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Abstract— This article proposes a probabilistic approach to
account for robot stability uncertainty when planing motions
over uneven terrains. A novel probabilistic stability criterion
derived from the cumulative distribution of a tip-over metric
is introduced that allows a safety constraint to be dynamically
updated by available sensor data as it becomes available. The
proposed safety constraint authorizes the planner to generates
more conservative motion plans for areas with higher levels of
uncertainty, while avoids unnecessary caution in well-known
areas.The proposed systematic approach is particularly appli-
cable to reconfigurable robots that can assume safer postures
when required, although is equally valid for fixed-configuration
platforms to choose safer paths to follow. The advantages of
planning with the proposed probabilistic stability metric are
demonstrated with data collected from an indoor rescue arena,
as well as an outdoor rover testing facility.

I. MOTIVATION AND RELATED WORK

One of the most difficult problems of navigation over
unstructured and unforgiving environments is how to address
the uncertainties emanating from imperfect actuators and
poor environmental sensor information. Several approaches
have been developed in the literature to deal with uncer-
tainties in the input data and system model parameters. For
instance, path following with uncertainty has been studied
by the control community. A Kalman-based active observer
controller for the path following of wheeled mobile robots
subject to non-holonomic constraints is presented in [1]. The
effect of external disturbances, general model errors, and
uncertainties present in the system are reduced by adding
an extra state (the “active state”) to the controller design.
The effectiveness of the proposed path-following controller
was evaluated via simulation results for a wheelchair robot
following a straight line and a circular path. Path following
controllers based on a Lyapunov feedback linearisation have
also been proposed to make the controller robust to mod-
elling uncertainty, e.g. for articulated manipulators where
experimental results of a 4 DoF manipulator with revolute
and linear actuated links were presented moving the end-
effector along a circular path [2].

Other authors have looked at the problem of incorporat-
ing uncertainty at the planning stage, e.g. by considering
variations in the 2.5D terrain elevation data and localisation
errors, as described in [3] for an articulated wheeled mobile
robot. A conservative path planning approach is adopted
that considers terrain measurement uncertainty, where a set
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Fig. 1: The iRobot PackBot Explorer robot with a 1 DoF arm,
pan-tilt sensor unit and two small front sub-tracks (flippers).

of potential worst-case robot configurations at boundary
locations in the terrain are examined to make sure that the
vehicle would remain stable for a given variance in the
elevation map. If any posture in this set is proven unstable,
the corresponding location in the map will be regarded as
untraversable. To address the localisation uncertainty for
a given path, all points along the path within a distance
proportional to the assumed robot localisation uncertainty
are examined given all possible configurations. A point in
the terrain would be considered as a feasible point for path
finding purposes only if all configurations in the overall
search have been proven to be stable. The output of this
brute-force approach is a simple failure or success, with no
concern for the probability of a tip-over instability.

This article looks at the challenging problem of global path
planning over ruggedised terrains by formally accounting
for stability uncertainty in the process. A novel probabilistic
stability metric based on the uncertainty analysis technique
described in [4] is introduced. The proposed criterion is
employed to progress the deterministic stable path planning
strategy described in [5], proven to be particularly suitable
for search and rescue missions, with the goal of improving
robot navigation safety in scenarios where the model of the
system and the sensory data available to the robot may be
imperfect. In [5], the force angle (FA) stability measure [6]
was employed to evaluate the stability of the rover along
the path. The FA margin is deterministically defined by the
position of the robot’s centre of mass (CM) and the contact-
point (CP) interaction with the terrain, which form a convex
area called “support polygon” (SP). The main drawback of
employing deterministic constant stability margins to path
planning is that while producing safer paths with larger,
more conservative stability margins, they may also easily
end up being overly restrictive, filtering out many probable
pathways, while on the other hand planning on the boundary
of tip-over could easily jeopardise stability if uncertainties



Fig. 2: The 3D FA stability measure for n = 4 and i = 3.
(CM’s position has been shifted up and vectors scaled for
easier visualization). The FA measure can be intuitively
described as the effect of the forces over CM projected on the
supporting convex area defined by the contact-points between
the vehicle and terrain e.g. β3 = θ3 ‖d3‖ ‖f3‖.

are present.
The proposed probabilistic approach allows to search paths

with a minimum “safety confidence” instead, so that model
uncertainties can be taken into consideration when finding
paths, instead of resorting to restrictive fixed minimum
safe margins. The advantages of planning with probabilistic
stability will be demonstrated with a model of the Packbot
robot shown in Fig. 1 through comprehensive simulations in
a mock-up Urban Search and Rescue (USAR) arena an data
from a quasi-outdoor rover testing facility at the University
of Toronto Institute for Aerospace Studies (UTIAS) [7].

