
TITLE: EVIDENCE OF DISTURBED SLEEP AND INCREASED ILLNESS IN 1 

OVERREACHED ENDURANCE ATHLETES. 2 

 3 

Authors: Christophe HAUSSWIRTH
1
, Julien LOUIS

1
, Anaël AUBRY

1
, Guillaume BONNET

2
, Rob 4 

DUFFIELD
3
 & Yann LE MEUR

1
* 5 

 6 

1 
National Institute of Sport, Expertise and Performance, Laboratory of Sport, Expertise and 7 

Performance, Paris, France 8 

2  
University Paris 13 North, Sorbonne Paris City, Laboratory of Functional and Cellular Responses to 9 

Hypoxia, EA2363, Bobigny, France 10 

3 
Sport and Exercise Discipline Group, UTS:Health, University of Technology Sydney (UTS), 11 

Australia 12 

 13 

* Corresponding author:  14 

Yann LE MEUR, PhD 15 

National Institute of Sport, Expertise and Performance 16 

Laboratory of Sport, Expertise and Performance  17 

11, avenue du tremblay 18 

75012 PARIS 19 

FRANCE 20 

 Email: yann.le-meur@insep.fr 21 

Tel: +33 1 41 74 43 54 22 

Fax: +33 1 41 74 45 35 23 

 24 

Running title: Overreaching, sleep and illness 25 

 26 

Disclosure funding received for this work: We received funding for research on which this article is 27 

based from the French Anti Doping Agency. The authors report no conflict of interest. The results of 28 

the present study do not constitute endorsement by the American College of Sports Medicine. 29 



ABSTRACT 30 

 31 

Purpose: To examine whether i) objective markers of sleep quantity and quality are altered in 32 

endurance athletes experiencing overreaching in response to an overload training program and ii) 33 

whether potential reduced sleep quality would be accompanied with higher prevalence of upper 34 

respiratory tract infections in this population. 35 

Methods: Twenty seven trained male triathletes were randomly assigned to either overload (n=18) or 36 

normal (CTL, n=9) training groups. Respective training programs included a 1-week moderate training 37 

phase, followed by a 3-week period of overload or normal training, respectively and then a subsequent 38 

2-week taper. Maximal aerobic power and oxygen uptake ( ̇O2max) from incremental cycle ergometry 39 

were measured after each phase, whilst mood states and incidences of illness were determined from 40 

questionnaires.  Sleep was monitored every night of the 6 weeks using wristwatch actigraphy. 41 

Results: Nine of the 18 overload training group subjects were diagnosed as functionally overreached 42 

(F-OR) after the overload period, as based on declines in performance and  ̇O2max with concomitant 43 

high perceived fatigue (p<0.05), whilst the nine other overload subjects showed no decline in 44 

performance (AF, p>0.05). There was a significant time × group interaction for sleep duration (SD), 45 

sleep efficiency (SE) and immobile time (IT). Only the F-OR group demonstrated a decrease in these 46 

three parameters (-5.4±5.3%, -2.1±2.0% and -5.7±5.0%, for SD, SE and IT, respectively, p<0.05), 47 

which was reversed during the subsequent taper phase. Higher prevalence of upper respiratory tract 48 

infections were also reported in F-OR (67%, 22%, 11% incidence rate, for F-OR, AF and CTL, 49 

respectively). 50 

Conclusion: This study confirms sleep disturbances and increased illness in endurance athletes who 51 

present with symptoms of F-OR during periods of high volume training.  52 

 53 

Keywords: fatigue; overtraining; endurance training; recovery; immunity   54 



INTRODUCTION 55 

 56 

 Paragraph 1. Increases in training intensity or volume are typically undertaken by athletes in 57 

an attempt to enhance physiological adaptation and improve physical performance. However, when 58 

the balance between appropriate training stress and adequate recovery is disrupted, an abnormal 59 

training response may occur and a state of short-term "overreaching" (functional OR, F-OR) (23) may 60 

develop, resulting in a decline in performance. Even though the F-OR state is generally reversed when 61 

an appropriate period of recovery is provided (~1-3 weeks) (18, 23), it can compromise competition 62 

outcomes in the short term, particularly when insufficient recovery is available prior to competition. 63 

