The Effects of New Zealand Manuka-Type Honeys on Bacterial Growth and Morphology, Biofilm Formation and Biofilm Eradication

Jing Lu

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

The i3 Institute

University of Technology, Sydney

October, 2014

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledge within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Jing Lu

Acknowledgements

The past four years of my PhD study have been a challenging experience and I could not possibly have made it through to today without the help of many people. First and foremost, I wish to thank my principle supervisor Professor Liz Harry for offering me such an interesting and challenging, but rewarding project. Her encouragement and enthusiasm for research, and balance in life not only guide me throughout my study but also inspired me personally. She has also provided me with great financial support, which enabled me to continue studying. I thank her for her patience, as well as her effort for reading and commenting on my work all this time. It is much appreciated and I could not have asked for a better mentor and supervisor than Liz.

I am also grateful to have Associate Professor Cynthia Whitchurch and Dr. Lynne Turnbull as my co-supervisors, who are world-leading experts in bacterial biofilm research. They introduced the whole new world of 'bacterial lifestyle' to me and taught me how to do proper scientific research. They also taught me how to live a healthier life – special thanks to Cynthia for always making yummy treats for tea breaks.

I would like to thank people who are part of the honey team: Associate Professor Dee Carter, for her extensive knowledge about honeys, and for her time and effort to read and comment on my manuscript drafts; Dr. Michael Liu, for all the honey discussions; and the New Zealand honey team: Dr. Jonathan Stephens and Dr. Ralf Schlothauer for the resourceful honey information. I would also like to thank Dr. Peter Brooks, who help determined the MGO levels in honey samples used in this study.

Thank you to all the past and present Harry and Whitchurch lab members, who made the work environment a lovely, supportive and amazing place: Leigh Monahan, Patricia Quach, Jo Packer, Phoebe Peters, Rebecca Rashid, Chris Rodrigues, Torsten Theis, Kylie Turner, Andrew Liew, Amy Bottomley, Sam Burns,

Shirin Ansari, Sarah Osvatha, Elizabeth Tran, Erin Gloag, Marilyn Katrib, Rosy Cavaliere and Amelia Hynen. In particular, I would like to thank Dr. Catherine Burke, who helped me enormously by proofreading my manuscripts and thesis chapters, as well as for providing advice about my future career.

Special thanks to Dr. Michael Strauss, who helped me by proofreading, providing feedback and guidance for my thesis writing, and also for sharing all the tears, laughter, and drinking moments in the past 5 years! Thank you very much for being such a great buddy to me! And to my friends, Michelle Pang and Ana Porta Cubas, for their friendships, the helpful advices, and time spent with me to help get me through this study. I cannot imagine how I could have gotten through this without your help.

To my family, in particular to my mum and grandparents, I would like to thank you for your help, support and encouragement all this time. This study could not have been completed without you all by my side. Finally, I would like to acknowledge the financial assistance from the Faculty of Science and UTS Graduate School for providing me with the Faculty and International Research Scholarships.

Contents

Certificate of Original Authorship	l
Acknowledgements	
Contents	iv
Tables of Figures and Tables	viii
Publications	X
Abbreviations	xiii
Abstract	xvi
Chapter 1	1
Introduction	1
1.1 Chronic wounds	1
1.2 Revisiting the ancient remedy – honey	3
1.3 The known antibacterial components of honey	5
1.3.1 The 'non-peroxide' activity of honey	8
1.3.2 Assays to characterize the antibacterial activity of honey	11
1.3.3 The bacterial response to honey treatment	13
1.4 Antibiofilm properties of honeys	14
1.4.1 Bacterial biofilm development in <i>P. aeruginosa</i>	15
1.4.2 Bacterial biofilm development in <i>S. aureus</i>	16
1.4.3 How does honey prevent formation of biofilms and eradicate them?	17
1.5 Antifungal properties of honeys	19
1.6 Anti-inflammatory properties of honeys	19
Chapter 2	21
The effect of New Zealand kanuka, manuka and clover honeys on bacter	rial
growth dynamics and cellular morphology varies according to the speci	es 21
2.1 Introduction	23
2.2 Materials and Methods	25
2.2.1 Honey samples	25
2.2.2 Hydrogen peroxide assay	28
2.2.3 Bacterial strains and growth media	28