II. OVERVIEW OF STABILITY ANALYSIS

To anticipate the stability measure, works like [8] have
considered an ideal support polygon (ISP) for the vehicle, i.e.
contact points are assumed to be fixed under the sprockets of
the robot. It has been illustrated in the literature [5] how this
is a strong assumption for the case of highly unstructured
terrains, where contact points can lay anywhere along the
robot’s track and in general describe a variable support
polygon (VSP). Hence, no ISP is assumed in the following
sections.

A. Force Angle Stability Metric

The example in Fig. 2 describes the FA derivations for the
third tip-over axis with a vehicle exhibiting four CPs in a
given terrain configuration. The line joining two consecutive
CPs (pi and pi+1) forms the tip-over axes ai. The shortest
vector between the CM and each ai is referred to as li. The
FA stability margin [6] takes into account di, the distance
between the projected CM to the ith tip-over axis ai, and fi
the component of the effective net force fr which acts about
the axis ai. It also considers the angle θi between fi and
the tip-over axis normal li. Assuming the SP is composed
of n CPs, the FA stability measure about each ai can be
formulated as

βi = θi ‖di‖ ‖fi‖, i = {1, ...,n} (1)

The final FA margin would be the minimum βi i.e. β =
min(βi), i = {1, ...,n}.

B. Robot Model

Fig. 1 shows the multi-tracked iRobot Packbot robot model
and its coordinate frame convention that was employed in
this paper to validate the simulation results. The mechanical
structure consists of a skid-steer vehicle base, flippers (two
synchronised small sub-tracks in the front) and an arm that
carries a 2D pan-and-tilt unit equipped with several cameras
and lights. It is clear that for these types of robots the arm
and/or flippers angles (φa and φ f ) will significantly affect
the location of the CM. Moreover, when the flippers are in
contact with the terrain they change the shape of the SP,
which in turn has a more significant effect on the stability
of the robot. More details about the robot’s kinematic model
and the effect of the mass distribution can be found in [5].

C. Contact-Points Prediction

The robot-terrain prediction algorithm is based on the
mathematical description of the robot in the Open Dy-
namics Engine (ODE) [9], a widely used physical rigid
body dynamics simulator. A 3D model of the terrain has
been constructed from the ranging data measured with the
RGB-D camera situated on the head of the robot. The CP
derivation scheme is predicated on calculating the projection
of the robot’s geometric underside on the points defining
the terrain underneath. Under the assumption of quasi-static
equilibrium, the simulator predicts the behaviour of the robot
under the influence of gravitational forces for a given pose
and posture configuration to extract the SP. This process is
described in detail in [5].

III. UNCERTAINTY ANALYSIS AND PLANNING METHOD

The probabilistic stability metric calculation, the definition
of the proposed safety confidence and it’s use in the context
of path planning which form the novel contribution of this
paper are described in the following sections.

A. Transformation of Means and Covariance

The probabilistic approach for uncertain stability analysis
is detailed in [4]. For completeness, this section will quickly
summarise the aspects most relevant to the novel proposition
in this work. The general problem can be expressed as
follows: for an n-dimensional input vector x with given
mean x̂ and covariance Pxx, what would be the mean ŷ and
covariance Pyy of an m-dimensional random variable vector
y, where y is related to x by a non-linear transformation y =
g[x]. For the system hereby considered, the arm and flipper
angles (φa,φ f ) that determine the posture of the robot, the 3D
model of a given terrain and the robot’s position on it consti-
tute the input parameters, i.e. x37×1 =(φa,φ f ,rx,ry,yaw,32×
terrain sections). The output vector includes a list with (up
to) four CPs, the CM and the FA stability measure, i.e.
y16×1 = (4× (CP x,CP y,CP z),(CM x,CM y,CM z),β ).