However, critical reviews of existing scientific literature continue to conclude that the underlying 64 

causes of F-OR in endurance athletes remain uncertain (11, 23, 26, 36).  65 

 66 

 Paragraph 2. One of the most commonly reported methods for managing fatigue and 67 

enhancing recovery is obtaining adequate passive rest and sufficient sleep (25, 31). The restorative 68 

qualities of sleep for maintaining optimal bodily function are well recognized. The recovery of 69 

cognitive processes and metabolic functions, both of which are important contributors to exercise 70 

performance, can be affected by the quality and quantity of sleep (31). Despite health-based survey 71 

research reporting associations between regular moderate physical activity and better sleep (5), few 72 

studies have reported alterations in sleep quality in response to highly demanding training programs 73 

(19, 35). Taylor et al. (35) measured sleep via polysomnography during the ‘onset of training’, ‘heavy 74 

training’ and during the ‘pre-competition taper’ in elite female swimmers. Sleep onset latency, time 75 

awake after sleep onset, total sleep time, rapid eye movement and sleep times were similar at all three 76 

training phases but the number of movements during sleep was significantly  higher (6%) during 77 

higher training volumes, suggesting some alteration to sleep. Nevertheless, the improvement in 78 

performance time and low levels of tension and anger at peak training suggests that the swimmers 79 

were not F-OR. Recently, Fietze et al. (7) used wrist actigraphy during a 67-day period of high 80 

physical and mental stress to study sleep patterns in 24 classical ballet dancers before a ballet premiere 81 

performance. They found small but significant reduction in sleep duration (-6%), in sleep efficiency (-82 



2%), in time in bed (-3%) and an increase in wakefulness after sleep onset (+3%). Sleep onset latency 83 

did not change. Nevertheless, these authors did not report changes in physical performance in response 84 

to the prescribed overload program, making clear conclusions for sleep disruption in OR athletes 85 

difficult. However, studies during which sleep was monitored in athletes who demonstrated clear signs 86 

of OR (i.e. high perceived fatigue and decreased performance), remain few and involve self-reporting 87 

of reduced perceived  subjective sleep quality (13, 14).  Given such equivocal findings, a recent joint 88 

consensus statement led Meeusen et al. (23) to recommend additional research to determine the 89 

relationship between F-OR and altered sleep patterns.  90 

 91 

 Paragraph 3. Past research showed that aspects of both innate and adaptive immunity are 92 

depressed during sustained periods of heavy training (for review, (38)). An imbalance between 93 

training loads and recovery has been shown as a major contributor to illness (38). These abnormalities 94 

share similarities with impairment in immune function observed after moderate sleep deprivation (33).  95 

Vgontzas et al. studied the effects of modest sleep restriction from 8 to 6h per night for 1 week in 25 96 

young, healthy, normal sleepers for 12 consecutive nights in a sleep laboratory (37). Their results 97 

showed that modest sleep loss is associated with significant increased secretion of pro-inflammatory 98 

cytokines, suggesting a link between the recuperative processes of sleep and the immune system. 99 

Similarly, Cohen et al. (4) showed that insufficient sleep volume over consecutive days can impair 100 

immune function, and increase the risk of developing upper respiratory tract infections. These authors 101 

reported that participants with less than 7 hours of sleep were 2.94 times more likely to develop a 102 

‘cold’ than those with 8 hours or more of sleep once administered nasal drops containing a rhinovirus 103 

and monitored for ensuing development of a clinical cold. The association with sleep efficiency was 104 

also graded, with participants reporting <92% sleep efficiency 5.5 times more likely to develop a cold 105 

than those with >98% efficiency. Taken together, these results have led some authors to suggest that 106 

the potential immunosuppressive effects of overreaching may act through sleep disturbances (38). 107 

However, no scientific investigation to date provides evidence of this relationship to substantiate this 108 

argument.  109 

 110 



Paragraph 4. The aim of the present study was therefore to determine whether changes in 111 

objective sleep parameters were evident between an experimental group of triathletes developing F-112 

OR compared to a control group. After one week of light training (baseline), the experimental group 113 

completed a 3-week overload period followed by a 2-week taper. By programming intensified training 114 

over a large population of endurance athletes (n = 28), we hypothesized that some participants would 115 

demonstrated signs of F-OR (i.e. transient reduced performance). By this way, the present research 116 

gave us also the opportunity to determine whether sleep disturbances would be observed during an 117 

overload period in participants led to F-OR. In the light of past literature, we hypothesized that the 118 

development of F-OR would be accompanied by a decline in sleep quality and sleep quantity. 119 

Furthermore, we investigated whether potential presence of F-OR and reduced sleep quality in F-OR 120 

athletes would be accompanied with higher prevalence of upper respiratory tract infections (URTI). 121 