	2.2.4 Growth of bacterial cultures	29
	2.2.5 Growth curve data analysis	30
	2.2.7 Image data analysis	34
2	.3 Results	34
	2.3.1 Growth responses to honey, MGO, sugar and catalase	34
	2.3.1 Growth dynamics in response to controls: MGO and sugar in the presence and	
	absence of catalase	40
	2.3.2 Growth response in the presence of natural honeys	40
	2.3.2.1 Manuka honey	41
	2.3.2.2 Kanuka honey	42
	2.3.2.3 Manuka-kanuka honey blends	43
	2.3.2.4 Clover honey	44
	2.3.3 Other observations not fitting growth inhibition trends	44
	2.3.4 Cellular morphology response in the presence of natural honeys	45
	2.3.4.1 High-level MGO honey and cell morphology	45
	2.3.4.2 High-level hydrogen peroxide honey and cell morphology	51
2	.4 Discussion	54
	2.4.1 High-throughput analysis of growth dynamics reveals that MGO in honey	
	extends the duration of lag phase	54
	2.4.2 Growth and morphology of different bacteria are affected by honey in markedly	
	different ways	55
	2.4.3 MGO and hydrogen peroxide production cannot account for all activity present	
	in manuka, kanuka and clover honey	57
	2.4.4 Clinical applications of antibacterial honey	57
Cha	npter 3	.59
	nuka-type honeys can eradicate biofilms produced by Staphylococcus	
	reus strains with different biofilm-forming abilities	
	.1 Introduction	
3	.2 Materials and Methods	63
	3.2.1 Honey samples	63
	3.2.2 Other tested solutions	65
	3.2.3 Hydrogen peroxide assay	65
	3.2.4 Bacterial strains and growth conditions	65
	3.2.5 Susceptibility of <i>S. aureus</i> to NZ honeys: growth response assays	66
	3.2.6 Biofilm formation assays	66

3.2.7 Biofilm elimination assays	67
3.2.8 Determination of bacterial cell viability in biofilms	67
3.2.9 Visualizing live/dead stained S. aureus biofilms using confocal laser scanning	
microscope (CLSM)	69
3.2.10 Assaying honey resistance in cells recovered from biofilms	70
3.2.11 Statistical analysis	71
3.3 Results	71
3.3.1 The effect of NZ manuka-type honeys on the planktonic growth of S. aureus	71
3.3.2 The effect of NZ manuka-type honeys on S. aureus biofilm formation	72
3.3.3 The effect of MGO on <i>S. aureus</i> biofilm prevention	76
3.3.4 The Effect of NZ manuka-type honeys on established S. aureus biofilms	77
3.3.5 The effect of NZ manuka-type honeys on cell viability within S. aureus biofilms	s80
3.3.6 The effect of MGO on established <i>S. aureus</i> biofilms	81
3.3.7 Visualizing the effects of NZ manuka-type honeys on established S. aureus	
biofilms	82
3.4 Discussion	87
3.5 Conclusions	90
Chapter 4	91
New Zealand honeys can inhibit and eliminate biofilms of <i>Pseudomonas</i>	
aeruginosa wound isolates	91
4.1 Introduction	91
4.2 Materials and Methods	93
4.2.1 Honey samples	93
4.2.2 Other tested solutions	94
4.2.3 Hydrogen peroxide assay	94
4.2.4 Bacterial strains and growth conditions	94
4.2.5 Susceptibility of <i>P. aeruginosa</i> to NZ honeys: minimum inhibitory	
concentrations (MICs)	95
4.2.6 Biofilm formation assays	95
4.2.7 Biofilm eradication assays	96
4.2.8 Determination of bacterial cell viability in biofilms	96
4.2.9 Visualizing live/dead stained <i>P. aeruginosa</i> biofilms using confocal laser	
scanning microscope (CLSM)	98
4.2.10 Test for the development of resistance to honey treatment	99

