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Abstract
Empirical evidence has suggested that, facing different trading strategies and
complicated decision, the proportions of agents relying on particular strategies
may stay at constant level or vary over time. This paper presents a simple
“dynamic market fraction” model of two groups of traders, fundamentalists and
trend followers, under a market maker scenario. Market mood and evolutionary
adaption are characterized by fixed and adaptive switching fraction among two
groups, respectively. Using local stability and bifurcation analysis, as well as
numerical simulation, the role played by the key parameters in the market be-
haviour is examined. Particular attention is payed to the impact of the market
fraction, determined by the fixed proportions of confident fundamentalists and
trend followers, and by the proportion of adaptively rational agents, who adopt
different strategies over time depending on realized profits.

1 Introduction
Research into financial market dynamics resulting from the interaction of het-
erogeneous traders, having different expectations about the future evolution of
prices, has flourished in recent years (e.g. Brock and Hommes [2], Hommes [15],
Chen and Yeh [3], Chiarella [4], Chiarella et al. [5], Chiarella and He [6], [7],
Day and Huang [8], Farmer and Joshi [9], Lux [18], [19], Lux and Marchesi [20]).
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The main goals (among many others) that this stream of research is trying to
achieve are (i) to provide insight into the connection between bounded ratio-
nality of heterogeneous agents and market behaviour, and (ii) to replicate the
economic properties of financial time series, in particular the so-called stylized
factors observed in high-frequency financial markets. These aspects have not
been well explained within the traditional paradigms of “efficient market” and
“investor homogeneity” (see e.g. Kirman [17]).
In this literature devoted to the role of agents’ heterogeneity in financial

markets, the market dominance of different trading strategies represented by
different types of traders plays a central role on the market price behavior. Em-
pirical evidence (see e.g. Taylor and Allen [21]) suggests that the proportions of
agents relying on particular strategies (e.g. technical and fundamental analysis)
may vary over time, for instance as a result of changes in the time horizon;
however, it is clear as well that a certain proportion of “confident” traders ex-
ist, who do not change their strategy over time. The heterogeneity has been
modelled through the well-known fundamentalists and chartists approach and
the market dominance has been modelled either implicitly by examining their
relative activity impacts, such as Day and Huang [8] and Chiarella [4] in early
literature, or explicitly by examining their market fractions, such as Lux [18],
Brock and Hommes [2] and He [12].
The recent literature about fundamentalists-chartists interaction in finan-

cial markets has considered either constant proportion models, or time-varying
proportion models where, in principle, the whole population of traders may
switch across different behavioural rules over time. Moreover, in the latter type
of models, such as Brock and Hommes [2] under the Walrasian scenario and
Chiarella and He [7] under the market maker scenario, the fraction of agents
who follow a particular strategy in each period is completely determined by how
each strategy has performed in the past. The time evolution of the fractions is
then governed by a unique parameter (the intensity of choice, denoted by β in
our model), which captures a variety of situations, ranging from the case where
the distribution of agents across all available strategies is fixed and uniform and
agents are completely insensitive to realized profits (when the intensity of choice
is zero) to the case where the whole population of agents in each period relies
on the best performing strategy (when the intensity of choice goes to infinity).
Such a framework is capable of generating a wide range of dynamic behaviors (a
locally stable equilibrium, a stable closed curve, coexistence of attractors, peri-
odic orbits of high order, chaotic dynamics) as various key parameters change,
in particular the intensity of choice which governs the switching among different
predictors. However, when market proportions are very sensitive to changes of
the fitness function (e.g. realized profits), it is not very clear how the market
fraction do actually influence the market price. To see such influence explic-
itly, He [12] considers the case of constant market fraction, the so-called market
fraction (MF) model. The MF model is used to explain various aspects of finan-
cial market behaviour and establish connections between the stochastic model
and its underlying deterministic system. It shows that the long-run behaviour
of asset prices, wealth accumulations of heterogeneous trading strategies and
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the autocorrelation structure of the stochastic system can be characterized by
the dynamics of the underlying deterministic system, the parameters driving
traders’ behaviour and the market fraction.
Comparing with the empirical findings, the above literature focuses on two

extreme cases. On the one hand, the fixed market fraction models, such as He
[12], neglect the fact that investors are boundedly rational in the sense that
they are likely to use a trial and error strategy when facing complex decision
problems. On the other hand, “pure” time-varying proportion models do not
distinguish between agents who are confident of their behavioral rule and are
willing to stay with their strategy over time, and adaptively rational agents
who use a particular strategy today but are likely to change strategy tomorrow.
This distinction is incorporated, in principle, in this paper, where the fixed frac-
tion represents an underlying fixed market mood, while the switching fraction
represents the proportion of adaptively rational agents.
Based on the empirical evidence, this paper extends early literature by con-

sidering the case that market fractions have both fixed and adaptive switching
components. In each trading period the population of agents is assumed to be
distributed among two groups, relying upon different predictors (or strategies,
or behavioral rules), fundamental traders (or fundamentalists) and trend follow-
ers (or chartists). Their fractions in the market in a given period are determined
partially by the past performance of the strategies and partially by a fixed pro-
portion over time. In other words, a “switching” component is introduced into
the population of traders, which then consists of adaptively rational agents who
select different strategies over time according to a performance measure, and of
agents who do not switch and stay with their strategies over time (“confident”
fundamental traders or trend followers). While the fixed fraction expresses the
market mood, the switching fraction captures the effect of evolutionary adaption.
The plan of the paper is as follows. Section 2 derives the market fraction

model of fundamental traders, trend followers, and a market maker. Section 3
reduces the underlying deterministic model to a 4-dimensional nonlinear dynam-
ical system in discrete-time, whose unique steady state and its local asymptotic
stability conditions are discussed. Section 4 performs some bifurcation analysis
with respect to the key parameters through numerical experiments in order to
explore the dynamical behavior of the model when the steady state becomes
unstable. It highlights the strong sensitivity of the dynamics to the parameters
which capture the prevailing market mood and the proportion of adaptively ra-
tional agents. Section 5 concludes while Appendix includes mathematical details
related to the local stability conditions of the steady state.