 122 

 123 

MATERIAL AND METHODS 124 

 125 

Subjects 126 

 127 

 Paragraph 5. Forty well-trained triathletes volunteered to participate in this study. All subjects 128 

had been competing for 3 years and were training a minimum of 7 times per week. During the 129 

experimental period, 7 subjects did not follow the protocol due to injury or personal obligations and 130 

were excluded from subsequent analyzes. Additionally, 5 participants, who worked at night with 131 

irregular schedules were excluded from subsequent analyzes. One subject was also excluded due to 132 

technical problems with equipment. The final sample size included in analysis was  n = 27. The 133 

experimental design of the study was approved by the Ethical Committee of Saint-Germain-en-Laye 134 

(acceptance no. 12048) and was conducted in accordance with the Declaration of Helsinki. Prior to 135 

participation, subjects underwent medical assessment with a cardiologist to ensure normal 136 

electrocardiograph patterns and obtain a general medical clearance. All subjects were free from 137 

chronic diseases and were not taking prescribed medication at the commencement of the study. After 138 



comprehensive verbal and written explanations of the study, all subjects gave their written informed 139 

consent to participate.  140 

 141 

 142 

Study design 143 

 144 

 Paragraph 6. An overview of the study design is shown in Figure 1. The subjects were 145 

randomly assigned to either the control group (n = 9) or the overload training group (n = 18) 146 

according to a matched group experimental design based on maximal aerobic power, habitual training 147 

volume and years of past experience in endurance sports. All subjects had regularly competed in 148 

triathlons for at least three years and were training a minimum of 10 h·wk
-1

. The training of each 149 

triathlete was monitored for a period of 9 weeks in total, which was divided into a pre-testing phase 150 

and then three distinct experimental phases. Both the pre-testing phase and the first phase were the 151 

same for for all groups. The pre-testing phase consisted of 3 weeks during which the subjects 152 

completed their usual training regime without any study intervention (i.e. normal training load). The 153 

first experimental phase (Baseline) consisted of one week of moderate training load during which the 154 

subjects were asked to reduce their habitual training volume by ~50% while maintaining the training 155 

intensity. This mini-taper was selected according to the guidelines for optimal tapering in endurance 156 

sports (2). During the second experimental period (overloading phase), the overload group completed 157 

a 3-week overload program  designed to deliberately overreach the subjects. The duration of each 158 

training session of the normal (pre-testing) training period was increased by 30% (e.g. a 1 hour run 159 

including 8 repetitions of 400 m at the maximal aerobic running speed was converted into a 80 min 160 

run including 11 repetitions of 400 m at the maximal aerobic running speed). As particualr subjects 161 

were unable to accommodate such prolonged -duration cycling sessions (≥ 5 hours) into their routines, 162 

these specific sessions were split (e.g. a 5 h cycling session was converted into two sessions of 2h30). 163 

The participants reproduced the same training program during each week of the overload period, so 164 

that both the content and the weekly distribution of the training sessions remained consistent. The 165 

control group repeated its habitual training program during this period. Next, all the participants 166 



completed a two-week taper period (third experimental phase, Taper), where their normal training load 167 

was decreased by 50% each week (e.g. a 1 hour run including 8 repetitions of 400 m at the maximal 168 

aerobic running speed was converted into a ~30 min run including 4 repetitions of 400 m  at the 169 

maximal aerobic running speed). All training sessions were performed by the triathletes in their own 170 

training structure according to the training program established by the same sport scientist. 171 

Throughout the entire study, the same sport scientist was responsible for coaching and controlling the 172 

training loads of all subjects. To avoid injuries, particular attention was devoted to daily feedback 173 

obtained from the triathletes. Before the beginning of the experimental period, the subject reported 174 

once to the laboratory to become familiarized with the maximal incremental cycling test (described 175 

below) and the daily testing used during the protocol (sleep actigraphy and questionnaires). Testing 176 

was perfromed on 3 occasions (Figure 1), including   Pre (ie. after baseline phase), Post (after overload 177 

phase) and Taper (after taper phase), respectively.To ensure that performance variations during the 178 

maximal incremental cycling tests were due to the training regimen and not to the training session(s) 179 

performed the day before each test, the subjects respected a 24 h rest period before each laboratory 180 

session. 181 

 182 

 183 

Training monitoring  184 

 185 

 Paragraph 7. Training volume and intensity were calculated and controlled on the basis of 186 

heart rate (HR) measurement (Polar, Kempele, Finland). For all subjects, HR was measured every 5 s 187 

during each training session over the entire protocol. The distribution of HR into training zones was 188 

subsequently calculated using three HR zones: (1) ≤ HR at 2 mmol.L
-1

, (2) between HR at 2 mmol.L
-1 189 

and HR at lactate threshold and (3) HR values superior to HR at lactate threshold. Given that the 190 

relationship between blood lactate accumulation and HR values at exercise can be influenced by a 191 

heavy training load program (17), these reference HR values were reassessed after each maximal 192 

incremental cycling test.  193 

 194 



Laboratory testing  195 

 Paragraph 8. During the 48 h prior to each maximal incremental cycling test, the subjects 196 

received specific nutirtional guidelines in order to ensure muscle glycogen stores were replenished. 197 

