 

this additional energy is then available to provide the potential required for both the u- 

and v-velocity components to eject the fluid from the nominal wake region. 

There is some evidence to support this restriction to two-dimensions hypothesis in that 

the present author has been unable to find any reference to similar ejections in the 

numerous papers published that were based on results obtained from three-dimensional 

simulations.  However, Johansen, Wu and Shyy (2004) who were developing and 

investigating improved k-  models have reported similar asymmetric flow, as shown in 
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Figure C-12, from their two-dimensional simulations.  Johansen, Wu and Shyy (2004) 

  

 
Figure C-11 – Snapshot of the flow field from the L = 20d simulation at t = 86.8 s 

visualised by velocity magnitude showing the asymmetric flow. 

 
Figure C-12 – von Kámán vortex street downstream of the square cylinder 

reproduced from Johansen, Wu and Shyy (2004) visualised with “axial” velocities 
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for their low (a) and high (b) resolution filter based k-  model and their low (c) and 

high (d) resolution standard k-  model. 

were developing k-  models to overcome the known limitations of the standard k-  

model, specifically that it is overly dissipative and produces “average” results (Rodi, 

1997) for example as shown in Figure C-12(c) and (d).  To test their models they 

utilised a computational geometry based on a two-dimensional approximation of the 

water tunnel used by Lyn and Rodi (1994) and tested two models: a standard k-  model 

and their improved model on both a low- and high-resolution meshes.  The flow fields 

that resulted from their standard k-  models was closer to an averaged flow, as visible in 

Figure C-12(c) and (d), rather than a fully developed vortex street.  Therefore, the 

standard k-  model is overly dissipative, such that the Reynolds number was artificially 

reduced to such an extent that the flow was no longer in the shedding regime.  While the 

results from their improved k-  model computed on a low-resolution grid do show a 

developed vortex street in the wake region, the vortex street appears “perfect” being 

both symmetrical and regular, as shown in Figure C-12(a).  Finally, the results from 

their improved k-  model, when run on a high-resolution grid, indicated that the flow 

had developed into an asymmetrical flow pattern similar to that observed in the present 

work, as shown in Figure C-12(d) compared with Figure C-11.  Interestingly, Johansen, 

Wu and Shyy (2004) do not discuss the significance on these results, presumably 

leaving the task of interpretation to the reader. 

These results support the energy dissipation hypothesis because the four results from 

Johansen, Wu and Shyy (2004), in decreasing order of dissipation are: 

1. low-resolution, standard k-  model, most dissipative; 

2. high-resolution, standard k-  model; 

3. low-resolution, improved k-  model; 

4. high-resolution, improved k-  model, least dissipative. 

As the asymmetric flow pattern was only observed in the simulation with the least 

numerical dissipation, the availability of flow energy must be a driver of the flow 

asymmetries.  Therefore, as the numerical dissipation is the least, then there is 

additional energy that would normally be transferred into the third dimension.  

However, as this additional energy cannot be transferred into the third dimension, it 
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must then be transported with the flow and generate the ejections shown in Figure C-11 

and Figure C-12(b).  Hence, these flow ejections are unphysical manifestations of the 

assumption of two-dimensionality of the flow.  It can then be projected that for a 

computational model that is not overly dissipative, the inherent assumptions of flow 

two-dimensionality are wrong: energy must be transferred into, and possibly out of, the 

third dimension.  It is well known that turbulence is a three-dimensional phenomenon 

but two-dimensional simulations can still be used to examine some aspects of turbulent 

flows and the numerical models used to simulate these flows. 

As the assumption of two-dimensionality of the flow has been shown to be invalid, or at 

least questionable, the results discussed in the remainder of this Appendix will be used 

as guides for the trends of the model response to changes in different parameters rather 

than in absolute terms.  That is, although it has been shown that there are limitations in 

the accuracy of the two-dimensional results, the trends observed from the parameter 

studies should still be informative for the development of the three-dimensional meshes.  

One of the most important parameters, in terms of number of citations at least, is the 

statistical properties of the lift and drag coefficients, in particular how they vary as a 

function of turbulence model and geometric configuration. 

C.3.4. Examination of the Lift and Drag Coefficients as a Function of 
Time 

Both the lift and drag coefficients as a function of time appear to be largely unaffected 

by the size of  L as shown in Figure C-13 and Figure C-14 for the first 20s of the 100s 

of simulation time.  Despite the apparent similarities of the force coefficients as a 

function of time, the development phase, defined as t 8 s  does appear to be affected 

by the location of the outlet boundary.  The two simulations with the shortest L of 

L = 4d and L = 8d, transition from the development regime into the developed earlier 

than the simulations with a longer L.  Quantitatively, the onset of fully developed 

shedding occurs at approximately 6.5s and 7s of simulation time for the L = 4d and the 

L = 8d simulations, respectively, compared with the remainder of the simulations at 

approximately 8.5s of simulation time. 

Hypothetically, the mechanism for the early shedding is the proximity of the outlet 

pressure boundary, specifically the reflection of waves that then propagate upstream 
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from the outlet boundary.  Because the pressure at the outlet boundary was arbitrarily 

fixed at zero in contrast to the non-zero pressure field within the bulk of the domain 

there is a pressure discontinuity.  This discontinuity may cause reflections that can be 
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Figure C-13 – Plot of the drag coefficients as a function of time for the ten cylinder 

to outlet boundary distances, L, investigated. 
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Figure C-14 – Plot of the lift coefficients as a function of time for the ten cylinder 

to outlet boundary distances L, investigated. 
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transported upstream and provide additional impetus to start the shedding.  Hence, for 

the shorter L simulations the reflections would be able to interact with the flow around 

the cylinder before being transported back downstream.  For the longer L simulations, 

the opposite would be true: that the reflections from the outlet boundary would not have 

had sufficient time to reach the cylinder before the momentum of the flow increased 

beyond a critical value that overwhelmed any possible reflections and transported them 

back downstream. 

This hypothesis is supported by the progression of the time of transition from the 

earliest with the L = 4d simulation to the latest, and from then consistent, with the 

L = 12d simulations.  That is, the simulations closest to the outlet are more likely to feel 

the effect of any reflections generated at the outlet boundary. 

Despite the simplicity of the mechanism proposed above, the results for CD  and CL  

obtained from the L=16d simulation, shown in Figure C-13(g) and Figure C-14(g) 

respectively, do not fit this trend, with transition occurring at approximately nine 

seconds or almost one second after the other long L simulations.  The reason for this 

slightly later transition is unclear but is consistent with the reflection hypothesis.  That 

is, with the L=16d simulation the outlet boundary is sufficiently far away as to not 

cause early shedding.  The discussion so far has focused on a visual inspection of the 

lift and drag coefficients as a function of time, yet a more rigorous examination of the 

distribution of these coefficients can also aid the interpretation of the simulations 

As all the simulations ran for 100s of simulation time and there is a noticeable 

difference in lift and drag traces during the development phase, conservatively defined 

as for t  10 s, the distribution functions for the lift and drag coefficients were computed 

over the interval 

 10 t 100s . (A.3) 

With the exception of the drag coefficients from the L=4d simulation there is no 

significant difference between the computed distributions from the remaining 

simulations, as shown in the probability and cumulative distribution plots in Figure 

C-15 and Figure C-16.  That is, although there are small differences in the probability 

distribution function, shown in Figure C-15, when re-plotted as a cumulative 
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distribution function, shown in Figure C-16, the differences are no longer visible. 
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Figure C-15 – Probability distribution function of the drag coefficients computed 

across the simulation time interval of 10  t  100 s from the ten L simulations. 
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Figure C-16 – Cumulative distribution function of the drag coefficients computed 

across the simulation time interval of 10  t  100 s from the ten L simulations. 

Interestingly, this result includes the L=16d simulation, which as noted above took 

longer to develop than the L>16d simulations, hence the delay in development has had 

no influence on the developed flow, at least as far as CD  is concerned.  This confirms 

the proposal that the late development of flow in the L=16d simulation was an artifact 

rather than a real flow feature: a result of the non-linearity of Navier-Stokes equations. 

The distribution of the drag coefficient from the L = 4d simulation deviates by 

approximately ten percent at the 50% probability compared with the longer L 

simulations, as shown in Figure C-16.  This steeper increase in the drag coefficient is 

balanced at larger drag coefficients by a correspondingly steeper tail than the alternate 

simulations, as shown in Figure C-15. 

In contrast to the differences observed in the distribution functions of the drag 

coefficients, there is a smaller difference in the histograms of the lift coefficients, shown 

in Figure C-17 and Figure C-18.  This difference was observed for the L = 4d 

simulation and only at minimum and maximum lift values and is most visible in the 

cumulative distribution function, shown in Figure C-18.  The immediate conclusion is 

that for the L = 4d simulation values of CL  at the extremity of the distribution are less 



 347 

likely, therefore the flow is more “moderate” and characterised by mid-range values of 

CL .  However, while the probability distribution function, shown in Figure C-17, is 

noisy in the plateau region centred on zero the percentage frequencies for the L=4d 

simulation appear to be generally higher than the alternate simulations.  As a similar 

effect was not observed at longer L then this must be due to the proximity of the outlet 

boundary, which in order to force the simulation to lower absolute values of lift must be 

damping the flow. 

As the both the flow field and the distributions of the force coefficients have been 

discussed and support the conclusion that a shorter L adversely affects the flow field, 

the final parameters to discuss are the first two statistical moments, namely the mean 

and standard deviation.  These two parameters are the commonly quoted statistical 

moments in the literature, for example Voke (1996), Rodi et al (1997), Sohankar, 

Davidson and Norberg (1999) and Srinivas et al (2006), but as it has already been 

shown that the current two-dimensional flows are unphysical, these quantities will be 

used more for comparison between the present simulations rather than for direct 

comparison with experimental data and alternate numerical simulations. 
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Figure C-17 – Probability distribution function of the lift coefficients computed 

across the simulation time interval of 10  t  100 s from the ten L simulations. 
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Figure C-18 – Cumulative distribution function of the lift coefficients computed 

across the simulation time interval of 10  t  100 s from the ten L simulations. 