2 The Model
We consider an asset pricing model with one risky asset and one risk free asset.
The latter is assumed to be perfectly elastically supplied at gross return R =
1+r/K, where r is the constant risk free rate per annual andK is the frequency
of the trading period per year. Let pt be the price (ex dividend) per share of the
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risky asset at time t and {Dt} be the stochastic dividend process of the risky
asset. Then the wealth of investor of type h (h = 1, 2) at t+ 1 is given by

Wh,t+1 = RWh,t + zh,t(pt+1 +Dt+1 −Rpt), (1)

where Wh,t is investor’s wealth at time t and zh,t is the number of shares of the
risky asset held by the investor from t to t+ 1.
Let Eh,t and Vh,t denote the conditional expectation and variance of type

h traders. Denote also by Rt+1 := pt+1 + Dt+1 − Rpt the excess return per
share in (t, t + 1). Assume that traders are expected utility maximizers, with
exponential utility of wealth function Uh(W ) = − exp(−ahW ), where ah is the
risk aversion coefficient of type h traders. Then, under standard conditional
normality assumption, the demand zh,t of a type h trader on the risky assets is
given by

zh,t =
Eh,t (Rt+1)
ahVh,t (Rt+1)

In this paper, we assume that there are two types of traders, fundamental
traders (or fundamentalists) and trend followers (or chartists), denoted by type 1
and type 2, respectively. Let q1,t and q2,t be their market fractions, respectively.
We assume that the market fraction has a fixed component and a time varying
component. Denote by n1 and n2 the fixed proportions of fundamentalists and
trend followers, respectively. Then (n1+n2) represents the proportion of agents
who stay with their strategy over time, while 1 − (n1 + n2) is the proportion
of traders who may switch from one strategy to the other: we denote them as
switching or adaptively rational agents. Among “switching” agents, denote by
n1,t and n2,t = 1− n1,t the proportions of fundamentalists and trend followers
at time t, respectively. It follows that the market fraction (q1,t, q2,t) at time t is
expressed by

q1,t = n1 + (1− n1 − n2)n1,t,

q2,t = n2 + (1− n1 − n2)n2,t.

Denote n0 := n1 + n2,m0 = (n1 − n2)/n0,mt := n1,t − n2,t. Then the fractions
of the two types at time t can be rewritten as

{
q1,t = 1

2 [n0 (1 +m0) + (1− n0) (1 +mt)] ,
q2,t = 1

2 [n0 (1−m0) + (1− n0) (1−mt)] .
(2)

Assume zero supply of outside shares. Then the population weighted average
excess demand at time t, ze,t, is given by ze,t ≡ q1,t z1,t + q2,t z2,t, or

ze,t = q1,t
E1,t (Rt+1)
a1V1,t (Rt+1)

+ q2,t
E2,t (Rt+1)
a2V2,t (Rt+1)

. (3)

Following Day and Huang [8], Lux [18], Chiarella et al. [5], Farmer and Joshi [9]
and Chiarella and He [7], the market price in each trading period is determined
by a market maker who adjusts the price as a function of the excess demand.
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The market maker takes a long position when ze,t < 0 and a short position
when ze,t > 0 and the market price is adjusted according to

pt+1 = pt + µze,t + ε̃t, (4)

where µ denotes the corresponding speed of price adjustment and the noise term
ε̃t ∼ N (0,σ2ε ) is an i.i.d. random disturbance created, for instance, by “noise
traders”. It then follows from (2)-(4) that

pt+1 = pt +
µ
2

{
[n0 (1 +m0) + (1− n0) (1 +mt)]

E1,t (Rt+1)
a1V1,t (Rt+1)

+

+ [n0 (1−m0) + (1− n0) (1−mt)]
E2,t (Rt+1)
a2V2,t (Rt+1)

}
+ ε̃t.

We now describe briefly how fundamentalists and trend followers form dif-
ferent beliefs about future price and more details can be found in He [12]. Fun-
damental traders are assumed to have some “superior” information on the fun-
damental value, or price, p∗t of the risky asset. They believe that the stock price
may be driven away from the fundamental price in the short run, but it will
eventually return to the fundamental value. Thus the conditional mean and
variance of the price for the fundamental traders are assumed to follow

E1,t (pt+1) = pt + (1− α)(p∗t+1 − pt), V1,t (pt+1) = σ21, (5)

where p∗t denotes the fundamental price and σ21 is a constant variance on the
price. The speed of adjustment towards the fundamental price is represented
by (1−α), where 0 < α < 1. An increase in α may thus indicate less confidence
on the convergence to the fundamental price, leading to a slower adjustment.
Unlike the fundamental traders, trend followers are assumed to extrapolate

the latest observed price deviation from a long run sample mean price. More
precisely, their conditional mean and variance are assumed to follow

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ21 + b2vt, (6)

where γ ≥ 0 measures the extrapolation from the trend followers, b2 ≥ 0, and
ut and vt are sample mean and variance, respectively, which follow the following
learning process

ut = δut−1 + (1− δ) pt, vt = δvt−1 + δ (1− δ) (pt − ut−1)2 ,

which represent limiting processes of geometric decay processes when the mem-
ory lag tends to infinity. The parameter δ ∈ (0, 1) measures the geometric decay
rate.
In order to specify agents’ demand functions we need to specify how agents

compute the conditional variance of the dividend Dt+1 and of the excess return
Rt+1 over the trading period. For simplicity we assume that agents share homo-
geneous beliefs about the dividend process and that the trading period dividend
Dt is i.i.d. and normally distributed with mean D̄ and variance σ2D in agents’
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beliefs. The common estimate of the variance of the dividend (σ2D) is assumed
proportional to the variance of the fundamental price, with no correlation be-
tween price and dividend at trading period frequency. It follows that agents’
conditional variances of the excess return can be estimated as2