Specifically, they were instructed to eat until satiety was reached during each lunch. Breakfast 198 

consisted of a variety of macronutrients from both solid and liquid energy sources. The selected foods 199 

included an assortment of cereals, bread, fruit, yogurt, milk, juice, ham and cheese. For lunch and 200 

dinner, the subjects consumed a mixed salad as starter, then white meat during lunch and fish during 201 

dinner. The side plate consisted of a mixed of 50% carbohydrates (i.e., pasta, nice, noodles) and 50% 202 

of vegetables (i.e., green beans, broccoli, tomatoes). One piece of fruit and tub of yogurt were added as 203 

dessert, at both lunch and dinner. To ensure the subjects were well-hydrated on each testing day, they 204 

were instructed to ensure the maintenance of a well-hydrated state.  205 

 206 

Paragraph 9. Profile of mood state. Before exercise testing, subjects were asked to complete 207 

the profile of mood state (POMS) questionnaire to assess overall mood disturbance (21). The POMS 208 

questionnaire is a 65-item Likert scale questionnaire, which provides measures of six specific mood 209 

states: vigor, depression, fatigue, anger, anxiety, and confusion.  210 

 211 

Paragraph 10. Performance and  ̇O2max. Maximum oxygen uptake ( ̇O2max) was assessed 212 

on an electronically braked cycle ergometer (Excalibur Sport, Lode®, Groningen, The Netherlands) 213 

equipped with standard 170-mm cranks and the athletes used their own shoes. Positions of the 214 

handlebars and seat height were adjusted to the measures used by the athletes on their own bike and 215 

replicated between sessions. The test was performed until complete exhaustion to estimate  ̇O2max 216 

and maximal aerobic power. This exercise protocol started with a warm-up of 5 min at a workload of 217 

100 W, followed by 5 min at 150 W and 5 min at 200 W. Thereafter, further increments of 25 W were 218 

added every 2 min until volitional exhaustion. Subjects wore a face mask covering their mouth and 219 

nose for breath collection (Hans Rudolph, Kansas City, MO, USA), and oxygen and carbon dioxide 220 

concentration in the expired gas was continuously measured and monitored as breath-by-breath values 221 



(Quark, Cosmed®, Rome, Italy). The gas analyzers and the flowmeter of the applied spirometer were 222 

calibrated prior to each test.  223 

 224 

Paragraph 11. After the test, breath-by-breath values were visually inspected and averaged 225 

over 30 s. The highest 30-s average value was used as  ̇O2max. Performance (Wmax) was calculated as 226 

Wmax = Wcompl + 25  (t/120); Wcompl is the last completed workload, and t is the number of 227 

seconds in Wcompl.  228 

 229 

Paragraph 12. Perceived exertion. The rating of perceived exertion (RPE) was measured 230 

verbally using the Borg 6-20 scale (1) immediately at the end of the maximal incremental cycling test. 231 

The subjects completed standard anchoring procedures with the scale at the start of the study and were 232 

reminded of its correct use before each maximal incremental cycling test throughout the experiment. 233 

 234 

 235 

Sleep monitoring 236 

 237 

Paragraph 13. All subjects were monitored continuously using an Actiwatch worn on the non-238 

dominant wrist (Cambridge Neurotechnology Ltd. UK), with the epoch length set to 1 minute. 239 

Athletes were monitored in the home environment every day at baseline (7 days), during overloading 240 

