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Abstract

Robots have been working in factories to achieve tasks autonomously with little
human intervention for some time. Even though robots are commonly found as
vacuum cleaners in homes and assistants in hospitals, by comparison with factory
robots, service robots have not been widely deployed in society because there remains
several challenges deploying robots to achieve complex tasks in open, unstructured,

uncontrolled and complex environments.

Critical research gaps arise from the lack of cognitive architectures that sup-
port robots to undertake tasks in open and complex environments. Throughout the
history of AI, researchers have developed various algorithms, representations and
mechanisms, to solve specific tasks. However, each of these techniques has different
strengths and weaknesses when applied to particular problems. A cognitive archi-
tecture provides a unifying infrastructure that can integrate various techniques to

solve open and complex tasks.

However, four important issues become apparent when current cognitive archi-
tectures are applied to service robotic tasks. First, they are not capable of manag-
ing robot resources and as a result robotic developers must take responsibility for
managing the resources manually. Second, they are not capable of integrating inde-
pendently developed techniques, which are often needed to solve problems. Third,
they are inflexible, unable to adapt to design changes and require considerable time
and effort to modify. Fourth, they are inadequate for supporting the necessary ca-
pabilities required by robots such as multiple goals, reliability and maintainability.
These issues are confirmed when cognitive architectures are applied to a standard

benchmark problem in Al: the autonomous robot soccer problem.

The purpose of this dissertation is to address these significant gaps so as to
accelerate the development, deployment and adoption of service robots undertaking

tasks in open and complex environments. This dissertation develops a novel bio-



inspired cognitive architecture (called ASMO) that has been designed and developed

to address all four identified shortcomings of current cognitive architectures.

In ASMO, intelligent behaviours to solve open and complex tasks is a result of
the emergence of constituent processes, rather than from careful top-down control
engineering. Minsky has argued in his Society of Mind that intelligent behaviours
can emerge from the interaction of many simple processes, even though each process
may lack ‘intelligence’ in isolation. In addition, Anderson argued that an emergent
system produces more complex behaviours and properties that cannot be reduced

to the sum of its components.

ASMO has attention, emotion and learning mechanisms that are inspired by
human intelligence. It treats each action as a concurrent, independent and self-
governed black box process that competes for the robot’s attention to perform ac-
tions. The attention mechanism is used to mediate the competition among processes,
which correspond to the set of potential actions. The emotion mechanism is used to
bias the attention demanded by the processes. The learning mechanisms are used

to modify the attention in order to improve robots’ performances.

Combining concurrent, independent and self-governed black-box processes with
attention and emergent approaches allows ASMO to address the four shortcomings
of current cognitive architectures. First, the attention mechanism manages resources
explicitly. Second, the black-box design allows any kind of independently developed
technique to be integrated without the need to know its internal algorithm, represen-
tation or mechanism. Third, attention weighted values enables various techniques
to be (re)integrated or (re)structured on the fly with considerably less time and
effort. Fourth, the concurrent, independent and self-governed designs support the
capabilities required by robots by allowing processes to (i) achieve multiple goals
concurrently, (ii) fail without causing the whole system to fail and (iii) be maintained

in isolation.

ASMO is evaluated using two robotic problems: (i) the RoboCup soccer stan-
dard benchmark problem is used to demonstrate proof-of-concept that a team of
robots can be supported by ASMO. In particular, a real robot can be governed
by ASMO’s attention mechanism to undertake complex tasks. (ii) a companion
robot problem is used to demonstrate that ASMQO’s attention, emotion and learning
mechanisms overcome the four identified shortcomings of current state-of-the-art

cognitive architectures.
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This dissertation presents ASMO, an innovative cognitive architecture that ad-
dresses the four shortcomings of current state-of-the-art cognitive architectures, and
that can also accelerate the development, deployment and adoption of service robots.
ASMO provides a more natural and easier approach to programming robots based
on a novel bio-inspired attention management system. ASMO allows researchers and
robot system developers to focus on developing new capabilities as processes rather
than having to be concerned about integrating new capabilities into a cognitive

architecture.
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