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Abstract

Robots have been working in factories to achieve tasks autonomously with little

human intervention for some time. Even though robots are commonly found as

vacuum cleaners in homes and assistants in hospitals, by comparison with factory

robots, service robots have not been widely deployed in society because there remains

several challenges deploying robots to achieve complex tasks in open, unstructured,

uncontrolled and complex environments.

Critical research gaps arise from the lack of cognitive architectures that sup-

port robots to undertake tasks in open and complex environments. Throughout the

history of AI, researchers have developed various algorithms, representations and

mechanisms, to solve specific tasks. However, each of these techniques has different

strengths and weaknesses when applied to particular problems. A cognitive archi-

tecture provides a unifying infrastructure that can integrate various techniques to

solve open and complex tasks.

However, four important issues become apparent when current cognitive archi-

tectures are applied to service robotic tasks. First, they are not capable of manag-

ing robot resources and as a result robotic developers must take responsibility for

managing the resources manually. Second, they are not capable of integrating inde-

pendently developed techniques, which are often needed to solve problems. Third,

they are inflexible, unable to adapt to design changes and require considerable time

and effort to modify. Fourth, they are inadequate for supporting the necessary ca-

pabilities required by robots such as multiple goals, reliability and maintainability.

These issues are confirmed when cognitive architectures are applied to a standard

benchmark problem in AI: the autonomous robot soccer problem.

The purpose of this dissertation is to address these significant gaps so as to

accelerate the development, deployment and adoption of service robots undertaking

tasks in open and complex environments. This dissertation develops a novel bio-
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inspired cognitive architecture (called ASMO) that has been designed and developed

to address all four identified shortcomings of current cognitive architectures.

In ASMO, intelligent behaviours to solve open and complex tasks is a result of

the emergence of constituent processes, rather than from careful top-down control

engineering. Minsky has argued in his Society of Mind that intelligent behaviours

can emerge from the interaction of many simple processes, even though each process

may lack ‘intelligence’ in isolation. In addition, Anderson argued that an emergent

system produces more complex behaviours and properties that cannot be reduced

to the sum of its components.

ASMO has attention, emotion and learning mechanisms that are inspired by

human intelligence. It treats each action as a concurrent, independent and self-

governed black box process that competes for the robot’s attention to perform ac-

tions. The attention mechanism is used to mediate the competition among processes,

which correspond to the set of potential actions. The emotion mechanism is used to

bias the attention demanded by the processes. The learning mechanisms are used

to modify the attention in order to improve robots’ performances.

Combining concurrent, independent and self-governed black-box processes with

attention and emergent approaches allows ASMO to address the four shortcomings

of current cognitive architectures. First, the attention mechanism manages resources

explicitly. Second, the black-box design allows any kind of independently developed

technique to be integrated without the need to know its internal algorithm, represen-

tation or mechanism. Third, attention weighted values enables various techniques

to be (re)integrated or (re)structured on the fly with considerably less time and

effort. Fourth, the concurrent, independent and self-governed designs support the

capabilities required by robots by allowing processes to (i) achieve multiple goals

concurrently, (ii) fail without causing the whole system to fail and (iii) be maintained

in isolation.

ASMO is evaluated using two robotic problems: (i) the RoboCup soccer stan-

dard benchmark problem is used to demonstrate proof-of-concept that a team of

robots can be supported by ASMO. In particular, a real robot can be governed

by ASMO’s attention mechanism to undertake complex tasks. (ii) a companion

robot problem is used to demonstrate that ASMO’s attention, emotion and learning

mechanisms overcome the four identified shortcomings of current state-of-the-art

cognitive architectures.
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This dissertation presents ASMO, an innovative cognitive architecture that ad-

dresses the four shortcomings of current state-of-the-art cognitive architectures, and

that can also accelerate the development, deployment and adoption of service robots.

ASMO provides a more natural and easier approach to programming robots based

on a novel bio-inspired attention management system. ASMO allows researchers and

robot system developers to focus on developing new capabilities as processes rather

than having to be concerned about integrating new capabilities into a cognitive

architecture.
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Chapter 1

Introduction

Service robots have the potential to dramatically transform our lives by achieving

tasks more autonomously with less of intervention. They are currently available

for a variety of applications, such as self-driving cars to transport passengers safely,

health-care robots to assist patients, companion robots to improve mental health of

the elderly, entertainment robots to educate children and vacuum cleaner robots to

clean rooms. They help to improve our quality of life enormously in many dimen-

sions, including safety, time and cost, to make our lives more rewarding, produc-

tive, convenient and enjoyable. The McKinsey Global Institute [138] has identified

robotics as one of the twelve disruptive technologies that will transform life, business

and the global economy.

However, by comparison with industrial robots, service robots have not been

widely deployed or adopted in society. Unlike industrial robots, these service robots

face complex tasks in open, unstructured, uncontrolled and complex environments.

They are often required to work in environments that are difficult to engineer. They

are required to perform more general tasks than industrial robots.

This problem remains significant as many people are still desperately looking for

physical assistance in their everyday lives. In Australia, for example, 60% of the

four million people with a disability in 2009 are living without adequate support and

assistance [2]. They still need assistance for basic living tasks, including property

maintenance, health care and household chores (see Figure 1.1).

In order to solve this problem, there have been enormous ongoing effort in Arti-

ficial Intelligence (AI) to produce general intelligence by creating cognitive architec-
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Figure 1.1: Assistance Needed for People with Disability by Tasks

tures. Throughout the history of AI, researchers have discovered various techniques,

such as algorithms, representations and mechanisms, to solve specific tasks. Each

technique has different strengths and capabilities to solve particular problems. Cog-

nitive architectures aim to provide a unifying coherent approach to solve more com-

plex and general tasks in open and complex environments by integrating capabilities

of various techniques [120, p. 1] [120, p. 11].

However, four important issues become apparent when current cognitive archi-

tectures are applied to service robotic tasks in open and complex environments: (i)

incapable of managing resources, (ii) incapable of integrating independently devel-

oped techniques, (iii) inflexible when adapting to design changes and (iv) inadequate

in supporting capabilities required by robots.

These issues are confirmed when cognitive architectures are applied to a standard

benchmark problem in AI: the RoboCup Soccer problem [114]. Many robot soccer

systems rely on developers for managing resources manually. These systems involve

carefully crafted and integrated techniques that cannot be developed independently.

They are precisely engineered and finely tuned for a particular environment (e.g.

RoboCup soccer field). As a result, they are inflexible when adapting to design

changes.

The purpose of this dissertation is to address these gaps so as to accelerate the

development, deployment and adoption of service robots. The following research

question is raised in this dissertation: how can a flexible cognitive architecture
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be created to handle limited resources and integrate any kind of independently

developed techniques in order to support robotic tasks? My hypothesis to this

question is that attention and emergence approaches can be used to create such

cognitive architecture.

Attention and emergence have been long observed in biological agents like hu-

mans. People pay attention to salient stimuli and perform tasks that they are

consciously or unconsciously (i.e. automatically) attending to. In addition, their

behaviours present as a result of the emergence of independent techniques and ca-

pabilities that handle resources and flexibly adapt to changes. However, there is no

cognitive architecture that is based on both attention and emergence of techniques

for robots.

Inspired by attention and emergence in humans, I have studied and developed

a novel cognitive architecture called ASMO (Attentive and Self-MOdifying) to ad-

dress all of the four issues identified above. I view intelligence for solving open,

complex and general tasks as the result of the emergence of constituent processes.

An emergent system consisting of simpler or smaller processes can give rise to intel-

ligence although the processes themselves may lack intelligence [144]. It produces

more complex behaviours and properties that are different to simply the sum of its

parts [15].

1.1 Scientific Challenge and Motivation

Intelligence for solving open, complex and general tasks have been widely studied

across many disciplines, including computer science, cognitive science, cognitive

psychology, neuroscience and robotics. Within the disciplines of computer science

and robotics, the RoboCup initiative [114] provides a standard benchmark problem

for comparing intelligence in machines (i.e. intelligent agents). This problem has

been viewed as a new grand challenge in artificial intelligence after computer chess. It

is evaluated through international competitions where a wide range of technologies,

algorithms and architectures can be integrated, examined and shared.

The RoboCup competitions are held on an annual basis. Each year, their rules

are refined to advance the state of the art of artificial intelligence. Today, they

are divided into several domains and leagues, one of which is the RoboCup Soccer

domain Standard Platform League (SPL). The aim of the SPL is to build a team of
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fully autonomous robot soccer players using a standardised hardware platform (see

Figure 1.2).

Figure 1.2: The Current Standardised Hardware Platform for 2014

RoboCup Soccer SPL is a domain characterised by Russell and Norvig [192, p. 44]

as having ‘difficult’ properties; it is a known environment that is partially observable,

non-deterministic, sequential, dynamic and continuous (see Section 2.2). Hence, it

is an excellent problem for evaluating ASMO cognitive architecture.

The vast majority of participants in RoboCup Soccer SPL competitions, includ-

ing our RoboCup 2008 runner-up team WrightEagleUnleashed!, developed a cog-

nitive architecture for playing soccer based on the case-based finite state machine

approach [194, 22, 5, 247, 231, 193]. Tasks are divided into a number of situations

encoded as states, where specific technique and behaviour are created to handle

each state. Formation of states is manually designed and coordinated to create the

central representation that covers all possible situations.

In this kind of architecture, different configurations are tested, results are anal-

ysed and changes are made to the system to suit the competition’s needs. This

process is repeated until the system is highly tuned for optimal performance. While

this architecture is easy to understand since each state is easy to examine, it is

limited and suffers from several weaknesses. It creates serious engineering problems:

1. Manual management of resources

Soccer robots have limited physical resources (e.g. legs, arms, CPU, RAM,
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etc). This architecture does not manage resources used by the robots. It

requires developers to manually handle the resources when designing the tech-

niques and behaviours.

2. Incapable to integrate independently developed techniques

This architecture requires states to be defined in advance, which makes the

integration of various independently developed techniques difficult or not pos-

sible. For example, it is difficult to integrate all classical planning, neural

networks and utility theory together into a system’s behaviour using this tra-

ditional approach.

3. Inflexible to adapt to changes

Designing and structuring the states for an entire system can take a consid-

erable amount of time. Often a small change to one state requires the entire

formation of states to be reconsidered and redesigned.

4. Less robust and difficult to extend

A small error in one state can cause the whole robot to crash and stop operat-

ing because the tasks are centrally represented by the formation of states that

are connected to each other. A parallel system with a central representation

will also suffer a similar problem because the central representation serves as

a single bottleneck. Another consequence of having coordinated states (i.e.

central representation) is that a behaviour in a state cannot be modified or

fixed in isolation without requiring the robot to stop operating.

While our team was able to work around these limitations and win second place

in the 2004 and 2008 (Standard Platform League AIBO robot division) competitions

through careful consideration and precise system engineering, it comes as little sur-

prise that robots based on a case-based finite state machine approach fail to work

in more open, general and complex environments, such as our homes.

It would be unreasonable to expect predefined states and fixed set of mechanisms

and representations to work well for every home. It would also be impractical for de-

velopers to fine-tune each design for each home. Unlike controlled environments such

as factories and warehouses, the home environment is open, uncontrolled, unstruc-

tured, unregulated and complex. Consequently, home robots need to be governed by

a flexible cognitive architecture that can accommodate the necessary mechanisms

and representations required for a robot to meet its design goals.
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These issues further motivate the work in this dissertation to develop a flexible

cognitive architecture that addresses the fundamental design problem, rather than

working around with the problem and focusing on short-cuts aimed only at winning

the RoboCup competition.

1.2 Aims and Objectives

The main aim of this dissertation is to develop a novel cognitive architecture that

addresses the four issues (i.e. the gaps) identified in the research literature (see

Section 3.5). This dissertation also aims to validate the hypothesis that robots

are capable of achieving complex tasks based on attention and the emergence of

techniques. The aims involve following three major objectives:

1. Classify and review existing cognitive architectures

This dissertation shall classify and review existing cognitive architectures. It

will demonstrate the research issues and significant gaps in the scientific liter-

ature on cognitive architectures when applied to robots in open and complex

environments.

2. Develop a novel cognitive architecture

This dissertation shall present a novel cognitive architecture that addresses

the gaps identified in the research literature.

3. Evaluate the cognitive architecture

This dissertation shall evaluate the cognitive architecture in real-life robotic

domains or applications. It shall show that the novel cognitive architecture

could address the gaps identified in the research literature.

1.3 Significance and Contributions

Studying and developing a cognitive architecture that addresses the gaps identified

in the research literature is significant and provides important contributions:

1. Accelerate the development, deployment and adoption of service

robots
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Service robots have not been as widely deployed and adopted as industrial

robots. In this dissertation, a novel cognitive architecture is proposed to ad-

dress the gaps identified in the research literature. This cognitive architecture

can help to accelerate the development, deployment and adoption of service

robots.

2. Develop a more intuitive approach to programming robots

Conventional robots are programmed in an unnatural manner and one that

is completely different to the way humans are instructed to perform tasks.

This dissertation develops a more intuitive approach to programming robots

based on managing their attention. This approach is more natural and easier

to understand by programmers because they themselves are attention-driven

agents.

3. Test theories of attention and emergence

Theories of attention and emergence are traditionally difficult to test because

they involve the human mind that cannot be easily and fully inspected. This

dissertation implements theories of attention and emergence and tests them

using robots.

4. Advance the study in interdisciplinary fields

Many robotics studies focus on a single discipline. Studies in interdisciplinary

fields are more complicated than studies in a single field. This dissertation

advances the study in interdisciplinary fields pertinent to robots by taking

theories from cognitive science and psychology, and implementing the theories

into a system in engineering and computer science.

5. Put cognitive science into practice

Cognitive science is a new emerging field. Its problem is not as well-defined

as in other fields, such as engineering. It involves vague terms and definitions

and also philosophical issues that are not practical. This dissertation studies

and designs a cognitive architecture based on the cognitive science theories

and implements the architecture into a concrete working system in robots.

6. Provide a better understanding of cognitive architectures

Previous work classifies cognitive architectures into three general categories,

namely top-down, bottom-up and a hybrid approach. This dissertation pro-
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vides a more specific classification based on knowledge utilisation, which are

lookup-based, cased-based finite state machine, priority-based or hierarchical-

based, goal-based, connection-based and utility-based approach.

7. Motivate the use of a standard benchmark problem for evaluating

and sharing significant work

Existing cognitive architectures are difficult to compare, because they are eval-

uated in a variety of different problems. This dissertation motivates the use of

a standard benchmark problem to compare or evaluate cognitive architectures,

share the work and measure progress. The proposed cognitive architecture will

be evaluated in the RoboCup Soccer SPL standard benchmark problem, where

progress is evaluated each year. In addition, a new robot companion problem

will be introduced as a basis for benchmarking in the future.

1.4 Scope

The scope of this research is necessarily limited by the time and resources of a

doctoral dissertation. In particular, while this work is intended to be biologically in-

spired, it does not attempt to include comprehensive models of human cognition and

biological processes, nor does it seek to mimic the mechanisms of human cognition.

• Computational Agent

The work in this dissertation is focused on computational agents, especially

robots. Non-computational agents such as biological agents are out of the

scope of this dissertation. However, this dissertation will still draw significant

inspiration from biological agents.

• Thought and Action

The work in this dissertation is concerned with systems that produce intelligent

behaviours, not just intelligent thoughts. Intelligent robots do not only think,

but must act to undertake physical tasks.

• Bio-inspired System

The work in this dissertation is inspired by biological systems (i.e. bio-

inspired), especially humans. It is not created with the intent to imitate them
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(i.e. biomimetic): a robot can think and act differently to the way that people

might.

Ideas from the study of biological systems in multiple disciplines, including

cognitive science and cognitive psychology, are translated into an innovative

practical cognitive architecture. An aircraft is an excellent example of a bioin-

spired solution to flight but it is not a biomimetic machine. Its design is in-

spired by birds, but it does not flap its wings to fly. Biomimetic architectures

are outside the scope of this dissertation.

• Single Agent

The work in this dissertation studies single agent systems and architectures.

Diversity of mechanisms and representations may seem to be the work of a

multi-agent system and architecture, however, they are used within a single

agent context in this dissertation. The proposed new cognitive architecture

may actually be used in multi-agent systems, but its application in multi-agent

systems is outside the scope of this dissertation.

1.5 Dissertation Organisation

This dissertation is organised as a typical computer science dissertation, which in-

volves the identification of major gaps in the research literature, the construction

of software that addresses the gaps and a proof of concept of the solution. This

chapter (i.e. Chapter 1) introduced the motivation, purpose, significance and scope

of this dissertation. The next seven chapters describe the main contributions of

this dissertation. The final chapter concludes the dissertation. The outline of this

dissertation is as follows:

1. Chapter 1: Introduction

Chapter 1 (i.e. this chapter) introduces the scientific challenge and motivation,

aims, objectives, significance, contributions and scope of this dissertation.

2. Chapter 2: Robot Cognitive Architecture

Chapter 2 explores a definition of an agent including a robot, properties of an

agent environment, key definitions of intelligence and definitions of cognitive

architecture. It provides a working definition of a cognitive architecture. It also
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describes the relationship between a cognitive architecture and other related

software.

3. Chapter 3: Existing Cognitive Architectures

Chapter 3 discusses the trends in cognitive architectures and related issues.

It identifies the current gaps in the research literature. It also provides a

novel classification of cognitive architectures based on knowledge design and

knowledge utilisation.

4. Chapter 4: ASMO Cognitive Architecture

Chapter 4 describes the overall design of the proposed innovative cognitive

architecture called ASMO (Attentive and Self-MOdifying), its mechanisms,

its functional compositions and its integration issues.

5. Chapter 5: ASMO’s Attention Mechanism

Chapter 5 describes and defines decision making that can be used in robots,

explores attention theories, translates the theories into a computational mech-

anism and describes the design and implementation of the mechanism.

6. Chapter 6: ASMO’s Emotion Mechanism

Chapter 6 describes and defines subjective bias, explores emotion theories,

translates the emotion theories into a computational mechanism and describes

the design and implementation of the mechanism.

7. Chapter 7: ASMO’s Learning Mechanisms

Chapter 7 describes and defines learning, explores learning theories, translates

the theories into a computational mechanism and describes the design and

implementation of the mechanism.

8. Chapter 8: Evaluation

Chapter 8 evaluates ASMO cognitive architecture using (i) the RoboCup Soc-

cer SPL standard benchmark problem and (ii) a robot companion problem.

It also analyses the evaluations and shows that the novel ASMO cognitive

architecture addresses the gaps identified in the research literature.

9. Chapter 9: Conclusion

Chapter 9 provides a summary of this dissertation and describes the future

work.
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Chapter 2

Robot Cognitive Architecture

In the previous chapter, I introduced the main purpose of this dissertation which

is to develop ASMO cognitive architecture to address critical gaps in the research

literature. In this chapter, I review definitions of robots and cognitive architectures.

I start by defining a robot for the purposes of this dissertation in Section 2.1. I follow

by listing different properties of a robot environment in Section 2.2. I then define

intelligence for cognitive architecture in Section 2.3. Finally, I discuss the definition

of a cognitive architecture, its role and how it is related to other terminologies in

Section 2.4.

2.1 Definition of Robot

In order to understand what a robot is, I start with the definition of an agent. In

1997, Franklin and Graesser [72, p. 25] have analysed various definitions of an agent

and have concluded with the following definition: “a system situated within and

a part of an environment that senses that environment and acts on it, over time,

in pursuit of its own agenda and so as to effect what it senses in the future”. In

other words, an agent is anything that, during its operation, autonomously perceives

inputs from the environment and produces outputs that affect its task performance

and next inputs. Outputs of an agent can be texts, images, motor movements or

actions. Inputs of an agent can be texts, images, sounds or sensor data.

Franklin and Graesser classify agents into three types, namely biological agents,

robotic agents and computational agents (see Figure 2.1a) [72, p. 31]. They differ-
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entiate robotic agents from computational agents. However, I argue that a robotic

agent should be regarded as a computational agent, because it is built on computing

platform(s) and its behaviours are performed as a result of computation. I refer to

a computational agent as an agent that runs on computing platform(s) where its

behaviours or the way it perceives inputs and produces outputs can be computed.

Therefore, unlike Franklin and Graesser, I propose two main types of agents,

namely physical agents and virtual agents (see Figure 2.1b). Physical agents perceive

inputs and produce outputs in physical environments (e.g. biological and robotic

agents). In contrast, virtual agents perceive inputs and produce outputs in non-

physical or virtual environments (e.g. software agents). Robotic and software agents

fall into the category of computational agents.

(a) Franklin and Graesser’s Classification of

Agents [72]

(b) Classification of Agents Used in This Dissertation

Figure 2.1: Classification of Agents
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Franklin and Graesser distinguish an agent from just any program. An agent is a

subclass of ordinary programs. It produces outputs that affect its task performance

and next inputs whereas an ordinary program does not necessarily have that effect.

Similarly, a robotic system should be distinguished from an ordinary mechatronic

system. A robotic system is a subclass of ordinary mechatronic systems. A robotic

system produces outputs that affect its task performance and next inputs whereas

an ordinary mechatronic system does not necessarily have that effect.

For example, an automated teller machine (ATM) is an ordinary mechatronic

system because its action of ejecting money does not determine what inputs it will

receive in the future. In contrast, a self-driving car is a robotic system because its

action to turn or go straight determines what its camera will capture in the future

(i.e. next inputs). In addition, a pedestrian traffic light is an ordinary mechatronic

system. However, it can be modified into a robotic system if it is equipped with a

camera to recognise pedestrians and it moves its camera based on the pedestrians’

activities (i.e. future images will be determined by the pedestrians’ activities in the

current image).

In summary, a robot is a subclass of an agent and its system is a subclass of an

ordinary mechatronic system. The operation of a robotic system or an agent is said

to be autonomous whereas the operation of an ordinary mechatronic system or an

ordinary program is said to be automatic.

In this dissertation, I focus on the work of cognitive architectures for governing

computational agents, particularly robots (i.e. autonomous physical computational

agents). Non-computational agents are out of the scope of this dissertation. Some

may disagree with my definition of a robot. However, the purpose of defining a

robot (this section) in this dissertation is to clarify the kind of agents (hence their

cognitive architectures) that I cover in this dissertation. In this case, I distinguish

between a robotic system and an ordinary mechatronic system. When referring to

a robotic system, I mean an autonomous physical agent system where its outputs

affect its task performance and next inputs, rather than an automatic program.
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2.2 Robot Environment

In order to understand what a robot environment is, I start with the description of

an agent environment. According to Russell and Norvig [192, pp. 42–44], agents live

in environments that can be characterized by seven dimensions:

1. Fully Observable ←→ Partially Observable

An environment is fully observable if all information relevant to the choice of

action in the environment can be obtained or known at each point in time. The

less information can be obtained or known to make a decision at each point in

time, the more partially observable the environment. In partially observable

environments, agents have to remember and keep track of the environment as

well as to infer information from previous observations in order to make a good

decision. For example, at a given point in time, a RoboCup Soccer SPL agent

can only see some parts of the field, so it needs to use its past observations to

predict its location on the field.

2. Deterministic ←→ Non-deterministic

An environment is deterministic if the next state or outcome of an action can

always be determined by the current state and action. The more uncertain the

next state or outcome, the more non-deterministic the environment. In non-

deterministic environments, the same action performed in the same state can

cause different outcomes. For example, the same strength of kick performed

by a RoboCup Soccer SPL agent at the same distance to the ball does not

always move the ball the same distance. This non-deterministic characteristic

may be caused by several factors, such as the ball’s wear and tear, the ball’s

friction and the precise dynamics of the kick.

A non-deterministic environment can become deterministic if all factors that

govern the outcome are known to the designers. However in practice, the

factors are unknown and can be difficult to determine or specify. In this case,

the environment will be treated as a non-deterministic environment.

3. Episodic ←→ Sequential

An environment is episodic if current situations do not depend on past actions.

In other words, an environment is episodic if future situations are not affected

by current actions. The more past actions the current situations depend on,
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the more sequential the environment. In sequential environments, the current

situation depends on past actions, and future situations are affected by current

actions. For example, a RoboCup Soccer SPL striker can fool the opponent’s

defender by passing the ball to its teammate and back to the striker. The

success of fooling the defender (i.e. future situation) is determined by the

success of sequential passes (i.e. current actions).

4. Static ←→ Dynamic

An environment is static if it only changes due to an agent’s actions. The

more factors the environment can change irrespective to the agent’s actions,

the more dynamic the environment. In a dynamic environment, changes can

occur independently from agents’ actions. For example, the ball in a RoboCup

Soccer SPL game can be intercepted by an opponent or taken by referees while

the agent is aligning its position to the ball.

5. Discrete ←→ Continuous

An environment is discrete if actions and events occur at defined time or

intervals. The finer the time or intervals, the more continuous or real-time the

environment. In a continuous or real-time environment, actions and events

occur continuously in time, thus they can occur concurrently or overlapping.

For example, a RoboCup Soccer SPL agent does not need to wait for its turn

to chase the ball. It can run to chase the ball at any time while moving its

head to search for the goalposts.

6. Single Agent ←→ Multi-agent

A single agent environment is affected only by a single agent. The more

agents the environment is affected by, the more multi-agent the environment.

A multi-agent environment is affected by multiple agents that are themselves

affected by each other’s behaviours. For example, scoring a goal in a RoboCup

Soccer SPL game is typically affected by the actions of several agents.

7. Known ←→ Unknown

An environment is known if agents or designers have knowledge (or rules)

about the environment and know how the environment responses. The less

knowledge (or rules) the agents or designers have about the environment or

the less they know how the environment responses, the more unknown the

environment. A known environment can be partially observable. For example,
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while the position of the ball, goalposts and other agents cannot be observed

in a RoboCup Soccer SPL game when they are not within the view of an

agent, the designers know the rules of the game and can design an effective

algorithm to search for these objects. In contrast, an unknown environment

can be fully observable. For example, the states and actions of a character in

a new computer game can be fully observed from the screen even though new

users may not know the function of each button and how to play the game.

Each of the seven dimensions ranges from a simple property to a complex prop-

erty. The most difficult properties are partially observable, non-deterministic, se-

quential, dynamic, continuous, multi-agent and unknown [192, p. 44]. An agent

that can deal with a complex property can also deal with a simple property. For

example, along the dimension of observability that ranges from fully observable to

partially observable, an agent that can manage a partially observable environment

can also manage a fully observable environment.

Since a robot is a subclass of an agent, its environment is also characterised by

the seven dimensions above. However, since a robot is a physical agent (i.e. live

in a physical world), its environment cannot be deterministic, static and discrete.

Instead, its environment is non-deterministic, dynamic and continuous.

This dissertation is motivated by the issues discovered in the research literature

as well as when applying cognitive architectures to the RoboCup soccer standard

benchmark problem. This problem provides an excellent standard benchmark for

evaluating cognitive architecture, because all of the most difficult properties are

observed in this problem except the unknown property. The unknown property

is not observed because this problem has well-defined rules. Strictly speaking, the

unknown property does not really refer to the environment itself, instead, it refers to

the robot’s or designer’s knowledge about the environment (e.g. rules and physical

laws) [192, p. 44]. Designers are often required to follow rules and specifications in

developing robots.

2.3 Definition of Intelligence

As described in Chapter 1, service robots in society require general intelligence to

solve general tasks in open and complex environments. However, the definition of
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intelligence itself has not been widely accepted. In artificial intelligence, there are

four categories of definition of intelligence [192, p. 2]:

1. Human-like Thought

The human-like thought category defines intelligence as the capability to think

like human beings. The goal is not to create machines that always make

correct decisions, but to imitate the way humans think when making the same

decisions. It is fine for such machines to make the same errors as what humans

make.

This category aligns with the cognitive modelling approach and it has been

studied intensively in cognitive science. The main aim of the cognitive mod-

elling approach and cognitive science is to study intelligence by creating models

of human cognition that match the psychological data of human performance.