(21 days) and during the taper (14 days) (see Figure 1). Mean behavioural activity over the whole 241 

recording period was automatically calculated using the Sleepwatch software (Actiwatch activity and 242 

sleep analysis version 5.28, Cambridge Neurotechnology Ltd., UK). Wristwatch Actigraphy is a non-243 

intrusive, cost-effective tool used to estimate sleep quantity and quality which has been compared to 244 

polysomnography, showing an accuracy of up to 80% in sleep disordered patients for total sleep time 245 

and sleep efficiency (16) and as such is widely used in the sleep literature (24, 34). In a recent review 246 

on the role and the validity of actigraphy in sleep medicine, Sadeh concluded that according to most 247 

studies, actigraphy has reasonable validity and reliability in normal individuals with relatively good 248 

sleep patterns (29). 249 



 250 

  Paragraph 14. Eloquent sleep-wake scoring can be reliably obtained only with additional 251 

information provided in manually completed sleep logs (7). All participants were therefore requested 252 

to complete daily sleep diaries. The subjects were asked to record the times of going to bed, falling 253 

asleep, waking up, and leaving the bed. Additionally, the subjects were asked to mark the time of 254 

switching off the light to sleep and wake-up time with a push of the button on the face of the 255 

actiwatch. 256 

 257 

Paragraph 15. Individual nights of sleep were analyzed for the following range of variables: time 258 

in bed, bedtime, get-up time, sleep latency, actual sleep time, percent time sleeping whilst in bed 259 

(sleep efficiency), and sleep restlessness (fragmentation index) and immobile minutes. The following 260 

dependent variables were derived from the sleep diary and activity monitor data: 261 

 Time in bed (h): the amount of time spent in bed attempting to sleep between bedtime and 262 

get-up time. 263 

 Bedtime (hh:mm): the self-reported clock time at which a participant went to bed to attempt 264 

to sleep. 265 

 Get-up time (hh:mm): the self-reported clock time at which a participant got out of bed and 266 

stopped attempting to sleep. 267 

 Sleep onset latency (min): the period of time between bedtime and sleep start. 268 

 Actual sleep time (h:min): The time asleep from sleep start to sleep end. 269 

 Sleep efficiency (%): sleep duration expressed as a percentage of time in bed. 270 

 Fragmentation index: A measure of restlessness during sleep, using the percentage of epochs 271 

where activity is > 0. 272 

 Immobile time (min): The actual time spent immobile during time in bed. 273 

 274 



Paragraph 16. The term ‘sleep quality’ in this investigation is determined by wrist actigraphy by 275 

measures of sleep efficiency and fragmentation index, however this is different from ascertaining sleep 276 

quality from sleep stages measured by polysomnography.  277 

 Paragraph 17. In order to quantify how the training weeks affected the perceived sleep 278 

quality, the participants reported their perceived feelings on a 7-point scale, ranging from ‘very very 279 

good’ to ‘very very poor’ after waking up each morning. Additionally, the effect of the training 280 

regimen on perceived fatigue?? was recorded each week and? on the morning before the maximal 281 

incremental cycling test via a visual 0-100 analog scale (from "no fatigue" to "maximum fatigue"). 282 

 283 

 284 

Illness symptoms 285 

Paragraph 18. During the 6-week experimental period, the subjects were required to complete 286 

a health questionnaire (URTI symptoms and gastrointestinal-discomfort symptoms) on a weekly basis, 287 

as performed in previous studies (8, 9). They were not required to abstain from medication when they 288 

were suffering from illness symptoms, but they were required, on a weekly basis, to report any 289 

unprescribed medication taken, visits to the doctor, and any prescribed medications. The illness 290 

symptoms listed on the questionnaire were sore throat, inflammation in the throat, runny nose, cough, 291 

repetitive sneezing, fever, joint aches and pains and headache. Two usual items of URTI diagnosis (i.e. 292 

muscle soreness and loss of sleep) were not included given that they could be potentially influenced by 293 

training overloading and not necessarily the signs of illness. The numerical ratings of light, moderate 294 

and severe (L, M, or S, respectively) were scored as 1, 2, and 3, respectively. In any given week of 295 

total symptom score ≥ 12 was taken to indicate that a URTI was present. This score was chosen in 296 

previous studies (8, 9) because to achieve it a subject would have to record at least three moderate 297 

symptoms lasting for 2 days or two moderate symptoms lasting for at least 3 days in a given week. A 298 

single URTI episode was defined as a period during which the weekly total symptom score was ≥12 299 

and separated by at least 1 week from another week with a total symptom score ≥12. Subjects were 300 

also asked to rate the impact of illness symptoms on their ability to train (normal training maintained, 301 

training reduced, or training discontinued; L, M, or S, respectively). The gastrointestinal-discomfort 302 



symptoms listed on the questionnaire were loss of appetite, stomach upset, vomiting, abdominal pain, 303 

and diarrhea. These symptoms were rated and scored the same way as the illness symptoms (8, 9). 304 