C.3.5. Statistical Characteristics of the Force Coefficients 

As with the distributions computed in §C.3.4 the statistical moments were computed 

over the interval as used to compute the probability distributions discussed above.  The 

mean drag coefficient for the L 8d simulations is 2.67±0.03, as shown in Figure C-19, 

whereas the mean drag for the L=4d simulation was 2.49 or 6.5% lower than the 

average of the other nine simulations.  This lower resultant in the mean drag for L=4d 

simulation was conjectured from the noticeably different distribution functions of the 

drag coefficients, shown in Figure C-15 and Figure C-16, and discussed above. 
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Figure C-19 – Plot of the mean drag and lift coefficients from the ten outlet 

distance, L, simulations together with a region representing mean drag results 

compiled by Sohankar, Davidson and Norberg (1999). 

All the mean lift coefficients from the present work fall within the bounds of ±0.03, 

which is acceptably close to zero. That is, as the lift fluctuates over the range of ±4.8 

and the theoretical mean lift is zero, so the error is less than 0.7% relative to the bounds 

of the fluctuations.  This is an important validation parameter because for this 

configuration the time averaged lift must be zero. 

The average of the standard deviations of CD  was 0.9 with a spread of ±.05 over the ten 

simulations.  In contrast to the consistency of the drag, the standard deviations of the lift 

coefficients have distinct outliers specifically the L = 4d and L = 40d simulations.  

These outliers differ from the average by -8% and -5%, respectively, with the remaining 

simulations within ±2% of the average. 



 350 

0 0.32 0.64 0.96 1.28 1.6
0

0.5

1

1.5

2

2.5

Distance to Outlet, L, (m)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 th

e 
D

ra
g 

an
d 

Li
ft 

C
oe

ffi
ci

en
ts

F
ig

ur
e 

cr
ea

te
d:

 2
0−

A
ug

−
20

09
 1

3:
32

:5
2,

 fr
om

 c
om

b_
pl

ot
_c

Drag Curve

Lift Curve

Bounds of Published C
D

Bounds of Published C
L

 
Figure C-20 – Plot of the standard deviation of the drag and lift coefficients from 

the ten outlet distance, L, simulations together with two regions representing 

published results compiled by Sohankar, Davidson and Norberg (1999). 

The combined results from the first two statistical moments support two conclusions: 

firstly that the two-dimensional simulations presented in the current work are generally 

consistent, and secondly that for the first two moments there is an observed effect from 

the location of the outlet boundary.  The first conclusion does not warrant much 

discussion but the second is important for the three-dimensional simulations. 

The affect of the proximity of the outlet boundary condition is subtle and is most easily 

visible in the results from the first two moments: the mean and the standard deviation.  

This claim is based on two results: the lower mean drag and the lower RMS lift 

coefficients for the L=4d simulation when compared to the alternate simulations.  

Conversely, there is no observable trend as a function of L, for either the mean lift or 

the RMS drag.  However, the changes in mean drag and RMS lift coefficients are small, 

and must be taken in conjunction with the results presented above – by themselves they 

are not conclusive evidence of an affect from the proximity of the outlet boundary to the 

square cylinder. 
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With the discussion of the investigation into the length to the outlet boundary now 

complete the focus can turn to the remaining preliminary investigation: the study of the 

size of the cell immediately adjacent to the cylinder. 

C.4. Investigation of the Effect of Varying the Wall Normal 

Length of the First Cell Adjacent to the Cylinder, F 

C.4.1. Alterations to the Common Configuration for the F Tests 

For these tests the parameter F, was defined as the length of the side of the first adjacent 

cell to the cylinder normal to the cylinder, as shown in Figure C-2 (pp 329).  Therefore, 

the only changes made to the generic grid described in §C.2 were to the edges that 

emanated from the square cylinder and those required for block regularity away from 

the cylinder. 

The values of F tested in this parametric study range from F = 50 m to F = 5 mm in  

non-uniform steps, as listed in Table C-3.  A hyperbolic tangent function as outlined in 

Equations (5.4) to (5.9) was used to distribute the nodes along the edges bc, fe and gh, 

shown in Figure C-4, with the node spacing furthest from the cylinder fixed as per the 

specifications of §C.2 and detailed in Table C-1.  For six of the eight simulations, the 

same hyperbolic tangent function was used to distribute the nodes along the faces of the 

cylinder, i.e. edges ab and fg in Figure C-4.  However, as the number of nodes 

distributed across the face of the cylinder when F = 3 mm and F = 5 mm was too low to 

achieve a satisfactorily small expansion ratio between nodes, instead of the hyperbolic 

tangent, a uniform distribution was used. 

The structure of the discussion of the results of the parametric study into F will be 

similar to that of the L simulations presented in §C.3.  That is, in order there will be a 

brief outline of the convergence of the solver, a discussion of the instantaneous flow 

field from velocity magnitude visualizations and finally an examination of the 

behaviour of the force coefficients. 
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Table C-3 – F, number of nodes across the cylinder face (edges ab and fg), total 

cell count and the distribution function used across the cell faces. 

Test F Node Count for 

edge ab and fg 

Total Cell 

Count 

Distribution 

1 50 m 55 66 174 Hyperbolic Tangent 

2 100 m 45 51 464 Hyperbolic Tangent 

3 300 m 33 14 408 Hyperbolic Tangent 

4 500 m 28 38 160 Hyperbolic Tangent 

5 1 mm 25 34 704 Hyperbolic Tangent 

6 3 mm 14 26 725 Uniform 

7 5 mm 9 21 880 Uniform 

 

Table C-4 – List of the number of nodes used in the expansion edges. 

Test Edges: bc and ef Edges: gh 

1 45 60 

2 34 52 

3 29 41 

4 28 36 

5 25 33 

6 20 23 

7 15 18 
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Figure C-21 – Plot of the nodal spacing as a function of the y-coordinate for the 

seven F simulations. 
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Figure C-22 – Plot of the nodal spacing as a function of the x-coordinate for the 

seven F simulations. 



 354 

C.4.2. Convergence of the Solver during the Simulations 

As with the L test presented above in §C.3.2 the convergence of the numerical engine 

must be examined prior to a critical examination of the resultant flow data.  For every 

time step in all seven simulations of F, the solver converged to the specifications within 

the maximum 30 iterations, as shown in Figure C-23. 
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Figure C-23 – Cumulative probability distribution of niter for the seven F 

simulations. 

Intriguingly, as F was decreased, that is as the wall normal size cell length was 

shortened and, presumably, the level of computed detail increased, the values of niter  

concurrently increased.  However, as all seven simulations converged to the specified 

numerical precision, the increased iterative count is of general interest that would 

predict a consequent increase in computational wall time.  Therefore, the physicality of 

the flow can be critically examined. 
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C.4.3. Examination of the Instantaneous Flow Field 

As the flows observed in the simulations with different F were remarkably similar to 

those already discussed in §C.3.3, only the differences and highlights will be presented 

in this section.  As reported above for the L tests, the flow fields of the F simulations 

were characterised by the presence of a von Kámán vortex street in the wake, as shown 

in Figure C-24 compared with Figure C-10, with broadly similar vortical structures 

visible in the wake.  In a further similarity to the variable L tests described above, the 

size and shape of the vortex street varied slightly between the tests as F was modified.  

However, for the smaller F, the variations in the vortex street were sufficiently small 

that they have not been shown for comparison. 

 
Figure C-24 – Velocity magnitude snapshot from F=300 m simulation showing a 

nominal von Kámán vortex street being shed from the square cylinder. 

In common with the results from the L simulations, the present simulations with a 

variable F also developed flow asymmetries, as shown in Figure C-25 and Figure C-26.  

For the shorter F lengths tested, the maximum speed of the ejected blobs and size of the 

asymmetrical blobs observed were broadly similar to those observed in the L tests, as 

shown in Figure C-25 compared with Figure C-11 but please note the change in the 
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colour scale between the images.  However, in contrast to the similarities at shorter F, 

the asymmetries observed in the in the results from the simulations with longer F were 

up to 25% faster that the corresponding results from the L tests.  That is, for longer F 

 

 
Figure C-25 – Snapshot from the F=50 m simulation visualised by the velocity 

magnitude and showing a high-speed asymmetry in the flow being ejected. 
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Figure C-26 – Snapshot from the F=3mm simulation visualised by the velocity 

magnitude and showing a very high-speed asymmetry in the flow being ejected. 

the maximum observed speed of the asymmetrical blobs was in the order of 1.5m/s 

compared with the 1.2m/s observed in the L tests and for shorter F.  Given that the inlet 

velocity was set at 0.535m/s, a jump of 0.3m/s is a large fraction of the undisturbed free 

stream velocity. 

The mechanism for the observed increase in the speed of the ejected blobs is due to the 

lack of resolution of the boundary layer around the cylinder.  Because the cells are so 

large in the region of the cylinder, neither the recirculation zones nor the associated 

dissipative processes can be captured by the computational solver, as shown in Figure 

C-27. Hence, as little or no dissipation is captured in the region of the cylinder, the 

excess energy is still entrained with the free stream and is transformed into the faster 

asymmetric flow blobs. 
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Figure C-27 – Comparison of the resolved flow features in the F=5mm (a) and the 

F=50 m (b) simulations with the flow visualised by the velocity magnitude and 

instantaneous streamlines to indicate the recirculation zones. 

Having noted that the flow field is dramatically affected by the grid resolution adjacent 

to the cylinder and that similar asymmetric patterns as were observed in the L tests also 

occurred in the F test simulations, similar conclusions to §C.3.3 can be drawn.  That is, 

that the use of a two-dimensional simulation to simulate a three-dimensional flow field 

only has a very limited use and significant care must be take to ensure the applicability 

of the results.  Hence, while the flow field images qualitatively show a difference in the 

flow field, examination of the force coefficients on the cylinder can provide 

quantification of the flow field changes, which can, despite the caveat discussed above, 

be used to guide the development of the three-dimensional meshes. 

