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Abstract  1 

Purpose: Concurrent resistance and aerobic exercise (CE) is recommended to ageing populations; 2 

though is postulated to induce diminished acute molecular responses. Given that contraction-induced 3 

cytokine mRNA expression reportedly mediates remunerative post-exercise molecular responses, it is 4 

necessary to determine whether cytokine mRNA expression may be diminished after CE. 5 

Methods: Eight middle-aged men (53.3±1.8y; 29.4±1.4kg∙m
2
) randomly completed (balanced for 6 

completion order) 8×8 leg extensions at 70% maximal-strength (RE), 40min cycling at 55% of peak 7 

aerobic-workload (AE), or (workload-matched) 50% RE (4×8 leg extensions) and 50% AE (20min 8 

cycling) (CE). Muscle (v. lateralis) was obtained pre-exercise, and 1h and 4h post-exercise, and 9 

analyzed for changes of glycogen concentration, tumor necrosis factor (TNF)α, TNF receptor-1 and 2 10 

(TNF-R1/TNF-R2), interleukin (IL)-6, IL-6R, IL-1β, and IL-1 receptor-antagonist (IL-1ra).  11 

Results: All exercise modes up-regulated cytokine mRNA expression at 1h post-exercise comparably 12 

(TNFα, TNF-R1, TNF-R2, IL-1β, IL-6) (P<0.05). Expression remained elevated at 4h after RE and 13 

AE (P<0.05), though returned to pre-exercise levels after CE (P>0.05). Moreover, AE and RE up-14 

regulated IL-1β and IL-1ra expression, whereas CE up-regulated IL-1β expression only (P<0.05). 15 

Only AE reduced muscle glycogen concentration (P<0.05), whilst up-regulating receptor expression 16 

the greatest; though, IL-6R expression remained unchanged after all modes (P>0.05).  17 

Conclusions: In middle-aged men, all modes induced commensurate cytokine mRNA expression at 18 

1h post-exercise; however, only CE resulted in ameliorated expression at 4h post-exercise. Whether 19 

the RE or AE components of CE are independently or cumulatively sufficient to up-regulate cytokine 20 

responses, or whether they collectively inhibit cytokine mRNA expression, remains to be determined. 21 

Keywords: inflammation; TNF; interleukin; concurrent exercise; aerobic exercise; resistance 22 

exercise. 23 

 24 

 25 

 26 
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Introduction 27 

Exercise-induced skeletal muscle contraction is capable of up-regulating mRNA expression of many 28 

inflammatory cytokines in the post-exercise period (Nieman et al. 2003; Louis et al. 2007; Buford et 29 

al. 2009b; Nieman et al. 2004; Buford et al. 2009a; Vella et al. 2011). Importantly, it is during this 30 

period that mechanical and biochemical re-modelling and adaptive processes occur, many of which 31 

are reportedly initiated and modulated via cytokine interactions (Pedersen 2009; Kramer and 32 

Goodyear 2007; Gleeson et al. 2011; Tidball 2005). Inherent to these acute adaptive processes are 33 

mode-specific effects of the contractile stimulus; including myocyte injury and glycogen depletion, 34 

which are induced by resistance exercise (RE) and aerobic exercise (AE), respectively (Steensberg et 35 

al. 2001; Steensberg et al. 2002; Vella et al. 2011). Given that RE and AE occupy opposing ends of 36 

the strength-endurance continuum (Hawley 2009; Nader 2006), it has been postulated that serial 37 

completion of these diverse contractile stimuli, i.e. concurrent exercise (CE), promotes acute post-38 

exercise molecular signalling convergence and diminished adaptive responses (Hawley 2009; Nader 39 

2006). Thus, CE training is theorized to eventuate reduced mode-specific adaptations in comparison 40 

to RE (muscle mass and force production) or AE (oxidative and endurance capacity) alone (Hawley 41 

2009; Nader 2006). Despite these assumptions, it was recently shown in an acute study of untrained, 42 

middle-aged men that CE performed as 50% RE and 50% AE, respectively increased myofibrillar and 43 

mitochondrial muscle protein synthesis equivalently to RE or AE alone (Donges et al. 2012). 44 