 305 

 306 

Data analysis 307 

 308 

Paragraph 19. As per the methods of previous research (17), the subjects in the OR group 309 

were distributed into two subgroups according to their response to the overload period and during the 310 

subsequent taper. The triathletes who demonstrated decreased performance (vs. Pre) and high 311 

perceived fatigue ("very tired" to "extremely tired" on the POMS scale) at Post with subsequent 312 

performance restoration or supercompensation were diagnosed as functionally overreached (F-OR 313 

group). The remaining subjects in the overload group who maintained or increased their performance 314 

after the overload period, despite increased perceived fatigue, were considered acutely fatigued (AF, 315 

21). Additionally, because extended monitoring reduces the inherent measurement errors in actigraphy 316 

and increases reliability (29), subsequent analyses were conducted using the mean value of each sleep 317 

parameter over each training phase (i.e. baseline, overload, taper). 318 

 319 

 320 

Statistical analysis 321 

 322 

Paragraph 20. Normality of data was tested using a Kolmogorov–Smirnov test. Values at 323 

baseline for age, weight, height, past experience in endurance sport, MAP and  ̇O2max were compared 324 

between groups (i.e., CTL, AF, F-OR) using a one-way analysis of variance (ANOVA). Two-way 325 

(group  time) ANOVAs were used to examine differences in dependent variables (i.e.,  ̇O2max, RPE, 326 

POMS items, perceived sleep quality and actimetry data during sleep) between group means at each 327 

time point. When the sphericity assumption in repeated-measures ANOVAs was violated (Mauchly’s 328 

test), a Geisser–Greenhouse correction was used. If a significant main effect was found, pairwise 329 

comparisons were conducted using Duncan's post hoc analysis. These statistical tests were conducted 330 



using Statistica (Version 7.0, StatSoft, Tulsa, OK) and the data are presented as means and standard  331 

deviation (SD).  332 

  333 

 Paragraph 21. The magnitude of the within-group changes in performance were 334 

expressed as standardized mean differences (Cohen’s d), which were calculated using the pooled 335 

standard deviations (3) in modified statistical spreadsheets (12). The magnitude of the percentage 336 

change in time was interpreted by using values of 0.3, 0.9, 1.6, 2.5 and 4.0 of the within-athlete 337 

variation (coefficient of variation) as thresholds for small, moderate, large, very large and extremely 338 

large differences in the change in performance between the trials. The typical variation (CV) for 339 

performance during the maximal incremental cycling test was established using the values collected in 340 

CTL group during the protocol.  341 

 342 

RESULTS 343 

 344 

Paragraph 22. Changes in weekly mean training volume, the distribution of the relative 345 

training time spent in the intensity zones and the number of training sessions per week in the three 346 

groups during each respective training phase are presented in Table 1. The results demonstrated that 347 

the three experimental groups successfully adhered to the prescribed training program, and that the 348 

respective OR groups increased training volume substantially more than the CTL group (p<0.001).  349 

 350 

 351 

Assessment of the OR syndrome. 352 

Paragraph 23. At Pre, all subjects reported low perceived fatigue at rest (i.e. all subjects 353 

responded "not at all" or "a little" on the POMS fatigue item), confirming that they were not already in 354 

an OR state. Nine of the 18 overloaded subjects demonstrated a  moderate to very large decrease in 355 

performance (- 10 ± 4 W) at Post followed by a small to large performance restoration or 356 

supercompensation effect at the end of the Taper (5 ± 5 W, Table 2). This reduced performance was 357 

systematically associated with a concomitant high fatigue score at Post (i.e. "quite bit" to "extremely" 358 



on the POMS fatigue item, Table 2). On the basis of this analysis, these 9 triathletes were considered 359 

as "functionally OR", the short term form of OR (F-OR) (23). The 9 other subjects in the overload 360 

training group demonstrated higher perceived fatigued but no reduction  in performance. According to 361 

the nomenclature of Meeusen et al. (21), they were not diagnosed as OR and instead considered 362 

acutely fatigued (AF). Thus, the subsequent results are presented for 9 F-OR subjects (F-OR group), 9 363 

AF subjects (AF group) and 9 control subjects (CTL group). Mean (±SD) age, height and weight were 364 

37 ± 6 years, 182 ± 6 cm, 72 ± 9 kg for the CTL group, 35 ± 8 years, 179 ± 9 cm, 73 ± 8 kg for the AF 365 

group 35 ± 5 years, 180 ± 5 cm, 72 ± 9 kg for the F-OR group. There were no differences between 366 

groups for these descriptive parameters (P>0.05)???   367 

 368 

Perceived sleep quality and sleep actigraphy data 369 

Paragraph 24. Measures of sleep data for the three experimental groups are presented in 370 