C.4.4. Examination of the Lift and Drag Coefficients as a Function of 
Time 

Despite minor differences, there is no clear change in the patterns of CD t( )  and CL t( )  

for the simulations with F shorter than 1 mm, as shown in Figure C-28 and Figure C-29, 

respectively.  For this discussion the pattern of CD t( )  and CL t( )  will be taken a s a 

general descriptor of the shape of the curve, i.e. the amplitude, development region and 

peak-to-peak times and intermittency.  However, for the simulations with F = 5 mm and 
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F = 3 mm there are a number of marked differences compared to the results from the 

shorter F simulations. 

There is one difference between the results from the simulations with F = 5 mm and 

F = 3 mm and the shorter F simulations which is that the amplitude of the shedding is 

significantly damped, which is manifested in two observations.  Over the development 

phase of the simulations, roughly for the simulation times t 9 s , where the small scale 

shedding has been damped to such an extent that the CD t( )  plots over this time are 

effectively smooth.  After the flow has developed, the CD t( )  and CL t( )  functions are 

simultaneously smoother and more periodic than the corresponding results from the 

shorter F simulations.  The present author expected a higher degree of “irregularity” as 

a visual manifestation of the chaotic nature of real flows at this, and higher, Reynolds 

numbers. 

With this qualitative discussion of the force coefficients as a function of time a more 

rigorous, quantitative investigation based on the distribution of the coefficients can be 

undertaken.  For this study the distribution statistics were computed over the interval 

 10 t 100s . (A.4) 

The strong modulation of the force coefficient signal amplitude is also visible as a 

strong peak in the probability distribution functions of both the drag, Figure C-30, and 

the lift, Figure C-31. A similarly high peak in the probability distribution of the lift 

coefficient signal from the F = 5 mm simulation was also observed but centred at zero. 
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Figure C-28 – Plot of the drag coefficient as a function of time for the seven wall 

normal cell distances, F, tested. 
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Figure C-29 – Plot of the lift coefficients as a function of time for the seven wall 

normal cell distances, F, tested. 
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Conversely, for the shorter F simulations, for example the F = 50 m, the probability 

distribution functions for both the drag and lift is broader with less tendency to a central 

peak, Figure C-30 and Figure C-31 respectively. 

A similar, albeit with a reduced peak, probability distribution to the F=5mm simulation 

was observed in the F=3mm simulation.  However, when F was reduced to 1mm the 

probability distribution of the force coefficients changed from a peaky distribution to 

the broad function as described above for the F=50 m simulation.  Therefore, with a 

transition from the peaky to the broad distribution between 3mm and 1mm, a 

conservative choice, for two-dimensional flows, would be to enforce F<1mm. 

The shape of the distribution functions of CD  for the shorter F simulations is 

characterised by a steep rise over the range of  

 0.6 CD 1.8  (A.5) 

to a peak at CD 1.8 .  In contrast to the sharp rise, the tail for the range 

 CD 2  (A.6) 

is much shallower with the zero probability obtained at a maximum of CD 5  as 

shown in Figure C-30.  Because of this long tail, the events at, or close to, the maximum 

CD  were both approached and withdrawn quickly.  Hence, an object in flows such as 

this could expect to feel large forces that arrive and depart in fast waves somewhat akin, 

albeit on a smaller scale, to the phenomenon of rogue oceanic waves (Mori et al., 2002, 

Gemmrich and Garrett, 2009).  That is, the body is subject to a succession of high force, 

transient events. 

By similar reasoning, there is no strong bias in the probability distribution of the lift 

coefficients.  That is, for lift values between ±2 the probability distribution is almost 

uniform so there is statistical preference in this region.  Further for the lift coefficients 

greater than, and less than, ±2 the probability distribution drops off steadily before 

terminating sharply with no visible tail.  These data contrast to the drag in that with the 

lift the extreme events are approached both more slowly and recede more slowly. 

The median, the 50% frequency in a cumulative frequency plot, for the drag coefficient 

varies by about 0.5 while the median for the lift coefficients varies by about 
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Figure C-30 – Probability distribution functions of the drag coefficients computed 

across the simulation time interval 10  t  100 s from the seven F simulations. 
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Figure C-31 – Probability distribution functions of the lift coefficients computed 

across the simulation time interval 10  t  100 s from the seven F simulations. 
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Figure C-32 – Cumulative distribution functions of the drag coefficients computed 

across the simulation time interval 10  t  100 s from the seven F simulations. 

−5 0 5
0

10

20

30

40

50

60

70

80

90

100

Lift Coefficient

 

 

50μm
100μm
300μm
500μm
1mm
3mm
5mm

F
ig

ur
e 

cr
ea

te
d:

 0
1−

S
ep

−
20

09
 1

0:
55

:4
2,

 fr
om

 li
ft_

hi
st

o_
b

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

of
 O

cc
ur

re
nc

e 
(%

)

 
Figure C-33 – Cumulative distribution functions of the lift coefficients computed 

across the simulation time interval 10  t  100 s from the seven F simulations. 
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one, shown in Figure C-32 and Figure C-33 respectively.  Interestingly as the median 

for the lift coefficients are all less than zero, and despite the discussion above, this result 

could indicate a possible bias in the flow computation.  However, a more rigorous 

examination of the first four statistical moments, computed over the same time interval 

as described in Equation (A.4) would quantify any potential bias. 

C.4.5. Statistical Characteristics of the Force Coefficients 

When computed over the time interval described in Equation (A.4) the resultant mean 

lift coefficients fluctuate around zero with no obvious pattern, as shown in Figure C-34.  

However, by the same argument as was presented in §C.3.5, that the maximum change 

of the mean lift from zero is significantly less than the amplitude of the lift signal, the 

differences of the mean lift from zero are sufficiently small as to be statistically 

insignificant. 

In contrast to the mean lift coefficients, the mean drag coefficients over the range 

 F 500 m converge towards, but remain above, the comparison drag region shown in 

Figure C-34. 
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Figure C-34 – Plot of the mean drag and lift coefficients from the seven F 

simulations of the present work together with a region representing mean drag 

data compiled by Sohankar, Davidson and Norberg (1999). 
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Although no simulations with a shorter F were computed, the mean drag is unlikely to 

converge further because smaller cells in the wall region should not resolve more of the 

boundary layer.  However, given that the flow field has already been shown to be 

unphysical, rather than the absolute value of the mean drag, the trend of the drag value 

converging below a certain wall normal value is the important conclusion. 

As with the mean drag from the F = 50 m simulation, the mean drag for the F = 5 mm 

simulation is also close to 2.35, or just above the upper bound of 2.32 from the 

published mean drag data.  However, from an examination of the flow field around the 

cylinder, shown in Figure C-27, and the plot of the drag coefficient as a function of 

time, shown in Figure C-28, this result is coincidental.  That is, the length of F is 

sufficiently large that the computed flow field is unphysical; hence, the apparently 

correct mean drag and lift coefficients should be treated as a coincidence. 

For the simulations with  F 1mm  the standard deviations of both the drag and lift 

coefficients have constant values of approximately 0.8 and 1.8, respectively, as shown 

in Figure C-35.  Therefore, it follows that unlike the mean drag coefficient that was still 

converging over this range, the standard deviation is not as sensitive to the length of F. 
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Figure C-35 – Plot of the standard deviations of the drag and lift coefficients from 

the seven F simulations of the present work together with two regions representing 

published results compiled by Sohankar, Davidson and Norberg (1999). 

However, at the longer wall lengths of  

  F > 1mm  (A.7) 

there is a steep decline in the standard deviations of, in particular, the lift but also the 

drag.  This result lends further support to the unphysical nature of the flow field and that 

the excellent agreement of the mean drag at larger F is coincidental rather than accurate. 

C.5. Summary and Recommendations for the Three-

Dimensional Meshes 

Two preliminary studies with 17 individual tests were undertaken in an effort to 

develop guidelines for the construction of the three-dimensional simulations.  The two 

studies were designed to (1) investigate the effect of the location of the outlet boundary 

relative to the square cylinder and (2) to explore the influence of the size of the cells 

adjacent to the square cylinder.  As such, conservative assumptions were made about 

the first parameter for the second study and vice verse.  These assumptions were 

subsequently proved to be valid. 
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From the results of the two studies, three recommendations were drawn: 

1. That the assumptions that underpin the two-dimensional simulation are wrong 

and lead to the computation of unphysical flows, hence the flow must be 

simulated in three dimensions. 

2. That the distance from the cylinder to the outlet, particularly at shorter lengths, 

does adversely affect the flow around the cylidner, therefore the length from the 

downstream face of the cylinder to the outlet should be longer than 400mm. 

3. That the size of the cell, measured as a wall normal length, adjacent to the 

cylinder adversely affects the computed flow at longer lengths, so the wall 

normal cell length should be less than 500 m. 
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Appendix D: Source Code 

D.1. makefile 
#makefile to compile the source required for the dynamic_average.o file 
#NOTE linking must be carried out by the other fortran file being compiled 
#peter brady 6th may 2005 
 
#this will be compiled as a shared library so set: 
SHARED = shared 
export SHARED 
export $(MAKECMDGOALS) 
 
#NAG Libraries and src 
nag_dir=/usr/local/lib/NAGWare 
 
#my general utilities 
my_src=../utilities 
 
#my libUserAce plugins 
objects= 
modules= 
 
#DTF/ESI Libraries (if required, leave the directories when commenting out) 
usersub_src=../cfdrc_src 
 
INCDIR=-I$(my_src) -I$(usersub_src) -I$(nag_dir) 
LIBDIR=-L$(my_src) -L$(usersub_src) -L$(nag_dir) 
 
#compiler directives - linking done elsewhere, compile only 
#linker is included for the test file ONLY 
f95 = f95 
CFLAGS =-u -colour -free -O4 -gc -Wc,-fPIC -C=all -c 
LD = f95 
LDFLAGS = -unsharedf95 -Wl,-fPIC,-shared -o 
 
#main section to be compiled (ie default target) 
.PHONY: all 
all: flag_paramters.o dynamic_average.o 
dynamic_average.o: subdirs dynamic_average.f90 flag_parameters.o 
 $(f95) $(INCDIR) $(CFLAGS) dynamic_average.f90 
flag_paramters.o : subdirs flag_parameters.f90 
 $(f95) $(INCDIR) $(CFLAGS) flag_parameters.f90 
 