4.2.11 pH of the tested NZ honeys, sugar, and other tested solutions	100
4.2.11 Statistical analysis	100
4.3 Results	101
4.3.1 The effects of NZ honeys and sugar solution on P. aeruginosa cell growth a	nd
biofilm formation	101
4.3.2 The effects of NZ honeys and sugar solution on established <i>P. aeruginosa</i>	
biofilms	104
4.3.3. The contribution of MGO to inhibition and eradication of <i>P. aeruginosa</i> bio	films 108
4.3.4 Determining the pH of honeys, sugar, and other tested solutions used again	nst <i>P.</i>
aeruginosa biofilms	113
4.3.5 Visualizing the effects of NZ honeys and sugar solution on established P.	
aeruginosa biofilms	114
4.3.6 Assessing the resistance of <i>P. aeruginosa</i> to manuka-type honey treatment	S
after exposure of biofilms to sub-inhibitory concentrations	118
4.4 Discussion	119
4.5 Conclusions	124
Chapter 5	126
•	
General Discussion	
5.1 The importance of honeys	
5.2 Potential mechanisms of how honey kills bacteria and affects biofilms	
5.3 Future directions	
5.4 Acceptance of honey as a wound treatment in clinical settings	
5.5 Concluding remarks	133
References	134
Appendices	148
Appendix I	148
Appendix II	164
Appendix III	176

Tables of Figures and Tables

Figure 1.1 Manuka flower3
Figure 1.2 Chronic foot ulcers treated with medical-grade manuka honey4
Figure 1.3 Chemical structure of methylglyoxal (MGO)9
Figure 1.4 The five-stage <i>P. aeruginosa</i> biofilm development cycle15
Figure 2.1 Transformation of data obtained for bacterial growth with honey
treatment32
Figure 2.2 Effects of sugar, MGO and catalase on growth of bacteria37
Figure 2.3 Effect of New Zealand, kanuka and manuka-kanuka blended honeys or
bacterial growth39
Figure 2.4 Cellular morphology of bacterial cells treated with a high-MGO honey
and high-hydrogen peroxide honey48
Figure 3.1 Correlation of level of intracellular ATP to colony forming units (CFU) in
static biofilms of <i>S. aureus</i> 69
Figure 3.2 Quantification of biofilm formation by different strains of <i>S. aureus</i> 73
Figure 3.3 Effects of NZ honeys and sugar on <i>S. aureus</i> biofilm formation75
Figure 3.4 Effects of MGO on <i>S. aureus</i> biofilm formation77
Figure 3.5 Effects of NZ honeys on established S. aureus biofilms and cell viability
within the biofilms79
Figure 3.6 Effects of MGO on established <i>S. aureus</i> biofilms82
Figure 3.7 Live/dead staining of different honey treated established biofilms84
Figure 3.8 Quantitative analysis of live/dead stained honey treated biofilms85
Figure 4.1 Relationship between levels of intracellular ATP to colony forming units
(CFU) in static biofilms of <i>P. aeruginosa</i> 98
Figure 4.2 Quantification of <i>P. aeruginosa</i> biofilm adherence101
Figure 4.3 Effects of NZ honeys and sugar solution on P. aeruginosa biofilm
formation103
Figure 4.4 Effects of NZ honeys and sugar solution on established P. aeruginosa
biofilms and cell viability within the biofilms106
Figure 4.5 Effects of MGO on <i>P. aeruginosa</i> biofilm formation110
Figure 4.6 Effects of MGO on established <i>P. aeruginosa</i> biofilms111