An understanding of how cytokine mRNA expression responses are affected by the exercise mode is 45 

pertinent; especially in sedentary middle-aged populations at risk of chronic diseases related to 46 

reductions of muscle mass and oxidative capacity (Griewe et al. 2001; Rooyackers et al. 1996; Evans 47 

2010; Petersen and Pedersen 2005). Evidence supports that disease progression related to age- and 48 

dysfunctional cytokine-related diseases such as sarcopenia (Griewe et al. 2001), type II diabetes 49 

(T2D) (Pradhan et al. 2001), and cardiovascular disease (CVD) (Ridker et al. 2000) may be inhibited 50 

and/or attenuated via cytokine interactions. Problematically though, the predominance of literature 51 

pertaining to the acute cytokine mRNA response to exercise are derived from studies incorporating 52 

young, normal weight, active populations, or methodology that are physically (i.e. downhill running, 53 
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leg kicking) or temporally (2-5h) inappropriate (Louis et al. 2007; Nieman et al. 2004; Nieman et al. 54 

2003; Steensberg et al. 2001; Steensberg et al. 2003; Steensberg et al. 2002; Vella et al. 2011). Whilst 55 

these studies contribute valuable insight regarding cytokine expression after exercise; evidence of the 56 

effect of more age-appropriate exercise methodology for RE, AE, or CE in initially sedentary middle-57 

aged populations are necessary (Haskell et al. 2007; Ross et al. 2012; Donnelly et al. 2009). 58 

Currently, it remains unclear how appropriate mode-specific (Ross et al. 2012; Haskell et al. 2007) 59 

exercise-induced responses affect cytokine expression in sedentary middle-aged humans. Tumor 60 

necrosis factor (TNF)-α and interleukin (IL)-1β are mediators of apoptosis and immunity (Dinarello 61 

1996) that respond to myocyte injury and mononuclear cell activation, as classically induced by RE 62 

(Louis et al. 2007; Nieman et al. 2004), though their response to CE remains unexamined. 63 

Furthermore, whether receptors associated to TNFα (TNF-R1/TNF-R2) and IL-1β (IL-1 receptor 64 

antagonist [IL-1ra]) are expressed in accordance with TNFα and IL-1β remains unclear. While debate 65 

continues as to whether IL-6 retains pro- (adipose-derived) or anti-inflammatory (contraction-derived) 66 

localized and wider systemic actions; evidence shows that IL-6 is exponentially expressed according 67 

to glycogen depletion (Keller et al. 2001), as typically induced by AE (Steensberg et al. 2001; Nieman 68 

et al. 2003). However, as type II muscle fibres are the predominant source of IL-6 mRNA inducement 69 

(Hiscock et al. 2004), evidence indicates that RE may activate IL-6 in an intensity-based, as well as 70 

glycogen-based manner (Mendham et al. 2011). To date, these comparisons have not been determined 71 

between AE and RE, nor CE. Lastly, many of the substrate-based effects of IL-6 are exerted through 72 

the IL-6 receptor (IL-6R) (Keller et al. 2005). As IL-6R appears in accordance with IL-6 (Gray et al. 73 

2008; Keller et al. 2005), it may respond more to AE than RE; yet evidence for this response is 74 

lacking, and further the effect of CE on IL-6 and IL-6R expression has also not been examined.  75 

Thus given the aforementioned lack of data related to mode-induced cytokine expression, the purpose 76 

of the present study of sedentary middle-aged men was to examine the acute effects of combining RE 77 

and AE on post-exercise cytokine mRNA expression. Despite previous suggestions of molecular 78 

convergence with CE, based upon recent findings of equivalent molecular responses between modes, 79 

we hypothesized that CE would induce cytokine mRNA expression equivalently to full RE or AE.  80 
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Methods 81 

Subjects 82 

Eight sedentary middle-aged men (age range: 45-60y) men (data presented in Table 1) were recruited 83 

for the study. Subjects were not involved in regular or incidental physical activity (>30min on >1d ∙ 84 

wk
-1

) in the preceding 12 months. A physician overviewed subject’s medical history and baseline data 85 

for diabetes, cardiovascular disease, renal or hepatic disorders, arthritis, pulmonary disease, abnormal 86 

leukocyte sub-population count, periodontal disease, or any other condition associated with a systemic 87 

inflammatory response. Subjects confirmed with these conditions or those that were tobacco smokers 88 

or recently taking potentially confounding medications were not involved in the study. All subjects 89 

provided written informed consent prior to becoming involved in the study, which was approved by 90 