#compile basic shared object for testing 
.PHONY: test 
test: test_average.so 
test_average.so : all test_average.o  
 $(LD) $(LIBDIR) $(INCDIR) $(LDFLAGS) test_average.so test_average.o \ 
 ../cfdrc_src/cfdrc_access_calls.o dynamic_average.o flag_parameters.o \ 
 ../cfdrc_src/cfdrc_user.o ../utilities/file_utils.o 
test_average.o : test_average.f90 
 $(f95) $(INCDIR) $(CFLAGS) test_average.f90 
 
#test to compile other directories 
SUBDIRS = ../cfdrc_src ../utilities 
.PHONY: subdirs $(SUBDIRS) 
subdirs: $(SUBDIRS) 
$(SUBDIRS): 
 $(MAKE) -C $@ 
 
#clean files for a new install 
.PHONY: clean clean_test clean_all 
clean: 
 for d in $(SUBDIRS); do (cd $$d; $(MAKE) clean ); done 
 rm dynamic_average.o dynamic_average.mod \ 
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    flag_parameters.o flag_parameters.mod 
 
clean_test: 
 rm test_average.so test_average.o 
 
clean_all: clean clean_test 

D.2. flag_parameters.f90 
module flag_parameters 
!module to contain common variable declarations for the dynamic average 
!routines 
 
use cfdrc_user, only: int_p 
 
implicit none 
 
!flag parameters 
integer(int_p),parameter::flag_initialise=1 !initialise arrays only 
integer(int_p),parameter::flag_calc_base=2 !calc base variables only 
integer(int_p),parameter::flag_calc_dep=3 !calc base and dependant variables 
integer(int_p),parameter::flag_write=4 !write to DTF 
integer(int_p),parameter::flag_restart=5 !attempt to reload data 
 
end module flag_parameters 

D.3. dynamic_average.f90 
module dynamic_average 
use cfdrc_user, only: string_length,int_p,real_p 
implicit none 
!dynamic_average.f90 
!provides functions to do dynamic time averaging over timesteps during the 
!simulation, rather than after as a post processing step 
!Peter Brady, 6th May 2005 
!comment added for svn 
 
!*********************** 
!Module Level Variables 
!var_name - contains the variables to be averaged 
!averages - the average array 
!indices - the variable indices related to var_name 
!num_cells - number of cells in the current domain 
!domain_cells - number of cells per processor 
! 
!*********************** 
 
 
contains 
 
function average(flag) 
!Performs all averaging functions, flag detirmines what average 
use cfdrc_user_access !cfd access routines to hook into the solver 
use nag_parameters !stderr numbers etc 
use f90_iostat !nag error numbers 
use cfdrc_user,only:string_length,int_p, real_p,geom_threed,geom_twod 
use file_utils, only: get_file_handle 
use flag_parameters 
 
implicit none 
!Variable list 
!Function specification variables 
!average - function return value 0=ok, 0<>error 
!domain_cells - number of non-ghost cells on each processor 
!var_name - variable name list 
!indices - variable indices 
!averages - average array to be allocated 
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! 
!Working variables and initial values: 
!i=0 - counting variable 
!num_procs=1 - total number of processors in use, ie parallel runs 
!proc=1 - the rank of the current processor 
!logical_error=.false. - logical variable for cfdrc calls 
!integer_error=ioerr_ok - integer system error holder 
 
integer(int_p)::average 
integer(int_p),intent(in)::flag 
 
character(string_length),dimension(36),parameter::var_name=(/"U                  
",& 
           "V                  ","W                  ", & 
           "P                  ","VOF_VOLUME_FRACTION", & 
           "T                  ","RHO                ", & 
           "Vis                ","VOLUME             ", & 
           "U_rms              ","V_rms              ", & 
           "W_rms              ","P_rms              ", & 
           "VOF_rms            ","T_rms              ", & 
           "RHO_rms            ","Vis_rms            ", & 
           "upup               ","vpvp               ", & 
           "wpwp               ","PpPp               ", & 
           "vof_function_sq    ","upvp               ", & 
           "upwp               ","vpwp               ", & 
           "Ppup               ","Ppvp               ", & 
           "Ppwp               ","u_skew             ", & 
           "v_skew             ","w_skew             ", & 
           "p_skew             ","u_kurtosis         ", & 
           "v_kurtosis         ","w_kurtosis         ", & 
           "p_kurtosis         "/) 
real(real_p),dimension(:,:),allocatable,save::averages 
integer(int_p),dimension(36),save:: indices !variable indices 
integer(int_p),save::domain_cells=-1 
integer(int_p)::n_total_cells=-1 
real(real_p),dimension(:,:),allocatable,save::current 
real(real_p),dimension(:),allocatable,save::total_real_cells 
 
integer(int_p)::i=0 
integer(int_p)::num_procs=1 
integer(int_p)::proc=1 
integer(int_p)::vof_solve_module=0 
integer(int_p)::var=0 
integer(int_p)::geom_index=GEOM_TWOD 
integer(int_p)::model_index=-1 
integer(int_p)::vof_module_index=0 
character(string_length),save::model_name 
character(string_length)::vof_module_name="VOF" 
integer(int_p)::average_count=-1 
integer(int_p)::fluct_ts=-1 
integer(int_p)::cell_file_handle 
logical::file_exists 
logical::logical_error=.false. 
integer(int_p)::integer_error=ioerr_ok 
 
logical::write_file_exists=.false. 
logical::write_dtf=.false. 
logical::write_flat_file=.false. 
character(5)::par_ext="" 
character(60)::output_filename 
logical::output_file_exists 
integer(int_p)::output_unit 
character(3)::output_file_status 
 
!set initial ok return value 
average=ioerr_ok 
 
!************************************************************************* 
! Section to initialise variables 
if (flag .eq. flag_initialise) then 
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   ! Add some explanation text to the log files to remind me how it works :-) 
   write(unit=stderr,fmt=*) "We are doing a run with Peter Brady's average 
module engaged" 
   write(unit=stderr,fmt=*) "Usage:" 
   write(unit=stderr,fmt=*) " Start averaging: touch do_average" 
   write(unit=stderr,fmt=*) " Start RMS: touch do_rms" 
   write(unit=stderr,fmt=*) 
   write(unit=stderr,fmt=*) "Output location:" 
   write(unit=stderr,fmt=*) " DTF file: touch dtf_file" 
   write(unit=stderr,fmt=*) " Single flat file: touch flat_file" 
   write(unit=stderr,fmt=*) " NOTE:" 
   write(unit=stderr,fmt=*) "  1) it is possible to write to BOTH files" 
   write(unit=stderr,fmt=*) "  2) if no file is present the default is dtf 
only" 
   write(unit=stderr,fmt=*) "  3) flat file, over writes at each step" 
    
   !get number of processes for error logging 
   call get_num_processes(num_procs,logical_error) 
   if(logical_error) then 
      write(unit=stderr,fmt=*) "Unable to determine if this is a parallel 
run." 
      average=-1 
      return 
   end if 
   if(num_procs .gt. 1) then !we are in a parallel run, get the other data 
      call get_process_id(proc,logical_error) 
      if(logical_error) then 
         write(unit=stderr,fmt=*) "Unable to get the current process rank." 
         average=-2 
         return 
      end if 
   end if 
    
   !check if the vof module is used and if 3D or 2D 
   call 
get_module_index(vof_module_name,vof_module_index,vof_solve_module,logical_err
or) 
   if(logical_error) then 
      write(unit=stderr,fmt=*) "Unable to check the vof model usage, assuming 
not, processor", proc 
      vof_solve_module=-1 
      logical_error=.false. 
   end if 
   call get_model_details(model_name,geom_index,model_index, logical_error) 
   if(logical_error) then 
      write(unit=stderr,fmt=*) "Unable to get the basic model details, 
processor ", proc 
      average=-3 
      return 
   end if 
    
   !get the primary variable indices 
   do i=1,9,1 !ie only for true variables, not the calculated 
      call get_var_index(trim(var_name(i)),indices(i),logical_error) 
      if (logical_error) then 
         write(unit=stderr,fmt=*) "Error getting the variable index for: 
",var_name(i) 
         average=-4 
         return 
      end if 
   end do 
 
   !if we are in a parallel run open the inquire file and get the number of 
real 
   !cells that are in this domain 
   if (num_procs .ge. 2) then 
      write(unit=stdout,fmt=*) "attempting to open:", trim(model_name) // 
".cells" 
      inquire(file=trim(model_name) // ".cells",exist=file_exists) 
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      if(file_exists) then 
         cell_file_handle=get_file_handle() 
         if(cell_file_handle .ne. -1) then 
            open(unit=cell_file_handle,file=trim(model_name) // ".cells", & 
               action="read",status="old",iostat=integer_error) 
            if(integer_error .eq. ioerr_ok) then 
               do i = 1, proc, 1 
                  read(unit=cell_file_handle,fmt=*) domain_cells 
                  if(i .eq. proc) then 
                     write(unit=stdout,fmt=*) "Counted Cells:", domain_cells 
                     exit 
                  end if 
               end do 
            else 
               average = -5 
               write(unit=stderr,fmt=*) "Unable to open .cell file", 
integer_error 
               return  
            end if 
         else 
            average = -6 
            write(unit=stderr,fmt=*) "Unable to get file handle for .cell 
file" 
            return 
         end if 
      else 
         write(unit=stderr,fmt=*) "Cell file does not exist" 
         average=-7 
         return 
      end if 
   else 
      !we are not in a parallel run so domain cells are the simple: 
      call get_cells(domain_cells,logical_error) 
      if(logical_error) then 
         write(unit=stderr,fmt=*) "Unable to get the number of cells in the 
domain" 
         averages = -8 
         return 
      end if 
   end if 
 