Algorithm 1 The Unscented Transform (UT)

1: function ut trans f orm(φa,φ f ,rx,ry,yaw, terrain,k)
2: x̂←mean(φa,φ f ,rx,ry,yaw, terrain)// 37x1 i.e. n=37
3: Pxx← 0 // 37x37
4: Pxxii← sigma(φa,φ f ,rx,ry,yaw, terrain)
5: X0← x̂
6: W0← k/(n+ k)
7: for i = 1→ n do
8: Xi← x̂ +

(√
(n+ k)Pxx

)
i

9: Wi← 1/(2(n+ k))
10: Xi+n← x̂ −

(√
(n+ k)Pxx

)
i

11: Wi+n← 1/(2(n+ k))
12: end for
13: for i = 0→ 2n do
14: (CP,CM)← ode simulate(Xi)
15: β ← FA(CP,CM)
16: Yi← (CP,CM,β )
17: end for
18: ŷ← ∑

2n
i=0 Wi Yi // 16x1

19: Pyy← ∑
2n
i=0 Wi {Yi− ŷ}×{Yi− ŷ}T // 16x16

20: return (ŷ,Pyy)
21: end function

Given the highly non-linear nature of g[.], Taylor series
approximation and general error propagation [10] are not
applicable to enumerate ŷ and Pyy. Standard Monte Carlo
(SMC) [11] is a proven iterative algorithm to estimate proba-
bility density functions of a general system’s output response
from a large set of random inputs. Hence, by introducing per-
turbations to the input parameters, ODE simulations can be
carried out and β subsequently calculated. The tendency to
bigger input sets to attain more accurate distributions makes
SMC computationally expensive. The structured unscented
transform (UT) [12] has been proposed in the literature
to address this issue, and was employed in this work to
speed up the transformation of means and covariances. The
overall technique as applied to this work, summarised in
Alg. 1, intelligently simulates the SMC method by choosing
a deterministic set of inputs instead of a vast random sample
population.

It is important to note that while only the FA distribu-
tions (βµ ,βσ ) are exploited for path planning purposes in
this work, the output vector y also provides probabilistic
information about the robot’s CPs and CM. It is envisaged
that it may well be possible to take advantage of these useful
statistics in other stability metrics, or for other purposes (e.g.
computer graphics rendering applications).

B. Probabilistic Stability Metric

Assuming a standard normal distribution N(0,1) for β , the
cumulative distribution function (CDF) is formulated as:

Φ(x) =
1√
2π

x∫
−∞

e−
t2
2 dt (2)

This function describes the probability that β will be
found at a value less than or equal to x, where Φ(−∞) =
0%, Φ(0) = 50% and Φ(∞) = 100%. For a generic normal
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Fig. 3: Possible PDFs for β and the corresponding SC values.

distribution N(βµ ,β
2
σ ) for β , the cumulative distribution

function can be transformed by

F(x,βµ ,βσ ) = Φ(
x−βµ

βσ

) (3)

Therefore F(0,βµ ,βσ ) will indicate the probability that β

will assume negative values (i.e. a tip-over is in progress).
We can now define a “Safety Confidence” margin (SC) to
encapsulate our confidence in the stability prediction as

SC(β ) = (1−F(0,βµ ,βσ ))×100 (4)

To intuitively understand the meaning of SC the example
in Fig. 3a is provided. The graph illustrates possible proba-
bility density functions (PDF) for β , and the corresponding
values for SC, based on three different robot postures at
a given location on a terrain. Although the mean value of
the green distribution is smaller than the blue one, a larger
SC value indicates more certainty in this configuration. A
conservative fixed large β will unnecessarily push the robot
away from many potentially feasible trajectories. On the
other hand, critically small safety margins may put the robot
in jeopardy, particularly when traversing highly challenging
terrains (e.g. stairs or rubble). By employing the proposed SC
margin instead, the system can benefit form a dynamic safety
boundary that represents reliability in the output predictions.