V1,t (Rt+1) =
(
1 + r2

)
σ21, V2,t (Rt+1) = σ21

(
1 + r2 + bvt

)
,

where b = b2/σ21.
Denote by p = D̄/(R − 1) = (K/r)D̄ the long-run fundamental price. It

follows that D̄ = p(R − 1). Using (5) and (6) one can compute conditional
expected excess returns for the two types of traders

E1,t (Rt+1) = p∗t+1 + α
(
pt − p∗t+1

)
+ D̄−Rpt

= (α− 1)
(
pt − p∗t+1

)
− (R− 1) (pt − p̄) ,

E2,t (Rt+1) = pt + γ (pt − ut) + D̄ −Rpt
= γ (pt − ut)− (R− 1) (pt − p̄) .

It turns out that agents’ optimal demands are given by



z1,t = (α−1)(pt−p∗t+1)−(R−1)(pt−p̄)

a1(1+r2)σ21
,

z2,t = γ(pt−ut)−(R−1)(pt−p̄)
a2σ21(1+r2+bvt)

.
(7)

Denote by πh,t+1 the realized profit, or excess return, between t and t + 1
by traders of type h, h = 1, 2, i.e.

πh,t+1 = zh,t(pt+1 +Dt+1 −Rpt) =Wh,t+1 −RWh,t

Following the approach used by Brock and Hommes [1], [2], we assume that
the proportion of “switching” agents who choose a certain option (fundamental
trader or technical trader) at time t+1 is determined by a discrete-choice model
according to the following equation

nh,t+1 =
exp [β (πh,t+1 −Ch)]∑
i exp [β (πi,t+1 −Ci)]

, h = 1, 2,

where Ch ≥ 0 is a fixed cost associated with strategy h, while the parameter β is
the intensity of choice measuring the sensitivity of the population of adaptively

2The long-run fundamental price is given by p = (KD̄)/r, where KD̄ is the average annual
dividend. Let σp̄ be the annual volatility of the price p, where σ represents the annual volatility
of 1 dollar invested in the risky asset. Under independent price increments, the trading period
variance of the price can be estimated as σ21 = (p̄σ)2 /K. Denote by DA and σ2DA

the
annual dividend and its variance and assume an approximate relationship D(A) = rp between
annual dividend and price. Then one gets σ2DA

= r2(σp̄)2 and therefore σ2D = σ2DA
/K =

r2(σp̄)2/K = r2σ21. Assuming zero correlation between price and dividend at trading period
frequency, on finally gets V1,t (Rt+1) =

(
1 + r2

)
σ21 and V2,t (Rt+1) = σ21(1 + r2) + b2vt.
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rational traders to the most profitable strategy. Note that mt+1 = n1,t+1 −
n2,t+1. Then

mt+1 = tanh
{
β
2 [(π1,t+1 − π2,t+1)− (C1 −C2)]

}
.

To sum up, the laws of motion of the complete model of asset price dynamics
are determined by the following random discrete-time dynamical system

pt+1 = pt + µ(q1,t z1,t + q2,t z2,t) + ε̃t, ε̃t ∼ N (0,σ2ε), (8)

ut = δut−1 + (1− δ) pt, (9)
vt = δvt−1 + δ (1− δ) (pt − ut−1)2 , (10)

mt = tanh
{
β
2 [(z1,t−1 − z2,t−1) (pt +Dt −Rpt−1)− (C1 −C2)]

}
, (11)

where q1,t, q2,t are given by (2) and z1,t, z2,t are given by (7). The fundamental
price is assumed to follow a random walk, such that

p∗t+1 = p∗t + ηt, ηt ∼ N(0,σ21). (12)

Following sections are devoted to analysis on the dynamics of the nonlinear
model (8)-(12).

3 Dynamics of The Deterministic System

The dynamical model (8)-(12) has been extensively studied by He [12] under the
particular case of fixed market fraction, i.e. q1,t = n1, q2,t = n2 and n1+n2 = 1
for all t. In this more general case with both fixed and time-varying fractions,
the deterministic skeleton of the stochastic model is obtained from (8)-(12) by
setting the noise terms in equations (8) and (12) equal to zero, by assuming
a constant dividend D per time period and a constant fundamental p∗t that is
equal to the long-run fundamental price p∗t = p = D(R − 1). Accordingly, we
obtain from (8)-(11) a four-dimensional deterministic dynamical system, driven
by the following 4−D map3 T : (p, u, v,m) 	→ (p′, u′, v′,m′)

T :





p′ = p+ µ
2 {[n0 (1 +m0) + (1− n0) (1 +m)] z1

+ [n0 (1−m0) + (1− n0) (1−m)] z2}
u′ = δu+ (1− δ) p′
v′ = δv + δ (1− δ) (p′ − u)2

m′ = tanh
{
β
2
[
(z1 − z2)(p′ + D̄−Rp)−C1 +C2

]}
,

(13)

where
z1 = z1(p) = [(α−R)(p−p̄)]

a1σ21(1+r2)

z2 = z2(p, u, v) = [γ(p−u)−(R−1)(p−p̄)]
a2σ21(1+r2+bv)

.
3The symbol ′ denotes the unit time advancement operator.
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We now turn to the existence and uniqueness of the steady-state and its local
stability analysis. This is summarized in the following Proposition and its proof
is given in the Appendix.