Figure 4.7 Live/dead staining of different honey treated established biofilms116
Figure 4.8 Live/dead staining of 64% and 80% of manuka and Medihoney treated
P. aeruginosa established biofilms117
Table 1.1 The antibacterial composition of different honeys5
Table 2.1 Floral source, MGO and H ₂ O ₂ levels of honeys27
Table 2.2 Average cell length after different honey treatment (µm)48
Table 2.3 Cell morphology changes with high-MGO honey and high-hydrogen peroxide honey treatment ^a 50
Table 2.4 Summary of growth and morphological effects honey and control treatments on all organisms
Table 3.1 Harvesting and chemical information for the tested NZ honey samples
Table 3.2 Concentration of honey required to inhibit <i>S. aureus</i> growth72
Table 3.3 Resistance of <i>S. aureus</i> cells recovered from biofilms after 8% manuka honey treatments
Table 4.1 Minimum inhibitory concentrations of NZ honeys and sugar solution on inhibiting <i>P. aeruginosa</i> PAO1 and PA14 cell growth and biofilm formation
Table 4.2 Effects of 16% and 32% NZ honeys and sugar solution on <i>P. aeruginosa</i> biofilm biomass
Table 4.3 pH of media and solutions used in this study114
Table 4.4 Resistance of <i>P. aeruginosa</i> cells recovered from biofilms after 8% manuka- type honey treatments

Publications

Journal articles

Lu, J., Carter D. A., Turnbull, L., Rosendale, D., Hedderley, D., Stephens, J., Gannabathula, S., Steinhorn, G., Schlothauer, R. C., Whitchurch, C. B., and Harry, E. J. (2013) The Effect of New Zealand Kanuka, Manuka and Clover Honeys on Bacterial Growth Dynamics and Cellular Morphology Varies According to the Species. *PLoS ONE* 8 (2): e55898.

Gloag, E. S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L. M., Mililli, L., Hunt, C., **Lu, J.**, Osvath, S. R., Monahan, L. G., Cavaliere, R., Charles, I. G., Wand, M. P., Gee, M. L., Prabhakar, R., and Whitchurch, C. B. (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. *Proceedings of the National Academy of Sciences of the United States of America (PNAS)* 110: 11541-11546.

Lu, J., Turnbull, L., Burke, C.M., Liu, M., Carter D. A., Schlothauer, R. C., Whitchurch, C. B., and Harry, E. J. (2014) Manuka-type honeys can eradicate biofilms produced by *Staphylococcus aureus* strains with different biofilm-forming abilities. *PeerJ* 2:e326.

Conference proceedings

Harry, E. J., **Lu, J.**, Turnbull, L. and Whitchurch, C. B. (May, 2010) Biofilm Prevention with Medical Honey. **SEMINAR**, *2010 Comvita Science Seminar, Auckland, New Zealand*.

Harry, E. J., **Lu**, J., Whitchurch, C. B., Turnbull, L., Blair, S., and Carter, D. (July, 2010) The Science Behind Honey, A Sweet Remedy for Antibiotic Resistant Bacteria. **SEMINAR**, *2010 Annual Scientific Meeting & Exhibition of the Australian Society of Microbiology*, Sydney, Australia.

Johnson, M., Lu, J., Turnbull, L., Whitchurch, C. B. (July, 2010) Super-resolution Microscopy coupled with an OptiPuter highlights a previously unseen world.

SEMINAR, Conference of the Australian Science Teachers Association CONASTA 59, Sydney, Australia

Lu, J., Turnbull, L., Carter, D., Schlothauer, R., Whitchurch, C. B., and Harry, E. J. (September, 2011) Alternatives to Antibiotics – Honey's Mode of Action on Bacteria. **Poster**, *13th International Conference on Pseudomonas, Sydney, Australia*

Lu, J., Whitchurch, C. B., Turnbull, L., Carter, D., Schlothauer, R., and Harry, E. J. (September, 2011) Alternatives to Antibiotics – Honey's Mode of Action on Bacteria. **Poster**, *BacPath 11: Molecular Analysis of Bacterial Pathogens, Wyong, Australia.*

Harvey, K. L., **Lu, J.**, Padula, M. P. and Harry, E. J. (November, 2011) The Effects of Manuka Honey on the *Staphylococcus aureus* Proteome. **Poster**, *The 28th Annual Scientific Research Meeting, Sydney, Australia*