   !check the domain cells -  this only checks for huge errors in the input 
file 
   if (domain_cells .eq. -1) then 
      write(unit=stderr,fmt=*) "Domain cell check failed" 
      average = -9 
      return 
   end if 
    
   if(num_procs .ge. 2) then 
      !allocate a temp array that includes the ghost cells and the real cells 
      call get_cells(n_total_cells,logical_error) 
      if(logical_error) then 
         write(unit=stderr,fmt=*) "Error getting the total (including ghost 
cells) number of cells" 
         averages = -1 
         return 
      end if 
   else 
      !for the non-parallel case n_total_cells = domain cells 
      n_total_cells = domain_cells 
   end if 
   allocate(total_real_cells(n_total_cells),stat=integer_error) 
   if(integer_error .ne. ioerr_ok) then 
      write(unit=stderr,fmt=*) "Error allocating total cell array memory, 
processor ", proc 
      averages = -1 
      return 
   end if 
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   !attempt to allocate memory for the general arrays, ie those without ghost 
   !cells 
   
allocate(averages(size(var_name,1),domain_cells),current(9,domain_cells),stat=
integer_error) 
   if(integer_error .ne. ioerr_ok) then 
      write(unit=stderr,fmt=*) "Error allocating memory for average arrays, 
processor ", proc 
      average=-10 
      return 
   else 
   !initialise the first values 
   averages=0.0 
   current=0.0 
   write(unit=stdout,fmt=*) "Averages array allocated, processor ", proc 
   end if 
end if 
 
!************************************************************************* 
! section to perform the average 
if((flag .eq. flag_calc_base) .or. (flag .eq. flag_calc_dep)) then 
   !check allocation of averages 
   if(.not. allocated(averages)) then 
      write(unit=stderr,fmt=*) "Averages array is not allocated." 
      write(unit=stderr,fmt=*) "We can not perform an average then." 
      average=-11 
      return 
   end if 
   !increment the average counter 
   if(average_count .eq. -1) then 
      average_count=1 
   else 
      average_count=average_count + 1 
   end if 
    
   do var=1,9,1 !loop through the primary variables 
      select case (var) 
      case (3) !ie w velocity 
         if((geom_index .ne. geom_threed) .and. (average_count .eq. 1)) then 
            !ie two d or axi, but only do once 
            !insert dummy value 
            current(var,:)=0.0 
            cycle 
         elseif ((geom_index .ne. geom_threed) .and. (average_count .ge. 1)) 
then 
            !do not get for the rest of the simulation 
            cycle 
         end if 
      case (5) !ie vof 
         if ((vof_solve_module .le. 0) .and. (average_count .eq. 1)) then 
            !ie not solving for vof but only do once 
            current(var,:)=0.0 
            cycle 
         elseif ((vof_solve_module .le. 0) .and. (average_count .ge. 1)) then 
            !do not get for the rest of the simulation 
            cycle 
         end if 
      end select 
      call 
get_cell_value_array(indices(var),n_total_cells,total_real_cells,logical_error
) 
      if(.not. logical_error) then 
         current(var,:)=total_real_cells(1:domain_cells:1) 
      else 
         write(unit=stderr,fmt=*) "Unable to get value for " ,var_name(var), " 
processor ",proc 
         average=-12 
         return 
      end if 
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   end do 
 
   !average dependant variables 
   !Average: U, V, W, P, VOF, T, Rho, Vis 
   averages(1:8:1,:)=((averages(1:8:1,:) * real(average_count-1)) + 
current(1:8:1,:)) / real(average_count) 
   !write (unit=stderr,fmt=*) "Average 1" 
    
   !Cell volume - constant therefore only do once 
   if(average_count .eq. 1) averages(9,:)=current(9,:) 
     
   !RMS: U, V, W, P, VOF, T, Rho, Vis 
   averages(10:17:1,:)=((averages(10:17:1,:) * real(average_count-1)) + 
current(1:8:1,:) ** 2.0) / real(average_count) 
   !write (unit=stderr,fmt=*) "Average 2" 
 
   if(flag .eq. flag_calc_dep) then 
      !to account for differences in the start time of dependent variable 
      !averaging fluct_ts records the first timestep averaged from 
      if(fluct_ts .eq. -1) then 
         fluct_ts=1 
      else 
         fluct_ts=fluct_ts + 1 
      end if 
        
      !calculate dependant variables 
      !up, vp, wp, pp, VOF - redefine current to fluct rather than raw 
      current(1:5:1,:)=current(1:5:1,:)-averages(1:5:1,:) !current fluctuating 
      !write (unit=stderr,fmt=*) "Average 3" 
         
      !RMS up, vp, wp, pp, VOFp 
      averages(18:22:1,:)=((((averages(18:22:1,:)*real(fluct_ts-
1)))+current(1:5:1,:)**2.0)/real(fluct_ts)) 
      !write (unit=stderr,fmt=*) "Average 4" 
          
      !Average up*vp, up*wp, vp*wp, pp*up, pp*vp, pp*wp 
      averages(23,:)=((averages(23,:)*real(fluct_ts-
1))+current(1,:)*current(2,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 5" 
      averages(24,:)=((averages(24,:)*real(fluct_ts-
1))+current(1,:)*current(3,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 6" 
      averages(25,:)=((averages(25,:)*real(fluct_ts-
1))+current(2,:)*current(3,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 7" 
      averages(26,:)=((averages(26,:)*real(fluct_ts-
1))+current(4,:)*current(1,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 8" 
      averages(27,:)=((averages(27,:)*real(fluct_ts-
1))+current(4,:)*current(2,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 9" 
      averages(28,:)=((averages(28,:)*real(fluct_ts-
1))+current(4,:)*current(3,:))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 10" 
  
      !skew u, v, w, p 
      averages(29:32:1,:)=((averages(29:32:1,:)*real(fluct_ts-
1))+(current(1:4:1,:)**3.0))/real(fluct_ts) 
      !write (unit=stderr,fmt=*) "Average 11" 
  
      !kurtosis u, v, w, p 
      averages(33:36:1,:)=((averages(33:36:1,:)*real(fluct_ts-
1))+(current(1:4:1,:)**4.0))/real(fluct_ts) 
   end if 
 
   !print debug message 
   write(unit=stderr,fmt=*) "U Avg=", averages(1,1), "Processor: ",proc, & 
      "Time step: ",average_count 
   if (flag .eq. flag_calc_dep) then 
      write(unit=stderr,fmt=*) "U rms=", averages(10,1), "Processor: ",proc, & 



 376 

        "Fluct time step: ",fluct_ts 
   end if 
end if 
 
!************************************************************************* 
!section to write the data out 
 
if (flag .eq. flag_write) then 
   !check allocation of averages and allocate if necessary 
   if(.not. allocated(averages)) then 
      write(unit=stderr,fmt=*) "Averages array is not allocated." 
      write(unit=stderr,fmt=*) "We can not write to dtf." 
      average=-13 
      return 
   end if 
 
   write(unit=stderr,fmt=*) "About to start writing data on processor ",proc 
   !allocate memory for the temporary array 
 
   !there are alternate methods to write data 
   ! so we test and if we can't find a file we use the previous method 
specified 
 
   ! Do the tests 
   write(unit=stderr,fmt=*) "1 DTF, Flat", write_dtf, write_flat_file 
   inquire(file="flat_file",exist=write_file_exists) 
   if (write_file_exists) then 
      write_flat_file = .true. 
   else 
      write_flat_file = .false. 
   end if 
   inquire(file="dtf_file",exist=write_file_exists) 
   if (write_file_exists) then 
      write_dtf = .true. 
   else 
      write_dtf = .false. 
   end if 
   write(unit=stderr,fmt=*) "2 DTF, Flat", write_dtf, write_flat_file 
 
   !reset for default dtf 
   if ((.not.write_dtf) .and. (.not.write_flat_file)) then 
      write_dtf = .true. 
   end if 
   write(unit=stderr,fmt=*) "3 DTF, Flat", write_dtf, write_flat_file 
    
   !Test for flat file write 
   if(write_flat_file) then 
      !write to a flat fortran binary, one per processor 
      write(unit=stderr,fmt=*) "We are writing to a flat file" 
 
      !generate the filename 
      write(unit=par_ext,fmt='(i4.4)') proc 
      par_ext= "_" // adjustl(par_ext) 
      output_filename = trim(model_name) // par_ext // ".averages" 
      write(unit=stderr,fmt=*) "Output name:", output_filename 
       
      !test if the filename exits and open it 
      inquire(file=output_filename,exist=output_file_exists) 
      if(output_file_exists) then 
         output_file_status="old" 
      else 
         output_file_status="new" 
      end if 
      output_unit=get_file_handle() 
      if(output_unit .ne. -1) then 
         open(unit=output_unit,file=output_filename,status=output_file_status, 
& 
            form="formatted",action="write",iostat=integer_error) 
         if(integer_error .eq. ioerr_ok) then 
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            !now loop through and write the variables 
            write(unit=output_unit,fmt='(i0)') domain_cells 
            write(unit=output_unit,fmt='(i0)') size(var_name) 
            do i=1,domain_cells,1 
               write(unit=output_unit,fmt='(i0,",",35(f0.22,","), f0.22)') 
i,averages(:,i) 
            end do 
            close(unit=output_unit) 
         else 
            write(unit=stderr,fmt=*) "Unable to open output file" 
         end if 
      else 
         write(unit=stderr,fmt=*) "Unable to get a file unit for the output 
file" 
      end if 
   end if 
 
   ! Test for the DTF write option 
   if(write_dtf) then 
      !write directly into the dtf file 
      write(unit=stderr,fmt=*) "We are writing to the DTF" 
       
      do i=1,size(var_name,1),1 
         call write_nodal_data_to_dtf(var_name(i), 
size(averages,2),averages(i,:), "", logical_error) 
         call write_cell_data_to_dtf(var_name(i), 
size(averages,2),averages(i,:), "", logical_error) 
         if (logical_error) then 
            print *,"There was an error writing the nodal or cell data on 
procesor ", proc 
            average=-14 
            return 
         end if 
      end do 
   end if 
 
   write(unit=stderr,fmt=*) "Finished writing data on processor ",proc 
end if 
 
end function average 
 
end module dynamic_average 

D.4. libUserAce.f 
MODULE cfdrc_user 
!*********************************************************************** 
  IMPLICIT NONE 
  SAVE 
  