The IBM deep blue computer chess system [99] that defeated the human world

champion chess player, Gary Kasparov, in 1997 is not considered intelligent

in this category, because it thinks and plans its moves using a brute force

search, which is different to how humans would think and plan their moves. A

brute force search evaluates all possible moves and continuously evaluates all

possible moves within each possible move (i.e. to a few degree of depth) until

a satisfactory move is found or it reaches the end of the game. In contrast,

humans concentrate on a few quality moves instead of all possible moves.

2. Human-like Act

The human-like act category defines intelligence as the capability to act like

humans. The goal is to create machines that imitate the way humans act.

Intelligence is viewed in the behaviour of the machine instead of only in the

thinking. Unlike the human-like thought category, a machine can think differ-

ently to humans and still be considered as intelligent if it acts like humans.

This category aligns with the Turing Test approach [230]. The Turing Test

proposes an imitation game as a benchmark of machine intelligence. The game

is played between a person, a machine and an investigator. The person and

the machine are invisible to the investigator. They are located in a separate

room. The investigator can ask any question that does not require a physical

answer. The investigator has to identify the person and the machine correctly.
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A machine is said to be intelligent and pass the Turing Test if the investigator

cannot distinguish the machine from the person.

3. Rational Thought

The rational thought category defines intelligence as the capability to think

rationally. The goal is to create machines that produce correct and consistent

inferences or conclusions given a set of premises. Unlike the human-like thought

category, a machine can think differently to humans and still be considered

intelligent if it makes logical inferences.

This category corresponds with the law of thought approach and has been

studied extensively in the field of logic [192, p. 4]. There are two main ob-

stacles to this approach [192, p. 4]. First, it is difficult to formalise informal

knowledge into logical notation, especially when the knowledge is uncertain.

Second, there is a huge difference between solving problems in principle verses

in practice.

4. Rational Act

The rational act category defines intelligence as the capability to act ratio-

nally. The goal is to create machines that act correctly to achieve the best

performance given what they know. Intelligence is viewed in the behaviour

of the machine instead of only in the thinking. Unlike the human-like act

category, a machine can act differently to humans and still be considered as

intelligent if they act to achieve the best performance.

This category corresponds to the rational agent approach. A rational agent

acts to achieve the best outcomes or expected outcomes. A RoboCup soccer

robot is considered intelligent in this category because it plays (e.g. searches

and chases the ball) based on algorithms that maximise its performance despite

that humans would play differently.

In this dissertation, intelligence is mainly viewed from the rational act perspec-

tive. Robots should not only think, but also undertake physical actions to help

humans, especially in situations where humans are deficient. For example, a robotic

car should apply the brakes to avoid hitting a pedestrian when moving too fast due

to human error. Robots can use any technique different to the way humans think

and act, in order to make rational decisions and achieve the best performance.
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In addition, in this dissertation, intelligence is also viewed from the human-like

thought perspective. Since service robots in society often interact with humans, they

have to understand how humans think in order to help and interact with humans

better. Their rational decisions can be biased by their understanding about humans.

2.4 Definitions of Cognitive Architecture

There are various definitions of a cognitive architecture across the disciplines, such

as computer science, cognitive science, and cognitive psychology. The study of

a cognitive architecture is perhaps originated from cognitive psychology where its

focus is to model and imitate the human mind. In computer science and in this

dissertation, the focus of the cognitive architecture study is to build a system with

general intelligence like the human mind. Thus, a cognitive architecture is a kind of

software.

The term cognitive architecture has been used interchangeably with the term

agent architecture. Currently, there is no clear and widely accepted definition of

these terms. Some of their definitions are as listed as follows:

• In computer science:

– Russell and Norvig define a cognitive architecture as “models of human

reasoning” [192, p. 336].

– Shaw and Garlan describe an agent architecture as follows: “agent ar-

chitectures, like software architectures, are formally a description of the

elements from which a system is built and the manner in which they

communicate. Further, these elements can be defined from patterns with

specific constraints [201]” [104, p. 367].

– Laird defines a cognitive architecture as “the fixed computational struc-

tures that form the building blocks for creating generally intelligent sys-

tems” [120, p. 1].

• In cognitive science:

– Wilson and Keil define a cognitive architecture as “the design and orga-

nization of the mind” [243, p. 124].
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– Wilson and Keil define an intelligent agent architecture as “a model of an

intelligent information processing system defining its major sub-systems,

their functional roles, and the flow of information and control among

them” [243, p. 411].

– Friedenberg and Silverman define a cognitive architecture as “the struc-

ture and function of many different cognitive systems and how the struc-

ture and function interact” [74, p. 139].

– Bermúdez defines an agent architecture as “a blueprint that shows the

different components that make up an agent and how those components

are organized” [30, p. 288].

• In cognitive psychology:

– Newell defines a cognitive architecture as “the fixed structure that realises

a symbol system” [153, p. 80].

– Braisby and Gellatly define a cognitive architecture as “an overarching

framework that can account for a wide range of phenomena using a fixed

set of mechanisms” [36, p. 610].

– Kellogg defines a cognitive architecture as “the design or organization of

the mind’s information-processing components and systems” [107, p. 9].

There are two main opinions of a cognitive architecture reflected in the definitions

above. While some have argued that a cognitive architecture is the model, design,

structure and organisation of the human mind, others have argued that a cognitive

architecture is the structure and framework of a system, i.e. not necessarily only

the human mind. In this dissertation, the latter view is adopted, that is, a cognitive

architecture is not only restricted to the human mind. This dissertation will use

human cognitive architecture when referring to the architecture of the human mind.

In summary, I define cognitive architecture to be a structure that supports a range

of techniques to make decisions in order to produce general intelligent behaviours.

There are three key aspects that define a cognitive architecture:

• General Intelligence

A cognitive architecture is a structure that aims to produce general intelligence

capabilities, instead of specific capabilities (e.g. a vision system to recognise

balls and cars).
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• Integrate Techniques

A cognitive architecture is a structure, instead of a technique such as an algo-

rithm, a representation or a mechanism. It integrates multiple techniques, as

well as programmability and flexibility [120, p. 11].

• Decision Making and Interaction

A cognitive architecture must support decision making (or action selection)

and interaction within an environment [120, p. 6]. Other systems may not

make decisions and interact with an environment (e.g. knowledge classification

system, such as Cyc [132]).

2.4.1 Comparison with Other Types of Software

In the research literature, not only the term cognitive architecture is used inter-

changeably with the term agent architecture, but work in cognitive architectures

are sometimes evaluated and compared with other work in agent frameworks, con-

trol architectures and software architectures. These other work may or may not

describe a cognitive architecture depending on whether or not they involve the three

key aspects listed previously: general intelligence, multiple techniques and decision

making and interaction.

Laird [120, p. 6] proposes to distinguish a cognitive architecture from knowledge

classification system (e.g. Cyc [132]), AI languages (e.g. Lisp [141]), toolkits and

frameworks (e.g. blackboard system [157]).

Similarly, I propose that to distinguish a cognitive architecture from the following

software (see Figure 2.2):

1. Software Application / Program

A software application encapsulates models, instructions and some knowledge

needed to perform a particular task. Examples of software applications are

a robot soccer application, a robot companion application and a self-driving

robotic car application.

A cognitive architecture does not contain models, instructions and knowledge

to perform the tasks. Instead, it is a structure of various techniques that

govern the models, instructions and knowledge irrespective to the tasks. When
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Figure 2.2: Cognitive Architecture and Other Software

running by itself, it cannot achieve a task without the appropriate software

application.

As an analogy, a cognitive architecture is like a building, a software application

or a program is like a collection of furnitures inside the building. Russell and

Norvig formulates the relationship between agents, cognitive architecture and

program as the following simple equation [192, p. 36]: agent = architecture +

program.

2. Software Libraries

A software library is a collection of common functions, subroutines and data

structures that is called or managed by a software application. Its purpose is to

allow software codes to be shared and reused by different software applications

without much need to redevelop the codes. Examples of libraries are the

standard C programming math library, a http library and an image processing

library.
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A cognitive architecture is not called or managed by a software application. In-

stead, it manages the software application. It governs the models, instructions

and knowledge in the software application.

3. Operating system

An operating system manages and provides an interface between hardware and

software applications, such that the same hardware can be shared by different

software applications and the same software application can be used on dif-

ferent hardware. Its purpose is to allow hardware to be replaced or upgraded

without much need to redevelop the software applications. Examples of oper-

ating systems are Microsoft Windows, Ubuntu Linux and Google Android.

A cognitive architecture does not provide an interface between hardware and

software applications. Instead, it provides a decision making or action selection

mechanism in order to produce intelligent behaviours.

4. Software Framework

A software framework provides common features more than a library, such as

runtime environment, programming paradigms, coding objects and templates,

in order to facilitate the development of software applications. Framework is

defined by the Oxford dictionary of computing as “a template for the devel-

opment of software applications or components” [58]. Examples of software

frameworks are .NET application framework, Django web framework and ROS

robotic framework.

A cognitive architecture is similar to a software framework, but its focus is to

provide a decision making or action selection mechanism in order to produce

intelligent behaviours.

5. Software Architecture

A software architecture is defined by ISO/IEC as “fundamental concepts or

properties of a system in its environment embodied in its elements, relation-

ships, and in the principles of its design and evolution” [100]. It is also de-

fined by Microsoft computer dictionary as “the design of application soft-

ware incorporating protocols and the means for expansion and interfacing

with other programs” [181]. Examples of software architectures are black-

board software architecture [79, 97], client-server software architecture [79]

and publish-subscribe software architecture [67].
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A cognitive architecture is a subset of software architectures that focuses on

general intelligence, multiple techniques and decision making. It should be

distinguished from a software architecture when referring to the specific focus.

6. Agent Framework

An agent framework is a subset of software frameworks. Examples of agent

frameworks are JADE [29], NetLogo [241], Cougaar [98]. As discussed above,

a cognitive architecture is not a software framework, hence it is also not an

agent framework.

7. Control Architecture

A control architecture is a subset of software architectures. Depending on the

context in which a control architecture is used, it can be as same as a cognitive

architecture if it involves general intelligence, multiple techniques and decision

making.

In practice, a cognitive architecture may include the role of other software, such

as an operating system, a software framework or a software architecture. In addition,

it may be developed using a software framework or a software architecture. For

example, A recent version of ASMO is developed using Robot Operating System

(ROS) framework [183], which itself is based on a publish-subscribe architecture

[67].

Note that the name of the software can sometimes be misleading. For example,

Robot Operating System (ROS) is not an actual operating system despite its name

‘operating system’. Instead, it is a robotic framework that runs on a Linux operating

system.

2.5 Evaluation Criteria for Cognitive Architec-

tures

Various sets of requirements or criteria have been proposed in the research literature

for designing and evaluating a cognitive architecture [120, 127, 216, 10, 6, 42]. Cur-

rently, there is no widely accepted set of criteria, because they have been developed

with a specific goal in mind. In this dissertation, I identify four criteria common to

those sets of criteria that are important for service robotic tasks:
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1. Versatility

Versatility can be defined in terms of the difficulty encountered in developing

intelligent systems across a given set of tasks and environments [127]. The less

effort and time it takes to get an architecture to produce intelligent behaviour

in those environments, the greater its versatility. This criterion is related to

the programmability criterion proposed by Alami et al. [6]. The goal is that

a robot should be easily programmed to achieve multiple tasks. Its functions

should be easily combined based on the task to be executed.

2. Reactivity

Reactivity can be defined in terms of the speed the robot responds to situations

or events, or in terms of the probability that the robot will respond to a given

situation [127]. The more rapidly an architecture responds, or the greater its

chances of responding, the greater its reactivity. Robots have to take into

account events with time bounds compatible with the correct and efficient

achievement of their goals (including their own safety) [6]. This criterion is

related to the multiple goals criterion proposed by Brooks [42]. Robots often

are required to respond to multiple events and goals simultaneously. The

cognitive architecture must be responsible for serving high priority goals, while

still serving other necessary low-level goals.

3. Robustness

Robustness can be defined in terms of the frequency that the architecture

keeps operating, when there is a failure within its domain. The more often the

architecture can recover from failure, the greater its robustness. A cognitive

architecture should be able to adapt and cope with failure by relying on parts

that are still functional [42]. It should be able to exploit the redundancy

of the processing functions and its control is required to be decentralised to

some extent [6]. This criterion is similar to the extended operation criterion

proposed by Langley, Laird and Rogers [127]. Robots must be robust enough

to keep from failing when they encounter unexpected situations and to keep

from slowing down as they accumulate experience over long periods of time.

4. Extensibility

Extensibility [42] can be defined in terms of the difficulty to change or add

new functions and knowledge to improve performance. The easier it is for
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the cognitive architecture to change or add parts, the greater its extensibility.

Cognitive architecture should make learning possible [6]. This criterion is

similar to the improvability criterion proposed by Langley, Laird and Rogers

[127]. It is measured in terms of the agent’s ability to perform tasks that

it could not handle before the addition of knowledge. It involves the agent

learning from the experience in the environment or with the internal processes.

A cognitive architecture that meets all these criteria will support service robots in

undertaking tasks in open and complex environments. The more criteria a cognitive

architecture meets, the greater it can govern service robots in undertaking tasks

in open and complex environments, the faster it can accelerate the development,

deployment and adoption of service robots in those environments.



27

Chapter 3

Existing Cognitive Architectures

In the previous chapter, I have described the background of robotics and cognitive

architecture, as well as identified criteria to evaluate cognitive architectures. In this

chapter, I identify the gaps in current cognitive architectures based on these criteria.

I start by analysing major approaches in cognitive architectures based on the way

knowledge is designed (see Section 3.1) and the way knowledge is used (see Section

3.2). I follow by analysing the current state of the art of cognitive architectures in

Section 3.3. Finally, I summarise all the analyses and identify the gaps in Section

3.5.

3.1 Approaches based on Knowledge Design

Cognitive architectures are typically divided into three approaches based on the way

knowledge is designed [145, 71]:

1. Explicit-based Approach

An explicit-based approach is also known as a deliberative [246], top-down

[145], symbolic [145], logical [145], neat [145] or knowledge-based approach.

In an explicit-based approach, agents are designed to make decisions by de-

liberately reasoning about their decisions. They can provide reasons for their

decisions if required. Each decision or action is a result of careful considera-

tion, reasoning and/or planning. Agents are provided with necessary knowl-

edge about the tasks so that they can (and are required to) use the knowledge

to derive their decisions. The knowledge has to be encoded either through a



28 Chapter 3. Existing Cognitive Architectures

single (i.e. uniform) representation or multiple (i.e. heterogeneous) represen-

tations. A symbolic logic is typically used to encode the knowledge, but it is

not a requirement of the explicit-based approach.

2. Implicit-based Approach

An implicit-based approach is also known as a reactive [246], bottom-up [145],

subsymbolic (i.e. connectionist) [145], analogical [145], scruffy or behaviour-

based [43, 18, 145] approach. In an implicit-based approach, agents are de-

signed to directly follow specified actions and decisions without deliberately

reasoning about their decisions. They simply sense and react to the envi-

ronment. They are not provided with complete knowledge about the tasks,

instead they are provided with the actions to perform that have been planned

by developers beforehand (i.e. implicit approach). They cannot (and are not

required to) use their knowledge to derive their decisions since they do not

have the complete knowledge.

3. Hybrid Approach

A hybrid approach is a mixture of both explicit-based and implicit-based ap-

proaches [246, 145]. In a hybrid approach, agents are designed to make some

levels of decisions by deliberately reasoning about their decisions and other

levels of decisions by simply following specified actions. They are provided

with both knowledge about the tasks and actions to perform so that they can

use both depending on the situations or the design, e.g. explicit-based for

high-level decisions and implicit-based for low-level decisions.

Each approach has its own strengths and weaknesses. An explicit-based ap-

proach tends to have higher computational cost than an implicit-based approach

because every decision has to be reasoned deliberately. In addition, it tends to be

more complicated than an implicit-based approach because complete knowledge has

to be provided. In contrast, an implicit-based approach tends to be less flexible

than an explicit-based approach because complete knowledge is not provided (hence

behaviours cannot be modified as much as in an explicit-based approach). A hybrid

approach has strengths as well as weaknesses of the two approaches, thus the focus

is on how to balance the two approaches.
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3.2 Approaches based on Knowledge Utilisation

In contrast to the typical classification described above, Russell and Norvig [192,

pp. 46–54] classified approaches to govern agents (i.e. cognitive architectures) based

on the way knowledge is utilised to perform actions (i.e. based on mechanisms of

action selection). However, their classification does not include some state of the

art of approaches described by Pirjanian in his taxonomy [176]. In this section,

I reorganise all the approaches into a new classification to include the approaches

described by Russell and Norvig and the approaches described by Pirjanian (see

Figure 3.1). In this new classification, cognitive architectures can be divided into

two major approaches based on the way knowledge is utilised:

Figure 3.1: Decision Making Categories

1. Competitive Approach

A competitive approach is called an arbitration approach in Pirjanian’s tax-

onomy [176, p. 9]. It describes the use of a single criterion to make decisions

(i.e. single criteria decision making). In a competitive approach, actions are

not decided by compromising all the available choices or alternatives. Instead,

a choice is selected among the available choices and actions are decided based

on this selected choice (see Figure 3.2a). For example, given three paths with

different travel time, distances and obstacles, an agent may decide to walk on

the path with the shortest time, despite the path may have a longer distance

and more obstacles.

I further divide the competitive approach into five types, namely lookup-

based, case-based finite state machine, priority-based or hierarchical-based,

goal-based and utility-based competitive approaches.
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2. Collective Approach

A collective approach is called a fusion approach in Pirjanian’s taxonomy [176,

p. 9]. It describes the use of multi-criteria to make decisions (i.e. multi-

criteria decision making). In a collective approach, actions are decided by

compromising all the available choices or alternatives (see Figure 3.2b). For

example, given three paths with different travel time, distances and obstacles,

an agent may decide to walk on the path with the average travel time, distance

and obstacles (i.e. compromised between the travel time, the distance and

obstacles).

I further divide the collective approach into two types, namely connection-

based and utility-based collective approaches.

(a) Competitive (b) Collective

Figure 3.2: Competitive vs. Collective Decision Making

Note that not all cognitive architectures fall neatly into a category. A cognitive

architectures can have multiple decision making mechanisms that fall into a few

categories.

In the following subsections, I describe each of the decision making approaches. I

describe what agents are provided with, describe how actions and criteria preferences

are determined, list example(s) of decision making mechanisms that fall into the

approach and discuss strengths and weaknesses of the approach.

Throughout the following discussions of strengths and weaknesses of each ap-

proach, a number of dimensions will recur as common characteristics that best

differentiate the approaches. For the sake of clarity, they are listed here:

1. Computational complexity: the complexity of computing decisions
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2. Knowledge complexity: the complexity of constructing the required knowl-

edge

3. Knowledge size: the size of knowledge required to achieve a task

4. Real-time modification: the capability to modify provided knowledge in

real-time

5. Flexibility: the ease of modifying knowledge in order to meet new task re-

quirements

3.2.1 Lookup-based Approach

In a lookup-based approach [192, pp. 46–47], agents are provided with a list of

pre-computed decision making instructions describing every action to perform (i.e.

output) given a situation or what the agent senses (i.e. input). In this case, actions

are determined simply by reading and looking up instructions in the list, rather than

performing real-time computation. In order to pre-compute the list, developers have

to know all possible inputs that will be encountered by an agent in an environment

(i.e. a complete model of the world within the operational range of the agent).

Criteria and preferences to make decisions are implicitly determined by the list (i.e.

specifying a particular action to perform over other actions in the list implicitly

means that a criterion is preferred over others). The list can be implemented as a

lookup table.

Inputs and outputs have to be described in the list explicitly. They can be

continuous or discrete depending on the environment. An agent can be provided

with a list of discrete inputs and outputs even though the agent works in a continuous

environment. However, these continuous inputs and outputs have to be digitised or

converted to discrete inputs and outputs in real-time so that they can be used by

the list. This conversion requires a real-time computation (often a small amount),

which is not the aim of the lookup-based approach.

Table 3.1 shows an example of incomplete instructions for a robot soccer sce-

nario. Inputs and outputs in the table are continuous, because the robot soccer is

a continuous domain. In the actual complete table, an action will be provided for

every increment of x-coordinate in robot position, y-coordinate in robot position,

yaw angle (i.e. θ) in robot position, x-coordinate in ball position and y-coordinate
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in ball position.

Sense Action

No Robot Position Ball Position Leg Speed Head

X Y θ X Y Forward Turn Angle

1 3.99 3.74 15.18◦ - - - - −45◦

2 6.32 -4.18 139.99◦ 6.04 0.03 0.16 -0.82 −87.02◦

3 0.68 0.34 91.42◦ 8.74 0.88 -0.98 0.05 90◦

4 0.69 0.34 91.42◦ 8.74 0.88 -0.98 0.05 90◦

Table 3.1: Lookup Table Example

There are four instructions described in the table. Number 1 shows that the

robots can sometimes perform only one action. Number 2 describes the instruction

to chase and track the ball when the distance to the ball is near. Number 3 describes

the instruction to defend an attack while tracking the opponent’s goal when the ball

is far. Number 4 shows that an instruction has to be provided explicitly for a

different situation although it is very similar to the instruction in Number 3.

Strengths. Decision making can be performed very quickly because the complexity

of its computation is reduced to memory retrieval once the list is defined and

tabulated.

Weaknesses. The complexity to construct the list is exponential. Exact knowledge

about the situation has to be provided so that it can be searched in the list.

It would be difficult to specify exact knowledge for all possible situations, es-

pecially in continuous or partially observable environments. The performance

of agents in continuous environments is determined by the resolution of the

discretisation of the environment.

3.2.2 Case-Based Finite State Machine Approach

In a case-based Finite State Machine (FSM) approach (called a state-based approach

in Pirjanian’s taxonomy [176, pp. 11–16]), tasks are divided into a finite number of

cases (represented as states) where a behaviour is developed to handle each case.

Agents are provided with the states, state transitions and state structure (i.e. con-

nection of states). A state is activated when a defined condition is matched, such
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as ball position is greater than 0.0 or an opponent robot is seen. There is only one

state active at a time and actions are determined based on the active state. Criteria

preferences are implicitly determined by the structure of the states (i.e. being in one

state over others means that a criterion is preferred over others). The complexity

to construct the states can be linear or exponential depending on how independent

the states are.

A state can cover a range of situations. For example, a state ball at right can

be created to cover a range of ball positions with x-coordinate from 0.0, 0.1, 0.2,

..., 1.0, 1.1, ..., to n, where n is the end of the field (see Algorithm 3.1). Instead

of providing a separate instruction for each different situation as in a lookup-based

approach, some situations can be grouped and covered by a state, thus reducing the

size of the lookup table.

1 if x-coordinate of ball position > 0.0 then

2 state ← state ball at right

3 else

4 state ← state ball at left

5 end

Algorithm 3.1: Case-based Finite State Machine Algorithm Example

There are two types of a state transition, namely deterministic and stochastic

(or probabilistic) state transitions. In the deterministic state transition, action a

performed in state s always results in the same new state s′. In the stochastic state

transition, action a performed in state s will only have a particular probability of

resulting in the state s′ and thus may result in other states. Agents are provided with

these probabilities of actions and outcomes in addition to states, state transitions

and state structure.

Strengths. Decision making can be performed very quickly because it is determined

based on the active state that can be retrieved immediately. Exact knowledge

for each situation is not required. The size of the lookup table can be reduced

to a number of states.

Weaknesses. The states and their structure are required to be predefined and can-

not be updated in real-time. The performance of agents in continuous environ-

ments is determined by the resolution of the discretisation of the environment

into states.
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3.2.3 Priority-based or Hierarchical-based Approach

In a priority-based or hierarchical-based approach [176, pp. 10–11], agents are pro-

vided with a list describing priorities (or a hierarchy) of actions or criteria. Actions

are determined based on these priorities. Unlike lookup-based and case-based ap-

proaches, criteria preferences are explicitly determined by the list. The complexity

to construct the priority list can be linear or exponential depending on whether the

priorities are independent or not independent, respectively. An example of priority-

based mechanism is CP-nets [35].

Table 3.2 shows an example of priorities for a robot soccer scenario. Priorities

or hierarchies can be different according to the conditions in the environment. They

can be totally ordered (see numbers 5 and 6 in the table) or partially ordered if the

total order is unknown (see numbers 3 and 4 in the table).

Number Condition Priority

1 Ball near chase > defend, ball > opponent’s goal

2 Ball far defend > chase, opponent’s goal > ball

3 Ball near, chase time > distance, time > obstacle

4 Ball near, defend distance > time, distance > obstacle

5 Ball far, chase obstacle > time > distance

6 Ball far, defend obstacle > distance > time

Table 3.2: Priority Table Example

The table shows that the robot prefers to chase a ball and track the ball than to

defend an attack and track the opponent’s goal respectively when the ball is near,

but opposite otherwise. In chasing the near ball, the robot prefers the fastest route

so that it can get to the ball as soon as possible. However, it prefers the shortest

route when defending an attack even if the ball is near, so that it does not need

to make a big turn which may leave an open area for the opponent to attack (see

Figure 3.3). In the far ball condition, time and distance are not the main priorities.

The robot prefers to chase the ball and defend an attack via the safest path (i.e.

least obstacles).

A priority-based or hierarchical-based approach can be used with a case-based

finite state machine approach, e.g. hierarchical finite state machine, in order to

make decisions when more than one action can achieve the same goal.
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Figure 3.3: Priority Scenario

Strengths. The priority list can be modified in real-time independent of other

knowledge. Decision making can be performed very quickly because searching

a priority is linear. Exact knowledge for each situation is not required. The

size of the lookup table can be reduced to a priority list.

Weaknesses. Priorities or hierarchies in this priority-based or hierarchy-based ap-

proach can sometimes be unclear, difficult to determine or inconsistent, e.g.

time > distance > obstacle > time. Although a list of priorities can be mod-

ified, it is not flexible enough to meet new task requirements by modifying

only priorities or hierarchies because knowledge related to the actions (e.g.

outcomes or effects) are unknown. This priority-based or hierarchy-based ap-

proach does not have a measurement of how important a priority or hierarchy

is (i.e. there is no notion of distance). For example, it cannot capture the

difference between time that is twice preferred than a distance and time that

is three times preferred than a distance.

3.2.4 Goal-based Approach

In a goal-based approach [192, p. 52], agents are not provided with the right actions

to perform. Instead, they are explicitly provided with goals and action descriptions,

so that they can plan and choose an action themselves that has the effect of satis-

fying the given goals. Both actions and criteria preferences are determined by the

knowledge about goals and actions. An example of a goal-based decision making
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mechanism is the STRIPS planner [70].

Table 3.3 shows an example of action descriptions for a robot soccer scenario,

where loc(o) is the location of object o. The search ball, chase ball and kick ball

actions will be chosen if the robot’s goal is to attack, because no other action can

achieve the goal. However, the robot cannot choose an action (i.e. action conflict)

if the goal is to defend. There is more than one action that can achieve the goal to

defend, i.e. either chase and steal the ball or defend and block the ball. Thus, the

robot needs criteria preferences to choose a preferred action over other conflicting

actions.

Action Conditions Effects

Search ball ¬loc(ball) loc(ball)

Search ¬loc(opponent goal) loc(opponent goal)

opponent’s goal ∧¬loc(own goal)
Calculate own loc(opponent goal) loc(opponent goal)

/ opponent’s goal ∨loc(own goal) loc(own goal)

Calculate loc(ball) ∧ loc(own goal) loc(block)

block position

Chase ball loc(robot) 6= loc(ball) loc(robot) = loc(ball)

∧loc(ball)
Defend loc(robot) 6= loc(block) loc(robot) = loc(block)

∧loc(block)

Kick ball loc(robot) = loc(ball) attacked

Steal ball loc(robot) = loc(ball) defended

Block ball loc(robot) = loc(block) defended

Table 3.3: Action Description Table Example

The goal-based approach can be used with the priority-based approach to solve

an action conflict (called conflict resolution) – that is, to help make the decision when

there is more than one action that can achieve the same goal. Expert systems are

an example of goal-based approach systems that often use a priority-based approach

for conflict resolution.

Strengths. Reasoning for the decisions can be provided and traced. Goals and

effects of actions can be modified in real-time independent of other knowledge.
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The goal-based approach is flexible because the goals and effects of each action

are known and can be modified to meet new task requirements.