Proposition: (i). The 4-dim map (13) has a unique fundamental steady state
(p, u, v,m) = (p, p, 0,m) with p̄ = D/(R− 1) and m = tanh(β(C2 −C1)/2). At
the steady state, the equilibrium fraction is given by (q1, q2) with

{
q1 = [n0 (1 +m0) + (1− n0) (1 +m)] /2
q2 = [n0 (1−m0) + (1− n0) (1−m)] /2.

(ii). The fundamental steady state is locally asymptotically stable (LAS) in a
region Ω of the space of the parameters (γ, µ) determined by the union of the
two regions Ω1 and Ω2, such that

Ω1 := {(γ, µ) : 0 ≤ γ ≤ γ0, 0 < µ < µ1(γ)} ,
Ω2 := {(γ, µ) : γ > γ0, 0 < µ < µ2(γ)} ,

where ρ := a2/a1, Q := 2a2σ21
(
1 + r2

)
,mq := n0m0 + (1− n0)m and

γ0 :=
(1+δ)2
4δ

[
(R− 1) + ρ(R− α) (1+mq)

(1−mq)

]
,

γ1 :=
4δγ0
(1+δ)2 , γ2 :=

2γ0
(1+δ) ,

µ1(γ) := 1+δ
δ

Q
1−mq

1
γ2−γ

,
µ2(γ) := 1−δ

δ
Q

1−mq
1

γ−γ1
.

In addition a flip bifurcation occurs along the boundary µ = µ1(γ) for 0 <
γ ≤ γ0 (where one of the eigenvalues of G is equal to −1, while the other is
smaller than one in modulus) and a Neimark-Sacker bifurcation occurs along
the boundary µ = µ2(γ) for γ ≥ γ0 (where the two eigenvalues are complex
conjugate of modulus equal to one).

*** FIG. 1 APPROXIMATELY HERE ***

Fig. 1 is a qualitative picture of the local stability domain and the bifurca-
tion curves, in the plane of the parameters γ, µ.

4 Global Dynamics and Market Price Behavior

This section complements the previous one in that, (i) it performs bifurcation
and sensitivity analysis with respect to the key parameters near the “Neimark-
Sacker” bifurcation boundary, and (ii) it focuses on the role played by the para-
meters which determine the market fraction, i.e. n0 and m0, in order to capture
the joint effect of market mood and evolutionary adaption.
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4.1 Dynamical Behavior Beyond the Neimark Boundary
The goal of this section is to explore the dynamical behavior of the market be-
yond the Neimark-Sacker bifurcation boundary, where the fundamental steady
state is an unstable focus and trajectories converge towards another attractor.
In all of the numerical experiments of this paper we choose r = 0.05, K = 250
(which means a daily trading frequency) and therefore R = 1 + r/K = 1.0002.
It is also assumed D = 0.02, p = D/(R − 1) = 100, σ = 0.2 (and therefore
σ21 = (p̄σ)

2 /K = 1.6), C ≡ C1 −C2 = 0.5.
Our first example is devoted to explore the bifurcation nature near the

Neimark-Sacker bifurcation boundary. In this example, we choose a1 = a2 =
a = 0.8, α = 0.5, γ = 0.75, δ = 0.85, µ = 1, β = 1, b2 = 1.6 (and therefore
b = b2/σ21 = 1), n0 = 0.5, m0 = 0. For this choice, there is 50% of fixed
fraction, among which 50% is the fundamentalists and 50% is the trend follow-
ers. The rest 50% fraction follows the switching mechanism. It can be verified
by the Proposition that the fundamental price is asymptotically stable. Start-
ing from these base values, i.e. for fixed values of the remaining parameters,
numerical experiments show that a supercritical Neimark-Sacker bifurcation oc-
curs when one increases the parameter γ (with 0.79 < γ∗ < 0.8), β (with
1.34 < β∗ < 1.35), δ (with 0.86 < δ∗ < 0.87), µ (with 1.12 < µ∗ < 1.13), α
(with 0.55 < α∗ < 0.56), or decreases the parameter a (with 0.72 > a∗ > 0.71),
n0 (with 0.34 > n∗0 > 0.33), m0 (with −0.08 > m∗

0 > −0.09) (the bifurcation
values are denoted with asterisks). In other words, the fundamental steady state
becomes unstable with higher extrapolation (γ) and memory parameter (δ) from
the trend followers, higher speed of price adjustment from the market maker (µ),
higher switching intensity (β), lower confidence of the fundamentalists on the
fundamental price (i.e. higher α), lower risk aversion coefficient (a), lower fixed
fraction of the fundamentalists or higher fixed fraction of the chartists (i.e. lower
n0m0 = n1−n2). This result is very intuitive. The Neimark-Sacker bifurcation
creates a stable closed curve. In general, the size of the attractor increases as
the above parameters are increased (decreased) further beyond their bifurca-
tion values. Fig. 2a represents the projection in the (p, u)-plane of a trajectory
which converges to a closed curve (for γ = 1.25), while the projection of the
same attractor in the (p,m)-plane is represented by an eight-shaped closed curve
in Fig. 2b. Examples of sample trajectories of the fundamental price and the
market price obtained from the noisy model with the base parameter selection
(for which the steady state is a stable focus) are presented in Figs. 2c,d. They
show that the price path seems to depart from the fundamental path occasion-
ally, but after a number of periods mean reverting forces bring the price back
to fundamental.