  INTEGER, PARAMETER :: int_p  = SELECTED_INT_KIND(8) 
 
  INTEGER, PARAMETER :: string_length = 80 
  
  INTEGER, PARAMETER :: real_p = SELECTED_REAL_KIND(8) 
 
  ! DO NOT CHANGE THE PARAMETER VALUES. THESE ARE FOR USE ONLY. 
  ! Direction parameters. 
  INTEGER(int_p), PARAMETER :: XDIR = 1, YDIR = 2, ZDIR = 3 
 
  ! geometry related parameters. 
  INTEGER(int_p), PARAMETER :: GEOM_THREED = 1, GEOM_TWOD = 2, & 
                               GEOM_TWOD_AXI = 3 
 
  ! material related flags.  
  INTEGER(int_p), PARAMETER :: MAT_GAS = 1, MAT_FLUID = 2, & 
                               MAT_SOLID = 3, MAT_BLOCK = 4  
 
  ! Grid Connectivity related parameters. 
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  INTEGER(int_p), PARAMETER :: TRI_CELL = 1, QUAD_CELL = 2, & 
                               TET_CELL = 3, PYRAMID_CELL = 4, & 
                               PRISM_CELL = 5, HEX_CELL = 6, & 
                               POLY_CELL = 7 
 
  INTEGER(int_p), PARAMETER :: LINE_FACE = 1, TRI_FACE = 2, & 
                               QUAD_FACE = 3, POLY_FACE = 4 
 
  ! Time option parameters. 
  INTEGER(int_p), PARAMETER :: TIME_ORIGINAL = 0, TIME_PREVIOUS = 1, & 
                               TIME_CURRENT = 2 
  ! model parameters. 
  INTEGER(int_p), PARAMETER :: MODEL_STEADY = 1, MODEL_STEADY_RESTART = 2, & 
                               MODEL_TRANSIENT = 3, MODEL_TRANSIENT_RESTART = 
4 
 
  ! electric sub model options. 
  INTEGER(int_p), PARAMETER :: ELECTRIC = 1, & 
                               ELECTRIC_ELECTROSTATICS_FVM = 2, & 
                               ELECTRIC_ELECTROSTATICS_BEM = 3, & 
                               ELECTRIC_DC_CONDUCTION = 4, & 
                               ELECTRIC_AC_CONDUCTION = 5, & 
                               ELECTRIC_TIME_DOMAIN = 6  
 
  ! global bc types. 
  INTEGER(int_p), PARAMETER :: BC_TYPE_INLET = 1, & 
                               BC_TYPE_WALL = 2, & 
                               BC_TYPE_EXIT = 3, & 
                               BC_TYPE_INTERFACE = 4, & 
                               BC_TYPE_F_F_INTERFACE = 5, & 
                               BC_TYPE_S_S_INTERFACE = 6, & 
                               BC_TYPE_S_F_INTERFACE = 7, & 
                               BC_TYPE_F_B_INTERFACE = 8, & 
                               BC_TYPE_B_B_INTERFACE = 9, & 
                               BC_TYPE_S_B_INTERFACE = 10, & 
                               BC_TYPE_SYMM = 11, & 
                               BC_TYPE_CYCLIC = 12, & 
                               BC_TYPE_THINWALL = 13 
 
  ! heat transfer bc subtypes 
  INTEGER(int_p), PARAMETER :: BC_HEAT_INOUT = 1, & 
                               BC_HEAT_SYMM = 2, & 
                               BC_HEAT_ISOTHERMAL = 3, & 
                               BC_HEAT_ADIABATIC = 4, & 
                               BC_HEAT_FIX_Q = 5, & 
                               BC_HEAT_NEWTON = 6, & 
                               BC_HEAT_EXT_RADIATION = 7, & 
                               BC_HEAT_CONJUGATE_INTERFACE = 8, & 
                               BC_HEAT_THINWALL = 9, & 
                               BC_HEAT_CYCLIC = 10, & 
                               BC_HEAT_INTERFACE = 11, & 
                               BC_HEAT_MIXING_PLANE = 12, & 
                               BC_HEAT_COUPLE = 13, & 
                               BC_HEAT_CHIMERA = 14 
 
  ! flow bc subtypes                                
  INTEGER(int_p), PARAMETER :: BC_FLOW_FIXM_INLET = 1, & 
                               BC_FLOW_FIXP_OUTLET = 2, & 
                               BC_FLOW_WALL = 3, & 
                               BC_FLOW_SYMM = 4, & 
                               BC_FLOW_FIXP_EXTRAPOLAT_OUTLET = 5, & 
                               BC_FLOW_FIXPT_INLET = 6, & 
                               BC_FLOW_FIXP_INLET = 7, & 
                               BC_FLOW_CYCLIC = 8, & 
                               BC_FLOW_INTERFACE = 9, & 
                               BC_FLOW_MIXING_PLANE = 10, & 
                               BC_FLOW_COUPLE = 11, & 
                               BC_FLOW_CHIMERA = 12 
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  ! electric bc subtypes. 
  INTEGER(int_p), PARAMETER :: BC_ELECTRIC_FIX_POTENTIAL = 1, & 
                               BC_ELECTRIC_FIX_FLUX = 2, & 
                               BC_ELECTRIC_SYMM = 3, & 
                               BC_ELECTRIC_CYCLIC = 4, & 
                               BC_ELECTRIC_DIEL_DIEL = 5, & 
                               BC_ELECTRIC_FIX_CHARGE = 6, & 
                               BC_ELECTRIC_IGNORE = 7, & 
                               BC_ELECTRIC_ZERO_CURRENT = 8, & 
                               BC_ELECTRIC_THIN_WALL = 9, & 
                               BC_ELECTRIC_INTERFACE = 10 
 
  ! semi bc subtypes. 
  INTEGER(int_p), PARAMETER :: BC_SEMI_FIX_POTENTIAL = 1, & 
                               BC_SEMI_FIX_CHARGE = 2, & 
                               BC_SEMI_CONJUGATE_WALL = 3, & 
                               BC_SEMI_CYCLIC = 4, & 
                               BC_SEMI_INTERFACE = 5 
 
  ! DTF I/O parameters. 
  INTEGER(int_p), PARAMETER :: DTF_IO_VAR_LEN = 36, DTF_IO_UNIT_LEN = 36 
 
  ! use the following parameter to get the cell/node data from DTF file you  
  ! want. 
  INTEGER(int_p), PARAMETER :: USER_CURRENT_DTF_FILE = 1, 
USER_RESTART_DTF_FILE = 2 
 
  ! DIRECTION parameters for istropic/anisotropic models. 
  INTEGER(int_p), PARAMETER :: DIR_ISOTROPIC = 0, DIR_NORMAL = 1, & 
                               DIR_TANGENTIAL_1 = 2, DIR_TANGENTIAL_2 = 3 
 
  ! Utility parameters. 
  REAL(real_p) , PARAMETER :: zero = 0.0d0, one = 1.0d0, two = 2.0d0, & 
                              three = 3.d0, four = 4.0d0, & 
                              pi = 3.1415926535898d0 
 
! Declare global variables 
! USER GLOBAL VARIABLE DECLARATION BEGIN 
 
character(string_length),dimension(28),parameter::global_var_name=(/"U                
",& 
              "V                  ","W                  ", & 
              "P                  ","Vis                ", & 
              "T                  ","RHO                ", & 
              "VOF_VOLUME_FRACTION","upup               ", & 
              "upvp               ","upwp               ", & 
              "vpvp               ","vpwp               ", & 
              "wpwp               ","vof_function       ", & 
              "PpPp               ","Ppup               ", & 
              "Ppvp               ","Ppwp               ", & 
              "u_skew             ","v_skew             ", & 
              "w_skew             ","p_skew             ", & 
              "u_kurtosis         ","v_kurtosis         ", & 
              "w_kurtosis         ","p_kutsosis         ", & 
              "VOLUME             "/) 
real(real_p),dimension(:,:),allocatable::global_averages 
 
 
! USER GLOBAL VARIABLE DECLARATION END 
  
 END MODULE cfdrc_user 
!*********************************************************************** 
!*********************************************************************** 
 SUBROUTINE uout(iflag) 
 !DEC$ ATTRIBUTES DLLEXPORT :: uout 
 !******* DO NOT REMOVE ABOVE LINE FOR MS WINDOWS OS ************ 
!*********************************************************************** 
! copyright (c) 1998  cfd research corp.  all rights reserved. 
! 
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! purpose : for customized user output. 
! 
! iflag:  flag indicating calling location. 
! 
! This routine is called 5 times at different instances of iterative  
! cycle indicated by iflag. 
! 
! iflag  : 
!          1 - At the beginning of RUN. (At this point most of the boundary  
!                                        conditions, properties are set. users 
!                                        should be able to get cell or 
boundary 
!                                        values for different variables.) 
!          2 - At the beginning of time step (only for transient problems). 
!          3 - At the end of each iteration.  
!          4 - At the end of each time step.(only for transient problems). 
!          5 - At the end of RUN. 
! 
! One may use get_value_one_cell to get the values. To get the cell 
! indexes, user has to supply the x,y,z locations and use the  
! get_cell_index(vc_index,x,y,z,global_cell_index,error). 
!----------------------------------------------------------------------- 
 
! Include required global variables declared in cfdrc_user module. 
  USE cfdrc_user, ONLY : int_p, real_p, string_length 
  USE cfdrc_user, ONLY : global_averages,global_var_name 
  use cfdrc_user, only : GEOM_THREED 
                                  
  USE cfdrc_user_access 
 
  IMPLICIT NONE 
 
  INTEGER(int_p), INTENT(IN) :: iflag 
 
! Declare required local variables here. 
! USER VARIABLE DECLARATION BEGIN 
 
!persistant arrays 
!the next variable is the array to store the averages, the first dimension is 
!num_var_to_avg long and represents the variables to average, the second 
!dimension is ncells long and stores the value for that timestep 
real(real_p),dimension(:,:),allocatable,save::local_averages 
integer(int_p),dimension(:),allocatable,save:: var_indexes !variable indices 
integer(int_p),save::ncells=0 !number of cells in the domain 
 