Tables 3. There was no significant time  group interaction in perceived sleep quality (p = 0.11), time 371 

in bed (p = 0.09), bedtime (p = 0.77), get-up time (p = 0.42), sleep latency (p = 0.33) and 372 

fragmentation index (p = 0.35). A significant interaction effect was observed for actual sleep time (p = 373 

0.006), sleep efficiency (p = 0.003) and immobile time (p = 0.004). A progressive decrease of these 374 

three parameters was systematically observed only in the F-OR group during the overload period 375 

compared to baseline (actual sleep time, p = 0.01, sleep efficiency, p = 0.05; immobile time, p = 0.005, 376 

during the last week of the overload period). All of these parameters were progressively restored to 377 

baseline values during the ensuing taper. 378 

 379 

Infection-Symptom Incidence 380 

 Paragraph 25. Analysis of illness questionnaires indicated that 8 subjects reported at least one 381 

episode of URTI during the training overload and/or tapering periods. The occurrence of URTI 382 

symptoms during the protocol is presented in Table 4. The proportion of subjects who experienced 383 

symptoms of infection was higher in the F-OR group (n = 6, 67% of total infection cases) than in AF 384 

(n = 2, 22%) and CTL groups (n = 1, 11%). No subjects reported symptoms of gastrointestinal-385 

discomfort during any phase of the training program. 386 



 387 

 388 

DISCUSSION 389 

 Paragraph 26. In the present study, we studied nocturnal actimetry in a group of trained 390 

triathletes who completed an overload training program followed by a two week taper period and 391 

developed symptoms of F-OR in comparison to control counterparts without signs of training 392 

intolerance. The most important finding indicated a progressive decrease in the indices of sleep 393 

quality, alongside small reductions in sleep quantity, during the overload period in the F-OR athletes, 394 

which was progressively reversed during the subsequent taper. Furthermore, higher prevalence of 395 

upper respiratory tract infections was also reported in this F-OR group.  396 

 397 

 Paragraph 27. Signs of decreased sleep quality in overreached or overtrained endurance 398 

athletes have been reported by previous researches. Jurimaë et al. (13) monitored the recovery-stress 399 

state in competitive male rowers over a six-day training camp in response to an average increase in 400 

training load by approximately 100% compared to average weekly loads. Using the Recovery-Stress-401 

Questionnaire for Athletes (RESTQ-Sport) (15), these authors showed decreased levels of perceived 402 

sleep quality, suggesting that recovery may not have been adequate during this training camp, leading 403 

to performance impairment and genesis of high perceived fatigue (i.e. overreaching). However, given 404 

the lack of objective markers of sleep actimetry, the reliance on perception of sleep quality is 405 

problematic to then associate sleep disruption with overloading.  In a similar vein, Matos et al. (22) 406 

recently reported frequent perceived sleep problems was one of the most reported physical symptoms 407 

by athletes who had experienced persistent daily fatigue and a significant decrement in performance 408 

that lasted for long periods of time. Altogether, these results suggest that heavy load training may exert 409 

a negative effect on sleep quality, but to date limited literature provides objectively measured changes 410 

in sleep characteristics during periods of confirmed F-OR. 411 

 Paragraph 28. The novelty of the present research provides objective measures of sleep in a 412 

group of trained athletes demonstrating differentiated performance responses (i.e. acute fatigue vs. 413 

functional overreaching, 21) during a 6-week training program involving periodic high training load. 414 



Time in bed and sleep latency were not different at any period of the training program in the F-OR 415 

group; however, these subjects demonstrated a progressive decrease in actual sleep duration, sleep 416 

efficiency and immobile time during the overload period, suggesting substantial sleep disturbances. 417 

This finding was reported in at least 7 of the 9 F-OR athletes for each parameter. During the same 418 

period, mean sleep values remained unchanged in the control and in the AF groups. To the best of our 419 

knowledge, this study is the first to show such alterations in objective markers of sleep quality during 420 

a period of intensified training that resulted in overreaching. Whilst causation is not inferred, it is 421 

possible the sleep disturbance may have been related to mild muscle fatigue or soreness resulting from 422 

the high training loads. Certainly given neither bed time, sleep latency or time spent in bed were 423 

altered, the reduction in sleep duration may result from the lowered efficiency due to difficulty in 424 

remaining immobile during sleep. However, despite such measured sleep disruption, subjective quality 425 

of sleep remained unaltered; suggesting some disconnect in actual and perceived measures of sleep. 426 