Harvey, K. L., **Lu, J.**, Santos, J., Padula, M. P. and Harry, E. J. (February, 2012) The Effects of Manuka Honey on the *Staphylococcus aureus* Proteome. **Poster**, *The 17th Lorne Proteomics Symposium, Lorne, Australia*

Lu, J., Whitchurch, C. B., Turnbull, L., Carter, D., Schlothauer, R., and Harry, E. J. (May, 2012) The Therapeutic Use of Honey on Chronic Wound Infections. **Poster**, *Conjoint 3rd Australasian Wound & Tissue Repair Society Meeting and 9th Australasian Society for dermatology Research Meeting, Sydney, Australia*

Lu, J., Turnbull, L., Carter, D., Schlothauer, R., Whitchurch, C. B. and Harry, E. J. (September, 2012) The Sweet Cure for Bacterial Biofilm- Associated Chronic Wound Infections. **Seminar**, *Comvita Science Symposium 2012*, *Auckland*, *New Zealand*

Lu, J., Turnbull, L., Carter, D., Schlothauer, R., Harry, E. J. and Whitchurch, C. B. (September, 2012) The Effects of New Zealand Honeys on Bacterial Biofilms. **Poster**, *The 6th ASM Conference on Biofilms, Miami, USA*

Liu, M., Müller, P., **Lu, J.**, Alber, D. G., Turnbull, L., Schlothauer, R., Carter, D., Whitchurch, C. B. and Harry, E. J. (July, 2013) Synergy Between Medihoney and Rifampicin Against Methicillin-Resistant *Staphylococcus aureus* (MRSA). **Poster**, 2013 Annual Scientific Meeting of the Australian Society of Microbiology, Adelaide, Australia.

Abbreviations

% Percentage

AGPs Arabinogalactan proteins

ATCC American Type Culture Collection

ATP Adenosine Triphosphate

a_w Water activityC Clover honey

Community-acquired methicillin resistant Staphylococcus

CA-MRSA

aureus

CAMHB Cation-adjusted Mueller-Hinton broth

CFU Colony Formation Unit

CLSI Clinical Laboratory Standards Institute

CLSM Confocal Laser Scanning Microscopy

DHA Dihydroxyacetone

DNA Deoxyribonucleic acid

e.g. Exempli gratia

FDA Food and Drug Administration

FISH Fluorescence *in situ* hybridization

g Gram(s)

GlxI Glyoxalase I

h Hour(s)

H₂O₂ Hydrogen peroxide

HA-MRSA Hopital-acquired methicillin resistant *Staphylococcus aureus*

HPLC High-performance liquid chromatography

HS-LBA High-salt Luria-Bertani agar

K Kanuka honey kg Kilogram(s)

LB Luria-Bertani
M Manuka honey

MBIC(s) Minimum biofilm inhibitory concentration(s)

mg Milligram(s)

MGO Methylglyoxal

MIC(s) Minimum Inhibitory Concentration(s)

min Minute(s)

MK Manuka-kanuka blends

mL Millilitre
mm Millimetre
mM Millimolar

MRSA Methicillin-Resistant *Staphylococcus aureus*

Microbial surface componenets recognising adhesive matrix

MSCRAMMs

molecules

MSSA Methicillin-Sensitive *Staphylococcus aureus*

NMR Nuclear magnetic resonance

NZ New Zealand

° C Degree Celsius

OD₅₉₅ Optical Density at 595 nm
PBS Phosphate buffered saline

PI Propidium iodine

PIA Polysaccharide intercellular adhesion

qPCR Quantitative polymerase chain reaction

QS Quorum sensing

ROW Reverse osmosis water

rpm Revolutions per minute

SD Standard deviation

SEM Standard error of the mean

TGA Therapeutic Goods Administration

TNF- α Tumour necrosis factor-alpha

TSB Tryptone soya broth

TSBG Tryptone soya broth plus 1% glucose

UMF Unique Manuka Factor

USA United States of America

USD United States dollar

UV Ultra violet

V	Volume
W	Weight
w/v	Weight per volume
μL	Microlitre
μm	Micrometer
μm^2	Square micrometer
μm^3	Cubic micrometer
μmol	Micromole