For the special case when the mean value is exactly zero,
the SC calculation would be independent of σ2 (SC = 50%
always, as illustrated by Fig. 3b). In this case, although both
distributions result in the same value for SC, for stability
purposes a distribution with smaller σ2 should be preferred
(green curve in this example), indicating that the true β

is generally expected to be closer to zero and away from
negative tip-over instability. Therefore, for the special case
when µ = 0, SC will be multiplied by (1− σ2) to lean
towards configurations with smaller covariances.

C. High Visibility Probabilistically Stable Path Planning

The fundamental motivation behind the proposal in this
paper is the ability to identify safe paths that can also
accommodate uncertainty in the stability of the proposed
manoeuvres in a probabilistic manner. To that end, changes
are proposed to the deterministic technique described in [5]
where the benefits of an optimum stable high-visibility path
planner for rescue operations were heralded. Given space
constraints only an intuitive description of the methodology



Algorithm 2 A* Path Planning with Stability Uncertainty

1: closed← /0
2: open← cell(start)
3: while (open 6= /0) do
4: cell(i) = min(open)
5: closed← closed + cell(i)
6: open← open− cell(i)
7: for all cell( j) ∈ {8 successors of cell(i)} do
8: if (cell( j) /∈ closed & cell( j) 6= obstacle) then
9: ut trans f orm()

10: if (SC > SC min) then
11: if (cell( j) ∈ open) then
12: re f resh node(i, j)
13: else
14: add open node(i, j)
15: end if
16: end if
17: end if
18: end for
19: if (cell(goal) = min(open)) then
20: return path
21: end if
22: end while
23: return path = /0

in the context of that work is provided so that the novel
proposition and the comparison results in the following
sections can be fully appreciated.

The key contribution on the algorithm in [5] was the
introduction of a stability constraint to a cost-based A*
planner. Essentially, the stable A* algorithm first examines
the stability of the robot when opening a new search node
at a new location with a given configuration. The node
is considered stable if β being larger than some nominal
βmin is satisfied. The present proposal, abstracted by Alg. 2,
takes into account SC as described by (4) through the
ut trans f orm() function (Alg. 1), effectively transforming
the fixed stability constraint (β > βmin) into a minimum
confidence threshold (SC > SCmin) representative of the
certainty in the stability prediction.

IV. SIMULATION RESULTS

The effectiveness of the approach has been evaluated using
two terrain data sets, and compared to the deterministic stable
path planning described in [5]. The USAR test arena is
chosen to investigate the performance of the technique in
an indoor setting with distinctive features such as stairs,
rubble etc., whereas the UTIAS arena is an example of
a larger outdoor scenario. In both instances, the robot is
expected to come up with configurations aimed at keeping
the arm as high as possible to achieve the best possible
field of view while satisfying the constraints imposed by the
corresponding algorithms (βmin or SCmin).

A. Planning on a USAR Arena

The UTS mock-up rescue arena consists of a 6m× 8m
reconfigurable rectangle space with a ramp, a flight of stairs,
open space and re-arrangeable blocks of step-fields. A small
section is captured by Fig. 1. The 3D model of the terrain

(a) Path with βmin = 0.05. (b) Path with SC min = 50%.

Fig. 4: Planning based on the minimum safety margin and
stability confidence in the USAR arena. Planning based on
SC generates safer postures over stairs (φa = 0 ◦ in b) when
compared to the deterministic approach (φa = 20 ◦ in a).
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Fig. 5: Comparison of SC and β over the trajectories depicted
in Fig. 4 with βmin = 0.05 and SCmin = 50%. The horizontal
dark green dash-dot lines indicate reference points where
β = 0 or SCmin = 50% (likewise in Fig. 8).

was built off-line by scan matching of the RGB-D data logs
when manually operating the robot over the terrain at low
speeds. In order to make a fair comparison between the
two planners, a pre-processing step was first applied to the
terrain model to label out obvious untraversable areas, e.g.
walls and markedly steep slopes. Two sets of experiments of
planning based on varying allowable boundaries for βmin and
SCmin are studied in order to highlight the advantages of the
probabilistic approach in generating safer and more optimal
posture planning.