*** FIG. 2 APPROXIMATELY HERE ***

Our second example is devoted to explore the coexistence of locally stable
attractors. In this example, we choose a1 = a2 = a = 0.5, α = 0.3, γ = 0.8,
δ = 0.85, µ = 1, β = 0.5, b2 = 0.05 and therefore b = b2/σ21 = 0.03125,
n0 = 0.5, m0 = 0. In particular, comparing to the previous example, agents
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now are less risk averse and the conditional variance estimated by trend followers
has much lower sensitivity to the sample variance. On the other hand, the
mean reverting force of the fundamental traders is higher (lower α) and agents’
sensitivity to the relative profitability of the strategies is lower. Starting from
these base values, numerical experiments show that the bifurcation values of
the parameters, assuming the rest is fixed, are as follows: increasing γ (with
0.86 < γ∗ < 0.87), β (with 0.77 < β∗ < 0.78), δ (with 0.89 < δ∗ < 0.9),
µ (with 1.30 < µ∗ < 1.31), α (with 0.37 < α∗ < 0.38); decreasing a (with
0.4 > a∗ > 0.39), n0 (with 0.25 > n∗0 > 0.24),m0 (with −0.09 > m∗

0 > −0.1). In
this case, when one of the parameters is beyond its Neimark-Sacker bifurcation
value, the system in the long run settles down on a wide attracting closed curve.
It is worth noticing that the stable closed curve in question already exists when
the parameters are within the stability domain, i.e. the stable curve coexists
with a stable steady state for those parameter ranges. This phenomenon of
coexistence of a stable equilibrium and a stable limit cycle has been detected
in other models of fundamentalist-chartist interaction (see e.g. Gaunersdorfer
et al. [11]). Figs. 3a,b represent the price trajectories generated by the same
initial condition and slightly different values of the fixed proportion n0 (0.25
and 0.24, respectively). Figs. 3c,d are obtained with the same parameter set,
except for n0 = 0.5, under two slightly different initial conditions, showing the
coexistence of attractors in the stable regime. Notice the abrupt change of
asymptotic dynamics follows from a small change of the fixed fraction n0 (Figs.
3a,b) or of the initial sample mean price u0 of trend followers (Figs. 3c,d). A
sample trajectory of the price and fundamental from the noisy model, in the
case of coexisting attractors (same parameters as in Figs. 3c,d) is represented
in Fig. 3e.

*** FIG. 3 APPROXIMATELY HERE ***

4.2 Role of Market Mood and Evolutionary Adaption
The previous examples show that both market mood and proportion of switch-
ing agents play an important role in the dynamics of the present model. For
instance, the bifurcation analysis performed in the previous section has shown
that, other things being fixed, small changes in the parameter n0 (a small in-
crease of the proportion 1 − n0 of switching agents) or m0 (a small change in
the structure of the fixed fraction, or market mood, in favour of trend followers)
can change the steady state from stable to unstable. In a way, this phenomenon
is not surprising under the parameters selection used in the previous example,
where the situation is one with high proportion of switching agents (75%), and
equal proportions of fundamentalists and trend followers within the fraction of
fixed-strategy agents. However, the same phenomenon can be observed under
less intuitive and extreme situations. In principle, by addressing the following
two questions, we show that a small change of the market model, which can be
treated as a small change of market psychology, can change the market price be-
havior dramatically and this phenomenon has not been observed and examined
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in the literature.
The first question is whether, in principle, a small change of the market mood

towards fundamental traders can stabilize an otherwise unstable market, even in
a situation where there is a high fraction of adaptively rational agents, and the
market mood is essentially characterized by chartist beliefs. The parameters
used in our third example are the following: a1 = a2 = a = 0.5, α = 0.5,
γ = 2, δ = 0.275, µ = 1, β = 1, b2 = 0.05 and therefore b = b2/σ21 = 0.03125;
the fraction of confident agents is low, n0 = 0.15, and chartist beliefs prevail,
m0 = −0.8. This means that the fraction n1 of confident fundamentalists is
only 1.5% of the whole agent population, while the fraction n2 of confident
trend followers is 13.5%. We now increase the parameter m0 from −0.8 to −0.7
for fixed n0 (i.e. without altering the total proportion of fixed-strategy agents).
Then the proportion n1 of fundamental traders is slightly increased from 1.5%
to 2.25% while the proportion n2 of trend followers is decreased from 13.5% to
12.75%. Figs. 4a,b represent the trajectories of the price for m0 = −0.8 and
m0 = −0.7, respectively, starting with the same initial condition. While for
m0 = −0.8 the market is unstable and there are wide price fluctuations, a small
increase of the fundamental traders to m0 = −0.7 is sufficient to stabilize the
market, after an oscillatory transient phase. The unstable market represented
in Fig. 4a oscillates on the attractor depicted in Figs. 4c,d (projections in the
(p, u) and (p,m) planes, respectively). Our numerical simulations show that
this change of regime from unstable to stable occurs suddenly at a particular
“threshold” value m̃0 with −0.720 < m̃0 < −0.719.

*** FIG. 4 APPROXIMATELY HERE ***

Conversely, the second related question is whether a small increase of the
fraction of switching agents can destabilize the market, even in a “quiet” situa-
tion where the fixed fraction is high (thus the proportion of adaptively rational
agents is small) and the market mood is essentially characterized by funda-
mentalist beliefs. The parameters of our fourth example are the following:
a1 = a2 = a = 0.5, α = 0.25, γ = 2.5, δ = 0.9, µ = 1, β = 1.5, b2 = 0.05
and therefore b = b2/σ21 = 0.03125; the fraction of fixed-strategy agents is high,
n0 = 0.8, and the fundamentalist beliefs prevail, m0 = 0.75, i.e. the fraction
n1 of confident fundamentalists is 70% of the whole population of agents, while
the fraction n2 of confident trend followers is 10%. We then decrease the para-
meter n0 from 0.8 to 0.75 with fixed m0 (i.e. without altering the proportion
of the two strategies within the population of confident agents). Accordingly,
the proportion of adaptively rational agents is increased from 20% to 25% and
the fractions of the confident fundamentalists and trend followers are decreased
from 70% and 10% to 65.625% and 9.375%, respectively. Figs. 5a,b represent
the trajectories of the price for n0 = 0.8 and n0 = 0.75, respectively, starting
with the same initial condition. While for n0 = 0.8 the trajectory converges to
steady state, for n0 = 0.75 the trajectory converges to an attractor character-
ized by wide price fluctuations, whose projection in the planes (p, u) and (p,m)
is represented in Figs. 5c,d, respectively. One can easily check that this change
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of regime occurs suddenly when n0 is decreased below the “threshold” value ñ0,
where 0.787 > ñ0 > 0.786.