!averaging variables 
integer(int_p)::current_vc,current_cell !counting loop variables 
integer(int_p)::num_vcs,vc_cells !number of vcs and cells in them respectively 
real(real_p)::up,vp,wp,pp !fluct quantities 
real(real_p)::inst_vof !temporary holder for vof value 
 
!working variables 
integer(int_p)::i,vc_loop !counting 
integer(int_p)::n_vc_rec !vc counting variables 
integer(int_p)::temp_int 
character(string_length)::temp_char 
logical::general_logical !logical working variable 
integer(int_p)::var !counting variable for the get value loop 
integer(int_p)::var_int !temporary variable to pass the variable index 
integer(int_p)::global_cell !global cell index holder in get value 
real(real_p)::value !return value for get_value call 
 
!error variables 
logical::logical_error=.false. 
integer(int_p)::integer_error=0 
 
!file check variables 
integer(int_p)::time_step_no !time step returned from the solver 
real(real_p)::model_time !model real time returned from CFD-ACE-SOLVER 
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character(string_length)::avg_file_name !name of the average file .avg 
integer(int_p)::avg_file_unit=50 !file unit for *.avg 
integer(int_p)::start_time_step,end_time_step !time steps read from .avg 
logical::do_average=.false. !actually to the averaging at this time step 
character(string_length)::model_name !name of the model 
integer(int_p)::geom_index !geometry index -> 2D, 2D Axi, 3D 
integer(int_p)::model_index !Steady/Transient etc 
character(string_length)::vof_module_name="VOF" 
integer(int_p)::vof_module_index !module index of the VOF module 
integer(int_p)::vof_solve_module=-1 !is the VOF module active 1=yes,0=no 
integer(int_p)::num_time_steps !number of time steps average from 1 to n 
 
integer(int_p)::proc,cell_index 
character(string_length)::vc_name 
 
! USER VARIABLE DECLARATION END 
 
!----------------------------------------------------------------------- 
! Start writing code here. 
! USER CODE BEGIN 
 
!set initial conditions 
if(iflag.eq.1) then 
   !is the first time step, get indices 
   allocate(var_indexes(size(global_var_name,1))) 
   do i=1,8,1 !ie only the solvefr variables, not the calculated 
      temp_char=trim(global_var_name(i)) 
      call get_var_index(temp_char,temp_int,logical_error) 
      if (logical_error) then 
         print *,"Error getting the variable index for: ",temp_char 
         exit 
      else 
         var_indexes(i)=temp_int 
      end if 
   end do 
 
   !addition for cell volume 
   i=28 
   temp_char=trim(global_var_name(i)) 
   call get_var_index(temp_char,temp_int,logical_error) 
   if (logical_error) then 
      print *,"Error getting the variable index for: ",temp_char 
   else 
      var_indexes(i)=temp_int 
   end if 
 
   !get the number of cells 
   if(.not. logical_error) then 
      !need to loop through the vc's 
call get_process_id(proc,logical_error) 
      call get_number_vcs(n_vc_rec,logical_error) 
      do vc_loop=1,n_vc_rec,1 
         !get and sum the number of cells 
         call get_cells_vc(vc_loop,vc_cells,logical_error) 
call get_vc_name(vc_loop,vc_name,logical_error) 
print *,"vc_cells",vc_cells 
if (vc_cells .gt. 0) then 
call get_cell_index_from_vc(1,vc_loop,cell_index,logical_error) 
print *, "Cell index",cell_index 
end if 
         if(cell_index .le. 7500) then 
         ncells=ncells+vc_cells 
         end if 
print *,proc,ncells,vc_name 
      end do 
      !call get_cells(ncells, logical_error) !removed for parallel runs 
      if(logical_error) then 
         print *,"Unable to get number of cells" 
      else 
print *, "Ncells:",ncells, "on processor",proc 
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         allocate(local_averages(size(global_var_name,1),ncells),& 
            
global_averages(size(global_var_name,1),ncells),stat=integer_error) 
         if(integer_error .ne. 0) then 
            print *,"Error allocating memory for average arrays" 
            logical_error=.true. 
         end if 
         local_averages=0.0 
         print *,"Averages array allocated" 
      end if 
   end if 
end if 
 
if (iflag==4) then!end of time step-attempt to average 
   !print *,"Average array (1,1)", local_averages(1,1) 
   call get_model_details(model_name,geom_index,model_index, logical_error) 
   call 
get_module_index(vof_module_name,vof_module_index,vof_solve_module,logical_err
or) 
   if (.not. logical_error) then 
      avg_file_name=trim(adjustl(model_name))//".avg" 
      inquire (file=avg_file_name,exist=general_logical) 
      if (general_logical) then 
         !file exists, open and read 
         open (unit=avg_file_unit,file=avg_file_name, status="old", 
action="read", iostat=integer_error) 
         if(integer_error .eq. 0) then 
            !read all variables 
            read (unit=avg_file_unit,iostat=integer_error,fmt=*) 
start_time_step,end_time_step 
            if (integer_error .eq. 0) then 
               close (unit=avg_file_unit) !sucessfully read, close the file 
               !all variables read ok 
               call get_time(model_time,time_step_no, logical_error) 
               if (.not.logical_error) then 
                  !got the time step from the solver 
                  if((time_step_no .ge. start_time_step) .and. (time_step_no& 
                     .le. end_time_step)) then 
                     do_average=.true. 
                     num_time_steps=time_step_no-start_time_step+1 
                     print *, "Doing average for time step: ",time_step_no 
                     print *, "Number of average time seps: ",num_time_steps 
                  else 
                     print *,"Not doing an average at this time step" 
                  end if 
               else 
                  print *,"Error getting the time step" 
               end if 
            else 
               print *, "Error reading variables from the .avg file" 
            end if 
         else 
            print *,"Open file error number: ",integer_error 
         end if 
      else 
         print *,"File does not exist" 
      end if 
   else 
      print *,"unable to get model name" 
   end if 
 
   if(do_average .and. .not. logical_error) then 
      !get number of vcs 
      call get_number_vcs(num_vcs, logical_error) 
      if(.not. logical_error) then 
         do current_vc=1,num_vcs,1 
            !get the number of cells 
            call get_cells_vc(current_vc,vc_cells, logical_error) 
            if(.not.logical_error) then 
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               do current_cell=1,vc_cells,1 
                  !get the current global cell index 
                  call get_cell_index_from_vc(current_cell, current_vc, & 
                     global_cell,logical_error) 
                  if(.not.logical_error) then 
                     !calculate variables here 
                     !u and up 
                     var=1 
                     var_int=var_indexes(var) 
                     call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                     if(.not. logical_error) then 
                        
local_averages(var,global_cell)=(local_averages(var,global_cell)& 
                           *real(num_time_steps-1)+value)/real(num_time_steps) 
                        !u_prime 
                        up=value-local_averages(var,global_cell) 
                     else 
                        print *,"Unable to get u value" 
                        exit 
                     end if 
                     !v and vp 
                     var=2 
                     var_int=var_indexes(var) 
                     call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                     if(.not. logical_error) then 
                        
local_averages(var,global_cell)=(local_averages(var,global_cell)& 
                           *real(num_time_steps-1)+value)/real(num_time_steps) 
                        !v_prime 
                        vp=value-local_averages(var,global_cell) 
                     else 
                        print *,"Unable to get v value" 
                        exit 
                     end if 
                     !w and wp 
                     var=3 
                     if (geom_index .eq. geom_threed) then 
                        var_int=var_indexes(var) 
                        call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                        if(.not. logical_error) then 
                           
local_averages(var,global_cell)=(local_averages(var,global_cell)& 
                              *real(num_time_steps-
1)+value)/real(num_time_steps) 
                        else 
                           print *,"Unable to get w value" 
                           exit 
                        end if 
                     else 
                        !is 2D 
                        value=0.0 
                        local_averages(var,global_cell)=0.0 
                     end if 
                     !w_prime 
                     wp=value-local_averages(var,global_cell) 
                      
                     !P and Pp 
                     var=4 
                     var_int=var_indexes(var) 
                     call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                     if(.not. logical_error) then 
                        
local_averages(var,global_cell)=(local_averages(var,global_cell)& 
                           *real(num_time_steps-1)+value)/real(num_time_steps) 
                        !v_prime 
                        Pp=value-local_averages(var,global_cell) 
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                     else 
                        print *,"Unable to get P value" 
                        exit 
                     end if 
                     !do other solver variables for this cell 
                     do var=5,8,1 
                        if ((vof_solve_module .eq. 1 .and. var .eq. 8) .or. 
(var .lt. 8)) then 
                           !vof is here, solve 
                           var_int=var_indexes(var) 
                           call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                           if(.not. logical_error) then 
                              
local_averages(var,global_cell)=(local_averages(var,global_cell)& 
                                 *real(num_time_steps-
1)+value)/real(num_time_steps) 
                              if(var.eq.8) then 
                                 !is VOF, store temporarily 
                                 inst_vof=value 
                              end if 
                           else 
                              print *,"Unable to get value 
for",global_var_name(var) 
                              exit 
                           end if 
                        else 
                           !no vof module insert dummy values 
                           value=0.0 
                           local_averages(var,global_cell)=value 
                           inst_vof=value 
                        end if 
                     end do 
 
                     !cell volume 
                     var=28 
                     var_int=var_indexes(var) 
                     call 
get_value_one_cell(var_int,global_cell,value,logical_error) 
                     if(.not. logical_error) then 
                        local_averages(var,global_cell)=value 
                     else 
                        value=-1.0 
                        local_averages(var,global_cell)=value 
                     end if 
                      