Abstract

Bacterial pathogenesis is a major threat to human health due to the increase antibiotic resistance among disease-causing bacteria. Effective and alternative therapeutics are urgently required to combat this problem. Honey is a natural product that has been used for over 2,000 years, as an effective topical chronic wound treatment. Numerous studies in the last 30 years have revealed its potent antibacterial properties (due to high sugar content, low pH and hydrogen peroxide production upon dilution). Honeys sourced from the *Leptospermum scoparium* bush in New Zealand (NZ), also referred to as manuka-type honeys, have been known to contain additional 'non-peroxide' antibacterial components (including methylglyoxal (MGO) and various phenolic compounds).

However, for honey to be considered as a mainstream wound treatment by medical professionals, the mechanism behind its antibacterial activity needs to be determined. Moreover, bacteria produce biofilms that is a matrix of extracellular polymeric substance and allow cells to adhere to a surface such as a wound. Biofilms are the preferred mode of life in wounds because it also offers protection from antibiotic treatment. It is therefore essential to evaluate honeys' effects on bacterial biofilms. Unfortunately, almost all previous studies have utilized honeys that are ill-defined chemically. Thus, the objectives of this work were to use a range of well-defined NZ manuka-type honeys and their specific antibacterial components (such as methylglyoxal and sugars) to firstly examine their antibacterial effects on bacterial cell growth and cellular morphology, across a range of different bacteria. Subsequently, the antibiofilm activities on different strains of the same organism were also investigated on preventing biofilm formation and eradicating the pre-established biofilms.

The bacterial cell growth and cellular morphology of three clinically relevant bacteria; the Gram-positive *Staphylococcus aureus*, and, the Gram-negative organisms *Escherichia coli* and *Pseudomonas aeruginosa* were examined against the selected range of NZ honeys, by cell growth assays and fluorescent microscopy.

In addition, a Gram-positive organism, *Bacillus subtilis*, was also studied because it is a model organism where the functions of many genes associated with cellular growth and morphology have been documented. Moreover, *B. subtilis* is often used as a Gram-positive representative organism, typically in drug discovery studies in the industry. Results presented in this work indicate that different bacterial species are susceptible to different components or concentrations of honey and therefore respond in different ways. It is proposed that the complexity of honey makes it hard for bacteria to become resistant to honey's antibacterial effects.

The second and third parts of this work examined the effectiveness of manukatype honeys in preventing and eradicating preformed bacterial biofilms in S. aureus and P. aeruginosa. This was performed by using a crystal violate based static biofilm formation assay in combination with Confocal Laser Scanning Microscopy (CLSM) to visualise the integrity of the biofilms after honey treatment. It was found that very low levels of NZ manuka-honey enhanced both S. aureus and P. aeruginosa biofilm formation, which could possibly due to the evoke of a stress response similar to that seen with some conventional antibiotics. When higher concentrations of honey were used, NZ manuka-honeys were able to prevent or eliminate biofilms. This appears to be influenced by MGO levels and the presence of sugar. However, MGO and sugar content alone does not account for all of the antibiofilm properties observed. Finally, an ATP-based viability assay suggested that both *S. aureus* and *P. aeruginosa* planktonic cells, which were released after honey treatment of pre-formed biofilms were significantly reduced. The development of resistance or tolerance from these recovered planktonic cells was also determined by exposing these cells to the same previously exposed honey agents. Results indicated that the recovered S. aureus planktonic cells did not display any resistance to honey. However, the recovered *P. aeruginosa* planktonic cells had an increased tolerance to the same honey treatment. Altogether, these results show that at an appropriate level of manuka-type honey as a whole agent, can be used to kill *P. aeruginosa* and *S. aureus* when present in the biofilm, thereby supporting the use of this honey as an effective topical treatment for chronic

wound infections. Lastly, this work also provided guidelines and strategies for new formulation of wound treatment managements and products, respectively.