Weaknesses. Decision making is slower than the lookup-based, case-based and

priority-based approaches because a decision cannot simply be retrieved, but

must be reasoned deliberately. Explicit knowledge of goals and effects of each

action are required to be provided. A separate mechanism is required for

conflict resolution. Similar to a priority-based or hierarchy-based approach,

this goal-based approach does not have a measurement of how effective a goal

has been achieved.

3.2.5 Connection-based Approach

In a connection-based approach, tasks are modelled as layers of connected nodes.

Agents are provided with the nodes and the right actions that are encoded as weights.

Actions are determined by linearly calculating inputs and weights. Similar to a

lookup-based approach, agents are designed to simply lookup the predetermined

right actions. An example of a connection-based decision making mechanism is a

neural network [192, p. 727].

A neural network can have an input layer, an output layer and any number of

hidden layers. A layer can contain any number of nodes. Both sensations of the

situations and actions are represented as nodes in the input layer and output layer

respectively. They are connected through hidden layers in between, thus adjusting

the weight of nodes in the hidden layers will affect the decision making.

Nodes act as gateways between layers to activate other nodes in the next layer

based on the values of nodes in the previous layer. They are activated based on

their activation function that depends on their weights. The activation function of

node i in layer j is denoted by aji or a(i, j).

Weights are real numbers that have no semantic meaning. Similar to a lookup-

based approach, situations and actions to perform are predetermined. However,

they are not provided in a list or a lookup table, instead their relationships are

converted into weights. Mathematically calculating the sensations with the weights

will provide the specified actions. Weights are difficult to be specified manually, so

they are typically learned from data or observations through supervised learning.
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Figure 3.4 shows an example of neural network nodes for a robot soccer scenario.

The nodes in the input layer are the values of robot position (i.e. x-y coordinate

and yaw angle) and ball position (i.e. x-y coordinate). The nodes in the output

layer are chase/defend node and ball/opponent goal node.

Figure 3.4: Neural Network Example

After calculating all of the activation functions, the action to chase a ball will be

chosen if the value of the chase/defend node is close to 1 and the action to defend

the attack will be chosen otherwise. In addition, the action to track the ball will be

chosen if the value of ball/opponent goal node is close to 1 and the action to track

the opponent’s goal will be chosen otherwise.

Strengths. Decision making can be performed very quickly because the complexity

of its computation is reduced to the linear calculation of weights once the

weights are learned.

Weaknesses. The weights cannot be modified in real-time independent of other

knowledge. Weights are difficult to specify manually. They can also be difficult

to learn in some tasks because not all tasks can be successfully learned through

supervised learning, i.e. other techniques may be required. The complexity to

learn the weights can be exponential.
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3.2.6 Utility-based Approach

A utility-based approach [192, p. 53] can be used for both competitive and collec-

tive decision making. Agents are provided with the utility of each action or criteria.

Actions are determined based on the aggregate functions of the utilities. Exam-

ples of utility-based mechanisms are expected utility, multi-attribute utility theory

(MAUT), analytical network processes (ANP) [227], soft-constraints [189, p. 9] and

voting mechanisms.

There are different kinds of aggregate functions depending on whether the utility-

based approach is used for competitive or collective decision making. Utility-based

competitive decision making has an aggregate function that will select a single utility

over others, such as the maximum (i.e. highest) or minimum (i.e. lowest) functions.

In Pirjanian’s taxonomy, this kind of approach is described as the winner-take-all

approach [176, pp. 16–18]. In contrast, utility-based collective decision making has

an aggregate function that will take the influences of multiple utilities, such as the

sum or average functions. In Pirjanian’s taxonomy, this kind of approach is further

divided into voting, fuzzy and superposition approaches [176, p. 10].

Utilities allow actions and criteria to be modelled quantitatively. They capture

the desirability of actions, outcomes of actions or criteria. The preferred actions

when there is more than one action that can achieve the same goal can be determined

by measuring their utilities. Not only can agents determine the preferred actions or

criteria, but also they know how much the actions are preferred.

Utilities and utility functions do not necessarily need to be fixed in this utility-

based approach. However, they can be fixed if desired at the design time or real-time.

They are normally fixed when the policy used in the utility-based approach is opti-

mal. A utility-based approach with fixed utilities can operate like a priority-based

or hierarchy-based approach where the utilities define the priorities or hierarchies of

actions or criteria.

In stochastic environments, a probability theory can be used in a utility-based

approach to model uncertainty. Agents are provided with the probabilities of each

action or criteria in addition to the utilities. Expected utility is an example of a

probabilistic model of utility-based decision mechanisms. Actions are determined

based on the weighted probability sum of all utilities.

A utility-based approach can be combined with a case-based finite state machine
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approach. Examples of mechanisms that combine a utility-based approach with a

case-based finite state machine approach are decision tree, Markov Decision Process

(MDP), Partially-Observable Markov Decision Process (POMDP) and reinforcement

Q-learning. These mechanisms can have fixed utilities and do not need to recompute

the utilities in real-time when their policies are optimal.

Strengths. A utility-based approach can be used for both competitive and collec-

tive decision making. Utilities can be modified in real-time independent from

other knowledge. Reasoning for decisions can be provided in terms of utility

or number. Conflict resolution can be determined by measuring the utilities

of the decisions. Unlike a priority-based or hierarchy-based approach and a

goal-based approach, utilities can be used as a measurement of how effective

a decision is.

Weaknesses. Decision making can be slower than lookup-based, case-based and

priority-based approaches because a decision cannot simply be retrieved, but

must be calculated (unless utilities are fixed). Explicit knowledge of the utility

(and the probability for the stochastic environment) for each action is required

to be provided.

3.3 Current State of The Art

In the previous sections, I have analysed major approaches in cognitive architectures

based on knowledge design and knowledge utilisation. These approaches have been

employed by the current state of the art in cognitive architecture. In this section, I

analyse the current state of the art in cognitive architecture.

There is an enormous number of existing and developing cognitive architectures:

there is almost a new cognitive architecture developed for each new kind of task.

A complete systematic analysis of all cognitive architectures is clearly not feasible

within the constraints of this dissertation due to the number of cognitive architec-

tures available, limited time and limited resources. Despite the fact that various

cognitive architectures have been extensively compared and reviewed in previous

work [127, 232, 248, 148, 18, 246], there are still many cognitive architectures that

were not covered in those reviews.

In this dissertation, I analyse nine most well-known and significant architectures
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(and common to the reviews in previous work), namely Soar, ACT-R, Subsump-

tion, Situated Automata, PRS, Agent Network, ICARUS, 3T and Polyscheme. Re-

searchers may have different opinions on which one they will refer to as a cognitive

architecture. Currently, there is still no widely accepted definition of a cognitive

architecture (see Section 2.4). Among the nine cognitive architectures listed previ-

ously, Subsumption, 3T and Polyscheme are probably the most common architec-

tures that researchers would not agree on with each other (if any). Laird refers to 3T

as a cognitive architecture [120, p. 10] and Polyscheme as a cognitive architecture

that is closer to a framework [120, p. 7], but he considers Subsumption as a frame-

work rather than a cognitive architecture [120, p. 6]. In contrast, Langley, Laird

and Rogers [127] refer to Polyscheme as a cognitive architecture, and Vernon, Metta

and Sandini [232] refer to Subsumption as a cognitive architecture. In this review, I

refer and include all Subsumption, 3T and Polyscheme as a cognitive architecture.

The nine cognitive architectures (or their derivations) are still in use today,

although many of them were first published over years ago. Unlike a number of

recently developed cognitive architectures, these nine cognitive architectures have

been proven to be effective for general problems, different domains and different

physical robots.

The nine cognitive architectures also covers the trends of cognitive architectures

described by Bryson [43] as seen in Table 3.4.

No. In Bryson’s Analysis Representative In My Analysis

1 Behaviour-based architectures:

Society of mind Polyscheme

Subsumption Subsumption

Behaviour-based diversification Agent Network

2 Multi-layered architectures 3T

3 PRS (beliefs, desires and intentions) PRS

approach

4 Soar Soar

5 ACT-R ACT-R

Table 3.4: Comparison to Bryson’s Trend of Cognitive Architectures

In the following subsections, I evaluate each of the nine cognitive architectures

against the four criteria described in Section 2.5, namely versatility, reactivity, ro-
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bustness and extensibility. Details are given more to those architectures that provide

practical examples (e.g. coding) and that have been implemented in real robotic ap-

plications. Other reviewers may disagree with the details of my evaluation, however,

the general gaps in the architectures is unlikely to be controversial.

3.3.1 Soar

Soar [120, 121], initially developed in 1983, is one of the oldest and most widely

recognised cognitive architectures. It is mainly used for cognitive modelling and

governing intelligent agents. It was originally implemented in Lisp programming

language and known as SOAR (all upper case) – the acronym for State, Operator

and Result. Now, Soar has been implemented in C++ programming language and is

no longer an acronym. It has been deployed in robots, such as the Unimation PUMA

(the implemented system is called Robo-Soar) [122] and the Parallax HexCrawler

[94], see Figure 3.5.

(a) Unimation PUMA [182] (b) Parallax HexCrawler [94]

Figure 3.5: Robots Governed by Soar

Soar’s history can be traced back to and a direct successor of the General Problem

Solver (GPS) created in 1959 [154]. GPS was designed to model human information

processing by matching data with human performance (i.e. cognitive modelling). It

has influenced STanford Research Institute Problem Solver (STRIPS) [70] which has

successfully governed a physical robot called Shakey [158]. Both GPS and STRIPS

use means-ends analysis to make decisions. However, GPS focuses on the cognitive

modelling whereas STRIPS focuses on the planning of intelligent agents. Soar is like

a combination of both GPS and STRIPS because it is not only used for cognitive

modelling but also governing intelligent agents.
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The Soar architecture is designed based on Newell’s three theories, as listed as

follows:

1. Unified Theory of Cognition

The unified theory of cognition [153] proposes that all cognition and intelligent

behaviours can be captured by a single set of mechanisms. In Soar, all tasks

are treated as a problem that can be solved by searching and manipulating

symbolic operators.

2. Physical Symbol System

The physical symbol system theory [155] proposes that “a physical symbol

system has the necessary and sufficient means for general intelligent action”.

A physical symbol system is a system that contains expressions and processes

which can be created, modified, reproduced and destroyed to produce other

expressions over time. An expression (also called symbol structure) contains

physically related entities (called symbols) that obey the laws of physics. In

Soar, knowledge about the tasks is encoded and manipulated in symbolic form.

3. Problem Space Theory

The problem space theory [152] proposes that decision making and problem

solving can be achieved by representing problems as states and operators in

a space and finding operators through the space that can change the current

state to the goal state. In Soar, situations (including goals) and actions are

encoded as states and operators respectively. A task is solved by finding

actions that could change the current situation to the desired situation (i.e.

goal).

Soar consists of modules such as perception, action, working memory and long-

term memory (see Figure 3.6). Inputs are retrieved from the environment by the

perception module and held in the perceptual short-term memory (STM). Symbolic

structures are extracted from perceptual short-term memory and added to Soar’s

working memory. The content of working memory is matched against procedural

knowledge which is represented as production rules in procedural long-term memory.

During the matching process, preferences are generated by production rules to

help the decision procedure to select an operator. An impasse will occur on the

occasion when knowledge is inadequate to determine the operator (i.e. no operator
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Figure 3.6: Soar Architecture [120]

can be selected), hence a new sub-goal will be created. Otherwise, an operator is

selected and applied to change the content of the working memory (i.e. previous

state is changed to new state).

Change in the content of working memory can initiate actions or trigger further

knowledge from semantic or episodic memory. The new content is then rematched

against production rules and the process is repeated until the new content is matched

against the goal (i.e. the goal state has been achieved).

Versatility

Soar is not versatile. Recent versions of Soar has employed various tech-

niques, such as symbolic representation, numeric preferences, mental imagery,

appraisals and reinforcement learning. Each technique is carefully designed,

so it can be integrated with other techniques. Soar is not capable of integrat-

ing undesignated techniques that are developed independently. In addition,

Soar does not have an explicit mechanism to manage resources. It selects

an operator with the assumption that the operator has enough resources to
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be performed. As a result, robotic developers must accommodate resources

manually when designing the procedural knowledge in order to avoid resource

conflict.

Reactivity

Soar is not reactive. It does not guarantee that the action will be selected

within a period of time despite that it typically has a fast execution cycle of

accessing procedural knowledge and selecting an action. Its action selection is

determined by knowledge search in the problem space. Reactive behaviour is

lost if the knowledge search is unbounded. In addition, Soar cannot achieve

multiple goals simultaneously because it chooses only a single action at a time.

Robustness

Soar is semi-robust. It can still generate partial plans from the available knowl-

edge when some procedural knowledge is missing. However, Soar cannot ex-

ploit redundancy because actions are controlled by a central procedural sys-

tem. Its control is centralised. In addition, there is no guarantee that Soar will

not slow robots down since its problem space will grow larger as knowledge is

accumulated.

Extensibility

Soar is extensible. Knowledge is separated from other components of the

architecture. Adding procedural knowledge to improve tasks does not involve

modifying any part of the architecture. In addition, Soar has chunking learning

to create sub-goals when no operator can be selected. It also has reinforcement

learning to tune procedural knowledge.

3.3.2 Adaptive Control of Thought – Rational (ACT-R)

The Adaptive Control of Thought – Rational (ACT-R) [12] is one of the oldest

and most widely recognised cognitive architectures. It is mainly used for cognitive

modelling. It is also known as Adaptive Character of Thought - Rational [3, G3]. It

is the successor of several architectures that date back to 1973: Human Associative

Memory (HAM) [14], ACT [13] and Adaptive Control of Thought (ACT*) [11]. It

is implemented in the Lisp programming language, but alternative implementations



46 Chapter 3. Existing Cognitive Architectures

in Java and Python have been made available. It has been deployed in robots, such

as the iRobot B21r [223] and the NASA Robonaut [208] (see Figure 3.7).

(a) iRobot B21r [223] (b) Nasa Robonaut [149]

Figure 3.7: Robots Governed by ACT-R

Like Soar, ACT-R is designed based on the production system approach and the

unified theory of cognition assumption. It encodes knowledge using a set of if-then

production rules and solves problems by using a single and fixed set of mechanisms.

Agents are provided with explicit knowledge that is divided into two types,

namely, procedural and declarative knowledge. Procedural knowledge consists of

rules and stepwise instructions to perform actions or to achieve goals, such as how

to chase or kick a ball. They are encoded using a production structure. In con-

trast, declarative knowledge consists of facts, such as a ball is round or goalposts are

stationary. They are encoded using a custom structure in ACT-R called chunks.

ACT-R [12] has a total of eight modules: visual, aural, manual, vocal, imaginal,

declarative, goal and procedural (see Figure 3.8). The visual and aural modules

perceive image and audio inputs from the external environment respectively. The

manual and vocal modules produce motor and voice outputs to the external envi-

ronment respectively. The imaginal module holds a current mental representation

of the problem. The declarative module stores and retrieves the declarative knowl-

edge to and from the memory. The goal module consists of the current goal and the

agent’s intention. Finally, the procedural module is a special module that retrieves

the procedural knowledge to process information of other modules. All modules ex-

cept the procedural module have a buffer that will only hold information in a single

chunk (i.e. declarative knowledge). The procedural module does not have a buffer
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and it is the only module that can examine and modify buffers in other modules.

Figure 3.8: ACT-R Architecture

ACT-R’s decision making is similar to Soar’s, except that measures of utility

(i.e. reward and cost) are used for decision making. Visual and aural modules

perceive inputs from the environment and hold the inputs in their buffers. The

decision making process cycle commences when there is content in the modules’

buffers. The content is matched against procedural knowledge (i.e. production

rules) in the procedural module. Multiple productions may be found and matched

but only one production rule with the highest utility will be chosen and executed.

This production rule will further update the content of the buffers and the cycle is

repeated. Although each cycle is aimed to take about 50ms to complete, the cycle

can take longer if there are retrievals from declarative memory involved. In this case,

ACT-R does not guarantee that an action selection or decision making is performed

every 50 ms.

The utility of a production rule is calculated by the Equation 3.1. It is the

difference between the expected reward and the cost. It is positive if the expected

reward is higher than the cost and negative otherwise. The expected reward is

calculated by multiplying the success ratio by the reward. A higher success ratio

will return a higher expected reward and vice versa.

Ui =

(
Si

Si + Fi

G

)
− Ci (3.1)

Where:
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Ui is the utility value of production i

Si is the number of success in achieving the goal using production i

Fi is the number of failure in achieving the goal using production i

G is the reward if the goal is achieved

Ci is the cost of using production i to achieve the goal

Versatility

ACT-R is not versatile. It has employed various techniques, such as symbolic

representation, utility numeric representation, mental representation and re-

inforcement learning. Each technique is carefully designed in order to be

integrated with other techniques. ACT-R is not capable of integrating un-

designated techniques that are developed independently. In addition, ACT-R

does not have an explicit mechanism to manage resources. It selects a pro-

duction with the assumption that the production has enough resources to

be performed. As a result, robotic developers must accommodate resources

manually when designing the procedural knowledge in order to avoid resource

conflict.

Reactivity

ACT-R is not reactive. It is modelled to match the execution cycle in humans,

which is about 50 ms. It does not guarantee that the action will be selected

within a period of time. In addition, it cannot perform simultaneous action

selection. It chooses only a single action at a time.

Robustness

ACT-R is semi-robust. It can still generate partial plans from available knowl-

edge when some procedural knowledge is missing. However, ACT-R cannot

exploit redundancy because actions are controlled by a central procedural sys-

tem. Its control is centralised. In addition, there is no guarantee that ACT-R

will not slow robots down as declarative and procedural knowledge are accu-

mulated.

Extensibility

ACT-R is extensible. Adding procedural knowledge to improve tasks does

not involve modifying any part of the architecture. In addition, tasks can be

improved easily by adjusting the cost and probability of the production rule
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through reinforcement learning. ACT-R also involves production learning to

combine a successive pair of productions into a single production.

3.3.3 Subsumption

Subsumption architecture [41, 42] was initially developed in 1986 to govern intel-

ligent mobile robots. Its design was motivated by the lack of responsiveness in

intelligent agents at that time. Governing agents in complex environments using

approaches like Soar, STRIPS or ACT-R is computationally expensive, because ev-

ery action is required to be deliberated. Subsumption avoids deliberative decision

making using simple tables connecting sensory inputs to reactive actions.

Unlike Soar and ACT-R, agents are designed to follow the specified behaviours

without undertaking deliberate reasoning about the consequences of their actions.

The effort to provide knowledge about tasks is avoided [41]. Agents are provided

with pre-designed actions to perform in response to sensor information instead of

using explicit knowledge about goals and actions. Thus, they cannot (and are not

required to) derive their actions deliberately because they do not have the required

explicit knowledge.

Behaviours are divided into multiple layers starting from the simplest behaviour

at the lowest layer to the most complex behaviour at the highest layer. Each layer

has an individual goal to pursue. A higher layer can suppress and inhibit a lower

layer, but not vice versa. For example, while the third and second layers can suppress

and inhibit the second and first layers respectively, the first layer cannot suppress

and inhibit the layers above (see Figure 3.9).

Figure 3.9: Subsumption Layer [42]

Each layer contains a set of modules. Each module is an augmented finite state

machine with inputs, outputs, and a reset signal. Outputs of a module can be passed
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to agents’ actuators, passed to the inputs of the next module or used to suppress

and inhibit the inputs and outputs of the next module respectively (see Figure 3.10).

Figure 3.10: Subsumption Module [42]

Actions are performed simultaneously in multiple layers. They are prearranged

hierarchically at design time. Hierarchies are used to determine a dominant action

over subsumed actions when there is an action conflict.

Subsumption is designed for robustness. Layers are debugged and tested thor-

oughly from the lowest to the highest layer. Behaviours are not designed to be

modified in real-time. Subsumption does not have a learning mechanism to change

its behaviours.

Versatility

Subsumption is not versatile. Although independent techniques are easily cre-

ated as modules layer by layer, connection between modules and layers are

pre-arranged or wired manually during the design stage. In addition, Sub-

sumption does not have an explicit mechanism to manage resources. Robotic

developers must accommodate resources manually when arranging or wiring

the modules and layers in order to avoid resource conflict.

Reactivity

Subsumption is reactive. It does not undertake deliberate reasoning to se-

lect actions. It has multiple layers that achieve individual goals concurrently.

Each module can perform an action, thus multiple actions can be selected and

performed at a time (i.e. simultaneous action selection).
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Robustness

Subsumption is robust. Modules are built layer by layer after thorough de-

bugging and testing. Modules in the lower layers will keep performing the

next action despite a failure in the higher layers. In addition, Subsumption

can exploit redundancy because actions can be controlled and executed by

each module instead of by only a single module. Its control is decentralised

and modular. Furthermore, Subsumption will not slow robots down because

it does not accumulate experience and knowledge.

Extensibility

Subsumption is not extensible. Modules can be easily created and debugged,

but adding or changing modules requires manual re-arrangement or rewiring of

connections which takes much time and effort. In addition, Subsumption does

not have learning mechanisms to improve performance and make the extension

easy.

3.3.4 Situated Automata

Situated automata [105, 187] was initially developed in the mid-1980s for the purpose

of governing intelligent agents. Its design motivation is similar to the Subsumption

architecture, in that it seeks to compensate for the lack of responsiveness in agents.

However, unlike Subsumption, knowledge is seen to be necessary instead of being

avoided.

Knowledge is compiled into reactive behaviours in a form of digital circuits (i.e.,

logical gates) in order to stay responsive without being overwhelmed by the use of

knowledge. Inputs from the environment are passed through the circuits and outputs

are generated by the circuits without much computation (see Figure 3.11). Agents

are provided with digital circuits instead of knowledge so that they can quickly react

to the environment by looking up the outputs of the circuits without reasoning their

knowledge and deliberating their decisions.

Several tools have been created to help make the development of agents easier, in-

cluding Rex, Gapps and Ruler. Rex is a low-level language to specify digital circuits.

Ruler and Gapps are declarative programming languages that are implemented on

top of Rex to specify perception and action (or goal) of an agent respectively.
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Figure 3.11: Circuit Generated by Gapps

Versatility

Situated automata is not versatile. The Rex, Gapps and Ruler custom lan-

guages can help the development of agents, but the situated automata cannot

integrate techniques that cannot be described by the languages. In addition,

robotic developers have to manually accommodate resources in the design of

the circuits to avoid resource conflict.

Reactivity

Situated automata is reactive. Knowledge is compiled into digital circuits,

which can generate fast outputs. In addition, Gapps supports prioritised goal

lists and it can express multiple goals by using conjunctive expressions. Thus,

it allows Situated automata to perform simultaneous outputs.

Robustness

Situated Automata is robust. Gates in the circuit will keep receiving inputs

and producing outputs (i.e. actions) when there is a failure in other gates.

In addition, Situated Automata can exploit redundancy because actions can

be controlled by each gate instead of by only a single gate. Its control is

decentralised. Furthermore, Situated Automata will not slow robots down

because it does not accumulate experience and knowledge.

Extensibility

Situated automata is not extensible. Adding or changing functions requires

the entire circuit to be recompiled. In addition, Situated automata does not
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have learning mechanisms to improve performance and make the extension

easy.

3.3.5 Procedural Reasoning System (PRS)

Procedural Reasoning System (PRS) [85, 84] was initially developed in 1986 for the

purpose of governing intelligent agents. Its development has been continued and

extended by different institutes, which results in following architectures: distributed

multi-agent reasoning system (dMARS) [62], JACK [44] and CoJACK [160].

PRS is designed based on Bratman’s theory of belief, desire and intention (BDI)

[37]. Although PRS is not the only architecture based on BDI approach, it remains

the most widely known example of BDI-based architecture. PRS consists of five

major components (see Figure 3.12):

1. Database

Database contains representations of current beliefs or facts about the world.

That is, it contains a set of facts that is believed to be true at the current

instant of time. The beliefs are described using first-order predicate calculus.

Some of the beliefs may be provided initially by the developers.

2. Goals

Goals express a set of current desires to be realised. Each goal is denoted by

an action type or a set of state sequences described using a temporal predicate.

For example, the expression (walkab) denotes the set of state sequences that

embody walking actions from point a to point b.

3. Procedures

Procedures (also called knowledge areas) represent the knowledge about how

to accomplish given goals or react to certain situations. They express a declar-

ative fact about the effects of performing certain sequences of actions under

certain conditions. Each procedure has a body and an invocation condition.

The body of the procedure is represented as a graphic network and can be

viewed as a plan or plan schema. It consists of possible sequences of sub-

goals to be achieved instead of possible sequences of primitive actions. The

invocation condition describes under what situations the procedure is useful.
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4. Stack

Stack represents the working memory or short-term memory of the architec-

ture. It expresses the current intention of the system based on available goals

and beliefs. It holds the selected procedure that is going to be executed by

the interpreter.

5. Interpreter

An interpreter is the inference mechanism or reasoner that controls the entire

flow of the architecture. Its tasks involve performing consistency maintenance

routines, finding procedures that are relevant to goals, choosing one procedure

among relevant procedures, placing a procedure onto the process stack and

executing a procedure.

Figure 3.12: Procedural Reasoning System

PRS’s decision making cycle starts every time a new goal is pushed onto the goal

stack or a new belief is added to the database, which may be caused by changes in

the environment. When a new goal is pushed, the interpreter finds procedures that

are relevant to the new goal. When a new belief is added, the interpreter performs

consistency maintenance routines that may activate relevant procedures. In both

situations, the interpreter then chooses one procedure among the relevant procedures

and places the selected procedure on the process stack. Finally, it executes the

procedure that is placed in the process stack. Executing this procedure will derive

new sub-goals and beliefs, thus the cycle is repeated.
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Versatility

PRS is not versatile. Tasks must be able to be represented by beliefs, desire and

intention. PRS cannot integrate undesignated techniques. In addition, proce-

dures selected by PRS are assumed to have enough resources to be performed.

Robotic developers have to manually ensure that resources are available for

the procedures in order to avoid resource conflict.

Reactivity

PRS is semi-reactive. It finds and executes relevant procedures only when

sufficient information is available. It expands plans dynamically and incre-

mentally. Its planning can be interrupted whenever the situation demands.

However, it cannot achieve multiple goals because it chooses one procedure

among the relevant procedures at a time.

Robustness

PRS is not robust. The interpreter will stop selecting and executing the next

action when there is a failure in any part of its database, goal, procedure or

stack. The interpreter needs all the components to make decisions. In ad-

dition, PRS cannot exploit redundancy because actions are controlled by a

central interpreter, although the use of multiple PRS instantiations to exploit

redundancy has been discussed [85]. PRS’s control is centralised. Further-

more, there is no guarantee that PRS will not slow robots down as beliefs are

accumulated.

Extensibility

PRS is semi-extensible. Procedures are separated from the beliefs database

(i.e. beliefs or facts) and goals. They can be added or changed without

affecting the database or the goals. However, PRS does not have a learning

mechanism to improve performance and make extension easy.

3.3.6 Agent Network Architecture (ANA)

The Agent Network Architecture (ANA), also known as the spreading activation

network [137, 136] was initially developed in 1990 for the purpose of governing

intelligent agents. It is implemented in the Lisp programming language. Similar to

the situated automata, its design motivation is to use knowledge while compensating
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for the lack of responsiveness in agents. However, knowledge about conditions and

effects of modules are made explicit and used in real-time decision making instead

of being compiled as in situated automata.

ANA consists of connected competence modules that correspond to agents’ be-

haviours (see Figure 3.13). There are two types of competence modules, namely,

action and belief modules. Action modules are designed to perform physical ac-

tions when they are activated whereas belief modules are designed to change agents’

beliefs when they are activated.

Figure 3.13: Agent Network Architecture

Every competence module has five properties that contain knowledge about the

module: condition-list, add-list, delete-list, activation-level and implementation.

The condition-list property specifies the conditions for which the module can be

qualified to be activated. The add-list and delete-list properties specify the knowl-

edge to be added and removed when the module is activated respectively (i.e. effects

of the module). The activation-level property specifies a real number that represents

how relevant the module is in the current situation. The implementation property

specifies processes and behaviours that the module will carry out when it is acti-

vated.