The University of Auckland Human Subjects Ethics Committee and conformed to standards for the 91 

use of human subjects in research as outlined in the Declaration of Helsinki. 92 

Baseline Test Procedures 93 

A schematic diagram of all study procedures is presented in Figure 1. Following pre-screening and 94 

recruitment, subjects underwent anthropometric measures (height, mass, waist and hip girth) and 95 

supine whole-body dual-energy x-ray absorptiometry (model DPX+ with software version 3.6y; GE-96 

Lunar, Madison, WI, USA) for estimation of absolute fat and fat-free mass. During this visit, subjects 97 

completed familiarization procedures in the Exercise Science Laboratories, including explanation, 98 

demonstration and practice of all exercise testing and exercise trial procedures. One week later, 99 

subjects returned and completed (in order; separated by 30min) one repetition-maximum (1RM) 100 

testing of the quadriceps muscle group on a leg extension machine (Fitness Works, Auckland, New 101 

Zealand) and an incremental graded exercise test (GXT) on an electronically-braked cycle ergometer 102 

(Velotron, RacerMate Inc., Seattle, Washington, USA). The GXT commenced at 2.0W ∙ kg
-1

 body 103 

mass for 150s, increased by 50W for 150s for the 2nd stage, and increased by 25W every 150s for 104 

subsequent stages until volitional exhaustion to determine peak oxygen consumption (VO2 peak) and 105 

power output associated with VO2 peak. Pulmonary gas exchange was determined by measuring O2 and 106 

CO2 concentrations and ventilation to calculate VO2 using a calibrated metabolic gas analysis system 107 

(Moxus modular oxygen uptake system; AEI Technologies, Pittsburgh, USA). 108 
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Nutritional Procedures 109 

After baseline testing (Figure 1), subjects completed three exercise trials (separated by ≥7 d recovery), 110 

that were randomized for order of completion to ameliorate potential for order effects in study data. 111 

For the 24h prior to the first exercise trial, macronutrient composition of all ingested food and 112 

beverages was documented in a diary provided and overviewed by the research team. To ensure 113 

homogeneity regarding each pre-trial dietary preparation, for the night prior to testing of all three 114 

trials subjects were provided with and consumed the same meal (beef lasagne 400g; 407cal. [1700 115 

kJ]; 56.4g carbohydrate; 10.0g fat; 19.6g protein). Given that intra-muscular and intra-hepatic 116 

glycogen stores are critical regulators of ensuing exercise-induced cytokine mRNA responses 117 

(Steensberg et al. 2001), dietary intake was further supplemented with additional carbohydrate at a 118 

rate of 3g ∙ kg
-1

 of body mass (270 ± 27g) to assist pre-trial saturation. Nutritional composition of the 119 

additional carbohydrate source was: 1466g total mass; 1319cal. (5498 kJ); 270.9g carbohydrate; 37.9g 120 

fat; 24.0g protein. For the two ensuing exercise trials, subjects replicated documented macronutrient 121 

dietary intake from the 24h prior to the first trial in addition to the supplemental carbohydrate intake.  122 

Exercise Trial Procedures 123 

After a 10h overnight fast from the provided meal, subjects arrived at the Laboratory for the first of 124 

three exercise trials, including: 1) a RE trial consisting of 8 sets of 8 repetitions of machine-based leg 125 

extension exercise at 70% of 1RM, with sets separated by 150s rest. The RE trial had a total duration 126 

of ~24 min (8×25s sets + 7×150s rest periods), and total exercise duration of  3min 20s; 2) an AE trial 127 

consisting of 40min of stationary ergometer cycling at 55% of the peak aerobic workload identified in 128 

the GXT; 3) a CE trial which comprised 50% of the RE and AE trials. Accordingly, 4 sets of 8 129 

repetitions of leg extension exercise at 70% of 1RM (with 150s rest) were initially completed, and 130 

promptly after the fourth set, 20min stationary ergometer cycling at 55% of peak aerobic workload 131 

was undertaken. The CE trial had a total duration of ~30 min (4×25s sets + 3×150s rest periods = ~9 132 

min + 1 min change-over from RE to AE + 20 min cycling), and total exercise duration of 21.5 min. 133 