*** FIG. 5 APPROXIMATELY HERE ***

The examples presented in this section show that our model, which accounts
simultaneously for market mood and evolutionary adaption, has the potential
to explain important aspects of financial market psychology and rational adap-
tiveness of agents.

5 Conclusion
Empirical evidence has suggested that, facing different trading strategies and
complicated decision, the proportions of agents relying on particular strategies
(e.g. technical and fundamental analysis) may stay at constant level or vary over
time. The first case can be used to characterize the market mood or market
psychology where agents are confident about the trading strategies they selected
and do not change their strategies over certain time horizon, while the second
case can be used to characterize the evolutionary adaption where agents are
boundedly rational and adaptively switching their trading strategies based on
their performance. Consequently, it is believed that the market price behaviour
can be greatly influenced by both the market mood and evolutionary adaption.
Two of the extreme cases where the market fractions are either fixed or adaptive
switching have been modelled and examined in the literature. However, to our
knowledge, this paper is the first one to explicitly model and examine the joint
impact of both the market mood and evolutionary adaption characterized by
fixed and changing market fractions, respectively.
This paper has developed a nonlinear discrete-time asset pricing model of

fundamental traders and trend followers, who interact in a financial market
with one risky asset and a riskless asset, under a market maker scenario. The
model allows for evolutionary adaption of agents, with time varying propor-
tions of the two groups depending on realized profits, but also assumes that
a given proportion of fundamentalists and trend followers remains fixed over
time. As expected, we have shown that the market is stable (unstable) when it
is dominated by the fundamentalists (trend followers) and both locally stable
steady-state and limit cycle can coexist. We have also shown that both the mar-
ket mood, determined by the weight of the two strategies among fixed-strategy
agents, and the proportion of adaptively rational agents, which captures the
impact of evolutionary adaption, play important role for asset price behavior.
In particular, we have shown that (i) a small change of the market mood to-
wards fundamental traders can stabilize an otherwise unstable market, and (ii)
a small change of the proportion of adaptive rational agents can destabilize an
otherwise stable market. The model essentially provides insight into the connec-
tion between financial market behavior and the market psychology and rational
adaptiveness of agents.
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The deterministic skeleton of the stochastic model plays the most important
role in understanding the stochastic nature of the model. However, how the
dynamics of the stochastic model is connected to the dynamics of its under-
lying deterministic model is even more, but difficult question. There are two
approaches currently addressing this issue. The first approach is to conduct
statistical analysis through Monte Carlo simulation and to establish connection
between various statistic properties, such as the autocorrelation patterns of re-
turns and long-range dependence, of the stochastic model and the stability and
bifurcation of the underlying deterministic model. For the fixed market fraction
model, He and Li [13] show that convergence of market price to fundamental
value, long- and short-run profitability of the two trading strategies, survivabil-
ity of chartists and various under- and over-reaction autocorrelation patterns can
be explained by the stability and bifurcations of the underlying deterministic
system. The potential of the MF model in explaining some of the stylized facts
of financial markets is also explored in He and Li [14], and it shows that hetero-
geneity, trend chasing through learning, and the interplay of stable deterministic
equilibria and stochastic noisy processes can be the source of power-law distrib-
uted fluctuations. This result is further verified via Monte Carlo simulation and
statistical analysis on the decay patterns of autocorrelation functions of returns,
squared returns and absolute returns, and the estimates of (FI)GARCH (1, 1)
parameters. Given the flexibility of our model, it is hoped that our model would
generate more robust connections and more realistic statistic features. Another
approach is to conduct theoretic analysis to the stochastic model directly. By
considering a financial market as a large number of interacting heterogeneous
agents, Föllmer et al. [10] and Horst [16] examine the asymptotics of both
aggregate behaviour and asset prices. They derive sufficient conditions under
which the distribution of equilibrium prices converge to a unique limit distrib-
ution, which may be thought of as the appropriate equilibrium notion for such
markets. Our model in this paper is closely related to these work and further
examination on the relation to the stochastic model would be interesting and
challenging.

Appendix: Proof of the Proposition
The existence of the fundamental steady state can be easily checked. The

uniqueness follows from the fact that, at the fundamental equilibrium, the re-
alized excess return is zero p + D̄ − Rp = 0 and agents’ demands are zero
z1 = z2 = 0. In fact, use in general the symbol ˆ for equilibrium quantities
(possibly different from the fundamental steady state). Note that in equilib-
rium p̂ = û, v̂ = 0 and the excess demand must be zero, q̂1 ẑ1 + q̂2 ẑ2 = 0.
Equilibrium demands are given by

ẑ1 =
(α−R) (p̂− p̄)
a1σ21 (1 + r2)

, ẑ2 =
(1−R) (p̂− p̄)
a2σ21 (1 + r2)

.