Indeed, despite 8 of the F-OR athletes reporting reduced scores for perceived sleep quality, the 427 

magnitude in change was insufficient to reach statistical significance. 428 

 429 

Paragraph 29. Although the results suggest that F-OR athletes demonstrated a modest 430 

decrease in quality and quantity of sleep during the overload period, it remained considerably better 431 

than that experienced by sleep disorder patients (30), extreme sleep deprivation (32) or by athletes in 432 

response to jet lag (20) or hypoxic exposure (27). Additionally, Halson et al. (10) reported larger sleep 433 

deficiency during the period leading to overtraining (< 6 hours per night) in a talented female sprint 434 

cyclist who developed signs of overtraining (i.e. persistent feeling fatigued and underperforming over 435 

months). The actual sleep time in the F-OR subjects during the overload training period remained 436 

higher than the values reported by Leeder et al. (19) in a cohort of elite athletes under normal training 437 

conditions. Nevertheless, we cannot exclude that the moderate changes observed in the F-OR during 438 

the present experiment would not unduly affect performance in elite athletes, where very small 439 

differences in performance can have large impact on the competition issue. It remains also unclear 440 

during the present study whether sleep disturbance was an etiological mechanism of overreaching, or 441 

simply just a symptom. Regardless, it is acknowledged that the reduction in sleep duration during F-442 



OR was small in the spectrum of sleep disturbances, and may suggest that sleep monitoring to detect 443 

F-OR may require extended periods of data collection. Further research is required to determine the 444 

relationship of sleep with training tolerance and adaptation, especially in athletes developing training 445 

maladaptations (i.e. overreaching, overtraining).  446 

 447 

Paragraph 30. Given the purported relationship between prolonged reductions in sleep quality 448 

and quantity with increased risk of illness, it was interesting to observe a higher infection rate in the F-449 

OR subjects during the present experiment. Of the 9 F-OR athletes, 5 reported increased URTI 450 

symptoms during the overload period and concurrent to the noted sleep disturbances, while only two 451 

cases were observed in the AF and CTL groups during the same period. Interestingly, this illness 452 

prevalence was the highest during the last week of the overload period, which is temporally aligned to 453 

when sleep disturbances reached their highest magnitude during the study, perhaps implying an 454 

accumulative effect. The observed decrease in sleep and increase in URTI during F-OR is in 455 

accordance with several previous studies reporting both innate and adaptive immunity are depressed 456 

during sustained periods of heavy training (38). This association suggests there is a link between the 457 

recuperative processes of sleep and the immune system (28). The current study provides supporting 458 

evidence that high volume training periods may result in increased URTI, alongside reduced sleep 459 

quality. However, again whether sleep disturbance was an etiological mechanism of URTI 460 

development as a result of overreaching, or simply coincidental symptoms remains to be elucidated, 461 

particularly given the relatively small reductions in sleep durations reported. 462 

 463 

Paragraph 31. In conclusion, F-OR athletes showed objective signs of moderate sleep 464 

disturbances and higher prevalence of infections in the present study. These results were in contrast 465 

with control counterparts, who did not demonstrate any symptoms of training intolerance during the 466 

protocol. Whether poor sleep was a consequence of increased training causing the development of 467 

overreaching, or whether sleep disturbances were simply symptoms of OR remain unclear. Whatever 468 

the causative link between F-OR and sleep, we suggest that endurance athletes should be encouraged 469 

to ensure ideal sleeping environment (quiet, cool, and dark) and to implement short post-lunchtime 470 



naps, when they are exposed to high training load (6). The ability to nap for short periods during the 471 

day may be a useful skill for athletes to compensate the potential decline in sleep quality associated 472 

with development of F-OR. Further investigations are required to investigate the importance of sleep 473 

and its relationship with overreaching. 474 

 475 
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FIGURE 1. Schematic representation of the experimental protocol. Bicycle symbols represent 

maximal incremental cycling tests. Note that 9 subjects of the overload group developed symptoms of 

functional overreaching at Post (decreased performance vs. Pre associated with high perceived fatigue, 

F-OR group). The nine other overloaded subjects were only acutely fatigued (AF group).  

 

FIGURE 2. Change in mean weekly sleep parameters from baseline values during the overload and 

taper phase in the three experimental groups. CTL: control; AF: acute fatigue; F-OR: functionally 

overreached. Gray areas and dashed lines represent 1xCV and 2xCV of the considered parameter 

during the 6-week protocol in the control group.  *, significantly different from Baseline at P < 0.05; 

†, significantly different from the third week of the Overload period at P < 0.05. 