Of the 8 subjects, 3 completed RE, 3 completed AE, and 2 completed CE as their first trial. The 134 

ensuing two trials were again randomized and balanced as evenly as possible (e.g. 3,3, and 2). 135 
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Machine and ergometer settings documented during baseline testing were respectively standardized 136 

for the RE and CE trials (seat height position, seat backrest position, lever arm positioning) and AE 137 

and CE trials (ergometer seat height and handlebar height). During cycling, telemetry-based heart rate 138 

(HR) (Vantage NV, Polar, Finland) was recorded every 5min, and pulmonary gas exchange was 139 

measured for 5min at 5 and 15min on a metabolic cart (Moxus modular oxygen uptake system; AEI 140 

Technologies, Pittsburgh, USA) calibrated for ventilation volume and fractional gas concentration. 141 

Rating of perceived exertion (RPE; CR 0-10 scale) was recorded after each set of leg extension 142 

exercise, every 5min during cycling exercise, and 10min post-session for all three trials.  143 

Muscle Biopsy Procedures 144 

As described previously (Donges et al. 2012), as a means of alleviating unnecessary soreness to 145 

subjects, a pre-exercise muscle biopsy was collected for trial 1 only (Figure 1). Thus for the remaining 146 

two trials, muscle was collected at 1h and 4h post-exercise only. Given evidence that fine-needle 147 

muscle biopsy procedures may influence inflammatory responses independent of performed exercise 148 

(Friedmann-Bette et al. 2012); we chose to collect muscle from m. vastus lateralis in an alternating 149 

manner (trial 1 and 3 on the same leg; trial 2 the opposing leg) in order to allow 2 weeks recovery 150 

between sampling of a potentially confounding site (with respect to chronic inflammatory processes). 151 

After administration of local anaesthetic (2% Lignocaine) at a site ~ 15cm superior to the patella, a 152 

5mm Bergstrom needle modified with suction was inserted into the incision site for collection of a 153 

specimen which upon excision was promptly blotted on filter paper, removed of visible fat or 154 

connective tissue, frozen in liquid nitrogen, and stored at -80°C for ensuing real-time PCR analyses.  155 

Muscle Glycogen Procedures 156 

Muscle glycogen analysis was carried out according to the acid hydrolysis method (Adamo and 157 

Graham 1998). Whilst remaining proximal to a bed of dry-ice, ~5-8mg of freeze-dried muscle was 158 

dissected of visible blood, fat or connective tissue. Samples were hydrolysed in weighed tubes with 159 

500µl of 2M HCl and incubated in a heating block for 2h at 99°C. After incubation, tubes were re-160 

weighed and any loss of weight was replaced with water. After weight normalization, 500µl of 2M 161 

NaOH was added for pH neutralization and tubes were vortexed for 1min. Samples were measured for 162 
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glucose concentration (GEM primer 3500; Instrumentation Laboratory, Lexington, MA), of which the 163 

data are expressed as a normalized concentration relative to dry weight (Adamo and Graham 1998). 164 

Real-Time Polymerase Chain-Reaction Procedures 165 

RT-PCR procedures utilized in this study have been reported in full previously (Donges et al. 2012); 166 

though an abbreviated description is provided here. Muscle was homogenized and RNA isolated with 167 

TRIzol®Plus reagent (Invitrogen, Carlsbad, CA, USA) and chloroform, respectively. Isolated RNA 168 

was mixed with glycogen in diethylpyrocarbonate treated water (DEPC-tx H20) and 1-Propanol to 169 

precipitate the RNA, which was tested for concentration and purity (NanoDrop® 1000 UV-Vis 170 

spectrophotometry, NanoDrop Technologies, New Zealand) and size and density (Agilent 2100 171 

Expert Bioanalyser, Agilent technologies, Palo Alto, California, USA). Mean RNA integrity number 172 

(RIN) of RNA included in the study was 8.8±0.4; range of RIN: 7.4-9.2. RNA were then treated with 173 

DNase1 (Invitrogen, Carlsbad, CA, USA), reverse-transcribed using a TaqMan® SuperScript™ VILO 174 

cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). TaqMan® Universal PCR Master Mix™ and 175 

