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Abstract

Big data applications increasingly involve high-dimensional and sophisticated
dependence structures in complex data. Modelling high-dimensional depen-
dence, that is, the dependence between a set of high-dimensional variables,
is a critical but challenging issue in many applications including social media
analysis and financial markets. A typical example concerns the interplay of
financial variables involved in driving complex market movements. A par-
ticular problem is understanding the dependence between high-dimensional
variables with tail dependence and asymmetric characteristics which appear
widely in financial markets. Typically, existing methods,such as the Bayesian
logic program, relational dependency networks and relational Markov net-
works, build a graph to represent the conditional dependence structure be-
tween random variables. These models aim at high-dimensional domains,
and have the advantage of learning latent relationships from data. However,
they tend to force the local quantitative part of the model to take a simple
form such as the discretized form of the data when multivariate Gaussian
or its mixtures cannot capture the data in the real world. The complex

dependencies between high-dimensional variables are difficult to capture.

In statistics and finance, the copula has been shown to be a powerful tool
for modelling high-dimensional dependencies. The copula splits the multi-
variate marginal distributions from dependence structures, so that the spec-
ification of dependence structures can be investigated independently of the
marginal distributions. It can provide a flexible mechanism for modelling real

world distributions that cannot be handled well by graphical models. Thus,
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ABSTRACT

researchers have tried to combine copula and probability graphical model-
s, such as the tree-structured copula model and copula Bayesian networks.
These copula-based models aim to resolve the limitations of discretizing da-
ta, but they impose assumptions and restrictions on the dependence struc-
ture. These assumptions and restrictions are not appropriate for dependence

modelling among financial variables.

In order to address these research limitations and challenges, this the-
sis proposes the use of the truncated partial correlation-based canonical
vine copula, partial correlation-based regular vine copula and truncated par-
tial correlation-based regular vine copula to model the dependence of high-
dimensional variables. Chapter 3 introduces a new partial correlation-based
canonical vine to identify the asymmetric and non-linear dependence struc-
tures of asset returns without any prior dependence assumptions. To simplify
the model while maintaining its merit, a partial correlation-based truncation
method is proposed to truncate the canonical vine. The truncated partial
correlation-based canonical vine copula is then applied to construct and anal-

yse the dependence structures of European stocks as a case study.

Chapter 4 introduces the truncated partial correlation-based regular vine
copula to explore the relations in multiple variables. Very often, strong re-
strictions are applied on a dependence structure by existing high-dimensional
dependence models. These restrictions disabled the detection of sophisticat-
ed structures such as the upper and lower tail dependence between multiple
variables. A partial correlation-based regular vine copula model may relax
these restrictions. The partial correlation-based regular vine copula model
employs a partial correlation to construct the regular vine structure, which
is algebraically independent. This model is able to capture the asymmetric
characteristics among multiple variables by using a two-parametric copula
with flexible lower and upper tail dependence. The method is tested on
a cross-country stock market data set to analyse the asymmetry and tail

dependence in the dynamic period.

Chapter 5 proposes a novel truncated partial correlation-based regular
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vine copula model which can capture more flexible dependence structures
without making pre-assumptions about the data. Specifically, the model
employs a new partial correlation to build the dependence structures via a
bottom-up strategy. It can identify important dependencies and information
among high-dimensional variables, truncating the irrelevant information to
significantly reduce the parameter estimate time. The in-sample and out-of-
sample performance of the model are examined by using the data in currency
markets over a period of 17 years.

Chapter 6 discusses how to resolve the high-dimensional asset allocation
problem through a partial correlation-based canonical vine. Typically, the
mean-variance criteria which is widely used in asset allocation, is actually
not the optimal solution for asset allocation as the joint distribution of asset
returns are distributed in asymmetric ways rather than in the assumed nor-
mal distribution. The partial correlation-based canonical vine can resolve the
issue by producing the asymmetric joint distribution of asset returns in the
utility function. Then, the utility function is then used for determining the
optimal allocation of the assets. The performance of the model is examined
by using data in both European and United State stock markets.

In summary, this thesis proposes three dependence models, including one
canonical vine and two regular vines. The three dependence models, which
do not impose any dependence assumption on the dependence structure,
can be used for modelling different high-dimensional dependencies, such as
asymmetry or tail dependencies. All of these models are examined by the
datasets in the real world, such as stock or currency markets. In addition,
the partial correlation-based canonical vine is used to resolve optimisation
allocation of assets in stock markets. This thesis works to show that there is
great potential in applying copula to model complex dependence, particular
in modelling time-varying parameters, or in developing efficient vine copula

simplification methods.
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