Since R ≡ 1 + r/K > 1 > α, both (α−R) and (1 − R) are negative which

13



implies that ẑ1 and ẑ2 are both zero if p̂ = p̄, otherwise they have the same sign.
In the latter case, given that q̂1, q̂2 ≥ 0, q̂1 + q̂2 = 1, the excess demand would
be different from zero, which is not compatible with equilibrium. This implies
that p̂ = p̄.
The conditions of local asymptotic stability of the steady state are deter-

mined by the eigenvalues of the Jacobian matrix of the map T , evaluated at the
steady state itself (let us denote it by J).
Let us compute first the Jacobian in the generic point (p, u, v,m) of the

phase-space. Consider first the derivatives of the agents’ demand functions
with respect to the state variables

dz1
dp =

(α−R)
a1σ21 (1 + r2)

, ∂z2
∂p =

γ + 1−R
a2σ21 (1 + r2 + bv)

, ∂z2
∂u =

−γ
a2σ21 (1 + r2 + bv)

,

∂z2
∂v = [γ (p− u)− (R− 1) (p− p̄)]

(−a2σ21b)
[a2σ21 (1 + r2 + bv)]

2 .

Consider the partial derivatives of p′ with respect to the state variables at time
t

∂p′
∂p = 1 + µ

2

{
[n0 (1 +m0) + (1− n0) (1 +m)] dz1dp

+ [n0 (1−m0) + (1− n0) (1−m)] ∂z2∂p
}
,

∂p′
∂u = µ

2 [n0 (1−m0) + (1− n0) (1−m)] ∂z2∂u ,
∂p′
∂v = µ

2 [n0 (1−m0) + (1− n0) (1−m)] ∂z2∂v ,
∂p′
∂m = µ

2 (1− n0) (z1 − z2).
The partial derivatives of u′ and v′ with respect to the state variables at time t
are given by

∂u′
∂p = (1− δ)∂p

′

∂p ,
∂u′
∂u = δ + (1− δ)∂p

′

∂u ,
∂u′
∂v = (1− δ)∂p

′

∂v ,
∂u′
∂m = (1− δ) ∂p

′

∂m ,
∂v′
∂p = 2δ(1− δ)(p′ − u)∂p

′

∂p ,
∂v′
∂u = 2δ(1− δ)(p′ − u)

(
∂p′
∂u − 1

)
,

∂v′
∂v = δ + 2δ(1− δ)(p′ − u)∂p

′

∂v ,
∂v′
∂m = 2δ(1− δ)(p′ − u) ∂p

′

∂m .

Consider now the partial derivatives of m′ with respect to the state variables at
time t. Note that

D[tanh(x)] = D
[
e2x − 1
e2x + 1

]
= 4e2x
(e2x + 1)2 = 1− tanh

2(x).

Denote A := 1− tanh2
{
β
2 [(z1 − z2)(p′ + D̄ −Rp)−C1 +C2]

}
. Then we get

∂m′

∂p = A β
2

[(
dz1
dp −

∂z2
∂p

)
(p′ + D̄ −Rp) + (z1 − z2)

(
∂p′
∂p −R

)]
,

∂m′

∂u = A β
2

[(
−∂z2
∂u
)
(p′ + D̄ −Rp) + (z1 − z2)∂p

′

∂u

]
,

∂m′

∂v = A β
2

[(
−∂z2

∂v
)
(p′ + D̄ −Rp) + (z1 − z2)∂p

′

∂v

]
,

∂m′

∂m = A β
2 (z1 − z2)

∂p′
∂m .
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Finally, we evaluate all the partial derivatives at the steady state. At the fun-
damental steady state, p′ = p = u = p, z1 = z2 = 0 and (p′ + D̄ −Rp) = 0. It
follows that the Jacobian evaluated at the steady is given by the following block
diagonal matrix

J =




∂p′
∂p

∂p′
∂u 0 0

(1− δ) ∂p
′

∂p δ + (1− δ) ∂p
′

∂u 0 0
0 0 δ 0
0 0 0 0




where (at the steady state)

∂p′
∂p = 1 + µ

{
q̄1 dz1dp + q̄2

∂z2
∂p

}
, ∂p′

∂u = µq̄2
∂z2
∂u ,

q̄1 = 1
2 [n0 (1 +m0) + (1− n0) (1 +m)],

q̄2 = 1
2 [n0 (1−m0) + (1− n0) (1−m)],

dz1
dp = (α−R)

a1σ21(1+r2)
, ∂z2

∂p =
γ+1−R

a2σ21(1+r2)
, ∂z2

∂u =
−γ

a2σ21(1+r2)
.

The structure of J implies that two eigenvalues are 0 and δ (and thus they
are real, non negative and smaller than one). The remaining eigenvalues are the
ones of the upper-left two-dimensional block (and their location with respect to
the unit circle can be studied by means of the usual techniques for second-order
characteristic equations). Therefore, we turn our attention to the eigenvalues
of the block

G =
[

∂p′
∂p

∂p′
∂u

(1− δ) ∂p
′

∂p δ + (1− δ) ∂p
′

∂u

]
.

As it is known, a necessary and sufficient condition for both of them to be less
than one in modulus is provided by the following set of inequalities




1− tr(G) + det(G) > 0,
1 + tr(G) + det(G) > 0,

det(G) < 1,
(14)

where tr(G) and det(G) denote trace and determinant of the matrix G, respec-
tively. Using the notation mq = q1 − q2 = n0m0 + (1− n0)m,

∂p′
∂p = 1 + µ

2

[
(1 +mq) (α−R)

a1σ21(1+r2)
+ (1−mq) γ+1−R

a2σ21(1+r2)

]
,

∂p′
∂u = µ

2 (1−mq) (−γ)
a2σ21(1+r2)

.