TaqMan® Gene Expression assays (Applied Biosystems, Foster City, CA, USA) were used to analyze 176 

mRNA of TNFα (Hs01113624_g1); TNF-R1 (Hs01042313_m1); TNF-R2 (Hs00961749_m1); IL-1β 177 

(Hs01555410_m1); IL-1ra (Hs00893626_m1); IL-6 (Hs00985639_m1); IL-6R (Hs01075666_m1) and 178 

GAPDH as a control. For each subject, all samples were simultaneously analyzed in triplicate on the 179 

same plate. PCR was performed using a7900HT Fast Real-Time PCR System and SDS 2.3 software 180 

(Applied Biosystems, Foster City, CA, USA). Measurements of relative distribution of the target gene 181 

were performed, a cycle threshold (CT) value obtained by subtracting GAPDH CT values from target 182 

CT values, and expression of the target was evaluated by the 
ΔΔ

CT algorithm (Pfaffl et al. 2002).   183 

Statistical Analysis 184 

Data are presented as mean ± standard error of mean (SEM). A within-subject repeated measures 185 

design was used for the current study. All data were analysed using two-factor (condition × time) 186 

analysis of variance (ANOVA) with repeated measures. Where significant interactions were identified 187 

in the ANOVA, Tukey’s pairwise comparisons were applied post-hoc to determine differences 188 

between means for main effect and interaction. For all analyses, statistical significance was accepted 189 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00168966_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=GLUT4&kwdropdown=all_GE&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
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at P<0.05. All statistical procedures were conducted using PASW statistics (version 18.0 SPSS Inc, 190 

Chicago, IL) and the Relative Expression Software Tool (REST©) (Pfaffl et al. 2002).  191 

Results 192 

Heart Rate, VO2 Consumption, and RPE  193 

HR (5, 10, 15, 20min) and VO2 (5, 15min) (Figure 2) were not different between AE and CE at any 194 

time-point (P>0.05). As the resistance lifted for each set of RE and CE were identical, there was no 195 

difference in the applied load between trials (P>0.05). Differences were observed between trials for 196 

RPE (Figure 2), with subjects rating RE more strenuous than AE trial at all time-points (P<0.05). 197 

Within the CE condition, subjects rated the AE component as less strenuous compared to the RE 198 

component (P<0.05) and the latter half of the AE condition (Figure 2; 25-35min time-points; P<0.05).  199 

Changes of Muscle Glycogen  200 

Changes of muscle glycogen concentration are presented in Figure 3A. Pre-exercise glycogen 201 

concentration (286 ± 40 mmol∙L
-1

) was not reduced after RE (1h = 257 ± 48 mmol∙L
-1

; 4h = 244 ± 45 202 

mmol∙L
-1

) or CE (1h = 256 ± 38 mmol∙L
-1

; 4h = 234 ± 46 mmol∙L
-1

) (P>0.05); though was 203 

significantly reduced at 1h after AE (1h = 186 ± 34.0 mmol∙L
-1

) (P<0.05). The 4h post-exercise 204 

concentration (4h = 191 ± 30.6 mmol∙L
-1

) after AE was not significantly different to pre-exercise 205 

concentration (P>0.05).  206 

Post-Exercise Cytokine mRNA Expression 207 

Cytokine mRNA expression are presented in Figure 3 for mode-based fold-change comparisons, and 208 

Figure 4 for cytokine and cytokine receptor time-course responses. 209 

TNFα mRNA Expression 210 

All exercise modes up-regulated TNFα mRNA expression (Figure 3B) at 1h post-exercise (RE = 2.7 ± 211 

0.5; AE = 1.8 ± 0.3; CE = 2.5 ± 0.3 (P<0.05); however, expression only remained elevated at 4h post-212 

exercise after RE (3.0 ± 0.7) and AE (2.4 ± 0.4) (P<0.05; Figure 3B and Figure 4A). Accordingly, at 213 

4h post-exercise, expression of TNFα was significantly greater for RE than CE (P<0.05).  214 
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TNF-R1 and TNF-R2 mRNA Expression 215 

TNF-R1 mRNA expression (Figure 3C) increased at 1h post-exercise after AE (1.7 ± 0.1; P<0.05 vs. 216 

CE) and RE (1.5 ± 0.2) (P<0.05); though not after CE (P>0.05). TNF-R1 expression at 4h post-217 

exercise was not increased above pre-exercise levels by any mode (P>0.05; Figure 3C and Figure 4B). 218 