                     !do calculated variables 
                     !up*up 
                     
local_averages(9,global_cell)=(local_averages(9,global_cell)& 
                        *real(num_time_steps-1)+(up*up))/real(num_time_steps) 
                     !up*vp 
                     
local_averages(10,global_cell)=(local_averages(10,global_cell)& 
                        *real(num_time_steps-1)+(up*vp))/real(num_time_steps) 
                     !up*wp 
                     
local_averages(11,global_cell)=(local_averages(11,global_cell)& 
                        *real(num_time_steps-1)+(up*wp))/real(num_time_steps) 
                     !vp*vp 
                     
local_averages(12,global_cell)=(local_averages(12,global_cell)& 
                        *real(num_time_steps-1)+(vp*vp))/real(num_time_steps) 
                     !vp*wp 
                     
local_averages(13,global_cell)=(local_averages(13,global_cell)& 
                        *real(num_time_steps-1)+(vp*wp))/real(num_time_steps) 
                     !wp*wp 
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local_averages(14,global_cell)=(local_averages(14,global_cell)& 
                        *real(num_time_steps-1)+(wp*wp))/real(num_time_steps) 
                     !vof 
                     
local_averages(15,global_cell)=(local_averages(15,global_cell)& 
                        *real(num_time_steps-
1)+(inst_vof))/real(num_time_steps) 
                     !Pp*Pp 
                     
local_averages(16,global_cell)=(local_averages(16,global_cell)& 
                        *real(num_time_steps-1)+(Pp*Pp))/real(num_time_steps) 
                     !Pp*up 
                     
local_averages(17,global_cell)=(local_averages(17,global_cell)& 
                        *real(num_time_steps-1)+(Pp*up))/real(num_time_steps) 
                     !Pp*Pp 
                     
local_averages(18,global_cell)=(local_averages(18,global_cell)& 
                        *real(num_time_steps-1)+(Pp*vp))/real(num_time_steps) 
                     !Pp*Pp 
                     
local_averages(19,global_cell)=(local_averages(19,global_cell)& 
                        *real(num_time_steps-1)+(Pp*wp))/real(num_time_steps) 
                     !u skew 
                     
local_averages(20,global_cell)=(local_averages(20,global_cell)& 
                        *real(num_time_steps-
1)+(up*up*up))/real(num_time_steps) 
                     !v skew 
                     
local_averages(21,global_cell)=(local_averages(21,global_cell)& 
                        *real(num_time_steps-
1)+(vp*vp*vp))/real(num_time_steps) 
                     !w skew 
                     
local_averages(22,global_cell)=(local_averages(22,global_cell)& 
                        *real(num_time_steps-
1)+(wp*wp*wp))/real(num_time_steps) 
                     !p skew 
                     
local_averages(23,global_cell)=(local_averages(23,global_cell)& 
                        *real(num_time_steps-
1)+(pp*pp*pp))/real(num_time_steps) 
                     !u Kurtosis 
                     
local_averages(24,global_cell)=(local_averages(24,global_cell)& 
                        *real(num_time_steps-
1)+(up*up*up*up))/real(num_time_steps) 
                     !v Kurtosis 
                     
local_averages(25,global_cell)=(local_averages(25,global_cell)& 
                        *real(num_time_steps-
1)+(vp*vp*vp*vp))/real(num_time_steps) 
                     !w Kurtosis 
                     
local_averages(26,global_cell)=(local_averages(26,global_cell)& 
                        *real(num_time_steps-
1)+(wp*wp*wp*wp))/real(num_time_steps) 
                     !p Kurtosis 
                     
local_averages(27,global_cell)=(local_averages(27,global_cell)& 
                        *real(num_time_steps-
1)+(pp*pp*pp*pp))/real(num_time_steps) 
                  else 
                     print *,"unable to get global cell index" 
                     exit 
                  end if 
               end do 
            else 
               print *,"Unable to get number of cells for vc" 
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               exit 
            end if 
         end do 
      else 
         print *,"unable to get number of vcs" 
      end if 
   end if 
 
 
   !pass back to main solver 
   global_averages=local_averages 
end if 
    
! USER CODE END 
  RETURN 
 END SUBROUTINE uout 
!*********************************************************************** 
 SUBROUTINE uwrite_dtf 
 !DEC$ ATTRIBUTES DLLEXPORT :: uwrite_dtf 
!******* DO NOT REMOVE ABOVE LINE FOR MS WINDOWS OS ************ 
!*********************************************************************** 
! copyright (c) 1998  cfd research corp.  all rights reserved. 
! 
! purpose : for reading cell data from DTF file. 
! 
! This routine is called at the end of RUN when solver writes cell and  
! nodal the  
! DTF file for cell data. One may use write_cell_data_to_dtf, and  
! write_nodal_data_to_dtf() to write the cell/nodal data to the DTF. 
! or write_nodal_solution_to_dtf() to write nodal data. For this 
! access routine you need to send in nodal values, not cell values. 
! 
! NOTE : Solver addes a prefix "User_Cell_" for cell data and 
!        "User_Nodal_" for nodal data to the variable name. 
!        In CFD-VIEW list you will see the variable as "User_Nodal_<name>". 
!        When you want to read the variable using uread_dtf, use these  
!        prefixes accordingly. The reason solver adds these prefixes to  
!        avoid conflicts in names being used by solver. 
!----------------------------------------------------------------------- 
 
! Include required global variables declared in cfdrc_user module. 
  USE cfdrc_user, ONLY : int_p, real_p, string_length 
  USE cfdrc_user, ONLY : global_averages,global_var_name 
 
IMPLICIT NONE 
 
! Declare required local variables here. 
! USER VARIABLE DECLARATION BEGIN 
 
integer(int_p)::i !counting variable/s 
character(string_length):: varname !name placeholder for call 
real(real_p),dimension(:),allocatable::values 
logical::logical_error=.false. 
 
! USER VARIABLE DECLARATION END 
 
!----------------------------------------------------------------------- 
! Start writing code here. 
! USER CODE BEGIN 
 
allocate(values(size(global_averages,2))) 
print *,"Attempting to write user data" 
!print *,"UWRITE averages",global_averages(1,1) 
 
do i=1,size(global_var_name,1),1 
   varname=global_var_name(i) 
   values=global_averages(i,:) 
   call write_nodal_data_to_dtf(varname, size(global_averages,2), values, "", 
logical_error) 
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   call write_cell_data_to_dtf(varname, size(global_averages,2), values, "", 
logical_error) 
   if (logical_error) then 
      print *,"There was an error writing the nodal or cell data" 
      exit 
   end if 
end do 
 
 
! USER CODE END 
RETURN 
END SUBROUTINE uwrite_dtf  
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Appendix E Additional Measurements from the 

Experimental Data of Hay (1947) 

E.1. Introduction and Experimental Methodology  

Hay published the results of a study that towed a circular cylinder along a tow tank as a 

component of a larger study undertaken at Princeton University to investigate the 

“resistance of simple geometrically-shaped forms towed through the water surface” 

(Hay, 1947).  The bulk of the data from these experiments was presented as a set of 

images of the shape of the free surface that illustrated the flow conditions at different 

Reynolds and Froude Numbers.  Two cameras were used to capture these images with 

one above the free surface and the second below the surface and perpendicular to the 

cylinder as shown in Figure E-1. 

Flume End View

Sub-Surface
Camera

Free Surface
Camera

Flume Walls

Glass Window

 
Figure E-1 – Sketch of the two camera locations used in the experimental 

investigation of Hay with the direction of travel of the cylinder into the page. 
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In addition to the qualitative free surface descriptions the images were projected onto a 

screen and scaled measurements of wave height and lengths were made. 

Six wave shape parameters in total were measured, as illustrated in Figure E-2, but only 

four of these six, D1, L3, D3 and L0, will be used in this research.  The L2 and D2 

parameters were not used, as there was a very high degree of uncertainty in their 

description and, hence, their measurement.  L3 and D3 describes the length downstream 

from the cylinder and height above the at rest free surface, respectively, of the rooster 

tail, while D1 represents the height of the bow wave above the at rest free surface and 

Lac is the depth of the air column below the at rest free surface. 
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Figure E-2 – Sketch of the Measurement Locations for the Wave Shape 

Parameters 

As these measurements were scaled from projections of still images of the flow there 

are a number of additional sources of error that could have been introduced including 

parallax and projection distortion. In the original paper Hay acknowledged that there 

were going to be errors in the data but made no effort to quantify them. 

Further, as with all experimental data there were some of the parameters, shown in 

Figure E-2, which could either not be measured at each image or were not published by 

Hay.  However, during the examination of the photographic data for the present 

research a number of the plates were identified as suitable for measurement but were 
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not included in the tables published by Hay (1947).  Hence, measurements were taken 

from these plates for inclusion with the present work. 

E.2. Additional Wave Height Measurements 

In a similar method to that used by Hay, the wave shape parameters, shown in Figure 

E-2, were scaled from photographic plates1.  Whereas Hay projected the images onto a 

screen and scaled the data directly from the screen, Adobe Photoshop (Adobe Systems 

Incorporated, 2007) was used in the present work to measure the distances. 

Of the 64 plates taken through the side window with the camera perpendicular to the 

two-inch cylinder, three were suitable for additional measurement.  The remaining 

images either had been measured by Hay or were un-measurable due to shadowing or 

other optical effects.  Due to the size of the waves relative to the scale of the image, 

only the length to the crest of the rooster tail, L3, could be measured with certainty and 

is shown in Figure E-3, Figure E-4 and Figure E-5 for the 2”, 4” and 8” depths, 

respectively, at a velocity of 3ft/s. 

 
Figure E-3 – Two inch depth, two inch diameter cylinder at 3ft/s reproduced from 

Hay (1947) Plate 74. 

                                                

1 The photographic plates in the original publication (Hay, 1947) were all presented with the cylinder 
moving from left to right, so the flow appears to be moving from right to left.  However, to maintain the 
convention of left to right flows used in this thesis, the photographic images of Hay were mirrored. 
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Figure E-4 – Four inch depth, two inch diameter cylinder at 3ft/s reproduced from 

Hay (1947) Plate 75. 

 

 
Figure E-5 – Eight inch depth, two inch diameter cylinder at 3ft/s reproduced from 

Hay (1947) Plate 76. 
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Figure E-6 – Normalised rooster tail lengths as a function for Frd from Hay (1947). 
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Figure E-7 – Normalised rooster tail length as a function of Red from Hay (1947). 
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