Modules are connected based on their add-list and condition-list properties in-

stead of being arranged manually as in Subsumption. For example, the recognise

cup module is connected as the predecessor of the pick up cup module if it adds the

same knowledge (i.e. add-list: cup-observed) required by the condition of the pick

up cup module (i.e. condition-list: cup-observed).

The activation levels of modules are accumulated and calculated based on several

conditions:
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• Increment based on sensor data

The activation levels of modules are increased if the modules’ execution con-

ditions match some sensors’ data, as formalised as follows:

∃x ∈ sensor data : x ∈ condition-list

• Increment based on goals

The activation levels of modules are increased if the modules add knowledge

that matches some of the goals, as formalised as follows:

∃x ∈ goals : x ∈ add-list

• Decrement based on protected goals

The activation levels of modules are decreased if the modules remove knowl-

edge that matches some of the protected goals, as formalised as follows:

∃x ∈ goals : x ∈ delete-list

• Increment based on predecessors

The activation levels of modules are increased (by a fraction of their predeces-

sors’ activation levels) if the modules’ predecessors pass the conditions to be

executed (i.e. condition-list properties are satisfied). In other words, successor

modules are stimulated by the readiness of predecessor modules.

• Increment based on successors

The activation levels of modules are increased (by a fraction of their successors’

activation levels) if the modules’ successors do not pass the conditions to be

executed (i.e. condition-list properties are not satisfied). In other words,

predecessor modules are stimulated by the failure of successor modules, so

that the chances of predecessor modules being selected are increased.

• Decrement based on conflicting modules

The activation levels of modules are decreased (by a fraction of conflicting

modules’ activation levels) if the modules are in conflict with other modules.

• Decrement based on decay

The activation levels of all modules are decreased by the decay function.
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Modules are qualified to be activated if their condition-list properties are satisfied

and their activation levels surpass certain thresholds. ANA will activate a module

that has the highest activation level among qualified modules (if there is any qualified

module). Once a module is activated, its specified processes or behaviours will be

executed and its activation level reset to zero.

Versatility

ANA is not versatile. Although it treats modules as black boxes where a

greater diversity of techniques can be integrated as modules, it requires mod-

ules to be connected based on knowledge propositions using the condition-list

and add-list properties. Thus, it limits the techniques that can be integrated

to those that can be associated with knowledge propositions. In addition,

robotic developers have to manually accommodate resources in the design of

the modules in order to avoid resource conflict.

Reactivity

ANA is reactive. Modules can perform physical actions or change the beliefs

of the agents as soon as they are activated. ANA can achieve multiple goals

simultaneously by having each module perform a different action.

Robustness

ANA is robust. Modules will keep executing actions when there is a failure in

other modules because they are independent. In addition, ANA can exploit

redundancy by duplicating modules to perceive the environment and control

actions. Its control is decentralised. Furthermore, it will not slow the robots

down because a slow module can be treated as a failed module that does not

affect other modules (i.e. other modules will keep executing actions).

Extensibility

ANA is extensible. Modules can be added or changed independently and easily

since they are connected automatically by their add-list and condition-list. In

addition, ANA has two learning mechanisms to improve agents’ performance

and make the extension easy, namely to obtain new knowledge and to speed

up the module selection by compiling (or chunking) existing knowledge [137].
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3.3.7 ICARUS

ICARUS [126, 128] was initially developed in 1991 for governing intelligent physical

agents. It is implemented in the Lisp programming language and has been deployed

in physical agents, such as the KIST Mahru-Z [111] and the Adept MobileRobots

Pioneer P3-DX [229] (see Figure 3.14). Its design motivation is to reproduce qual-

itative characteristics of human behaviour instead of matching quantitative human

data. However, the way to measure human qualitative characteristics is not sug-

gested in ICARUS.

(a) KIST Mahru-Z [111] (b) Adept MobileRobots Pioneer P3-DX

[4]

Figure 3.14: Robots Governed by ICARUS

ICARUS is based on five principles. First, cognition is grounded in perception

and action. Second, concepts are differentiated with skills. Third, hierarchical con-

cepts and skills are acquired cumulatively. Fourth, long-term memory is structured

hierarchically. Fifth, long-term and short-term memory structures have a strong

relationship.

Like ACT-R, knowledge is divided into two types, namely concept and skill.

Concepts and skills can further be divided based on their relationships to the external

environment into primitive concept, non-primitive concept, primitive skill and non-

primitive skill. Primitive concepts are used to define state or meaning in terms

of perception of the external environment, so that the concept is grounded to the

external environment. In contrast, non-primitive concepts are used to define state

or meaning in terms of other concepts. For example, a primitive concept of holding-

object can be associated with a perception of an object on an agent’s gripper. A

primitive skill is an action that can be executed in the external environment whereas

a non-primitive skill is an action that refers to other skills.
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Each concept and skill have a header and a body. The header contains name

and arguments. The body contains fields that are varied between concepts, primitive

skills and non-primitive skills.

The body of a concept contains three fields, namely percepts, relations and tests.

The percepts field describes the types and attribute values of objects perceived in

the environment. The relations field describes the relationship to other concepts.

The tests field describes the conditions that must be held for the concept to be valid.

The body of a primitive skill contains four fields, namely percepts, start, requires

and actions. The percepts field is the same as those in concept. The start field

describes the conditions for the skill to be selected. The requires field describes the

conditions that must be held throughout the execution for the skill to be executed.

The actions field describes the actions that would be performed by the skill.

The body of a non-primitive skill contains three fields, namely percepts, start

and subgoals. The percepts field is the same as those in primitive skill or concept.

The start field is the same as those in primitive skill. The subgoals field is similar

to the actions field in primitive skill. It describes the order of subgoals that would

be achieved by the skill.

ICARUS has six kinds of memory, namely perceptual, conceptual, belief, goal

or intention, skill and motor memories (see Figure 3.15). On every decision cycle,

objects in the external environment are perceived and stored in the perceptual buffer

or memory. The information about the objects is matched against the bodies of

concepts in the conceptual memory. Any supported beliefs are inferred and added

to the belief memory. The process is repeated until all beliefs that can be inferred

are added.

ICARUS will select a goal with the highest priority from the goal/intention

memory as the current goal. The goal/intention memory contains an ordered list of

objectives to be achieved by agents. A hierarchy of a skill path is constructed and

planned from the current belief to the goal, based on the knowledge about skills in

the skill memory. An action in the final skill of the skill path is executed to change

the environment. It will trigger and cause new perceptions about the environment

and the cycle is repeated.

Versatility

ICARUS is not versatile. Tasks must be able to be represented by knowledge
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Figure 3.15: ICARUS Architecture

in concepts and skills. ICARUS does not provide a way to integrate other

undesignated techniques. In addition, robotic developers have to manually

accommodate resources in the design of the concept and skill to avoid resource

conflict.

Reactivity

ICARUS is semi-reactive. It can adjust the degree to which it monitors the

environment while carrying out actions. It also handles interruption with

priorities. However, it can only access the highest goal in the prioritised goal

stacks (i.e. achieve a goal at a time).

Robustness

ICARUS is not robust. Modules (called memories) are interdependent to

each other. A failure in a memory causes other memories to stop working.

ICARUS does not have redundancy of the processing functions. Its control is

not decentralised. In addition, there is no guarantee that the robot will not

slow down as they accumulate experience over long periods of time.

Extensibility

ICARUS is extensible. Concepts and skills can be added or changed with-

out manually rearranging their connections since they are planned on every
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decision cycle. In addition, ICARUS incorporates a learning module that cre-

ates a new skill whenever problem solving and execution achieve a goal, which

improves agents’ performance and makes the extension easy.

3.3.8 Three Tier / Three Layers Architecture (3T)

Three tier (3T) or three layers architecture [81, 34] was initially developed in 1996

for the purpose of governing intelligent agents. It is the successor of A Three-

Layer Architecture for Navigating Through Intricate Situations (ATLANTIS) [80],

which was developed in 1991. Its design motivation is to integrate deliberation and

reactivity in agents.

Tasks are abstracted into three layers or tiers, namely, deliberation, sequencing

and reactive skills (see Figure 3.16). In the deliberation layer, plans are created,

selected and monitored by an Adversarial Planner (AP) in order to achieve goals.

A plan does not call actions to control agents’ actuators directly, instead it calls

packages of actions called Reactive Action Packages (RAPs).

Figure 3.16: Three Tier / Three Layers Architecture [34]

In the sequencing layer, selected RAPs are interpreted and monitored by the

RAP interpreter (i.e. sequencer). A RAP is a sub-plan that consists of context-

dependent sets of reactive skills to achieve a task under a variety of conditions. A

different set of reactive skills in a RAP can be activated and deactivated by the

RAP interpreter depending on the situation or context. For example, a RAP pass-

ball can have a set of move to target and soft kick ball skills and a set of move to

target and hard kick ball skills that can be activated when a teammate is nearby

and far respectively.
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In the reactive layer, activated skills are coordinated and monitored by the skill

manager. Reactive skills are low-level behaviours that continuously control motors

and interpret sensors in real-time in order to achieve or maintain a particular state

in the world, such as move position toward a target, soft kick ball and hard kick

ball. Each skill has four functions and a specification about input and output, as

follows:

1. Input and output specification

A skill provides required inputs and expected outputs so that its outputs can

be linked to the inputs of other skills in order to create a network of skills.

2. Initialise function

A skill can be initialised when the system is started, e.g. setup communication

ports.

3. Enable function

A skill can be enabled or disabled by the sequencer. Any necessary start up

routines may be performed every time a skill is enabled.

4. Disable function

A skill will be disabled when it is not needed. Any necessary clean up routines

are performed by the disable function.

5. Computational transform function

A skill continuously recomputes its outputs based on its current inputs by

using the computational transform function when it is enabled.

Versatility

3T is not versatile. Tasks must be able to be described by AP language and

RAPs. 3T cannot integrate undesignated techniques. In addition, robotic

developers have to manually design the content of the planner and the RAPs

to avoid resource conflict.

Reactivity

3T is semi-reactive. Its reactive skills continuously control motors and in-

terpret sensors in real-time. However, as also suggested by the authors, the
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concurrency support of the planner and the sequencer to achieve multiple goals

only remains in discussion and has not been implemented [34].

Robustness

3T is semi-robust. A failure in a reactive skill does not cause the whole robot to

fail since reactive skills can work asynchronously. However, 3T cannot exploit

redundancy of the processing functions. Its control is not decentralised. In

addition, there is no guarantee that the robot will not slow down as they

accumulate experience over long periods of time.

Extensibility

3T is semi-extensible. Adding or changing knowledge in a layer does not affect

other layers. However, 3T does not have a learning mechanism to improve

performance and make the extension easy. Learning remains future work in

3T [34].

3.3.9 Polyscheme

Polyscheme [48] was initially developed in 2002 for the purpose of governing in-

telligent agents. It is written in the Java programming language and has been

implemented in robots, such as the NASA Robonaut [208] and the Nomadic Nomad

200 [224] (see Figure 3.17). Its design motivation is to use multiple representations

(i.e. heterogeneous) instead of a single representation (i.e. uniform).

Polyscheme is designed based on the Society of Mind theory [144]. This theory

proposes that intelligent behaviours emerge from the interactions among a diversity

of processes instead of a single perfect principle. It can be seen as the opposite of

the unified theory of cognition adopted by Soar and ACT-R.

Polyscheme encapsulates techniques in modules called specialists. Each specialist

has its own representation to encode knowledge, but all specialists use the same

propositional language to communicate and share knowledge among each other.

Knowledge is shared by calling four functions that are implemented in each specialist,

as listed below:

1. The StanceOn(P) function
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(a) Nasa Robonaut [149] (b) Nomadic Nomad 200 [159]

Figure 3.17: Robots Governed by Polyscheme

This function returns the truth value the specialist believes about the propo-

sition P .

2. The ReportOpinion(P,S,tv) function

This function gets the truth value of proposition P from specialist S and stores

the truth value in tv.

3. The RequestedFoci() function

This function returns a set of propositions that the specialist would like to

focus on.

4. The Groundings(P) function

This function returns a set of closed propositions that ground the open propo-

sition P

At every decision making cycle, Polyscheme’s focus manager chooses a proposi-

tion among requested propositions based on the level of urgency and factors specified

by developers. Once a proposition is selected, sequences of three functions are called

in each specialist. First, the StanceOn function is called to determine each special-

ist’s stance on the proposition’s truth value. Second, the ReportOpinion function

is called to get the opinion about the proposition’s truth value from each special-

ist. Finally, the RequestedFoci() function is called to get a new proposition that
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each specialist would like to focus on. The focus manager will then choose a new

proposition and this cycle is repeated. In this cycle, relevant specialists (e.g. motor

specialist) will perform actions based on their own knowledge. However, the article

[48] does not clearly describe when and how exactly a specialist performs the action.

Versatility

Polyscheme is not versatile. Although each specialist can have its own rep-

resentation of knowledge, all specialists have to use the same propositional

language to communicate and share their knowledge with each other. How-

ever, not all knowledge required by open and complex tasks can be represented

by a propositional language. In addition, actions are performed by specialists

with the assumption that they have enough resources. Robotic developers

have to manually accommodate resources in the design of the specialists to

avoid resource conflict.

Reactivity

Polyscheme is reactive. In Polyscheme, actions are executed by each specialist.

Polyscheme responds to the situations fast because it does not wait for all

specialists to finish processing their information before it selects and performs

actions. Instead, some specialists can perform actions while other specialists

are still processing their information. In addition, Polyscheme can achieve

multiple goals simultaneously because each specialist can execute an action to

achieve a goal.

Robustness

Polyscheme is robust. Each specialist uses a different technique (such as rep-

resentation, reasoning and mechanism) to solve the same problem. If some

specialists fail or cannot solve a problem, then there are still other special-

ists that may be able to solve the problem by using their techniques. In this

case, specialists can keep solving problems and performing actions despite a

failure in other specialists. In addition, for the same reason, specialists can

be made redundant by solving the same problem using different techniques.

Polyscheme’s control is decentralised. Furthermore, it will not slow robots

down because a slow specialist can be treated as a failed specialist that does

not affect other specialists performing actions.

Extensibility
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Polyscheme is semi-extensible. Specialists can be added or changed indepen-

dently. However, Polyscheme does not have a learning mechanism to improve

performance and make extension easy.

3.4 Related Architectures

While I described current state of the art in cognitive architecture in the previous

section, there are still other architectures that are worth to discuss due to their

similarities to the work in this dissertation. However, these architectures are not

general purpose cognitive architectures and therefore do not fit in the previous sec-

tion. They are robot architectures designed for specific robotic tasks and/or they

are multi-agent architectures designed to govern multiple robots. They are outside

the scope of this dissertation. In this section, I describe them briefly. In Section 5.5,

I discuss how their mechanisms are similar and different to the mechanism proposed

in this dissertation.

• Autonomous Robot Architecture (AuRA)

Autonomous Robot Architecture (AuRA) [18, 20, 19] was initially developed in

1986 for robot navigation purposes. It has a schema controller that manages,

controls and monitors all motor schemas at run time. Each motor schema can

operate asynchronously and generates a response vector to control motors.

AuRA sums and normalises all vectors received from all motor schemas before

sending the result to the motors for execution.

• ALLIANCE

ALLIANCE [173] was initially developed in 1994 to address fault tolerant is-

sues. It is a multi-agent architecture. It consists of motivational behaviours.

At all times, each behaviour defines its activation level based on inputs, in-

cluding sensory feedback, inter-robot communication, inhibitory feedback from

other active behaviours and internal motivation. Its activation level is a non-

negative number. When this activation level exceeds a given threshold, the

corresponding behaviour set becomes active. There are two variables used to

determine the activation level, namely robot impatience and robot acquies-

cence. The robot impatience enables a robot to handle situations when other

robots (outside itself) fail in performing a given task. The robot acquiescence
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motivation enables a robot to handle situations in which it, itself, fails to

properly perform its task.

• Distributed Architecture for Mobile Navigation (DAMN)

Distributed Architecture for Mobile Navigation (DAMN) [186] was initially

developed in 1997 for robot navigation purposes. Initially, it used three voting

mechanisms to select actions, namely constraint arbitration, actuation arbitra-

tion and effect arbitration. However, these three voting mechanisms were later

replaced by the utility fusion voting mechanism, which was proposed to solve

issues encountered by the three mechanisms. DAMN consists of independent,

distributed and asynchronous modules that handle the robot’s behaviours to

achieve tasks. Every module concurrently suggests an opinion (i.e. vote) for

every candidate or action depending on the situations in the environment.

DAMN takes these opinions to decide on an action.

• Team Member Agent Architecture

Team member agent architecture [214, 213] was initially developed in 1998 for

creating teams of agents in periodic team synchronisation (PTS) domains. It

is designed based on a principle defined as the locker-room agreement. In this

architecture, each agent keeps track of three types of state, namely the world

state, the locker-room agreement and the internal state. The agent also has

two types of behaviours, namely internal and external behaviours. They are

both sets of condition/action pairs where conditions are logical expressions

over inputs, and actions are the behaviours themselves. The internal and

external behaviours are organised as directed acyclic graphs (DAGs). Various

learning techniques have been applied to this DAGs structure in order to make

decisions, such as reinforcement learning, decision tree learning and memory-

based learning.

• Kismet’s Architecture

Kismet’s architecture [39] was initially developed in 2000 for governing Kismet

robot. This architecture consists of a behaviour system designed based on

homeostatic regulatory mechanisms from the ethology literature. The be-

haviour system is organised into loosely layered heterogeneous hierarchies of

behaviour groups. Each group contains behaviours that compete for activa-

tion (through activation levels) with one another. Each behaviour determines
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its own activation level based on its relevance to the situation by taking into

account perceptual factors as well as internal factors. At the highest level,

behaviours are organised into competing functional groups (i.e. the primary

branches of the hierarchy) where each group is responsible for maintaining one

of the three homeostatic functions, namely to be social, to be stimulated by

the environment and to occasionally rest. Only one functional group can be

active at a time.

• Emotionally Grounded (EGO) Architecture

Emotionally Grounded (EGO) architecture [77] was initially developed in 2003

for governing Sony robots, namely Sony QRIO and Sony AIBO. It is designed

based on homeostatic regulatory mechanisms from the ethology literature.

It consists of behaviours (called modules) that compete for activation using

their activation levels. Each module determines its own activation level and

requires resources. Modules are organised into a hierarchical tree structure,

which can be thought like a layered hierarchical groups in Kismet’s behaviour

system. Modules that have the same parent in the tree will share the same

target. Unlike Kismet’s behaviour system, multiple modules can be activated

if they have different targets (i.e. multiple modules in different groups can

be active at a time). In addition, modules are selected concurrently in the

competition from the highest activation level to the lowest activation level

until there is no remaining resource available. Once a module is selected, it

is given permission to execute the behaviour implemented in the module as

a state machine (i.e. executing a state machine behaviour). Both module

organisation and competition mechanisms are designed to manage resources.

• TraderBots

Several auction-based architectures have been proposed in the literature [61,

86]. One example is TraderBots [61] developed in 2004 for coordinating robots.

It is a multi-agent architecture designed based on the economic approach of

free market system. In TraderBots, a larger task is divided into sub-tasks.

Each task is associated with a revenue and a cost. A team of robots places

bids for tasks. The goal of the team is to execute some plans such that its

profit is maximised or its cost is minimised. TraderBots involves mathematical

and principle approach towards choosing these bid values.
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3.5 Summary and Gaps

In previous sections, I have analysed major approaches in cognitive architecture

based on knowledge design and knowledge utilisation, as well as analysed the current

state of the art in cognitive architecture. In this section, I will summarise these

analyses and identify the gaps in cognitive architectures.

Table 3.5 summarises the approaches in cognitive architecture based on knowl-

edge design. More expressive and flexible approaches tend to be more complicated

and have higher computational costs (i.e. lower efficiency), and vice versa. A hybrid

approach focuses on balancing expressiveness, flexibility, complexity and computa-

tion cost.

Criteria Explicit-based Implicit-based Hybrid

Simplicity Low High Low-high

Efficiency Low High Low-high

Expressiveness High Low Low-high

Flexibility High Low Low-high

Table 3.5: Comparison of Approaches in Cognitive Architecture based on Knowledge

Design

Table 3.6 summarises the approaches in cognitive architecture based on knowl-

edge utilisation. Approaches that have low operation complexity, low knowledge

complexity and small knowledge size tend to be inflexible, and vice versa.

These two summaries suggest that a cognitive architecture should be able to

accommodate a variety of approaches in order to solve various problems or tasks

efficiently. They show clearly that there is no the best approach in cognitive archi-

tecture. Each approach has strengths and weaknesses that suit different problems

or tasks.

In addition to the two summaries, Table 3.7 summarises the current state of the

art of cognitive architectures. The + and - signs indicate that the criteria is fully

supported or semi-supported respectively. The table shows that these cognitive ar-

chitectures do not meet all the evaluation criteria described in Section 2.5, especially

versatility. As a result, current cognitive architectures lack the capability to fully

support service robots.
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Criteria Lookup Case Priority Goal Connection Utility

Operation Low Low Low High Low Medium

complexity

Knowledge High Low- Low- High High Medium

complexity high high

Knowledge Large Small Small Large Small Small

size

Real-time No No Yes Yes No Yes

modification

Flexibility Low Low Medium High Low Medium-

high

Table 3.6: Comparison of Approaches in Cognitive Architecture based on Knowledge

Utilisation

Analysing the existing cognitive architectures shows that there are four impor-

tant issues that cause the inability to meet all the evaluation criteria (i.e. inability

to fully support service robots in open and complex environments). The first three

issues arise from the difficulty of integrating techniques. The last issue arises from

the deficiencies in the robot operation. These four issues are as described as follows:

1. Incapable of Managing Resources

Current cognitive architectures do not have an explicit mechanism to manage

resources. As a result, robotic developers must take responsibility for manag-

ing the resources manually

2. Incapable of Integrating Independently Developed Techniques

Many current cognitive architectures are carefully designed to integrate se-

lected techniques, which may not suit all problems. They have limited tech-

niques that can be integrated. They are often designed with some constraints

that cause the use of any kind of independently developed technique to be

difficult.

3. Inflexible to Adapt to Changes

Many current cognitive architectures are inflexible and unable to adapt to

changes of techniques and structure. They are difficult and require consider-
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Architecture Versatility Reactivity Robustness Extensibility

Soar - +

ACT-R +

Subsumption + +

Situated +

Automata

PRS - -

ANA + + +

ICARUS - +

3T - - -

Polyscheme + + -

ASMO + + + +

Table 3.7: Comparison of Current State of The Art of Cognitive Architectures

able time and effort to add new techniques, change the techniques and change

the structure.

4. Inadequate Support to Robot Operation

Many current cognitive architectures are inadequate for supporting fast re-

sponses, simultaneous multiple goals, fault tolerance, redundancy, long-term

operation, maintainability and learning.

The purpose of this dissertation is to address these significant gaps so as to

accelerate the development, deployment and adoption of service robots undertaking

tasks in open and complex environments. This dissertation develops the novel bio-

inspired ASMO cognitive architecture that has been designed and developed to

address all four identified shortcomings of current cognitive architectures.
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Chapter 4

ASMO Cognitive Architecture

In the previous chapter, I analysed major approaches in cognitive architecture and

the current state of the art of cognitive architectures. I also identified four short-

comings of current cognitive architectures. In this chapter, I introduce the novel

ASMO cognitive architecture that addresses all of the four shortcomings. I begin

by describing the overall design of ASMO cognitive architecture in Section 4.1. I

follow by discussing how ASMO can be integrated with other systems in Section

4.2. Finally, I describe cognitive capabilities supported by ASMO in Section 4.3.

I will further describe the details of ASMO cognitive architecture: attention

mechanism, emotion mechanism and learning mechanisms in the following Chapters

5, 6 and 7 respectively.

4.1 Overall Design

Attentive and Self-Modifying (ASMO) cognitive architecture [167, 168, 164, 166,

163, 165] (see www.ronynovianto.com) is developed in this dissertation to address

the four gaps identified in current cognitive architectures. Its design motivation is

to accelerate the development, deployment and adoption of service robots in society.

It is developed for governing intelligent agents and robots. It is written in Erlang

and Python programming language. Its version using the Robot Operating System

(ROS) framework is also available. It has been deployed in a number of robots,

including Aldebaran Nao [163], Tribotix Hykim [167, 168, 164, 166] and Willow

Garage Personal Robot 2 (PR2) (see Figure 4.1).
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(a) Aldebaran Nao [7] (b) Tribotix Hykim [228] (c) Willow Garage PR2 [242]

Figure 4.1: Robots Governed by ASMO

In ASMO, intelligent behaviours are emerged from interactions between con-

stituent processes, rather than from careful design or fine-tuning. An emergent

system consisting of simpler or smaller processes can raise intelligence although

the processes themselves may lack of intelligence [144]. It produces more complex

behaviours and properties that are different to simply the sum of its parts [15].

However, if desired, processes and their interactions can be carefully designed and

fine-tuned to achieve desired behaviours and effects (see Section 5.4.1). The more

carefully designed the processes, the less emergent the behaviours.

ASMO consists of processes, memory, an attention mechanism, an emotion mech-

anism and learning mechanisms (see Figure 4.2).

Figure 4.2: ASMO Cognitive Architecture

A process (also called a module) is an autonomous, self-contained, concurrent,
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modular and distributed black box. It uses any variety of techniques (such as algo-

rithms, representations and mechanisms) to perceive situations, process information

and propose actions in order to achieve tasks. An action can be a high-level func-

tion or a low-level command to actuators and hardware. Examples of high-level

functions are recognising objects (i.e. perception) and finding the shortest path (i.e.

planning). Examples of low-level commands are walking to a specific location and

storing data to memory.

An action require resources (e.g. leg actuators, arm actuators, etc) to execute. A

module needs to have an access to resources required by its proposed actions in order

to perform the actions. Modules are in conflict when they require the same resources

at a time. When this happens, ASMO must select a module among the conflicting

modules in order to determine which actions to perform. Thus, in order to select

modules and manage resources, modules are designed to compete for ‘attention’ to

use resources (i.e. demand attention). Modules that win this attention competition

will get the attention to access to their required resources in order to perform their

proposed actions (see ASMO’s attention mechanism in the following subsection).

In the following, I describe the overall designs of memory and ASMO’s attention,

emotion and learning mechanisms. Details of the three mechanisms will be described

in the next three chapters respectively.

4.1.1 Memory

A module can store (and retrieve) data, information and knowledge to (and from)

its local storage or to a global memory (called ASMO’s memory). The data stored in

the local storage is private and only available to the module itself. The data stored

in ASMO’s memory is public and available to or can be accessed by other modules.

Thus, ASMO’s memory mediates the sharing and communication between modules.

A module can store data in any representation (i.e. ASMO’s memory does not

restrict how data is stored). For example, a module may store data in a numerical

representation used by a neural network while another module may store data in a

symbolic logic representation. ASMO’s memory will contain both representations

of situations in an environment (e.g. there is a ball on the left) and representations

of mental states inside a robot (e.g. a belief that chasing a ball would give higher

performance than defending an attack).
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A module is mainly designed to produce and use its own data (i.e. aimed to

be as independent as possible). However, if desired, it can still be designed to use

and combine data produced by other modules that is stored in ASMO’s memory.

The advantage of this design of having common memory in ASMO distributed ar-

chitecture is that the module can have low coupling and yet it is still allowed to

communicate and share with other modules. The disadvantage of this design is

that the module is required to know the representation of the data stored by other

modules (i.e. not the aim of ASMO).

The design of emergence and independent modules creates some difficulties to

coordinate the modules. However, sharing the global ASMO’s memory helps to solve

these difficulties. For example, consider an independent module (called search ball)

requires a robot’s head to look in a particular direction in order to search for a ball

and another independent module (called chase ball) requires the robot’s legs to chase

for the ball. For the search ball module to propose to look in the right direction, it

needs the information from the body orientation, which comes from where the legs

will be placed next by the chase ball module. In order words, a module needs to

anticipate what other modules will do if they win an attention competition. Without

the global ASMO’s memory, the search ball module cannot anticipate the location

of the legs. With the global ASMO’s memory, the chase ball module can store the

location where it proposes the legs to step to and the search ball module can use

this information to propose the right direction for the head.