For TNF-R2 (Figure 3D), all modes increased mRNA expression at 1h post-exercise (RE = 2.3 ± 0.4; 219 

AE = 3.1 ± 0.5; CE = 2.6 ± 0.4) (P<0.05); though at 4h post-exercise, expression remained elevated 220 

after AE only (1.9 ± 0.4; P<0.05) (Figure 3D and Figure 4B). 221 

IL-1β mRNA Expression 222 

All modes up-regulated IL-1β mRNA expression (Figure 3E) at 1h post-exercise (RE = 2.0 ± 0.4; AE 223 

= 3.1 ± 0.6; CE = 2.9 ± 0.8) (P<0.05); with expression maintained to 4h after RE (4.4 ± 1.1) and AE 224 

(4.1 ± 1.1) (P<0.05), though not CE (P>0.05) (Figure 3E and Figure 4B). Expression of IL-1β at 4h 225 

post-exercise after AE was greater than CE (P<0.05), with RE showing a trend for the same (p=0.07).  226 

IL-1ra mRNA Expression 227 

AE up-regulated IL-1ra mRNA expression (Figure 3F) at 1h post-exercise (4.9 ± 0.9; P<0.05); though 228 

there was no change in expression after RE or CE (P>0.05). At 4h post-exercise, IL-1ra expression 229 

remained increased in response to AE (4.4 ± 1.5; P<0.05), and for RE, increased to significant levels 230 

compared to pre-exercise (3.3 ± 1.1; P<0.05; Figure 3F and Figure 4B). The expression of IL-1ra at 231 

4h post-exercise after AE was significantly greater than that after CE (P<0.05).     232 

IL-6 and IL-6R mRNA Expression 233 

All exercise modes up-regulated IL-6 expression (Figure 3G) at 1h post-exercise (CE = 4.0 ± 0.7; RE 234 

= 3.0 ± 0.6; AE = 3.4 ± 0.5) (P<0.05); with expression maintained to 4h post-exercise after RE (3.4 ± 235 

0.6) and AE (2.6 ± 0.7), though not CE (2.0 ± 0.4) (P>0.05) (Figure 3G and Figure 4). The mRNA 236 

expression of IL-6 at 4h post-exercise after RE was significantly greater than after CE (P<0.05). The 237 

mRNA expression of IL-6R was not altered in response to the exercise modes (P>0.05) (Figure 3H). 238 
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Discussion 239 

Previous investigations have provided valuable context regarding acute cytokine mRNA expression 240 

responses to exercise, though typically incorporate young, normal weight, trained populations, and 241 

exercise modes that appear inappropriate for untrained, overweight, middle-aged populations (Louis 242 

et al. 2007; Nieman et al. 2004; Nieman et al. 2003; Steensberg et al. 2001; Steensberg et al. 2003; 243 

Steensberg et al. 2002; Vella et al. 2011). The data of the current study contributes mode-specific, 244 

post-exercise cytokine expression information that may provide scope regarding associated chronic 245 

training responses to these modes. Specifically, data from this study suggests that: 1) in comparison to 246 

isolated RE or AE completion, duration-matched CE induces a reduced pro-inflammatory (TNFα/IL-247 

1β) expression response during the 1-4h post-exercise period, and as will be discussed, may have 248 

implications regarding compensatory molecular mechanisms related to skeletal muscle hypertrophy; 249 

2) RE is capable of up-regulating IL-6 mRNA expression (1-4h) in the absence of muscle glycogen 250 

depletion; 3) despite initial up-regulation of IL-6 mRNA expression after CE (1h), expression is 251 

ameliorated from 1-4h post-exercise, and may have bio-energetic adaptive implications given the 252 

reported role of IL-6 in substrate metabolism; 4) AE up-regulated cytokine receptor mRNA 253 

expression the greatest, whereas RE and CE induced a lesser response. Chronic changes in proteins 254 

are reportedly the result of cumulative effects of transient changes in mRNA transcription (Yang et al. 255 

2005). As such, reduced receptor expression may prospectively indicate reduced systemic abundance 256 

of these receptors, and a diminished capacity to bind or coordinate respective pro-inflammatory 257 

member’s implicated in chronic low-grade systemic inflammation (i.e. TNFα, IL-1β, etc).  258 