In the first scenario, planners are set to find a path from the
top left corner of the USAR arena with a minimum possible
βmin = 0.05 and SCmin = 50% to the goal at the bottom right
corner. The value of βmin = 0.05 was obtained experimentally
as the border of stability when the robot was sitting on
the 35◦ ramp of the arena, with the nominal configuration
(φa = 90◦,φ f = 90◦). A positive βµ is the only requirement to
achieve SCmin = 50%, consequently the minimum allowable
safety confidence is assumed to be 50%.

The results are depicted in Fig. 4, where Fig. 4a and
4b illustrate the outcomes of the shortest deterministic and
probabilistically stable paths respectively. Only a limited



(a) Path with βmin = 0.20. (b) Path with SC min = 70%.

Fig. 6: Planning based on a comfortable safety margin and
stability confidence in the USAR arena. Planning based on
SC generates postures with better visibility over the ramp
(φa = 50 ◦ in b) when compare to the deterministic approach
(φa = 0 ◦ in a).

number of the robot poses are shown in the figure for clarity.
In both instances the final paths traverse through the step-
fields and the stairs, and the robot configurations over both
trajectories end up being quite similar (except on the stairs,
way-points around 100−130 in Fig. 5, discussed below).

The comparison of SC and β over these trajectories are
depicted in Fig. 5. The mean value of the stability measure
obtained using the UT transform βµ at each instant is
depicted in red, with the standard deviation σ (68%) and
2×σ (95%) around the mean depicted in dashed red and
blue in Fig. 5a and 5c. The Fig. 5b and 5d illustrate the
corresponding SC measures of the resulting two paths.

It can be seen how by setting an arbitrary lower boundary
(βmin = 0.05) the deterministic planner’s limited concern
about the instantaneous value of β results in paths with
instances where, although as shown in Fig. 5a β is computed
to be always larger than βmin = 0.05, in some places the
corresponding βµ is actually negative (SC < 50%), indicating
a high risk for tip-over instability as illustrated in Fig. 5b.
This happens for instance over the stairs (way-points around
117), where βµ is indeed less than 0.05.

On the other hand, as depicted by Fig. 5d, a planner
considering an SCmin = 50% might end up with instances
when βµ is less than 0.05 in some places (see Fig. 5c).
However, SC remaining over the threshold of 50% only
requires a positive βµ , which is comfortably achieved by the
planner generating postures with lower sensor head heights
(e.g. φa = 0 ◦ over the stairs section depicted in Fig. 4b),
compared to the resulting postures (φa = 20 ◦) of a deter-
ministic planner when βmin = 0.05 (Fig. 4a). This example
clearly shows how the probabilistic approach tends towards
more conservative paths stability-wise than a deterministic
planner in areas where uncertainty escalates.

In the following example the safety margin and stability
confidence are increased to βmin = 0.20 and SCmin = 70%
respectively. Both criteria will now filter out the stairs and
step-fields, tending towards a safer but longer path to the
goal through the ramp, as shown in Fig. 6. Planning based
on βmin = 0.20 has configured the robot with (φa = 0 ◦)
over the ramp. Yet given the higher certainty of the map
over the ramp (as opposed to more rugged terrain sections),
the probabilistic planner with SCmin = 70% can satisfy the

(a) Planning according to βmin. (b) Planning according to SCmin.

Fig. 7: Planning in the UTIAS arena. The paths with βmin =
0.05 and SCmin = 50% are illustrated in black, paths with
βmin = 0.10 and SCmin = 70% are depicted in orange and
yellow trajectories showing the paths with βmin = 0.20 and
SCmin = 90%.

stability constraint with better field of view configuration
(φa = 50 ◦) for the same area.

B. Planning on a Planetary Rover Testing Arena

The proposed algorithm is tested with 3D terrain data col-
lected from the quasi-outdoor UTIAS rover testing arena [7].
The UTIAS testing facility consists of a large dome structure,
which covers a workspace area 40m in diameter. These
datasets are available online and for more information, the
reader is referred to [7]. The data is used to study the
outcomes of planning longer paths with different values
for βmin and SCmin. Results in Fig. 7 show how when the
stability constraint is reasonable medium value, the statistical
approach can find more effective and shorter path than de-
terministic technique (the path shown in orange). Moreover
statistical analysis on the outcome of planning based on
minimum allowable βmin = 0.05 has resulted in a SC < 50%
in some places over the trajectory which indicates a high risk
for a tip-over instability.