In addition, sharing the global ASMO’s memory also provides developers with

the flexibility to develop modules. For example, consider two modules (say to search

a ball and to search for landmarks) require an access to the same camera to obtain

images. Developers do not have to create these two modules to compete for the

same camera resource. Instead, developers can create another module to require the

camera to capture images and then share these images to ASMO’s memory so that

the two modules (i.e. search the ball and search landmarks modules) can use the

images.

Modules can retrieve data in ASMO’s memory (i.e. access ASMO’s memory)

whenever they like or desire. This retrieval resembles the Hollywood principle of

software design: “don’t call us, we’ll call you” [233]. In the Hollywood principle, data

is not passed to other components or modules directly after the data is produced.

Instead, the data remains available to be fetched for use on demand or when needed.
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In the current implementation, data is stored with an address and keywords in

a tuple form [83]. It can later be retrieved by specifying its address or searching its

keywords (or contents). ASMO’s memory will operate as a random access memory

if data is retrieved by an address or operate as a content-addressable memory (i.e.

associative memory) [116] if data is retrieved by keywords or contents. A search

engine is required to search data by keywords or contents. If an exact match is not

found, then a list of data is provided according to matching scores of the data.

The address of the data is formatted using a uniform resource identifier (URI)-like

string, such as ‘asmo/perception/vision/ball/location’. A URI address is compatible

with the Representational State Transfer (REST) [69] protocol that allows the data

to be exchanged through the HTTP connection without predefining the function

interfaces.require

4.1.2 Attention Mechanism

ASMO’s attention mechanism [163] selects modules and manages resources required

by modules explicitly and automatically through attention competitions (also called

attention elections). Modules are designed to compete for attention to use resources.

They continuously update their demand of attention based on tasks and situations

in an environment and propose actions to achieve the tasks. ASMO will then select

modules and perform their proposed actions on every attention competition.

ASMO’s attention mechanism continuously runs or calls for an attention com-

petition at any time or any condition designed by developers (e.g. every interval or

on-demand). In every attention competition, it ranks competing modules based on

their attention demand, and selects modules as winners of the competition based

on their rankings and the availability of their required resources as described as

follows. It checks every module from the highest ranking to the lowest ranking. If

resources required by the module are available, then it selects the module as one of

the winners and marks the resources as unavailable. Otherwise, it skips the module

and continues checking the next ranking. It repeats this process until all resources

are occupied or all modules have been checked.

In this process, a module with a higher ranking is given the chance to occupy

resources before a module with a lower ranking. However, the higher ranking module

does not always win over the lower ranking module. Instead, the lower ranking



78 Chapter 4. ASMO Cognitive Architecture

module can still win over the higher ranking module if resources required by the

higher ranking module are not available. In addition, modules that have no conflict

in requiring resources will eventually be selected despite their rankings, because they

have no competitors.

ASMO’s attention mechanism selects multiple winners in an attention competi-

tion. These winners are selected with respect to resources. They occupy different

resources. Multiple winners allow multiple actions that require different resources

to perform simultaneously. Hence, ASMO can make multiple decisions at one time

in order to achieve multiple goals simultaneously.

4.1.3 Emotion Mechanism

ASMO’s emotion mechanism [166] extends the design of a module to incorporate a

subjective bias based on emotions. Modules update their own demand of attention

not only based on tasks and situations in an environment, but also based on a

subjective bias given by ASMO’s emotion mechanism. The purpose of ASMO’s

emotion mechanism is to provide modules with subjective biases in order to influence

the selection of modules.

ASMO’s emotion mechanism continuously runs its operation at any time or any

condition designed by developers (e.g. every interval or on-demand). It uses causal

Bayesian networks to calculate the probabilities of emotions will be elicited given a

situation. It uses these probabilities to determine the amount of subjective biases

that should be given to modules. Modules incorporate these amount of subjective

biases when updating their demand of attention. These subjective biases will affect

the modules’ rankings and their chances of winning an attention competition. As a

result, they may cause different winners to be selected, and thus different actions to

be performed.

4.1.4 Learning Mechanisms

ASMO’s learning mechanisms [167, 168, 164] extend the design of a module to

incorporate learning. Each module is given a boost in order to affect its demand of

attention. The higher the boost, the lower the attention needed by the modules to

win an attention competition. The purpose of ASMO’s learning mechanisms is to
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provide modules with the right boosts in order to modify the selection of modules,

so as to improve an agent’s or a robot’s performance.

ASMO’s learning mechanisms are divided into several mechanisms, namely habit-

uation, sensitisation, operant conditioning, classical conditioning and observational

learning mechanisms. Similar to ASMO’s emotion mechanism, ASMO’s learning

mechanisms affect the attention demanded by modules. Unlike ASMO’s emotion

mechanism, however, modules do not incorporate boosts when updating their de-

mand of attention. Thus, they do not accumulate the effects of the boosts.

ASMO’s habituation and sensitisation mechanisms [164] modify the boosts pos-

sessed by modules based on the significance of a situation perceived by the modules.

ASMO’s habituation mechanism decreases the boost possessed by a winning module

when a situation is perceived to be insignificant in an environment (i.e. it is not

necessary for the module to have a higher attention demand). In contrast, ASMO’s

sensitisation mechanism increases the boost possessed by a losing module (i.e. mod-

ule that does not win an attention competition) when a situation is perceived to be

significant in an environment (i.e. it is necessary for the module to have a higher

attention demand).

ASMO’s operant conditioning mechanism [167] increases or decreases the boosts

possessed by modules based on explicit feedback received from an environment.

It is similar to ASMO’s habituation and sensitisation mechanisms, except that its

evaluation of a situation is provided by feedback in the environment explicitly, rather

than a significance perceived internally by modules. ASMO’s operant conditioning

mechanism punishes modules that are supposed to win an attention competition

but receive negative feedback, and reinforce modules that are not supposed to win

an attention competition but receive positive feedback.

ASMO’s observational learning mechanism modifies the boosts possessed by

modules based on a model or patterns learned from labelled data. Experts pro-

vide correct boosts for situations encountered during training (i.e. labelled data).

ASMO’s observational learning mechanism will learn a model or patterns of these

correct boosts in order to predict future situations and to modify the boosts pos-

sessed by modules.

Unlike ASMO’s habituation, sensitisation, operant conditioning and observa-

tional learning mechanisms, ASMO’s classical conditioning mechanism [168] does

not modify the boosts possessed by modules directly. Instead, it learns the asso-
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ciations between stimuli that have no responses (i.e. neutral stimuli) and stimuli

that will be responded by modules (i.e. unconditioned stimuli). It then triggers the

modules to propose actions (i.e. to respond) on the presence of the neutral stimuli

despite that the unconditioned stimuli are not actually present. In this case, the

neutral stimuli would be called conditioned stimuli, and its presence substitutes the

presence of the unconditioned stimuli.

4.2 Share Management of Resources

ASMO cognitive architecture can share a responsibility with other systems to man-

age resources. Its self-contained and modular processes would allow it to work or

integrate easily with existing architectures, frameworks or systems without much

need to redevelop the whole system. It will incorporate benefits from other effort.

ASMO cognitive architecture can potentially be integrated with other ASMO

cognitive architectures to create a multi-agent architecture. Each ASMO will run

an attention competition to manage its own resources, while interacting with other

ASMOs as their superior, peer or subordinate. This interaction creates a complex

ASMO hierarchy. The higher the position in the hierarchy, the more resources

ASMO can control. The work of multi-agent architecture is beyond the scope of

this dissertation and remains future work (see Section 9.2). In the following, I

describe briefly the three possible types of interactions between ASMO and other

systems:

1. Superior Type

In a superior type, ASMO has a full control over resources. A superior type of

interaction is achieved by making ASMO as a main system while embedding

other systems as ASMO’s modules (i.e. ASMO’s subsystems). Other systems

help ASMO perform tasks by perceiving situations, processing information and

proposing actions, but final decisions and actions are selected and performed

by ASMO.

2. Peer Type

In a peer type, ASMO has a partial control over resources. A peer type of

interaction is achieved by sharing ASMO’s memory with other systems. ASMO

will only make decisions and perform actions for resources that it manages.
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3. Subordinate Type

In a subordinate type, ASMO does not have a control over resources. A sub-

ordinate type of interaction is achieved by embedding ASMO as a subsystem

within other systems. It helps the other systems to perform tasks by perceiving

situations, processing informations and proposing actions, but final decisions

and actions are selected and performed by the other systems.

4.3 Cognitive Capabilities

ASMO supports cognitive capabilities required by agents as proposed by Gärdenfors

and Williams [92] (see Figure 4.3). According to Gärdenfors and Williams, an agent

(such as a robot) is a self-contained autonomous system whose inner world inter-

acts with an outer world (the environment). It requires cognitive capabilities that

support sensations, actuations, perceptions, conceptions, simulations and planning

in order to achieve effective collaboration with other agents. These cognitive capa-

bilities are as described as follows:

1. Sensations are sensory impressions or data that report what is happening now

in the outside world and within the body.

2. Actuations are outputs such as information or actions.

3. Perceptions are interpreted or processed sensory impressions.

4. Conceptions are concise representations of classes of entities.

5. Simulations are knowledge generated from the reconstruction or manipulation

of perceptions, conceptions and plans.

6. Plans are recipes for action.

These cognitive capabilities are represented using two types of representations

proposed by Gärdenfors [90], namely cued and detached representations. Percep-

tions are represented using the cued representation whereas conceptions and simula-

tions can be represented using both types. A cued representation always represents

something that is present in the current situation, such as the ball is seen on the

left. In contrast, a detached representation represents something that may or may
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Figure 4.3: Cognitive Capabilities proposed by Gärdenfors and Williams

not be present in the current situation, such as the ball is imagined to be on the

left although the ball cannot be currently seen. A detached representation can also

represent something that may not exist at all, such as ball with legs, unicorn or a

dragon.

4.3.1 Outer World, Inner World, Sensation and Actuation

In ASMO, outer world is the (external) environment or the space where the robot

lives whereas inner world is the space inside the body of the robot (i.e. inside the

robot). Inner world separates the robot from the environment. Data and informa-

tion inside the inner world are private and can only be shared with other robots

through communication (e.g., by speech or network connection). In contrast, data

and information in the outer world are public and can be directly perceived by

others.

A body is a set of resources that can be controlled by ASMO (see Figure 4.4).

A robot requires a physical body to represent its presence and identity in the en-

vironment. In biological agents, resources that can be controlled by the brain are

confined within a single physical body. In computational agents including robots,

the resources may be located within a single body but can also be distributed across

different physical locations connected by a network.
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Figure 4.4: ASMO Body

A body has sensors and actuators that act as the interface between the inner

world and the outer world. Sensors convert stimuli in the environment into input

data that can be processed by the robot. In other words, sensations are the raw

or unprocessed input data received from the environment through a robot’s sensors.

They are modality specific, e.g. visual sensation, auditory sensation, etc. In con-

trast, actuators convert output data or command back into stimuli that can change

the environment. In other words, actuations are the low-level commands performed

to affect the environment through a robot’s actuators. Stimuli (e.g. light, sounds,

etc) are physical matters that have physical characteristics (e.g. wavelengths, fre-

quencies, chemistries) whereas sensations and actuations are virtual matters (e.g.

image data).

4.3.2 Perception, Conception, Simulation and Planning

In ASMO, perceptions, conceptions, simulations and plans are created by modules:

1. Perceptions

Modules can interpret sensations and fuse them with conceptions, simulations

and plans to form a perception. In other words, a perception is the interpreta-

tion of sensations mixed with conceptions, simulations and plans. A perception

can be created from either a single modality of sensation (e.g. ball perception

created from image data only) or multiple cross-modalities of sensations (e.g.
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ball perception created from both image and audio data). Robots may make

different interpretations of the same sensations even if the same sensors are

used (i.e. robots may ‘feel’ and interpret the same sensation differently). For

example, a module may perceive a red blob in the image data as a ball while

another module may perceive the same blob as a button on the robot (i.e.

both modules make different interpretations of the same sensation received

from the same sensor).

2. Conceptions

Modules can classify similar perceptions, simulations or plans into a group

called conception. They can use a conceptual space [91] to represent each con-

cept. A conceptual space is a multi-dimensional space where each dimension

represents a similarity feature and a collection of instances or objects is placed

as points in the space based on their similarity features.

3. Simulations

Modules can reconstruct or manipulate perceptions, conceptions and plans to

create a simulation. ASMO can simulate the interaction between modules by

running attention competitions without performing the winning actions.

4. Plans

Modules can use their own planners to create plans. Actions can be planned

using different planners independently. ASMO does not commit to a specific

planner.

In ASMO, modules are free to use their own algorithms, representations and

mechanisms (i.e. no restriction to use a particular kind). In this case, they can

use both cued and detached representations. They store all perceptions, concepts,

simulations and plan in the inner world with confidence scores. Modules with differ-

ent algorithms, representations and mechanisms may produce different results and

confidence scores given the same situation. The confidence score helps modules to

decide which perceptions, concepts, simulations and plans to use.
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Chapter 5

ASMO’s Attention Mechanism

In the previous chapter, I have described the overall design of ASMO cognitive

architecture. In this chapter, I describe the details of ASMO’s attention mechanism

and how it selects modules (i.e. makes decisions). I start by explaining the needs for

attention in decision making in Section 5.1. I follow by describing theories of human

attention in Section 5.2. I describe the interpretation of these theories in Section

5.3. These theories form the basis of the design of ASMO’s attention mechanism.

Finally, I describe the implementation of ASMO’s attention mechanism in Section

5.4.

5.1 Need for Attention in Decision Making

Decision making is the process of choosing an action among a set of alternatives

[95, p. 657] [243, p. 220]. Hastie distinguishes decision making from a judgement, as

follows: “decision making refers to the entire process of choosing a course of action.

Judgement refers to the components of the larger decision-making process that are

concerned with assessing, estimating, and inferring what events will occur and what

the decision-maker’s evaluative reactions to those outcomes will be” [95, p. 657].

In other words, decision making is a multi-faceted process that involves reasoning,

judgement and problem solving to select an action (i.e. a choice is made). In this

dissertation, I only consider action selection that involves decision making. Thus,

the term decision making and action selection will be used interchangeably.

Decision making is part of planning. Decision making selects an action on a
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single or episodic situation. In contrast, planning simulates and projects a series of

decisions on sequential situations in order to achieve the goal. As such, planning is

essentially a sequential decision making process.

Decision making is formally studied in the field of decision theory. While most

current decision theories are developed to account for the choice of one action at one

point in time [95, p. 665], ASMO is designed to account for the choice of multiple

actions at one time (i.e. multiple decision making).

A decision is rational if it is expected to optimise its performance given and with

respect to the available knowledge. As described by Russell and Norvig [192, p. 37],

“for each possible percept sequence, a rational agent should select an action that is

expected to maximize its performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent has”. Rational agents

act to achieve the best outcome or best expected outcome when there is uncertainty

[192, p. 4]. Performance is a measurement of an outcome in achieving a goal. An

agent is said to be irrational, if it chooses an action that is expected not to maximise

its performance or does not expect to achieve its goal given its available knowledge.

Attention is required in decision making or action selection to manage resources

due to limited resources. Neumann [151] suggested that attention is important

in action selection to prevent disorganisation of behaviours because all potential

actions might be simultaneously trying to seize control of the resources. In addition,

Anderson [9] proposed attention as a mechanism for the allocation of processing and

physical resources. This allocated portion changes depending on the demands of the

task and the resources available.

ASMO does not only need to support decision making or action selection as it

is required for being a cognitive architecture (see Section 2.4), but it also needs an

attention mechanism because of the following reasons:

• Requirement to address the gaps

Managing resources is one of the requirements of ASMO in order to address

the gaps identified in the research literature.

• Sharing limited resources

Managing resources is necessary because robots have limited resources (such

as legs, arms, CPU and memory). A robot cannot perform different actions
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that require the same resources simultaneously. For example, it cannot go to

different places at the same time because it has only a pair of legs.

• Avoid conflicting actions

Making decisions based on resources ensures that ASMO will only perform

actions if the resources required by the actions are available.

5.2 Theories of Attention

Attention is classically described by William James [103, pp. 403–404] as follows:

“[attention] is the taking possession by the mind, in clear and vivid form, of one out

of what seems like several simultaneously possible objects or trains of thought ... It

implies withdrawal from some things in order to deal effectively with others”. In

other words, attention is the process of selecting from several simultaneous options:

choosing some while rejecting the others.

ASMO’s attention mechanism is designed based on the inspiration of human

attention. Theories of human attention are divided into three major areas, namely

selective attention, divided attention and automaticity [68].

5.2.1 Selective or Focused Attention

Selective or focused attention refers to the ability to select or to focus on task relevant

information while ignoring simultaneous irrelevant information. This information

may include stimuli, perception and thoughts. One classical example of selective at-

tention is observed in the cocktail party phenomenon [53]. In a cocktail party, people

can focus on a single conversation despite simultaneous background noises and other

people’s conversations. Experiments in dichotic listening have been conducted to

study the cocktail party phenomenon and selective attention [53, 147, 87, 225]. In a

dichotic listening experiment, participants are asked to listen to audio messages in

two different channels on a headphone at the same time: one channel on the left ear

and the other channel on the right ear. They are then asked to attend or to shadow

one of the channels.

Experiments in dichotic listening have shown few different findings. Cherry [53]

discovered that participants were able to identify physical characteristics in the
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unattended channel, such as whether the channel was a human voice or a noise,

whether the speech was made by a male or female speaker, and whether the sex

of the speaker changed during the test. However, participants did not notice the

detailed aspects of the channel, such as the language it was spoken in, the semantic

content and the individual words or phrases.

Moray [147] repeated Cherry’s experiments and showed that participants still did

not notice the individual words or phrases in the unattended channel eventhough the

words were repeated many times. However, when he changed the audio messages in

the channels to include the participants’ names, he discovered that participants could

switch their attention immediately from the attended channel to the unattended

channel when they heard their name mentioned in the unattended channel. This

finding suggested that the unattended channel was not completely ignored as initially

discovered by Chery (i.e. since recognising a name required the analysis for semantic

content in the unattended channel).

Gray and Wedderburn [87] as well as Treisman [225] have reconfirmed Moray’s

findings when they conducted similar experiments with more meaningful audio mes-

sages other than participants’ names. They showed that participants could switch

attention based on the meaning rather than the physical characteristics of the mes-

sages in different channels.

These dichotic listening studies have lead to three major theories that attempted

to explain findings in selective or focused auditory attention:

1. Filter theory

Broadbent [40] first developed a selective attention theory called the filter the-

ory. He proposes that stimuli are filtered based on their physical characteristics

to allow one of them to pass through, while the others to be held in the buffer

for later processing. According to his theory, participants in the dichotic lis-

tening experiment focus on the physical characteristics of the messages in the

attended channel. The messages in the unattended channel are not analysed

for meaning, because they are on hold and not passed through. This theory is

an early selection theory, because the relevant channel is selected before the

meaning of messages is analysed. This theory cannot explain Moray’s findings

on why people can still hear their names in the unattended channel.

2. Deutsch and Deutsch’s Late-selection theory
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J. A. Deutsch and D. Deutsch [60] proposed an alternative theory to Broad-

bent’s filter theory. They argue that all stimuli are allowed to pass through for

meaning analysis and the most important stimulus is selected to determine the

response. The filter happens near the response system not at the perceptual

system. This theory is a late selection theory because a relevant channel is

selected after the meaning of messages is analysed.

3. Attenuation theory

Treisman [225] proposed a modified version of Broadbent’s filter theory called

the attenuation theory. She argues that all stimuli are filtered based on their

physical characteristics, but all of them are allowed to pass through at different

levels instead of some being held in the buffer. The stimulus that matches the

physical characteristics will be passed at a normal level while others will be

passed at an attenuated level. Stimuli are not eliminated by attention, instead

they are rather enhanced or attenuated.

This theory can explain Moray’s finding on why participants can still hear

their names in the unattended channel. Participants’ names are not blocked

entirely since stimuli are not held in the buffer. Instead, their names are still

processed and allowed to pass through at an attenuated level. They switch

their attention after the semantic content of the stimuli has been analysed.

5.2.2 Divided Attention

Divided attention refers to the ability of attention to accommodate and perform

multiple tasks simultaneously (i.e. the ability of attention to be shared or divided

between each task). Studies in divided attention explore the limit of simultaneous

tasks and the possibility of whether multiple tasks can be performed without affect-

ing the performance of each task. The ability to perform more than one task at the

same time is called multitasking. There are three main theories that explain divided

attention:

1. Bottleneck theory

Welford [239] proposed the bottleneck theory. He argues that there is a bot-

tleneck in the attention that can only accommodate one process at a time, so

multitasking is achieved by continuously switching and alternating between
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each task rapidly. Tasks are performed serially but they appear as if they are

performed in parallel. Performance degradation does not occur when perform-

ing individual tasks separately, instead it occurs in multitasking because time

is needed to switch between the tasks (i.e. context switching). This theory

supports the selective attention theory that a selection is needed to choose a

process among other multiple concurrent processes.

2. Central capacity theory

Kahneman [106] proposed the central capacity theory. He argues that instead

of a bottleneck, there is a limited central capacity of attention that can be

allocated across concurrent processes. The central capacity is like a pool of

resources. When a process demands more capacity, there will be less capacity

available for other processes, hence the performance of the other processes

will be diminished. Multitasking can be achieved as long as there is enough

capacity. According to this theory, simultaneous tasks will always interfere

with each other because there is only one source of capacity shared among the

tasks (i.e. the central capacity).

3. Multiple resource theory

Wickens [240] proposed the multiple resource theory. He argues that instead of

a single central capacity, there are multiple capacity of attention, like multiple

pools of resources, that can be allocated across concurrent processes. Mul-

titasking can be achieved if tasks do not share the same type of resources.

Wickens divides resources into three dimensions, namely stage, modality and

code dimensions. The stage dimension consists of perception, cognition and

responding. The modality dimension consists of visual and auditory percep-

tions. The code dimension consists of spatial and verbal activities. Resources

are independent with respect to their dimensions. For example, a task or pro-

cess that uses the visual modality in the perception stage will not interfere

with the task or process that uses the auditory modality in the same percep-

tion stage. The multiple resource theory has also been supported by other

findings, which propose that there will be interference when tasks share the

same modalities [226] or responses [143].
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5.2.3 Automaticity

Automaticity is the ability to perform tasks without much attention. One classical

example of automaticity is the effect discovered by Stroop called the Stroop effect

[215]. Stroop discovered that identifying the colour that does not match the reading

of a text is more prone to errors and takes longer time than the colour that matches

the reading of a text (see Table 5.1). For example, we get distracted and take longer

time to identify the colour of Blue text than the colour of Blue text. In our minds,

we automatically read and interpret the text (i.e. blue) despite our intention to

identify its colour (i.e. red or blue colours).

Match: Red Green Blue

Mismatch: Red Green Blue

Table 5.1: Stroop Effect

Posner [179] defines three characteristics of automaticity, namely it occurs with-

out conscious awareness, without intention and without requiring much effort and

attention. For example, people can be walking automatically while reading a book,

without being aware of the height they move their legs, without having intention

to place each step at a particular location and without requiring much effort and

attention to guide the walk. They simply walk automatically.

Theories of automaticity are divided into two main perspectives:

1. Biological Perspective: Basic Reflexes

McKinley, O’Loughlin and Bidle [142, p. 564] defined a basic reflex to be an

innate and pre-programmed response. It is a built-in and unlearned response

that occurs automatically without conscious effort [202, p. 179]. It occurs

based on a direct sensation of an environment performed outside the brain.

For example, a person pulls out his hand away from a burning hot object

before his brain can process the burning signals.

2. Cognitive Perspective: Automatic Processing Actions

Neumann defined an action as a “sequence of movements that is controlled

by the same internal control structure and that is not a reflex” [151, p. 375].

An action produced by an automatic process is developed through extensive

and repeated learning, practice or training [198]. A task that initially requires
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much effort and attention can be performed without much effort and attention

after an extensive practice. An automatic processing action occurs based on

the processing performed in the brain. It is very difficult to unlearn or change

once it has been learned. It requires deliberate effort, attention and practice

to modify. It is a context dependant, e.g. when a ball is seen, a striker may

chase the ball whereas a goalkeeper may defend the goal.

Note that a basic reflex is different to an acquired (or conditioned) reflex. Sher-

wood [202, p. 179] proposed that there are two types of reflexes, namely a simple

(or basic) reflex and an acquired (or conditioned) reflex. The simple (or basic) re-

flex is the innate action as defined by McKinley, O’Loughlin and Bidle described in

the biological perspective above, whereas the acquired (or conditioned) reflex is the

learned action as defined by Neumann described in the cognitive perspective above.

In this dissertation, the term reflex is used to refer to the basic reflex instead of the

acquired reflex.

There are three main theories that further explain automatic processes:

1. Two-Process Theory

Schneider and Shiffrin [199, 203] proposed a two-process theory. They argued

that there are two different kinds of processes, namely controlled and auto-

matic processes. A controlled process demands attention. It is limited by an

attention capacity. Only one process can be controlled at a time without in-

terference. In contrast, an automatic process demands no or limited attention.

It can run without a control and a capacity limitation. It is located in the

long-term memory and activated by appropriate stimuli.

In addition, Schneider and Shiffrin argued that an automatic process is devel-

oped only if mapping or connections between stimuli and responses are con-

sistent throughout repeated learning, training and practices. When positive

feedback is received, the connections are strengthened and their priorities are

increased [198]. Consistent connections will increase their priorities and even-

tually responses can be performed with little effort or attention (i.e. become

automatic with respect to the stimuli).

2. Multi-Level Theory

Norman and Shallice [161] proposed a multi-level theory. They argued that

instead of two kinds, there are three different kinds of processes, namely fully
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automatic, partially automatic and deliberate control processes. Fully auto-

matic processes are controlled by schemas (i.e. organised plans) and occur

with little conscious awareness. Partially automatic processes are controlled

by contention scheduling and occur with a higher degree of conscious awareness

than fully automatic processes. Deliberate control processes are controlled by

the supervisory attentional system and occur with fully conscious awareness.

Contention scheduling and supervisory attention are two separate systems.

Contention scheduling resolves conflicts among schemas and selects a schema

based on the information in the environment and current priorities. The su-

pervisory attentional system oversees and controls the contention scheduling

by influencing schema activation probabilities.

Neumann [150] supported the multi-level theory. He argued that processes are

neither controlled nor automatic (i.e. not two level), instead their difference

is on the level of control required (i.e. multi-level). He also argued that an

automatic processing is not uncontrolled, instead it is controlled below the

conscious awareness level.

3. Instance Theory

Logan [135] argued that automaticity is memory retrieval of past solutions. He

argued that “[people] can respond with the solution retrieved from memory

or the one computed by algorithm. At some point, they may gain enough ex-

perience to respond with a solution from memory on every trial and abandon

the algorithm entirely” [135, p. 493]. His theory suggests that processes be-

come automatic if they can be performed by retrieving solutions from memory

without computing the solutions.

In addition, Logan argues that a controlled performance is limited by a lack of

knowledge instead of resources. Automaticity does not occur because resources

cannot be divided efficiently to perform multiple tasks simultaneously. Instead,

it does not occur because knowledge is limited.

5.3 Computational Design and Model

Currently there is no widely accepted theory of selective attention, divided attention

and automaticity. Instead of designing ASMO’s attention mechanism based on a
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specific theory of attention, I look at the previously discussed theories of attention

from a computational perspective and accommodate all of the theories to design

ASMO’s attention mechanism. From a computational perspective, the theories can

be realised into the same mechanism even though some of the theories may have

different or opposing views from a psychological perspective.

In my perspective, attention is a noumenon–a phenomenon of the mind–that

describes the selection of processes among other simultaneous processes. The pro-

cesses are said to be attentive or given the attention if they are selected. Process

selection is necessary because the system has limited resources, thus attention is the

mechanism to mediate control of resources. Processes demand attention as long as

they have not been served or satisfied.