In the present study TNFα and IL-1β mRNA were equivalently up-regulated in expression at 1h post-259 

exercise by all modes. However, expression remained elevated at 4h post-exercise after RE and AE, 260 

though returned to non-significant levels after CE. Numerous studies have reported that CE training 261 

results in diminished muscle cross-sectional area and strength gains in comparison to RE training 262 

(Bell et al. 2000; Kraemer et al. 1995; Nelson et al. 1990). The high-intensity contractions inherent in 263 

a bout of RE subject myofibers to injurious forces and the induction of a transient inflammatory 264 

response (Tidball 2005; Vella et al. 2011). Respondent mononuclear cells, such as neutrophils and 265 
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macrophages, can up-regulate TNFα and IL-1β expression and facilitate mechanisms related to cell 266 

cycle and apoptosis in compromised myocytes, thus initiating repair and remuneration processes 267 

related to hypertrophy (Steensberg et al. 2002; Louis et al. 2007; Vella et al. 2011). Accordingly, it 268 

may be that acute cytokine responses assist explaining the modulation of these hypertrophic processes 269 

(Vella et al. 2011). Conversely, a counter view point suggest that as muscle protein synthesis (MPS) is 270 

inhibited when ATP availability is compromised (Bylund-Fellenius et al. 1984), the AE component of 271 

CE may acutely antagonise MPS responses to CE, and chronically result in an attenuated hypertrophy 272 

response in comparison to isolated RE completion (Nader 2006). Regardless, taken together with 273 

previous comparisons of duration-matched CE and RE, wherein only RE up-regulated myogenin and 274 

differentiation expression (Donges et al. 2012), the reduced post-exercise TNFα/IL-1β expression in 275 

the current study may be indicative of diminished gains in muscle mass after CE in comparison to RE.   276 

The present study highlights exercise-induced up-regulation of IL-6 mRNA expression, wherein all 277 

modes induced comparable expression at 1h, yet CE resulted in ameliorated expression by 4h post-278 

exercise. Debate continues as to whether IL-6 retains pro- or anti-inflammatory mechanisms of action 279 

(Petersen and Pedersen 2005; Krook 2008). However, when induced via muscle contraction, IL-6 is 280 

reported to facilitate insulin action and glucose uptake, in addition to lipid oxidation and turnover 281 

(Petersen and Pedersen 2005; Pedersen 2009; Steensberg et al. 2002; Kramer and Goodyear 2007). 282 

Accordingly, IL-6 mRNA are expressed exponentially based on muscle glycogen depletion, as is 283 

classically induced by AE (Steensberg et al. 2001; Nieman et al. 2003; Keller et al. 2001). In contrast,  284 

a previous finding that type II fibres are the predominant source of IL-6 mRNA inducement (Hiscock 285 

et al. 2004) implies that RE may up-regulate IL-6 expression in an intensity-based manner. These 286 

suppositions may be supported by a recent study of untrained middle-aged men, which showed an 287 

equivalent plasma IL-6 response between duration-matched RE and AE (Mendham et al. 2011). In the 288 

current study, the finding that AE, but not RE, reduced muscle glycogen, concomitant with similar 289 

expression of IL-6 between modes, provides evidence that RE can up-regulate IL-6 mRNA expression 290 

in the absence of glycogen depletion. In addition, our data shows for the first time that CE results in 291 

acute diminishment of IL-6 mRNA expression in comparison to RE or AE; which is novel given that 292 
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AE and RE were equivalent in IL-6 expression when undertaken in isolation. Given that IL-6 may 293 

operate as an energy sensor and signal to numerous cellular targets involved in substrate metabolism 294 

(MacDonald et al. 2003), the finding that CE results in ameliorated post-exercise expression may have 295 

implications related to post-exercise metabolism and chronic oxidative adaptations (Krook 2008).  296 

Accumulating evidence implicates TNFα, IL-1β and IL-6 (adipose tissue macrophage-derived) in the 297 

aetiological progression of insulin resistance and T2D (Pradhan et al. 2001), as well as atherosclerosis 298 

and CVD (Ridker et al. 2000). The pro-inflammatory actions of IL-6, TNFα, and IL-1β are under 299 

inhibitory and coordinative control via their respective cytokine receptors (i.e. IL-6R, TNF-R1/R2, 300 