The outcomes of a planner based on different deterministic
stability margins are shown in Fig. 7a where the path with
lowest allowable safety margin βmin = 0.05 is illustrated in
black, and paths with βmin = 0.10 and βmin = 0.2 are depicted
in orange and yellow respectively. Gray-scale colour coding
indicates height of the terrain from 0 to 2.76m. A pre-
processing algorithm based on terrain gradients was first
applied to the model to label out obviously untraversable
steep slopes, shown in dark Brown. Given the space limi-
tations, only the uncertainty analysis results of the first two
trajectories are shown in Fig. 8, where the mean values of the
stability measure using the UT transform at each instant are
depicted in red, the standard deviation σ (68%) and 2×σ

(95%) around the mean are depicted in dashed red and blue
in Fig. 8a and 8c. Fig. 8b and 8d illustrate the corresponding
SC measures. In the same way Fig. 7b shows the effect
of different values of SCmin on the planner, where black,
orange and yellow illustrate trajectories with SC min = 50%,
SC min = 70% and SC min = 90% respectively. The corre-
sponding uncertainties are shown in Fig. 8. It can be seen
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(e) β (SCmin = 70%.)
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Fig. 8: Comparison of SC and β for some of the paths
depicted in Fig. 7 in the UTIAS arena.

how planning subject to more significant stability margins
and safety confidence (βmin = 0.20 and SCmin = 90%) tends
to result in longer (in yellow) routes, an intuitive outcome.

The result of planning based on the lowest allowable
βmin = 0.05 and SCmin = 50% (depicted in black in Fig. 7a
and 7b respectively) are found to be quiet coincidental.
These two trajectories are going through (A) and passing
directly over the central hill (C). Although the planning
based on βmin = 0.05 ensures that instant value of β are
always larger than the minimum value, βµ is found to be
negative over the more challenging section, hence resulting
in an SC < 50% i.e. a high risk for a tip-over instability
as illustrated in the way-points around 150 in Fig. 8b. This
would not represent a dangerous situation when planning
based on e.g. SCmin = 50%, as the planner will reconfigure
the robot so that it fulfils the minimum safety confidence.

Planning based on more comfortable βmin = 0.10 and
SCmin = 70% produced some interesting results. With βmin =
0.10 the planner could not find a trajectory through the front
section (A) and resorted to move up towards (B), eventually
finding a path via (D) to the goal. On the other hand, the
planner with SCmin = 70% considered the front section (A)
feasible and found a shorter path which goes straight up to
the middle of the arena and then coincide with the path with
βmin = 0.10 in the final stages in the area labelled as (D).
Looking at Fig. 8e around way-point 25 it is seen how β

around (A) is less than βmin = 0.10, revealing the reason
why planning based on βmin would not consider this area

traversable. Looking at the value of SC in Fig. 8f confirms
that although β is less than βmin = 0.10 around (A), safety
confidence is larger than 70% and the planner regards this
region as comfortably stable to plan over. This example
shows how planning based on statistical data instead of
the instant values can result in more effective and at the
same time safer routes. The overall length of the trajectories
illustrated in Fig. 7a and 7b are summarised in Table I.

βmin length (m) SCmin length (m)
0.05 39.6184 50% 39.0450
0.10 43.4073 70% 41.8475
0.20 54.9470 90% 53.0440

TABLE I: Overall length of paths shown in Figure 7a and 7b.

V. CONCLUSION AND FUTURE WORK

This article presents a strategy for motion planning with
stability uncertainty over rough terrains. The algorithm is
able to exploit information gained from a statistical stability
analysis to plan safe and effective routes under the pres-
ence of uncertainty in robot kinematics, terrain model and
localisation on the terrain. Simulation results in an indoor
rescue arena and an outdoor rover testing facility demonstrate
how planning based on statistical safety metrics can result
in safer and more effective routes when compared to a
deterministic stability planning approach. The problem of
global optimality in the decision-making navigation problem
under stability and state uncertainty is left for future study.
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