In the following, I describe how each theory in the previous section inspires the

design of ASMO’s attention mechanism.

• Central Capacity Theory

Inspired by Central Capacity Theory, ASMO’s attention mechanism allows

modules to compete for computing resources in order to perform their actions,

such as central processing unit (CPU) or random access memory (RAM). These

computing resources serve as a central capacity, because when a module de-

mands some computing resources, there will be less resources available for

other modules. Hence, these computing resources will affect the executions

and performances of the modules.

• Multiple Resource Theory

Inspired by Multiple Resource Theory, ASMO’s attention mechanism allows

modules to compete for any kind of multiple resources that they require (in-

cluding computing resources) in order to perform their actions. Modules that

do not require the same resources (non-conflicting modules) can be selected

simultaneously. In contrast, modules that require the same resources (con-

flicting modules) cannot be selected simultaneously and will have a bottleneck

(see also the design in the Bottleneck Theory below).

In agent and robotic systems, resources are not necessarily divided into three

dimensions as proposed by Multiple Resource Theory, namely stages, modality

and codes. Instead, they can be any hardware or software component required

by modules, such as arm actuators, leg actuators, camera sensors, CPU, RAM
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and virtual resources (a competition over virtual resources is described further

in Section 5.4.1).

• Bottleneck Theory

The design in Multiple Resource Theory above already suggests that a bot-

tleneck will occur in conflicting modules. ASMO’s attention mechanism can

only select one module among the conflicting modules at a time. It may need

to continuously select different modules rapidly in order to achieve all tasks.

In contrast, non-conflicting modules will have no bottleneck, because they do

not interfere resources required by other modules.

• Filter Theory

Inspired by Filter Theory, ASMO’s attention mechanism selects modules only

if the resources they competed for (i.e. their required resources) are available.

Modules that are selected (called winners) will occupy and gain access to their

required resources and their actions will be performed. Other modules that

are not selected will have to re-compete and therefore appear to be held in the

buffer.

• Attenuation Theory

Inspired by Attenuation Theory, ASMO’s attention mechanism requires mod-

ules to demand attention as a mean to compete for resources. In other words,

modules compete for resources by competing for attention to use the resources.

ASMO’s attention mechanism will run this attention competition, will rank

modules based on their attention demand and will select them from the high-

est to the lowest ranking. This selection means that a module with a higher

ranking will be selected to occupy its required resources earlier than a module

with a lower ranking. It may cause resources required by the lower ranking

module to be unavailable, and thus the lower ranking cannot be selected. In

general, this selection causes a module with a higher ranking to have higher

chance to be selected than a module with a lower ranking. As a result, a mod-

ule with a higher ranking will be selected more often (i.e. higher rate) than a

module with a lower ranking. The higher the ranking, the less attenuated the

module.

• Deutsch and Deutsch’s Late Selection Theory
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Inspired by Deutsch and Deutsch’s Late Selection Theory, ASMO’s attention

mechanism allows modules to run concurrently to perceive situations, process

information, propose actions and compete for resources. However, when con-

flicting modules occur, ASMO’s attention mechanism will only select the most

important module (i.e. the module with the highest attention demand) among

the conflicting modules in order to perform the module’s proposed actions.

In case of a dichotic listening experiment, two modules can analyse and pro-

pose to dictate an audio message from the left and right channel respectively.

However, they will be in conflict, because dictating a message requires a control

over a mouth and a person cannot dictate two messages with one mouth simul-

taneously. While they can analyse or propose actions concurrently, ASMO’s

attention mechanism will only select the most important module among these

conflicting modules in order to dictate one of the messages (either from the

left or right channel). This mechanism shows that the analysis and processing

occur at an earlier stage, but the filtering of messages appears to be at near

the response system.

• Instance Theory

Inspired by Instance Theory, ASMO’s attention mechanism allows modules

that demand attention in a competition to be made automatic by retrieving

solutions from memory and then boosting their attention demand in order to

win the competition. This technique suggests that a module will have two

properties, namely attention demand and boost. In this case, modules are

now ranked based on both their attention demand and boost, instead of only

their attention demand.

• Two-process Theory

Inspired by Two-Process Theory, ASMO’s attention mechanism allows mod-

ules to demand high attention explicitly (i.e. control their demand), or to be

automatically boosted with high boosts. Their boosts will be acquired through

consistent and repeated learning, training and practices until eventually they

have high boosts and can be selected with little attention demand.

• Multi-level Theory

Inspired by Multi-Level Theory, ASMO’s attention mechanism requires the

boosts possessed by modules to range continuously rather than in binary.
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These boosts determine the automaticity of the modules. Continuous boosts

means that modules are neither controlled nor automatic. Instead, the higher

the boost, the more automatic the module, because modules with high boosts

require less attention demand to win and be selected. Thus, modules can

appear to be fully automatic, partially automatic or deliberately controlled.

Modules are said to be more controlled if they win an attention competition

because they explicitly demand attention higher than their competitors (i.e.

they are aware of the need of attention). In contrast, modules can be said to be

more automatic if they win an attention competition because they have boosts

higher than their competitors although they explicitly demand low attention

(i.e. they are not aware of the need of attention).

In addition, inspired by Multi-Level Theory, ASMO’s attention mechanism

distinguishes modules into ordinary and supervisor types. Ordinary and su-

pervisor modules are the same, except that supervisor modules can control

ordinary modules deliberately and influence the probabilities of ordinary mod-

ules being selected (i.e. through the ordinary modules’ attention demand and

boosts).

• Theories of Basic Reflexes

Inspired by theories of basic reflexes, and in addition to the design in Multi-

Level Theory above, modules are now divided into ordinary, supervisor and

reflex types. Ordinary and supervisor modules are non-reflex modules that de-

mand attention and have boosts. They need to acquire boosts through learning

in order to be automatic. Their rankings in an attention competition are de-

termined by their attention demand and boosts. In contrast, a reflex module

is pre-programmed to handle innate reflexes without demanding attention or

having a boost. It is simply given a higher priority in the competition, which

results in a higher ranking, than a non-reflex module.

5.4 Implementation

Previous section describes the design of modules and ASMO’s attention mechanism

based on theories of attention. Modules run concurrently to perceive situations,

process information, propose actions and compete for resources in order to perform
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their proposed actions. They are divided into three types, namely ordinary, supervi-

sor and reflex. Non-reflex modules (i.e. ordinary and supervisor modules) compete

for resources by demanding attention. They possess boosts to help their attention

demand. Their boosts range continuously and are modified through learning. They

are ranked based on their attention demand and boosts. In contrast, reflex mod-

ules compete for resources by using their priorities. They are simply given higher

priorities (and thus higher ranking) than non-reflex modules. ASMO’s attention

mechanism selects modules to be the winners in an attention competition based on

their rankings and the availability of their required resources (see illustration in Fig-

ure 5.1). The winners will gain access to their required resources, and their actions

will be performed.

Figure 5.1: Attention Competition or Election

In the following, I describe the implementation of modules, attention demand,

boosts and reflex priorities, and attention competitions.
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5.4.1 Modules

A module is implemented as an autonomous, self-contained, concurrent, modular

and distributed black box. It can store data in any representation to its local stor-

age or to the global ASMO’s memory. It can use any variety of techniques (such as

algorithms, representations and mechanisms) to perceive situations, process infor-

mation and propose actions in order to achieve tasks. Its actions require resources

to perform. Modules have to compete for attention to gain access to their required

resources in order to perform their proposed actions.

ASMO’s attention mechanism allows modules to compete for any kind of re-

sources that they require, such as hardware and software components. It also allows

a competition over virtual resources, which is useful when actions proposed by the

modules are high-level functions (e.g. learning) rather than low-level commands

(e.g. move arms). A virtual resource can be required by modules that have differ-

ent techniques to compete for solving the same problem. For example, one module

may use a habituation learning to improve a robot’s object tracking, whereas an-

other module may use an operant conditioning learning. Without a competition of

a virtual resource, both modules (i.e. two learning techniques) can be chosen simul-

taneously because they do not require any resource and conflicts in learning have to

be handled separately. With a competition of a virtual resource, the two modules

can be designed to compete for the same virtual resource, so only one module (i.e.

one learning technique) will automatically be selected at a time.

In addition, a virtual resource can be used by modules that compete for the same

goal but require different resources. This mechanism allows redundancy of modules

that will make ASMO robust without having the modules to perform duplicate

outcomes. For example, one module may require a speaker resource to deliver a

message via voice, whereas another module may require a screen resource to display

the same message. These two modules are redundant. When one module fails,

the other module will still deliver the message. Without a competition of a virtual

resource, however, ASMO’s attention mechanism will select both modules since

they require different resources, and ASMO will deliver the message via voice and

via display (i.e. duplicate outcomes). While duplicate outcomes are fine in some

applications, they are not desired in other applications. With a competition of a

virtual resource, both modules can be designed to compete for the same virtual

resource, so only one module will automatically be selected at a time. The other
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module is ready to substitute the first module if failure occurs.

Similar to data in ASMO’s memory (see Section 4.1.1), a resource is identified by

an address formatted using a uniform resource identifier (URI)-like string, such as

‘asmo/ram’ or ‘asmo/actuators/legs/left’. Reading this address provides a numerical

real value that captures the available capacity of the resource. This capacity is

bounded by convention between 0.0 and 100.0 (i.e. equivalent to a scaled value

between 0.0 and 1.0). In discrete resources, the capacity of a resource is either 100.0

if the resource is available or 0.0 if the resource is unavailable. A module requires

a resource by specifying the resource’s address with a quantity (if a quantity is not

given, then the module requires the whole resource). For example, a module that

requires ‘asmo/actuators/legs/left’ means that it requires the whole left leg actuator

whereas a module that requires (‘asmo/ram’, 25.8) means that it requires 25.8% of

the whole random access memory.

Modules have different operations, which effect how their rankings are deter-

mined. The three types of modules are implemented as follows:

1. Ordinary Module

An ordinary module has an attention value and a boost value to represent its

attention demand and boost respectively (further described below in Section

5.4.2 and 5.4.3). By convention, it can only inspect and update its own atten-

tion value and boost value. In the current implementation, the sum of these

two values determine the module’s total attention level, which determines the

module’s ranking in an attention competition (further described below in Sec-

tion 5.4.4). The higher the total attention level, the higher the ranking, the

higher the chance of winning the attention competition.

2. Supervisor Module

A supervisor module is like an ordinary module. It has an attention value and

a boost value. Its ranking is determined by its total attention level, which is

determined by the sum of its attention value and boost value. However, unlike

an ordinary module, a supervisor module is allowed to inspect and modify the

attention values and/or boost values of other non-reflex modules (i.e. ordinary

and supervisor modules). There are two ways to modify these values:

(a) Competing Modification
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In competing modification, a supervisor module modifies the attention

values and/or boost values of other non-reflex modules when it wins an

attention competition, just like its proposed actions can be performed

only when it wins an attention competition. Several competing supervisor

modules that attempt to modify the same non-reflex module will compete

in an attention competition and only the supervisor module with the

highest ranking among them can be the winner to modify the non-reflex

module. A competing modification is used to select one influencer at a

time, e.g. to select a suitable learning technique at a time depending on

the situations.

(b) Direct Modification

In direct modification, a supervisor module modifies the attention values

and/or boost values of other non-reflex modules directly when necessary.

Several supervisor modules that attempt to modify the same non-reflex

module will not need to compete, and instead all of them will be included.

The final attention value and/or boost value of the non-reflex module will

be determined by the net result or effect given by all of the supervisor

modules. A direct modification is used to combine influences from several

supervisor modules at a time, e.g. to combine the effects from several

learning techniques at a time to solve a problem. Note that this direct

operation is only applicable to a supervisor module to modify attention

values and/or boost values of other non-reflex modules. A supervisor

module will still need to compete for attention in order to perform its

proposed actions.

This design creates a separation (i.e. hierarchy) of controls between non-reflex

modules. It allows a supervisor module to plan the interactions of non-reflex

modules (by determining their attention values and/or boost values) in order

to achieve goals and tasks. In ASMO, a supervisor module can use an existing

AI planner like how the planner is normally used. However, the actions of the

planner will not be commands to actuators directly. Instead, these actions will

be to determine the attention values and/or boost values of non-reflex modules,

so as the winners of attention competitions are determined by the planner. For

example, a supervisor module can use an existing Markov Decision Process

(MDP) planning system [192, p. 652] to plan a soccer attack behaviour by

having actions from the MDP system to determine the attention values or
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boost values of search ball module, chase ball module, kick ball module and

other relevant modules.

In addition, this design (including a supervisor module modifying other su-

pervisor modules) allows the description of complex behaviours. For example,

in playing a soccer, an agent may be influenced by the fear emotion to defend

an attack. However, the agent may learn from observations that chasing the

ball is better than defending the attack. Meanwhile, after several attacks, the

agent may habituate to the opponent’s attack, thus becoming less fear to the

attack. This example can be described in ASMO by handling the defend and

chase behaviours as ordinary modules and by handling the emotion, observa-

tional learning and habituation learning as supervisor modules. Handling the

emotion and observational learning as supervisor modules mean that they can

influence the attention value and the boost value of defend and chase ordi-

nary modules. In addition, handling the habituation learning as a supervisor

means that it can modify the boost value of the emotion supervisor module to

learn to become less fear (i.e. a supervisor module modifies another supervisor

module).

In this dissertation, I focus on examples and applications of supervisor modules

modifying ordinary modules. In addition, supervisor modules are not allowed

to modify each other back and forth, and this issue remains future work (see

Section 9.2).

3. Reflex Module

Unlike non-reflex modules (i.e. ordinary and supervisor modules), a reflex

module does not have an attention value and a boost value. Thus, it does

not have a total attention level to determine its ranking. Instead, it has a

priority and it is simply given higher ranking than non-reflex modules. When

competing with other reflex modules, its ranking is determined based on its

priority.

Giving a reflex module higher ranking than non-reflex modules means that

non-reflex modules cannot win an attention competition against a reflex mod-

ule no matter how high they demand attention. However, humans seem to be

able to perform non-reflex actions intentionally to overcome reflexes that are

supposed to be triggered (i.e. non-reflex actions win over reflexes). For exam-

ple, people can hold something that is hot to avoid spilling it. This capability
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to overcome reflexes is not studied in ASMO and remains future work (see

Section 9.2).

In ASMO, intelligent behaviours are emerged from interactions between con-

stituent processes (i.e. modules), rather than from careful design or fine-tuning.

However, if desired, modules and their interactions can be carefully designed and

fine-tuned to achieve desired behaviours and effects. This careful design is achieved

by determining and adjusting the priorities of reflex modules, the attention values

of non-reflex modules and/or the boost values of non-reflex modules (e.g. manually

adjusting the priorities and the values until desired behaviours are achieved or using

a planner in a supervisor module to plan the priorities and the values). The more

carefully designed the modules, the less emergent the behaviours.

Both the emergence-based ASMO and the carefully design-based ASMO have

advantages and disadvantages. The emergence-based ASMO allows modules to be

easily developed independently, but it can be difficult to coordinate modules in order

to achieve desired combined behaviours. In contrast, the carefully designed-based

ASMO allows modules (therefore behaviours) to be coordinated and combined as

planned, but it can be difficult to develop modules independently. The manual

adjustment in the careful design is a difficult and tedious process, but the use of a

planner can help reducing the difficulties in coordinating or combining behaviours.

ASMO is flexible and highly versatile. The combination of the emergence and careful

design allows ASMO to support various types of developments of intelligent systems

with less difficulties across a given set of tasks and environments.

5.4.2 Attention Value

An attention value captures the degree of attention a non-reflex module demands

based on the tasks. It is an abstract numerical real value that can be set and read

by the module locally (i.e. property of the module). It is bounded by convention

between 0.0 and 100.0 (i.e. equivalent to a scaled value between 0.0 and 1.0),

although theoretically it can be set to any value. The higher the attention value,

the higher the attention demand sought by the module.

Attention values vary over time in accordance not only with the demand of the

task, but also with the intention, motivation, goals and experiences of a robot.

Both ordinary and supervisor modules have to modify or update their attention
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values to win an attention competition, so that they can be selected to perform

their proposed actions. An attention value is updated based on Equation 5.1, which

involves following six parameters:

AVt︸︷︷︸
next value

← αt AVt−1︸ ︷︷ ︸
accumulation

+ βt Ot︸ ︷︷ ︸
objective

+ γt St︸︷︷︸
subjective

(5.1)

Where:

0 ≤ αt ≤ 1

0 ≤ βt ≤ 1

0 ≤ γt ≤ 1

AVt is the attention value of the module at time t

αt is the accumulation rate of the module at time t

βt is the objective rate of the module at time t

γt is the subjective rate of the module at time t

Ot is the objective weight of the module at time t

St is the subjective weight of the module at time t

1. Previously Accumulated Attention Value

The previously accumulated attention value, AVt−1, is the attention value

accumulated by the module in the previous update. Adding this value to the

equation means that the current decision making is affected by past decision

making (i.e. the decision making is sequential instead of episodic). Supervisors

can be used to manage and manipulate the attention values in several updates

in order to produce coherent sequences of decision making (i.e. plans).

2. Objective Weight

The objective weight, Ot, denotes the change of attention sought by the module

based on the objective evaluation of the tasks. For example, the objective

weight of defending a goal module can be associated with the distance of the

ball. The closer the ball, the higher the attention the module seeks to perform

the defensive action.

3. Subjective Weight

The subjective weight, St, denotes the change of attention sought by the mod-

ule based on the subjective evaluation of the tasks. For example, the subjective

weight of defending a goal module can be associated with the personality of



5.4. Implementation 105

the goalkeeper. An offensive goalkeeper may have higher subjective weight to

leave the goal area than a defensive goalkeeper. Subjective weight is optional.

A module does not necessarily need to consider a subjective weight when up-

dating its attention value. A subjective weight is described further in Section

6.4.3.

4. Accumulation Rate

The Accumulation rate, αt, denotes the proportion of the previously accumu-

lated attention value. It can range between 0.0 to 1.0. An accumulation rate of

1.0 will make the module fully consider the accumulated attention value from

the previous update (i.e. setting the decision making to sequential) whereas

an accumulation rate of 0.0 will make the module ignore the accumulated at-

tention value from the previous update (i.e. setting the decision making to

episodic).

5. Objective Rate

The objective rate, βt, denotes the proportion of the objective weight (i.e.

how much attention is affected by the objective evaluation). It can range

between 0.0 to 1.0. An objective rate of 1.0 will make the module fully consider

objective evaluation whereas an objective rate of 0.0 will make the module not

consider objective evaluation at all (i.e. objective evaluation will be disabled).

In other words, the module will only consider subjective evaluation when the

objective rate is 0.0.

6. Subjective Rate

The subjective rate, γt, denotes the proportion of the subjective weight (i.e.

how much attention is affected by the subjective evaluation). It can range

between 0.0 to 1.0. A subjective rate of 1.0 will make the module fully consider

subjective evaluation whereas a subjective rate of 0.0 will make the module

not consider subjective evaluation at all (i.e. subjective evaluation will be

disabled). In other words, the module will only consider objective evaluation

when the subjective rate is 0.0.

The accumulation, objective and/or subjective rates control the change in the

attention value. They can help avoiding oscillations in the attention value. For

example, the accumulation rate can be set to a value close to 1.0 and the objective
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and subjective rates can be set to a value close to 0.0 in order to change the attention

value slowly, and thus avoiding oscillations. These rates are similar to the learning

rate and discounted factor in Q-learning reinforcement learning [236]. Changing

these rates can produce various effects. Some of the effects are listed in the following

Table 5.2.

αt βt γt Effect Description

0.0 0.0 0.0 AVt = 0 Clear to zero

0.0 0.1 0.0 AVt = Ot Direct set to a new value

0.0 0.0 1.0 AVt = St Direct set to a new value

1.0 0.0 0.0 AVt = AVt−1 Maintain at previous attention value

1.0 1.0 0.0 AVt = AVt−1 +Ot Change from previous attention value

1.0 0.0 1.0 AVt = AVt−1 + St Change from previous attention value

Table 5.2: Effects for Different Rates in Attention Value

5.4.3 Boost Value and Reflex Priority

A boost value captures the degree of attention bias a non-reflex module has acquired

based on tasks. In other words, it captures the degree of automaticity possessed

by the module toward the tasks. Similar to an attention value, it is an abstract

numerical real value that can be set and read by the module. The higher the boost

value, the more automatic is the module.

Unlike an attention value, however, a boost value is modified as a result of exten-

sive learning, practice and training instead of at every attention update. Modifying

a boost value can be used to correct the total attention level of a non-reflex module

that demand attention inappropriately (i.e. misbehave), e.g. when modules only

care about getting their own proposed actions accepted.

Non-reflex modules can be made to behave more automatic or ‘involuntarily’ by

increasing their boost values. Non-reflex modules that have high boost values require

only low attention values to win the competition. They are likely to be selected

before resources are running out (i.e. suffer no limitation of resources). Thus, they

appear to run without attention demand, control and capacity limitation.

In ASMO, non-reflex modules do not become more automatic by reducing their

attention demands (i.e. reducing attention values). Instead, they become more
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automatic through higher boosts (i.e. higher boost values), so that they can easily

win the attention competition and be selected without requiring much attention

values.

Non-reflex modules that become more automatic through boosting have different

operations to reflex modules in achieving automaticity. They still have to compete

for attention through their attention and boost values. They may not necessarily

win the attention competition. There is a chance for them to lose the attention

competition over other modules without boosting or with zero boost values (i.e.

automatic processes lose over controlled processes).

In contrast, reflex modules are special modules that compete for attention with-

out having attention values and boost values. They are given a higher priority than

ordinary and supervisor modules in the competition. They always win the atten-

tion competition against ordinary and supervisor modules (because of the higher

priority). In this case, they do not have to compete with ordinary and supervisor

modules. The higher priority is given to ensure that highly critical actions can be

performed when necessary without the need to wait for sufficiently high attention.

5.4.4 Attention Competition

An attention competition (also called attention election) is used to mediate the

selection of modules, the emergence of complex behaviours and the management

of limited resources. Modules can be selected and their proposed actions can be

performed only if their required resources are available. Since a robot has limited

resources, modules have to compete for attention to gain access to resources.

Modules that are selected as winners will gain access to the resources they re-

quested so as to perform their actions. Their access to the resources will be cleared

in the next attention competition. As a result, their actions will be interrupted if

the actions have not finished yet. This interruptive behaviour is great to prevent

any module from locking the resources and to keep responsiveness of the system. It

motivates developers to develop and use non-blocking actions.

ASMO’s attention mechanism can be configured to run an attention competi-

tion at any suitable situations (e.g. every interval or on-demand basis). In every

competition, modules propose actions to perform and ASMO’s attention mechanism

will select modules as the winners based on their types, their attention levels and
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the availability of their required resources (see Algorithm 5.1), as described in the

following five steps:

1. Rank Modules

ASMO’s attention mechanism ranks or sorts modules from the highest to the

lowest ranking: starting with reflex modules from the highest priority to the

lowest priority, and followed by non-reflex modules from the highest total

attention level to the lowest total attention level. A non-reflex module’s total

attention level is determined based on Equation 5.2.

TAL(p)← BVt(p) + AVt(p)

AVt(p)︸ ︷︷ ︸
next value

← αt(p) AVt−1(p)︸ ︷︷ ︸
accumulation

+ βt(p) Ot(p)︸ ︷︷ ︸
objective

+ γt(p) St(p)︸ ︷︷ ︸
subjective

(5.2)

Where:

0.0 ≤ αt ≤ 1.0

0.0 ≤ βt ≤ 1.0

0.0 ≤ γt ≤ 1.0

TAL(p) is the total attention level of module p

BVt(p) is the boost value of module p at time t

AVt(p) is the attention value of module p at time t

αt(p) is the accumulation rate of module p at time t

βt(p) is the objective rate of module p at time t

γt(p) is the subjective rate of module p at time t

Ot(p) is the objective weight of module p at time t

St(p) is the subjective weight of module p at time t

2. Check Required Resources

ASMO’s attention mechanism checks each module from the highest to the

lowest ranking whether the resources required by the module are available or

not.

3. Update Available Resources, Select Module, Perform Actions

If the resources required by the module are unavailable, then ASMO’s atten-

tion mechanism checks the next module. Otherwise, if the required resources

are available, then ASMO’s attention mechanism will perform the following

actions:
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(a) remove the required resources from the list of available resources (i.e. the

required resources become unavailable).

(b) select the module as one of the winners.

(c) perform actions proposed by the module.

4. Repeat Until Finish

ASMO’s attention mechanism repeats Step 1 to Step 3 until either all modules

have been checked or all available resources are used (i.e. no more remaining

resources)

1 available resources ← get possible resources()

2 winners ← [ ]

3 # Reflex modules from highest to lowest priority then non-reflex

modules from highest to lowest attention levels

4 ranked modules ← sort(reflex modules, supervisor modules,

ordinary modules)

5 # The highest ranking is 1

6 for i ← 1 to count(ranked modules) do

7 m ← ranked modules[i]

8 if (required resources(m) in available resources) then

9 # arithmetic operators are applicable to matrix and array

10 available resources ← available resources - required resources(m)

11 winners ← winners + m

12 a ← get proposed actions(m)

13 perform(a)

14 end

15 if available resources is empty then break the loop ;

16 end

Algorithm 5.1: Module Selection Algorithm in ASMO’s Attention Mechanism

Modules can propose actions at any time. However, they will not be selected and

their proposed actions will not be performed until an attention competition. This

attention competition allows modules to have enough time to propose actions and

aggregate attention. In addition, it balances between the reactivity of the system

and the computing power used by the system. The more frequent the attention
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competition, the more reactive the system, the more computing power used by the

system.

In an attention competition, there can be multiple winners where each winner

occupies different resources. In this case, each resource is used by no more than one

winner. Multiple winners allow multiple actions that require different resources to be

performed simultaneously. Hence, ASMO can make multiple decisions at one time

(i.e. simultaneous action selection). It can achieve multiple goals simultaneously.

Modules are ranked and then selected from the highest to the lowest ranking,

in order to ensure that modules with a higher ranking have the privilege to use

their required resources before the modules with a lower ranking. In this case, reflex

modules are given the priority to lock and use their required resources before non-

reflex (i.e. ordinary and supervisor) modules. In addition, a non-reflex module that

has a higher attention level is given the privilege to occupy and use its required

resources before a non-reflex module that has a lower attention level. Modules that

have no conflict in using their required resources will eventually be selected despite

low ranking, because they have no competitors (i.e. they will win the competition

for the resources they require).

In the current implementation of ASMO, non-reflex modules are ranked simply

based on the amount of their total attention levels (i.e. the sum of attention values

and boost values). A non-reflex module is placed in a ranking higher than other

non-reflex modules as long as its total attention level is higher than theirs, even if its

total attention level is just slightly higher. For example, a non-reflex module with

a total attention level of 1.01 has a higher ranking than a non-reflex module with a

total attention level of 1.00. This approach of determining ranking can be improved

in future work.

Sometimes a ranking cannot be determined because non-reflex modules have

the same total attention levels. When this happen, ASMO’s attention mechanism

has to use a conflict resolution strategy to select which module is to be given a

higher ranking. Some of the possible conflict resolution strategies are as described

as follows:

• Random

In random strategy, ASMO’s attention mechanism randomly places one of the

equivalent modules in a higher ranking.
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• Minimal Resources

In minimal resources strategy, ASMO’s attention mechanism places the mod-

ule that uses the least resources (i.e. the lowest number of resources) in a

higher ranking. This strategy opens more opportunity for other non-reflex

modules to win on the unused resources. Hence, it is a good strategy for pro-

ducing more winners. ASMO’s attention mechanism has to employ another

strategy when there is more than one module that uses the least resources.

• Maximal Resources

In maximal resources strategy, ASMO’s attention mechanism places the mod-

ule that uses the most resources (i.e. the highest number of resources) in a

higher ranking. This strategy creates less opportunity for other non-reflex

modules to win on the unused resources. Hence, it is a good strategy for

producing less winners. ASMO’s attention mechanism has to employ another

strategy when there is more than one module that uses the most resources.