IL-1ra) (Dinarello 1996; Febbraio et al. 2010). Evidence suggests that chronic systemic inflammation 301 

and associated disease conditions (T2D, CVD) may be exacerbated when these receptor proteins are 302 

insufficient in systemic presence (Dinarello 1996; Febbraio et al. 2010). Chronic adaptive responses 303 

that govern such maintenance at the cellular level appear to be the result of cumulative effects of 304 

transient changes in mRNA transcription (Yang et al. 2005). Thus, acute exercise-induced receptor 305 

mRNA expression may explain chronic reductions in pro-inflammatory cytokines after training; 306 

however in-vivo evidence for these proposed effects in humans remains unclear (Smith et al. 1999).  307 

In the current study, IL-6R mRNA expression did not change in response to exercise, which is in 308 

opposition to that observed by others (Keller et al. 2005). In contrast, TNF-R1, TNF-R2, and IL-1ra 309 

expression were up-regulated post-exercise. Given that IL-6 is capable of activating the expression of 310 

the aforesaid receptors (Steensberg et al. 2003; Petersen and Pedersen 2005), it is surprising that RE 311 

induced a lesser receptor response when compared to AE. This is particularly the case given that RE 312 

induced IL-6 expression comparable to AE at 1h, and further up-regulated expression at 4h more so 313 

than AE. In addition, CE had minimal effect on the respective receptors, up-regulating only TNF-R2; 314 

yet as was the case for other up-regulated cytokines, CE resulted in ameliorated expression at 4h post-315 

exercise. Collectively, these mode-based data for cytokine receptor expression suggests that it may be 316 

the depletion of muscle glycogen which is influential (Keller et al. 2005). In support, RE and CE did 317 

not reduce glycogen concentration, and as mentioned, may be seen to have had little effect on receptor 318 
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expression. Future research is needed to examine and provide further verification as to whether this 319 

indeed was the case. Nevertheless, the data indicate that AE shows the greatest capacity to induce 320 

cytokine receptor expression and may provide further support for AE regarding reported systemic 321 

reductions of pro-inflammatory cytokines (Stewart et al. 2007; Smith et al. 1999; Conraads et al. 322 

2002). 323 

In conclusion, in untrained middle-aged men AE demonstrated the greatest capacity to up-regulate 324 

cytokine mRNA expression, and was the only mode to reduce muscle glycogen. Though there was no 325 

effect of any exercise mode on IL-6R mRNA expression, AE up-regulated receptor-based cytokine 326 

expression (TNF-R1, TNF-R2, IL-1ra) to a greater extent than RE and CE. RE induced comparable 327 

IL-6 mRNA expression as AE, though in contrast, this occurred in the absence of glycogen reduction. 328 

We have shown for the first time that duration-matched concurrent AE and RE results in ameliorated 329 

acute cytokine mRNA expression from 1-4h post-exercise, and warrants further research as to 330 

whether these acute findings may have chronic implications regarding exercise-induced adaptive 331 

processes. As such, in comparison to AE or RE, future research should determine whether it is a lesser 332 

dose (i.e. 50%) of each respective contractile stimulus, or the addition of these divergent stimuli that 333 

promotes reduced cytokine mRNA expression. Further enquiry should also appraise the relationship 334 

between intra-muscular glycogen reduction and cytokine receptor (TNF-R1/R2, IL-1ra) expression.  335 
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                                             Table 1 – Subject baseline data. 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Measure     Value 

Age (y) 53.3 ± 1.8 

Height (cm) 176.5 ± 2.0 

Mass (kg) 90.2 ± 3.1 

Body fat (kg) 27.0 ± 2.3 

Body fat (%) 30.5 ± 1.7 

Waist girth (cm) 100.0 ± 2.8 

Waist : hip ratio  0.96 ± 0.02 

Systolic BP (mmHg) 125 ± 3 

Diastolic BP (mmHg) 82 ± 2 

VO2peak (ml ∙ kg
-1

 ∙ min
-1

) 39.1 ± 2.9 

Wpeak (W) 235 ± 20 

Leg extension 1RM (kg) 76 ± 5 

 
Data are mean ± standard error of the mean 

(n=8). BP, blood pressure; Wpeak, peak 

workload identified during graded exercise 

testing; 1RM, one-repetition maximum. 