Also, using the notations ρ ≡ a2/a1 and Q ≡ 2a2σ21
(
1 + r2

)
, condition 1 −

tr(G) + det(G) > 0 becomes

ρµ
Q

[
(1 +mq)(α−R) + (1−mq)

(1−R)
ρ

]
< 0,

which is always true given that −1 ≤ mq ≤ 1 and α < 1 < R.
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Condition 1 + tr(G) + det(G) > 0 becomes

µ(1 + δ) [ρ(1 +mq)(R− α) + (1−mq)(R− 1)]− 2γδµ(1−mq) < 2Q(1 + δ),

which is satisfied when either the left-hand side is negative or zero, i.e. when

γ ≥ 1 + δ
2δ

[
(R− 1) + ρ(R− α)(1 +mq)

(1−mq)

]
:= γ2

or it is strictly positive but lower than the right-hand side, i.e. γ < γ2 and

µ < 1 + δ
δ

Q
1−mq

1
γ2 − γ := µ1(γ).

Condition det(G) < 1 can be rewritten as

δµ [ρ(1 +mq)(α−R) + (1−mq)(γ + 1−R)] < Q(1− δ),

which is satisfied when either the left-hand side is negative or zero, i.e.

γ ≤ (R− 1) + ρ(R− α) (1 +mq)
(1−mq)

:= γ1

or it is strictly positive but lower than the right-hand side, i.e. for γ > γ1 and

µ < 1− δ
δ

Q
1−mq

1
γ − γ1

:= µ2(γ).

Note that for δ ∈ (0, 1), γ1 < γ2 and µ1(γ) is an increasing function of γ for
γ < γ2, while µ2(γ) is a decreasing function of γ for γ > γ1. Denote by γ0 the
solution of µ1(γ) = µ2(γ), i.e.

γ0 =
(1 + δ)2
4δ

[
(R− 1) + ρ(R− α)(1 +mq)

(1−mq)

]

and note that γ0 ∈ (γ1, γ2). It follows that (see also Fig. 1 ) the region of local
stability in the plane of the parameters (γ, µ) is the union of the two regions,
which we denote by Ω1 and Ω2. In addition a flip bifurcation occurs along the
boundary µ = µ1(γ) for 0 < γ ≤ γ0 (where one of the eigenvalues of G is equal
to −1, while the other is smaller than one in modulus) and a Neimark-Sacker
bifurcation occurs along the boundary µ = µ2(γ) for γ ≥ γ0 (where the two
eigenvalues are complex conjugate of modulus equal to one).
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Figure captions
Fig. 1. Stability region of the fundamental steady state and bifurcation

curves in the plane of parameters γ, µ.

Fig. 2. Dynamics generated from parameters chosen close to the Neimark-
Sacker boundary: a1 = a2 = 0.8, α = 0.5, δ = 0.85, µ = 1, β = 1, b = 1,
n0 = 0.5, m0 = 0. (a), (b): phase-plots in the plane of state variables p, u
and p, m, respectively, for γ = 1.25 (beyond the Neimark-Sacker boundary);
(c), (d): two sample paths for fundamental and price in the noisy model, for
γ = 0.75 (inside the stability region but close to the Neimark-Sacker boundary
of the deterministic model); noise terms are σε = 1 (price setting rule), σ1 ≡
(p̄σ) /

√
K ≈ 1.26491 (fundamental), σD ≡ rσ1 ≈ 0.06325 (dividend).

Fig. 3. Dynamics generated from parameters chosen close to the Neimark-
Sacker boundary, in a case of coexisting stable steady state and stable limit
cycle. Parameters are: a1 = a2 = 0.5, α = 0.3, γ = 0.8, δ = 0.85, µ = 1,
β = 0.5, b = 0.03125, m0 = 0. (a), (b): deterministic trajectory of price versus
time in the cases n0 = 0.25 and n0 = 0.24, respectively, starting with the same
initial point close to steady state (p0 = p + 1 = 101, u0 = p = 100, v0 = 0,
m = m ≡ tanh

{
β
2 (C2 −C1)

}
≈ −0.12435); (c), (d): deterministic trajectory

of price for n0 = 0.5 under slightly different initial conditions (p0 = 101, v0 = 0,
m = m ≈ −0.12435, u0 = 100 in (c), u0 = 99 in (d)); (e): sample path
for fundamental and price in the noisy model with parameters as in (c), (d)
(coexistence of attractors) and noise terms σε = 2 (price setting rule), σ1 ≡
(p̄σ) /

√
K ≈ 1.26491 (fundamental), σD ≡ rσ1 ≈ 0.06325 (dividend).

Fig. 4. Stabilizing effect of a small change of the market mood towards
fundamental beliefs. Starting parameters are: a1 = a2 = 0.5, α = 0.5, γ = 2,
δ = 0.275, µ = 1, β = 1, b = 0.03125, n0 = 0.15, m0 = −0.8. (a), (b):
deterministic trajectory of price versus time in the cases m0 = −0.8 and m0 =
−0.7, respectively, starting with the same initial condition close to steady state
(p0 = 105, u0 = 100, v0 = 0, m = m ≈ −0.24492); (c), (d), phase-plots in
the plane of state variables p, u and p, m, obtained prior to stabilization (same
parameters as in (a)).

Fig. 5. Destabilizing effect of a small increase of the fraction of “adaptively
rational” agents. Parameters are: a1 = a2 = 0.5, α = 0.25, γ = 2.5, δ = 0.9,
µ = 1, β = 1.5, b = 0.03125, m0 = 0.75, n0 = 0.8. (a), (b): deterministic
trajectory of price versus time in the cases n0 = 0.8 and n0 = 0.75, respectively,
starting with the same initial condition close to steady state (p0 = 101, u0 = 100,
v0 = 0, m =m ≈ −0.35836); (c), (d), phase-plots in the plane of state variables
p, u and p, m, obtained in the destabilized case (b).
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