• Previous Winner

In previous winner strategy, ASMO’s attention mechanism places the module

that wins the previous competition in a higher ranking. The module is relevant

if it wins the previous competition. ASMO’s attention mechanism has to

employ another strategy when there is more than one module that wins the

previous competition or none of the equivalent modules wins the previous

competition.

• Most Frequent Winner

In most frequent winner strategy, ASMO’s attention mechanism places the

module that wins the most competitions in a higher ranking. The module is

important if it wins many competitions. ASMO’s attention mechanism has to

employ another strategy when there is more than one module that wins the

most competitions or none of the equivalent modules has ever won previously.

• New Winner

In the new winner strategy, ASMO’s attention mechanism places the module

that has never won a competition in a higher ranking. This strategy explores

more variety of actions. ASMO’s attention mechanism has to employ another

strategy when there is more than one module that has never won a competition.
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All strategies described above, except the random strategy, require ASMO’s

attention mechanism to employ another strategy when there is a further tie among

the equivalent modules. ASMO’s attention mechanism can use a mix of strategies

to resolve the ties. For example, it can first select the equivalent modules based

on the most frequent winner strategy, followed by the minimal resources strategy if

none of the equivalent modules has ever won previously, and finally followed by the

random strategy if there is more than one module that uses the least resources.

5.5 Other Work

In this section, I discuss computational models that are similar to ASMO’s attention

mechanism (i.e. used for decision making or action selection), regardless of whether

they are relevant to attention or not. This is because there is a lack of computational

models of attention designed for decision making or action selection. Research on

attention in the literature have been focusing on the area of visual attention, rather

than other areas such as decision making or action selection. The majority of com-

putational models of attention have also been developed for the purpose of visual

attention [75, 101].

Majority of these previous models have been realised into robot architectures

and/or multi-agent architectures. I have described these architectures in Section 3.4.

They are outside the scope of this dissertation. In the following, I briefly describe

how their mechanisms are similar and different to ASMO’s attention mechanism.

Hambuchen [93] has proposed a computational model of attention in her disser-

tation called Sensory Ego-Sphere (SES) attention network. This model is not used

directly for action selection. Instead, it is used with a behaviour system implemented

in ISAC robot to select actions. It selects the most salient event in the environment

based on the event’s incidence, task relevancy and regularity. Similar to ASMO’s

attention mechanism, SES selects the most salient event among competing events

as the winner, and then behaviours are selected based on the winner.

Breazeal [39] has developed a behaviour system for action selection in her disser-

tation. This behaviour system has been implemented in Kismet robot. It is designed

based on homeostatic regulatory mechanisms from the ethology literature. It is or-

ganised into loosely layered heterogeneous hierarchies of behaviour groups. Each

group contains behaviours that compete for activation (through activation levels)
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with one another. Each behaviour determines its own activation level based on its

relevance to the situation by taking into account perceptual factors as well as inter-

nal factors. At the highest level, behaviours are organised into competing functional

groups (i.e. the primary branches of the hierarchy) where each group is responsible

for maintaining one of the three homeostatic functions, namely to be social, to be

stimulated by the environment and to occasionally rest. Only one functional group

can be active at a time. This behaviour system (i.e. Kismet’s behaviour system), be-

haviours and activation levels are similar to ASMO’s attention mechanism, modules

and total attention levels respectively.

Similarly, Fujita et al. [77] have proposed an action selection mechanism based

on homeostatic regulatory mechanisms from the ethology literature. This mecha-

nism is embedded in a robot architecture called the emotionally grounded (EGO)

architecture. In this architecture, behaviours (called modules) compete for activa-

tion using their activation levels. Each module determines its own activation level

and requires resources. Modules are organised into a hierarchical tree structure,

which can be thought like a layered hierarchical groups in Kismet’s behaviour sys-

tem. Modules that have the same parent in the tree will share the same target.

Unlike Kismet’s behaviour system, multiple modules can be activated if they have

different targets (i.e. multiple modules in different groups can be active at a time).

In addition, modules are selected concurrently in the competition from the highest

activation level to the lowest activation level until there is no remaining resource

available. Once a module is selected, it is given permission to execute the behaviour

implemented in the module as a state machine (i.e. executing a state machine be-

haviour). Both module organisation and competition mechanisms are designed to

manage resources. EGO’s modules, activation levels, competition are very similar

to ASMO’s modules, total attention levels and competition respectively (which I

developed independently).

Rosenblatt [186] has proposed an action selection mechanism based on voting in

his dissertation. This mechanism is embedded in a robot architecture called Dis-

tributed Architecture for Mobile Navigation (DAMN). Initially, he proposed three

voting mechanisms to select actions, namely constraint arbitration, actuation arbi-

tration and effect arbitration. However, he later replaced these three mechanisms

with the utility fusion voting mechanism. He proposed that this utility fusion voting

mechanism can solve issues encountered by the first three mechanisms. DAMN con-

sists of independent, distributed and asynchronous modules that handle the robot’s
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behaviours to achieve tasks. Every module concurrently suggests an opinion (i.e.

vote) for every candidate or action depending on the situations in the environment.

DAMN takes these opinions to decide on an action. DAMN’s voting mechanism

and modules are similar to ASMO’s attention mechanism and modules respectively.

ASMO allows a module to provide an opinion about other modules’ actions by bi-

asing their total attention levels. The module may increase or decrease their total

attention levels when it favours or disfavours their proposed actions respectively.

Arkin [20] has proposed an action selection mechanism based on vector responses

in his dissertation. This mechanism is embedded in a robot architecture designed

specifically for navigation called Autonomous Robot Architecture (AuRA). This ar-

chitecture has a schema controller that manages, controls and monitors all motor

schemas at run time. Each motor schema can operate asynchronously and gener-

ates a response vector to control motors. AuRA sums and normalises all vectors

received from all motor schemas before sending the result to the motors for execu-

tion. AuRA’s vector-based action selection mechanism and motor schemas are not

really similar to ASMO’s attention mechanism and modules. However, I discuss

them because their differences to ASMO’s attention mechanism and modules are

interesting (see the discussion below).

Parker [173] has proposed an action selection mechanism based on motivation

in her dissertation. This mechanism is similar to the action selection mechanism in

EGO architecture. It is embedded in a multi-agent architecture called ALLIANCE

to address fault tolerant issues. ALLIANCE consists of motivational behaviours.

At all times, each behaviour defines its activation level based on inputs, including

sensory feedback, inter-robot communication, inhibitory feedback from other active

behaviours and internal motivation. Its activation level is a non-negative number.

When this activation level exceeds a given threshold, the corresponding behaviour

set becomes active. There are two variables used to determine the activation level,

namely robot impatience and robot acquiescence. The robot impatience enables a

robot to handle situations when other robots (outside itself) fail in performing a

given task. The robot acquiescence motivation enables a robot to handle situations

in which it, itself, fails to properly perform its task. ALLIANCE’s activation levels

and behaviours are similar to ASMO’s total attention levels and modules respec-

tively.

Several auction-based action selection mechanisms have been proposed in the
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literature [61, 86]. One example is the mechanism embedded in TraderBots multi-

agent architecture developed by Dias in her dissertation [61]. It is designed based

on the economic approach of free market system. In TraderBots, a larger task is

divided into sub-tasks. Each task is associated with a revenue and a cost. A team of

robots places bids for tasks. The goal of the team is to execute some plans such that

its profit is maximised or its cost is minimised. This mechanism involves principle

approach towards choosing these bid values. It is not particularly similar to ASMO’s

attention mechanism, but it is interesting for comparison (see the discussion below).

Stone did not propose an action selection mechanism, rather he has proposed

an organisation of behaviours that effects the behaviour selection [213, 214]. This

organisation is embedded in a multi-agent architecture called Team Member Agent

Architecture (TMAA). He has evaluated this architecture in a RoboCup Soccer

Small Size League competition. This architecture is designed for creating teams

of agents in periodic team synchronisation (PTS) domains. In this architecture,

agents collaborate based on pre-determined multi-agent protocols called locker-room

agreements. Each agent has behaviours that are represented as directed acyclic

graphs (DAGs). A behaviour is a set of condition/action pairs where conditions

are logical expressions over inputs, and actions are the behaviours themselves. This

architecture allows parts of the agent’s behaviours (i.e. sub-graphs) to be switched

based on the agent’s role and formation. Various learning techniques have been

applied to this DAGs structure in order to help make decisions, such as decision

tree learning and memory-based learning. Similarly, ASMO has been evaluated in a

RoboCup Soccer SPL competition and various learning techniques have been applied

to ASMO to improve decision making (see Chapter 8).

Previous works have been done to address varieties of issues. It is worth to note

that all of those described above, except EGO, are results and development from

doctoral dissertations. Despite much work and several dissertations, they still lack of

some capabilities described below. ASMO and its attention mechanism are designed

to address this lack. They are different to previous works in the following:

• Common: Resource Management

ASMO’s attention mechanism manages resources required by modules auto-

matically through attention competitions without the need for developers to

manually organise modules. In contrast, SES, Kismet’s behaviour system,

EGO’s motivation mechanism, DAMN’s voting mechanism, AuRA’s vector
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mechanism, ALLIANCE’s motivation mechanism, TraderBots’ auction mech-

anism and TMAA’s system require developers to manage resources manually.

EGO has a similar competition technique to ASMO, however it still requires

developers to organise modules manually.

• Common: Action Selection

ASMO allows mechanisms (such as its learning mechanisms) to correct and

modify the action selection through boost values. The competition of non-

reflex modules is not only determined by attention values that are determined

by the modules themselves, but also influenced by boost values that can be

determined by other modules. In contrast, the competition of behaviours

in Kismet’s system, the competition of modules in EGO and the voting of

modules in DAMN are determined by activation levels or opinions that are

determined only by the modules themselves.

• Common: Critical Actions

ASMO’s attention mechanism allows reflex modules to serve critical actions.

In contrast, SES, Kismet’s behaviour system, EGO’s motivation mechanism,

DAMN’s voting mechanism, AuRA’s vector mechanism, ALLIANCE’s moti-

vation mechanism, TraderBots’ auction mechanism and TMAA’s system do

not have a mechanism to handle critical actions.

• SES: Non-Goal Related Attention

In ASMO’s attention mechanism, an unexpected event (handled by a module)

can still gain attention even though it is not related to the goal. This is

because an unexpected event can lead to a new goal that is turn out to be more

important than the current goal. For example, an alarm may unexpectedly

ring and the robot needs to evacuate when the robot is about to grab an

object. In this case, the alarm event leads to a new goal of survival that is

unrelated to but more important than the robot’s current goal of grabbing an

object. In contrast, SES increases the salience of an unexpected event only if

the event is related to the robot’s goal [93, p. 46].

• Kismet: Unrestricted Responsibility of Modules

ASMO’s attention mechanism does not require modules to have certain respon-

sibilities, whereas behaviours in Kismet’s system are divided into functional

groups that have responsibilities limited to three homeostatic functions.
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• Kismet: Concurrent Purposes or Functional Groups

ASMO’s attention mechanism allows multiple modules to perform concur-

rently despite that they have different purposes or are belong to different

functional groups. In contrast, Kismet’s behaviour system only allows be-

haviours to perform concurrently if they are within a group, but not if they

are in different functional groups, since only one functional group can be active

at a time.

• EGO: Unrestricted Behaviour Representation

ASMO’s attention mechanism allows modules to use any kind of representa-

tion, whereas EGO’s modules are limited to use a state machine.

• DAMN: Free Opinion or Voting

ASMO’s attention mechanism allows modules to freely provide opinion when

necessary. Modules may not provide a bias if they have no opinion, or they may

choose to not provide a bias even though they have an opinion. In contrast,

DAMN’s voting mechanism requires every module to provide an opinion for

every action, which can be difficult in developing the modules because an

opinion may be unavailable for certain actions or choices.

• AuRA: Guarantee Within Possible Choices

ASMO’s attention mechanism allows the aggregation of modules’ total at-

tention levels, not the aggregation of actions. It guarantees that its selected

actions are always within the possible choices. For example, one module may

propose to turn left (i.e. -90deg) while another module may compete equally

strong to propose to turn right (i.e. 90deg). The action selected by ASMO’s

attention mechanism will be either to turn left or to turn right, even if the

two modules have equal total attention levels. In contrast, AuRA’s vector

mechanism aggregates all vector responses for actions. It may produce actions

that are not feasible. For example, a motor schema may generate a vector

in the left direction of -90deg while another motor schema may generate an

equivalent vector response in the opposite right direction of 90deg. The sum

of these vector responses will result in a value near 0deg (i.e. to go straight),

which is not within the possible choices of turning left or right. In many ap-

plications, it is not fine for a robot to take an action that is not within the

possible choices. For example, given two possible paths on the left and right,
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it may not be fine for a robot to take the middle path to go straight because

there may be no path in the middle at all.

• ALLIANCE: No Threshold

ASMO’s attention mechanism selects non-reflex modules based on their re-

quired resources and total attention levels. There is no involvement of thresh-

olds in selecting the modules. ASMO’s attention mechanism will not select

non-reflex modules even though they have high total attention levels, if their

required resources are not available or another module has higher total atten-

tion level than theirs. In contrast, ALLIANCE’s motivation mechanism selects

behaviours as long as their activation levels exceed a given threshold. In this

case, developers are required to define appropriate thresholds, which can be

difficult to define.

• TraderBots: Revenue–Cost Model

ASMO’s attention mechanism selects non-reflex modules based on their total

attention levels, whereas robots in TraderBots’ auction mechanism select tasks

based on the tasks’ revenues and costs.

• TMAA: Evaluation and Learning

ASMO and its attention mechanism have been evaluated in a RoboCup Soc-

cer Standard Platform League competition. This competition does not allow

modifications of robots’ hardware, so ASMO and its attention mechanism

could be purely evaluated. In addition, various learning techniques are ap-

plied to ASMO and its attention mechanism to modify the total attention

levels of non-reflex modules in order to improve action selection or decision

making. These learning techniques are habituation, sensitisation, operant con-

ditioning, classical conditioning and observational learning (see Chapter 7). In

contrast, TMAA has been evaluated in a RoboCup Soccer Small Size League

competition. This competition allows modifications of robots’ hardware to

improve performance. Thus, a robot software architecture (such as TMAA)

demonstrated to work in this competition is difficult to evaluate whether that

is purely due to the software architecture itself or both the robot’s hardware

and the software architecture. In addition, various learning techniques are

applied to TMAA’s directed acyclic graphs structure to help action selection

or decision making. These learning techniques are decision tree learning and

memory-based learning, which are different to those applied to ASMO.
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Chapter 6

ASMO’s Emotion Mechanism

In the previous chapter, I described how ASMO’s attention mechanism selects mod-

ules (i.e. performs decision making). In this chapter, I describe the details of

ASMO’s emotion mechanism and how it subjectively biases the selection of mod-

ules. I start by explaining the needs for emotion and subjective bias in Section 6.1.

I follow by exploring theories of emotion in Section 6.2. I describe the interpreta-

tion of these theories in Section 6.3. These theories form the basis of the design of

ASMO’s emotion mechanism. I then describe the implementation of ASMO’s emo-

tion mechanism in Section 6.4. Finally, I review other work on emotion mechanisms

and compared them with ASMO’s emotion mechanism in Section 6.5.

6.1 Needs for Emotion and Subjective Bias

Studies have found that emotions bias and influence attention [249, 73, 63, 250]

and decision making [96, 134, 8, 204]. Anderson [8] argues that decision making

incorporates rational evaluations and inferences along with anticipated emotions.

An emotion provides a subjective bias : the tendency towards something as a

result of personal evaluations or judgements. These emotions and subjective biases

have different influences on an individual’s behaviours. For example, some people

would undertake actions based on the pursuit of goals despite their emotions (e.g.

do bungee jumping to receive money despite the fear of height), while others would

choose differently in the same situation based on their emotions despite their goals

(e.g. refuse bungee jumping because of fear of heights, despite the money offered).
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In ASMO, intelligent behaviours emerge from the interaction of modules by

selecting modules via the attention mechanism. In some circumstances, the selection

of modules has to be biased subjectively to guide the emergence, as described as

follows:

• Social Interaction

Robots can be required to behave socially when operating in society such as an

everyday environment. This social behaviour requires modules to be selected

not only based on the goals, objective functions or performance functions, but

also based on social factors or subjective bias, such as emotions and personality

(i.e. social factors are included as part of the goals).

• Soft-constraints and Refinement of Solutions

Robots can have several choices of acceptable solutions to achieve goals. While

they must meet some constraints required by the goals (i.e. hard-constraints),

they may have other constraints that are desirable but not necessarily required

by the goals (i.e. soft-constraints). A subjective bias provides a mechanism

for the robots to refine their choices based on soft-constraints.

For example, in a soccer game, a robot has a choice to chase the ball either

offensively or defensively. Both offensive and defensive chase actions are ac-

ceptable, because either of them will lead the robot to the ball. While both

chase actions require the robot to know the location of the ball (i.e. hard-

constraints), a subjective bias allows the robot to refine and choose one of the

chase actions.

• Human Modelling

Robots can be required to model or mimic human behaviours. Humans have

individual preferences that subjectively bias their selection of actions. Mod-

elling human behaviours requires the selection of modules to accommodate

similar bias found in humans.

• Selection Simplification

Selecting modules based on optimal and accurate calculations can be compli-

cated and can incur high computational cost. Subjective bias may provide

approximate and less accurate selection of modules that is less complicated

and has lower computational cost.
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• User’s Influence

Subjective bias in the selection of modules provides a mechanism for a user

to influence the system created by the developers. Developers do not need to

change the algorithms and techniques used in the modules for accommodating

different users. Instead, they can develop modules to achieve the tasks and

use subjective bias to influence the selection of the modules according to the

user’s preference.

ASMO supports biasing the selection of modules subjectively through its emotion

mechanism. The use of this subjective bias is optional. In circumstances outside

those described above for example, the selection of modules may not need to be

biased (i.e. subjective bias may not be necessary).

6.2 Theories of Emotion

ASMO’s emotion mechanism is inspired by human emotions. Theories of human

emotions are divided into three major areas, namely representation, causality and

evaluation.

Emotions have been defined differently from various perspectives [209]. How-

ever, there is something common about emotion in general. Emotions can only

be experienced within an individual, so they must be perceived and observed by

others externally. They can be perceived explicitly through the individual’s state-

ments (i.e. verbal communication) or implicitly through the individual’s behaviours

and physiological responses (i.e. non-verbal communication). The genuineness of

an emotion cannot be confirmed since we cannot inspect the inside of the person’s

mind to recognise the person’s emotion. A person who looks down and shows tears

may be perceived as being sad although the person may be faking it.

6.2.1 Representation

Theories of emotional representation explore the composition of emotions and how

emotions are connected to each other. There are two major theories that describe

the representation of emotions:

1. Basic or Discrete Emotion Theory
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Basic emotion theories (also known as discrete emotion theories) [171, 66] pro-

pose that there are basic emotions (also called primary emotions) that are

inherited (i.e. innate) and universally the same across different cultures. Ac-

cording to this theory, a more complex emotion (also called secondary emotion)

is represented by or composed of a combination of basic emotions. This rep-

resentation of emotion is analogous to the representation of a colour using a

combination of three primary colours of red, green and blue (i.e. tristimulus

values).

Researchers have proposed various basic emotions ranging from two to eleven

basic emotions [185, p. 309]. Currently there is no widely accepted theory

on which emotions are considered basic. For example, Ekman [66] proposes

six basic emotions, namely anger, disgust, fear, happiness (i.e. joy), sadness

and surprise. Shaver et al. [200] propose six different basic emotions, namely

anger, fear, joy, love, sadness and surprise. The difference to Ekman’s is that

Shaver et al. propose love instead of disgust as one of the basic emotions. In

contrast, Plutchik [177] proposes eight basic emotions, namely anger, antici-

pation, disgust, fear, joy, sadness, surprise and trust.

2. Dimensional Theory of Emotion

Dimensional theories of emotion propose that emotions are represented by

the degrees of one or more dimensions. This representation of an emotion is

similar to the representation of a colour based on the degrees of hue, saturation

and intensity dimensions. According to this theory, two emotions can be

represented by the same basic emotions, but they are distinguished by the

degrees of the dimensions. For example, both annoyance and frustration can

be represented by the same basic emotion of anger, but annoyance has a higher

degree of arousal than frustration.

Researchers have proposed various dimensions for representing emotions [191,

177]. Currently there is no widely accepted theory on which dimensions are

correct. For example, Russell [191] proposes two dimensions, namely valence

and arousal, which indicate the pleasantness and the excitement of a situation

respectively. Watson and Tellegen [237] propose two different dimensions,

namely positive affect and negative affect. In contrast, Plutchik [177] proposes

four dimensions, namely joy versus sorrow, anger versus fear, acceptance versus

disgust and surprise versus expectancy.
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There are two kinds of dimensions used in the dimensional theory of emotion,

namely bipolar dimension [191] and bivariate dimension [162, 237]. A bipolar dimen-

sion captures the degrees of two opposite qualities in a single variable. Increasing

one of the qualities implies that the other quality is decreased by the same amount.

A bipolar dimension suggests that two opposite qualities cannot occur at the same

time. For example, a valence dimension can be used to capture the degrees of pleas-

antness and unpleasantness. A valence that indicates a situation is 70% pleasant

implies that the situation is 30% unpleasant. If it indicates that the situation is 80%

pleasant instead of 70%, then it implies that the situation is 20% unpleasant.

In contrast, a bivariate dimension captures the degree of only one quality in a

single variable. The degrees of two opposite qualities have to be captured by using

two separate dimensions. Increasing one of the qualities does not necessarily imply

that the other quality is decreased by the same amount. A bivariate dimension

suggests that two opposite qualities can occur at the same time. It is supported

by the findings that show people can feel both happy and sad at the same time

[129]. For example, a positive valence dimension and a negative valence dimension

can be used to capture the degrees of pleasantness and unpleasantness respectively.

The positive valence can indicate that the situation is 70% pleasant while at the

same time the negative valence can indicate that the situation is 60% unpleasant.

Changing the positive valence does not necessarily change the negative valence.

Both positive valence and negative valence dimensions can be independent.

6.2.2 Causality

Theories of emotional causality explore the cause of emotions in terms of a feeling,

a physiological state, a behaviour and an appraisal (see Figure 6.1). Most would

think in common sense that physiological states and behaviours are elicited because

of our feelings. We cry because we are sad, we laugh because we are happy and

we fight because we are angry. However, four major theories of emotional causality

explain the cause of emotions differently:

1. James–Lange Theory

James–Lange theory refers to the two theories developed independently by

William James [102] and Karl Lange (also known as Carl Lange) [125, 124]

respectively. This theory proposes that physiological states and behaviours
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Figure 6.1: Theories of Emotional Causality

are not elicited because of a feeling (as suggested by common sense), instead a

feeling is elicited because of physiological states and behaviours (i.e. the order

is reversed). This theory can explain the reason why humans can feel surprise

based on the startle reflex caused by a sudden loud noise [123]. According

to this theory, we are sad because we cry, we are happy because we laugh

and we are angry because we fight. A feeling is just the label given to the

behaviours and the physiological states that are evoked automatically based

on the situation in the environment.

2. Cannon–Bard Theory

Cannon–Bard theory [27] proposes that physiological states, behaviours and

feelings are not elicited one after the other (as proposed by common sense and

James–Lange theory). Instead, they are all elicited independently at the same

time. According to this theory, we are sad and cry concurrently, happy and

laugh concurrently and angry and fight concurrently. This theory is formulated

based on the following two discoveries [47]:

(a) Physiological states are too slow to elicit a feeling.
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(b) An artificial induction of physiological states does not evoke a feeling.

This theory suggests that emotions cannot be distinguished solely based on

physiological states. Individuals can have different physiological states and

responses for the same feeling, e.g. we may or may not cry when we are sad.

On the other hand, individuals can also have the same physiological state and

response for different feelings, e.g. our crying does not necessarily mean that

we are sad since we may also cry for a happy situation.

3. Cognitive Appraisal Theory

Cognitive Appraisal theory proposes that physiological states, behaviours and

feelings are elicited based on an individual’s subjective interpretation or evalu-

ation of a situation in terms of the relevance and impact on personal well-being

[197, 131, 21]. A feeling cannot be elicited without a reason or justification.

According to this theory, we are sad because we lose money, we are happy

because we receive money and we are angry because we do not received the

money that has been promised to us.

This theory can explain the reason why the same situation can be evaluated

differently by individuals. A person whose confession of love is rejected may

be sad or cry because the person interprets the situation as he/she will not

get a potential partner (i.e. an impact on his/her well-being). In contrast,

a different person in the same situation may not be sad or cry because the

person interprets the same situation as they were not a suitable couple, hence

it is better to get rejected earlier than later in the relationship.

4. Schachter–Singer Theory / Two-factor Theory of Emotion

Schachter–Singer theory (also known as the two-factor theory of emotion) [196]

proposes that both physiological states and cognitive appraisals can be elicited

independently, however the two must occur together in order to elicit a feel-

ing. A physiological state alone is not sufficient to elicit a feeling (as similarly

proposed by the Cannon–Bard theory). In addition, if people have an expla-

nation for their physiological states, then they will not evaluate the situation

and they will label their feelings based on that explanation. Otherwise, they

will explore possible explanations based on the situation in order to label their

physiological states and describe their feelings.

According to this theory, our heart rate can increase or decrease through an
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artificial induction (i.e. our physiological state is elicited), but we should not

feel sad, happy or angry without any reason. In contrast, if we understand the

reasons for our crying, laughing and fighting, we should not feel sad, happy

or angry unless accompanied by changes in our heart rate. In addition, we do

not need to find a reason for our crying, laughing and fighting if we have an

explanation, but we will search for a possible explanation to identify them if

we do not have the explanation.

6.2.3 Evaluation: Innate or Learned

Theories of emotional evaluation explore the elicitation of emotion based on how a

situation is evaluated. They are divided into two perspectives [185, p. 304], namely

biological perspective and cognitive perspective. Major representatives of the theo-

ries for the biological perspective and cognitive perspective are basic emotion theo-

ries and Cognitive Appraisal theory respectively. In Section 6.2.1, I have described

basic emotion theories in terms of representation of emotions. In Section 6.2.2, I

have described Cognitive Appraisal theory in terms of causes of emotions. In the

following, I describe basic emotion theories and Cognitive Appraisal theory in terms

of the elicitation of emotions:

1. Biological Perspective: Basic Emotion Theory

Basic emotion theories propose that emotion is inherited and innate [171,

66]. Feelings are elicited from an intuition or instinct without an explicit

reasoning or rational deliberation. According to this theory, people can have

an emotion about a situation regardless of its relevance or impact on them.

They may not have a reason or may believe that they do not need a reason to

justify their emotions. This theory is supported by the studies that show that

infants respond emotionally to taste (i.e. prefer sweet taste) [64] and to voices

(i.e. smile to high-pitched human voices) [244] despite their lack of developed

cognitive functions (i.e. have not fully developed yet). Major theories in the

biological perspective of emotion are described further in Reeve’s work [185,

p. 309].

Actions as a result of an intuition are similar to reflexes because both are in-

nate. However, these actions elicit emotions whereas reflexes do not. Reflexes

have been described in Section 5.2.3.
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2. Cognitive Perspective: Cognitive Appraisal Theory

Cognitive Appraisal theory supports the view that emotion is learned. Feel-

ings are elicited from an individual’s evaluation of a situation with explicit

reasoning or rational deliberation, rather than from the situation itself [130].

According to this theory, people cannot have an emotion without a reason. For

example, a decrease in a currency value is not likely to cause a person to be

sad without a reason, unless the person has a foreign currency investment and

thinks that his/her well-being is affected by the money lost in the investment.

In addition, the outcome of a situation can be the same, but the appraisal

of the situation causes different emotions to be elicited [238]. For example, a

feeling of sadness is produced when one believes that losing money was self-

caused, and a feeling of anger is produced when one believes that someone else

has caused that loss (e.g. a funds investment manager).

Several theories of cognitive appraisal have proposed criteria that can be used

to evaluate situations in order to determine the kind of emotion one should

experience, for example, the OCC theory [171] and Scherer’s theory [197].

Major theories in the cognitive perspective of emotion are described further

in Reeve’s work [185, p. 311].

6.3 Computational Design and Model

Currently, there is no widely accepted theory of emotional representation, emo-

tional causality and emotional evaluation. Instead of designing ASMO’s emotion

mechanism based on a specific theory, I look at the previously discussed theories of

emotion from a computational perspective and accommodate all of the theories to

design ASMO’s emotion mechanism. From a computational perspective, the theo-

ries can be realised into the same mechanism even though some of the theories may

have different or opposing views from a psychological perspective.

From my perspective, emotion is a noumenon that describes the following activ-

ities that occur inside a person: feeling, behaviour, physiological state and appraisal

activities. A system or an agent that has these activities and can convince oth-

ers about its emotion should be considered to have an ‘emotion’, just like we are

convinced by other people that they have an emotion.

In the following, I describe how each theory in the previous section inspires the
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design of ASMO’s emotion mechanism (see Figure 6.2).

Figure 6.2: Design of ASMO’s Emotion Mechanism

1. Basic Emotion Theory

Inspired by the basic emotion theories, ASMO’s emotion mechanism represents

emotions in terms of ‘basic’ feelings.

2. Dimensional Theory of Emotion

Inspired by the dimensional theory of emotion, ‘basic’ feelings in ASMO’s

emotion mechanisms are further represented using one or more bivariate di-

mensions.

A basic emotion theory and a dimensional theory of emotion may seem to

be opposite to each other, which may suggest that a mechanism cannot be

designed or modelled based on the inspiration from both theories. However, I

argue that both theories are not opposite. Instead, they just represent emo-

tions from different perspectives, just like a colour can be represented by a

combination of three primary colours (i.e. red, green and blue) and by the

degrees of hue, saturation and intensity dimensions.

From a computational perspective, a dimensional representation has a finer

control than a basic emotional representation. It can represent a basic emotion,

but not vice versa. Its value can be set to high (e.g. 1.0) or low (e.g. 0.0)

to indicate whether it represents the basic emotion or not respectively. For

example, the contempt emotion that is composed of the anger and disgust

basic emotions [178] can be represented by using two dimensions, called anger

and disgust respectively, with a value of 1.0 each.
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In addition, from a computational perspective, it is more compelling to use

bivariate dimensions over bipolar dimensions, because emotions represented

using bipolar dimensions can also be represented using bivariate dimensions,

but not vice versa.

3. Biological Perspective

Inspired by the biological perspective of emotion, ASMO’s emotion mechanism

elicits feelings based on an intuition or instinct mechanism, which is modelled

by evaluating a situation against built-in knowledge (called biologically-based

evaluation or biological appraisal). Developers can simply provide this built-in

knowledge without the necessary to have evidence, rational thought, inference

or observation.

4. Cognitive Perspective

Inspired by the cognitive perspective of emotion (and in addition to the bio-

logical perspective of emotion), ASMO’s emotion mechanism elicits feelings by

evaluating a situation against learned knowledge (called cognitively-based eval-

uation or cognitive appraisal). ASMO’s emotion mechanism uses this learned

knowledge to explicitly reason about the feelings.

5. Cognitive Appraisal Theory

Inspired by Cognitive Appraisal theory, the knowledge used in a cognitive ap-

praisal is learned based on the relevance and impact to personal well-being.

ASMO’s emotion mechanism elicits physiological states, behaviours and feel-

ings based on a cognitive appraisal against this kind of knowledge (see the

diamond-tail green arrows in Figure 6.2). This theory is the same as the

cognitive perspective theory of emotion.

6. Cannon–Bard Theory

Inspired by Cannon–Bard theory, ASMO’s emotion mechanism elicits feelings

(through appraisals) concurrently and independently with physiological states

and behaviours (see the diamond-tail green arrows in Figure 6.2 which are

similar to Cognitive Appraisal theory). Behaviours and physiological states

can be evoked automatically as responses to a situation in the environment

(see the black arrows in Figure 6.2).

In ASMO, physiological states, behaviours and feelings can be elicited concur-

rently, because modules can run concurrently and simultaneously. In addition,
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cognitive appraisals are assumed to be very fast. Thus, even though feelings

are elicited through and after appraisals, they appears to be elicited concur-

rently with physiological states and behaviours.

7. James–Lange Theory

James–Lange theory is seen to be contradicted with Cannon–Bard theory.

It suggests that a feeling is elicited after or based on physiological states and

behaviours. Meanwhile, Cannon–Bard theory suggests that a feeling is elicited

independently and concurrently with physiological states and behaviours as

they are too slow to elicit a feeling.

From a computational perspective, I interpreted these two theories as follows:

a feeling is elicited independently and concurrently with physiological states

and behaviours, however the awareness (or the recognition) of the feeling often

occurs after physiological states and behaviours have occurred. The feeling can

be recognised better when information or knowledge about physiological states

and behaviours are available (see the circle-tail red arrows in Figure 6.2).

Inspired by this interpretation, ASMO’s emotion mechanism elicits feelings

independently and concurrently, and uses knowledge that drives physiological

states and behaviours to recognise the feelings. In ASMO, this knowledge is

incorporated as factors in biological and cognitive appraisals.

8. Schachter–Singer Theory / Two-factor Theory of Emotion

Inspired by Schachter–Singer theory, ASMO’s emotion mechanism does not ap-

praise a situation to determine physiological states if an explanation or knowl-

edge about the physiological states is available in ASMO’s memory. Instead,

it should use the knowledge directly to determine the physiological states (see

the purple knowledge box in Figure 6.2).

In addition, ASMO’s emotion mechanism elicits feelings based on both cogni-

tive appraisals and knowledge about physiological states (see the square-tail

purple arrows in Figure 6.2) (as also inspired by Cognitive Appraisal theory

and James–Lange theory).
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6.4 Implementation

Previous section describes the design of modules and ASMO’s emotion mechanism

based on theories of emotion. In ASMO, emotions are represented in terms of ‘ba-

sic feelings’, which are further represented using bivariate dimensions. Modules are

designed to run concurrently and independently to elicit feelings, behaviours and

physiological states (this concurrent and independent design has been suggested

earlier in the design described in Section 5.3). ASMO’s emotion mechanism is de-

signed to elicit feelings based on biological appraisals and cognitive appraisals. It

uses knowledge to help recognise the feelings and to determine physiological states.

Biological and cognitive appraisals are modelled by evaluating a situation against

built-in and learned knowledge respectively. This knowledge is learned based on the

relevance and impact to personal well-being.

The purpose of ASMO’s emotion mechanism [166] is to bias the selection of

modules subjectively based on elicited emotions or feelings. This bias is achieved

and expressed by modifying the attention values of non-reflex modules via their

subjective weights. This modification will change the modules’ rankings, and hence

cause the selection of modules to be biased.

ASMO’s emotion mechanism uses causal Bayesian networks [175] to predict the

emotions that will be elicited given a situation and uses this prediction to determine

subjective weights. A causal Bayesian network is a directed acyclic graph whose

nodes denote probabilistic cause–effect relationships of random variables. It is a

special case of Bayesian network where parent nodes are required to be the causes of

their children nodes. For example, in a causal Bayesian network, if chasing the ball

causes the robot to get the ball, then a node that denotes chasing the ball action

can be the parent of a node that denotes the result of getting the ball, but not vice

versa.

Nodes in the causal Bayesian networks used by ASMO’s emotion mechanism are

divided into four types according to the dimensional representation, basic feeling

representations, biological appraisal and cognitive appraisal described earlier. These

four types are dimension, label/feeling, biological factor and cognitive factor nodes

respectively (see Figure 6.3). They are created with the following constraints:

1. Connection based on Node Types

Nodes have to be connected according to their types. For example, a biological
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factor node cannot be connected directly to a dimension node. Instead, it has

to be connected to a feeling node before the feeling node can be connected to

the dimension node.

2. Acyclic Connection

Connections of nodes cannot be cyclic. The descendent of a node cannot be

connected back to the node itself.

3. Non-negative Probability

The probability associated with a node cannot be negative. Instead, it has to

be a positive number ranging from 0.0 to 1.0 (equivalent to a range from 0.0%

to 100.0%).

Figure 6.3: Types of Nodes Used by ASMO’s Emotion Mechanism

In the following subsections, I will describe the four types of nodes in ASMO’s

emotion mechanism and how the nodes are used to determine subjective weights.

6.4.1 Dimension and Label Nodes

As described in Section 6.3, emotions are represented in terms of ‘basic’ feelings

that are further represented by bivariate dimensions. These bivariate dimensions

and basic feelings are implemented as dimension nodes and label nodes in a causal

Bayesian network respectively.

Dimension nodes denote the bivariate dimensions that capture the degrees of

emotional qualities, such as positive valence, negative valence and arousal dimensions
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that capture the degrees of pleasantness, unpleasantness and excitement respectively.

Any number of dimensions may be chosen by developers according to their preferred

specific emotion theory. Dimension nodes are created at the design stage. They are

the lowest child nodes (i.e. they are not connected to other nodes). Modules can

calculate the conditional joint probability of a dimension node in order to determine

how likely the corresponding dimension represents the emotion experienced in a

situation.

Note that dimension nodes represent bivariate dimensions instead of bipolar

dimensions. Bivariate dimensions allow the degrees of emotional qualities to be

captured independently. It allows two opposite emotional qualities (such as pleas-

antness and unpleasantness) to occur or to be experienced at the same time. In

bivariate dimensions, a situation is not necessarily unpleasant when pleasantness

has not occurred or been experienced. For example, a situation that has a proba-

bility of 0.7 to cause pleasantness to occur, implies that it has the probability of 0.3

to cause pleasantness to not occur, but does not imply that it has the probability

of 0.3 to cause unpleasantness to occur.

Label nodes denote the feelings experienced in a situation, such as happy and

sad. They can be created at the design stage or in real-time through learning.

They are connected as parents to the dimension nodes. Modules can calculate the

conditional joint probability of a feeling node in order to determine how likely the

corresponding feeling is elicited in a situation, or how likely the corresponding basic

feeling represents the emotion experienced in a situation.

ASMO’s emotion mechanism can have a causal Bayesian network with any num-

ber of dimension nodes and label nodes. It does not limit the kind of dimension and

feeling being denoted. However, in many robotic tasks, developers typically repre-

sent emotions, by using the three following dimensions: positive valence, negative

valence and arousal. In addition, they typically consider the two following feelings

in their systems: happy and sad.

6.4.2 Biological Factor and Cognitive Factor Nodes

Biological appraisals and cognitive appraisals are implemented through biological

factor and cognitive factor nodes in a causal Bayesian network respectively. Biolog-

ical factor nodes denote built-in knowledge used for evaluating a situation, such as
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a sweet taste elicits a happy feeling or a red colour from a robot soccer ball elicits

an excitement feeling. They are created at the design stage. They are connected

as parents to the label nodes and/or other biological factor nodes. Modules can

calculate the conditional joint probability of a biological node in order to determine

how likely the emotion experienced in a situation is caused by the corresponding

biological factor.

By convention, biological factor nodes are fixed across a robot’s life span (i.e. the

number of biological factor nodes is fixed). They can be used to embed permanent or

innate characteristics and personalities desired in the robots, such as a characteristic

to avoid harmful actions or a personality to be risk-averse.

In contrast, cognitive factor nodes denote learned knowledge used for evaluating a

situation based on the relevance and impact to personal well-being, such as the belief

that being praised indicates a stronger social acceptance. They can be created at the

design stage or in real-time through learning. They are connected as parents to the

label nodes, biological factor nodes and/or other cognitive factor nodes. Modules can

calculate the conditional joint probability of a cognitive node in order to determine

how likely the emotion experienced in a situation is caused by the corresponding

cognitive factor.

Cognitive factor nodes can be varied across a robot’s life span (i.e. the number

of cognitive factor nodes is not fixed). The number of cognitive factor nodes is

changed based on the robot’s experience. Cognitive factor nodes can be used to

build personalities learned during the life span of the robot, such as a personality

to be happy for being praised (i.e. the robot learns to smile when praised).

Both biological factor and cognitive factor nodes affect the computational cost

of the emotion mechanism. The higher the number of nodes, the higher the com-

putational cost. Performing exact inference on these nodes in order to evaluate the

situation can be computationally expensive. ASMO’s emotion mechanism uses an

approximate inference method such as the Monte Carlo Algorithm [192] in order to

maintain fast evaluation.

6.4.3 Subjective Weight

In the attention value update equation (i.e. Equation 5.1), a subjective weight

denotes the change of attention sought by the module based on subjective evalua-
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tions of tasks. This subjective weight is not only modified by the module based on

tasks, but it is also modified by ASMO’s emotion mechanism as a mean to bias the

module. In order to modify this subjective weight, ASMO’s emotion mechanism is

implemented in a supervisor module (called emotion mechanism). This is because

a supervisor module is allowed to inspect and modify other non-reflex modules,

whereas an ordinary module is not allowed.

A subjective weight (St), an objective weight (Ot), and a boost value (BVt) are

used to determine the total attention level of a non-reflex module (see Equation 5.4.4,

which is also shown below). However, they have different purposes. An objective

weight is the weight of an attention value calculated based on objective evaluations.

A subjective weight is the weight of an attention value calculated based on subjective

evaluations. A change in objective weight and subjective weight (i.e. their effects)

will be accumulated in an attention value in proportion to the accumulation rate

(αt). In contrast, a boost value is similar to an attention value, except that its

change or effect will not be accumulated. A boost value can be equivalent to an

objective and a subjective weight when the accumulation rate is zero.

TAL(p) = BVt(p) + AVt(p)

AVt(p) = αt(p) AVt−1(p)︸ ︷︷ ︸
accumulation

+ βt(p) Ot(p)︸ ︷︷ ︸
objective

+ γt(p) St(p)︸ ︷︷ ︸
subjective

ASMO’s emotion mechanism can use multiple causal Bayesian networks to deter-

mine a subjective weight. Nodes can be created and distributed in different causal

Bayesian networks. As described in the previous subsections, the feeling nodes and

cognitive factor nodes can be created in real-time through learning. However, this

type of learning remains as a future work. In this dissertation, nodes in causal

Bayesian networks are created at the design stage.

ASMO’s emotion mechanism uses casual Bayesian networks to determine a sub-

jective weight based on an algorithm described in the following two steps:

1. Predict Feeling

ASMO’s emotion mechanism predicts the feelings that will be elicited given a

situation. It predicts these feelings by calculating the conditional joint proba-

bility of each feeling node using Bayes’ rule (see Equation 6.1). The higher the
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conditional joint probability, the more likely that the feeling will be elicited.

P (h|e) =
P (e|h)× P (h)

P (e)
(6.1)

Where:

P (h|e) is the posterior probability. It is the probability of hypothesis h given

or after evidence e is observed

P (e|h) is the likelihood. It indicates how likely evidence e is associated with

hypothesis h

P (h) is the prior probability. It is the probability of hypothesis h before any

evidence is observed

P (e) is the marginal likelihood. It indicates how likely evidence e is observed

regardless of the hypothesis

2. Calculate Expected Desirability of Feelings

ASMO’s emotion mechanism calculates the expected desirability of feelings

based on the predicted feelings. It assigns this expected desirability of feelings

as the subjective weight of an ordinary and a supervisor module (see Equation

6.2).

St =
1

NaNf

Na∑
i=0

Nf∑
j=0

P (fj|ai, e)D(fj) (6.2)

Where:

Nf ≤ Nfn

St is the subjective weight of a module at time t

Na is the number of actions proposed by the module

Nf is the number of feelings that developers want the system to experience

Nfn is the total number of feeling nodes

ai is the i-th action proposed by the module

e is the set of nodes that represents the situation (i.e. e← e1, e2...en)

P (f |a, e) is the conditional joint probability of feeling f given action a and a

set of nodes e that represents the situation

D(f) is the desirability of experiencing feeling f

For example, a robot may be desired to have emotions in a soccer scenario.

ASMO’s emotion mechanism can represent and have a model of possible feelings
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that may occur in the scenario, such as happy, sad, anger and surprise. However,

developers may consider only happy and sad feelings to be relevant in playing soccer.

Thus, they may want the robot to have only these two feelings (i.e. Nf = 2), rather

than all the possible feelings. Suppose that a module called ‘chase ball’ proposes an

action to run to a ball and an action to track the ball at the same time (i.e. Na = 2).

A subjective weight of this module will then be determined based on the probability

of each feeling (i.e. happy and sad) will be elicited given each action (i.e. walk and

track).

By default, ASMO’s emotion mechanism determines a subjective weight based

on the expected desirability of feelings. However, developers can change this default

setting in order to determine a subjective weight based on the expected desirability

of dimensions. When they use the expected desirability of dimensions, they have to

change Equation 6.2 into Equation 6.3.

St =
1

NaNd

Na∑
i=0

Nd∑
j=0

P (dj|ai, e)D(dj) (6.3)

Where:

Nd ≤ Ndn

St is the subjective weight of a module at time t

Na is the number of actions proposed by the module

Nd is the number of dimensions that developers want the system to experience

Ndn is the total number of dimension nodes

ai is the i-th action proposed by the module

e is the set of nodes that represents the situation (i.e. e← e1, e2...en)

P (d|a, e) is the conditional joint probability of dimension d given action a and a set

of nodes e that represents the situation

D(d) is the desirability of dimension d to occur

Using the expected desirability of dimensions, modules are biased based on the

groups the feelings belong to, instead of the particular feelings. For example, mod-

ules can be biased as long as their actions result in positive valence, regardless

whether the feelings experienced in the situation are happy, surprise and energetic.
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6.5 Other Work

Other emotion mechanisms or models have been proposed in the literature. Conati

[54, 55] has proposed a similar probabilistic approach using Dynamic Decision Net-

works (DDN) in order to recognise students’ emotions based on the OCC cognitive

appraisal theory [170]. Like ASMO’s emotion mechanism, this model contains nodes

to represent situations, such as a student’s goal, an interaction pattern, an appraisal

and an agent’s action. However, unlike ASMO’s emotion mechanism, this model

does not incorporate the non-cognitive perspective (i.e. the biological perspective)

of emotions and how emotions bias attention to influence decision making and be-

haviours.

Considering the non-cognitive perspective of emotions, Rosis et al [188] proposed

a Belief-Desire-Intention (BDI) emotion model that distinguishes cognitive evalua-

tions with intuitive appraisals. In this model, a cognitive evaluation is a rational

judgement supported by reasons, whereas an intuitive appraisal is a non-rational

judgement based on associative learning and memory instead of justifiable reasons.

These cognitive evaluation and intuitive appraisals in this model are similar to cogni-

tive appraisals and biological appraisals in ASMO’s emotion mechanism respectively.

However, this model does not incorporate intuitive appraisals based on innate knowl-

edge (such as the preference for sweet taste that is probably encoded in our DNA)

and how emotions bias attention to influence decision making and behaviours.

A number of emotion models have also been implemented in robots [113, 28,

110, 112, 195, 38]. Many of them focus on emotion expressions (e.g. facial ex-

pression, body language, etc), while some focus on influencing decision making and

behaviours. One common example of those models designed to influence decision

making and behaviours is the emotion model proposed by Sawada, Takagi and Fujita

[195]. This model generates 6 emotions (proposed by Ekman’s basic emotion theory

[66]) and a neutral emotion in a robot based on the following internal needs: hunger,

fullness, pain, comfort, fatigue and sleepiness. Like ASMO’s emotion mechanism,

this model is used to influence behaviours instead of for emotional expression or

recognition. Unlike ASMO’s emotion mechanism, this model only incorporates the

biological perspective of emotions and does not incorporate the cognitive perspective

of emotions.

Another common example is the emotion model proposed by Breazeal [38]. This
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model generates emotions in a robot based on mechanisms called emotive releasers,

affective appraisals, emotion elicitors and emotion activation. Each emotive releaser

can be thought of as a simple ‘cognitive’ evaluation with respect to the robot’s

well-being and its goals. It has an activation level that is determined by evaluating

attributes in the environment, such as the presence or absence of a stimulus (and

for how long), the context of the stimulus (e.g. toy-related or person-related), or

whether the stimulus is desired or not. Each releaser with activation above threshold

will be tagged by the affective appraisals based on three dimensions in order to create

a somatic marker, namely arousal, valence and stance. These markers are mapped

to some distinct emotions (e.g. anger, fear, etc) by filtering them through the

emotion elicitors. Finally, these distinct emotions compete for activation and they

are selected by the emotion activation based on the winner-take-all scheme. The

emotive releasers, affective appraisals and emotion elicitors in this model are similar

to the cognitive factor nodes, dimension nodes and label nodes in the causal Bayesian

network used by ASMO’s emotion mechanism respectively. The difference is that

this model maps the three dimension markers into the distinct emotions (i.e. labelled

emotions), whereas ASMO’s emotion mechanism maps reversely, which maps the

labelled emotions (i.e. label nodes) into dimensional representation (i.e. dimension

nodes). In addition, this model does not incorporate the biological perspective of

emotions.

A summary of emotion models that integrate causes and effects has been pro-

vided in the literature [55]. In addition, a recent comparison of emotion models in

autonomous agents has been presented [190]. However, I am not aware of any emo-

tion model that integrates innate emotion (biological appraisal), learned emotion

(cognitive appraisal), attention and decision making.
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Chapter 7

ASMO’s Learning Mechanisms

In the previous two chapters, I described how ASMO’s attention mechanism selects

modules and how ASMO’s emotion mechanism subjectively biases the selection.

In this chapter, I describe the details of ASMO’s learning mechanisms and how

the selection of modules is modified in order to improve performance. I start by

defining learning in Section 7.1. I follow by exploring theories of learning for im-

proving performance in Section 7.2. I describe the interpretation of these theories

in Section 7.3. These theories form the basis of the design of ASMO’s learning

mechanisms. I then describe the implementation of ASMO’s learning mechanisms

in Section 7.4. Finally, I review other work on learning mechanisms and compared

them with ASMO’s learning mechanisms in Section 7.5.

7.1 Needs for Learning

Learning is defined in Oxford English Dictionary [172] as “the action of receiving

instruction or acquiring knowledge” or “a process which leads to the modification

of behaviour or the acquisition of new abilities or responses, and which is addi-

tional to natural development by growth or maturation”. In other words, learning

involves knowledge acquisition, behaviour modification or both of them. A learning

that involves knowledge or skill acquisition does not necessarily involve behaviour

modification and vice versa.

Tom Mitchell formally defines learning [146] as follows: “a computer program is

said to learn from experience E with respect to some class of tasks T and perfor-
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mance measure P, if its performance at tasks in T, as measured by P, improves with

experience E”.

Learning is necessary not only because it can improve the versatility, robustness

and extensibility criteria required by a cognitive architecture including ASMO (see

Section 2.5), but also for the following reasons:

• To handle situations that change unexpectedly or were anticipated incorrectly

by developers.

• To automate the development of behaviours. Anticipating all possible situ-

ations for developing behaviours can be difficult or not possible due to the

enormous number of possibilities of situations. In addition, developing be-

haviours by hand can also be difficult.

• To find a better decision or action that can increase performance. Some infor-

mation or parameters that lead to a better performance may not be available

during design, but can be acquired when interacting with the environment.

7.2 Theories of Learning

ASMO’s learning mechanisms are inspired by human learning. There are two main

theoretical perspectives of human learning, namely behaviourist and cognitivist

[169]. The behaviourist perspective focuses on low-level learning involving con-

ditions (stimuli) and behaviours (responses), whereas the cognitivist perspective

focuses on high-level cognitive processes. In this dissertation, I have approached

the low-level forms of learning first (i.e. the behaviourist perspective), which con-

sists of habituation, sensitisation, classical conditioning, operant conditioning and

observational learning. The high-level cognitive processes are developed based on

lower-level learning but this remains as future work.

7.2.1 Habituation and Sensitisation

Habituation is the decrease in response to a repeated stimulus as a result of a lack

of significance or reinforcement [180, p. 100] [65]. It involves the elimination of

unnecessary behaviours that are not needed by the individual. The stimulus will
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not be attended to or responded to (i.e. given less attention) if it does not hold any

significance for the individual even though it may be repetitive. For example, when

tracking an object, an individual who initially pays attention to (and is distracted

by) repeated movements of other people, can become habituated to (thus ignore)

these movements if these movements do not hold any significance to the object

tracking task.

Habituation is not a form of sensory adaptation (e.g. fatigue). While both

habituation and sensory adaptation involve the decrease in response to a repeated

stimulus, habituation occurs in the brain as attention phenomenon and it can be

consciously controlled, whereas sensory adaptation occurs directly in the sense organ

and it cannot be consciously controlled [212, p. 138]. For example, in habituation,

people can still pay attention and force themselves to hear a loud noise although they

are habituated to the noise. In sensory adaptation, people cannot force themselves

to smell an odour once their smell organ has adapted to the smell, regardless of

how hard they try to pay attention to the odour. The characteristics of habituation

that can distinguish habituation from sensory adaptation are further discussed in

the work of Thompson and Spencer [221] and Rankin et al. [184].

In contrast to habituation, sensitisation is the increase in response to a repeated

stimulus because the stimulus holds a significance for the individual [180, p. 101]

[65]. The stimulus will be attended to or responded to (i.e. given more attention)

as long as it holds some significance for the individual, even if it is not intense. For

example, when tracking an object, an individual who initially ignores and does not

pay attention to the movements of other people can become sensitised to (thus focus

on) these movements if these movements hold any significance to the object tracking

task (e.g. when the object is often occluded by the movements).

Habituation and sensitisation are automatic processes that are developed as a

result of an adaptation to the environment. They are a form of non-associative

learning, which is a learning that does not involve an association with other stimuli

or responses. They occur without feedback from the environment. Individuals do

not depend on explicit feedback from the environment to modify their responses.

Instead, they internally judge the effectiveness of their responses in order to modify

their behaviours.
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7.2.2 Operant Conditioning

Operant conditioning (or instrumental conditioning) is a modification of behaviours

by their consequences or feedback [180, p. 228] [207]. This feedback regulates the

probability of exhibiting the behaviours. There are three possible outcomes of the

feedback received from the environment:

1. Reinforcement

Reinforcement is received to increase or strengthen the tendency of exhibiting

the behaviour (i.e. to encourage the behaviour).

2. Punishment

Punishment is received to decrease or weaken the tendency of exhibiting the

behaviour (i.e. to discourage the behaviour).

3. No Consequences or Feedback

No feedback is received either to increase or decrease the tendency of exhibiting

the behaviour (i.e. neither to encourage nor discourage the behaviour).

Both reinforcement and punishment can be either positive or negative depending

on whether a stimulation is added or removed respectively [50, p. 133–134]:

1. Positive Reinforcement

Positive reinforcement is the addition of stimulation to encourage the be-

haviour. For example, a player is given bonus money for every kick that

scores a goal.

2. Negative Reinforcement

Negative reinforcement is the removal of stimulation to encourage the be-

haviour. For example, a player is not required to attend to the extensive

kicking training (which the player does not like) if the player performs a good

kick.

3. Positive Punishment

Positive punishment is the addition of stimulation to discourage the behaviour.

For example, a player is required to do push-ups for every wrong kick the player

performs.
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4. Negative Punishment

Negative punishment is the removal of stimulation to discourage the behaviour.

For example, a player is not given a rest time if the player performs a wrong

kick.

Operant conditioning is a form of associative learning, which is a learning that

involves an association between stimuli or responses. It occurs with feedback from

the environment. Individuals do not need to manually judge the effectiveness of

their responses to modify their behaviours. Instead, they receive explicit feedback

for their responses after they perform their behaviours, which they can use to correct

those behaviours.

In artificial intelligence and machine learning, the area of reinforcement learning

has been inspired by operant conditioning. Similar to operant conditioning, rein-

forcement learning uses reinforcement to encourage the behaviour and punishment

to discourage the behaviour. However, unlike operant conditioning, there is no dis-

tinction whether the reinforcement and punishment are positive or negative (i.e.

whether the stimulation is added or removed respectively).

In reinforcement learning, the reinforcement is often represented by a positive

value (also called positive reward) whereas the punishment is often represented by

a negative value (also called negative reward). Note that the terms positive and

negative here represent the sign of the values instead of the type of reinforcement

or punishment. Thus, the terms positive and negative in reinforcement learning

may refer to the reinforcement and punishment respectively, whereas the terms

positive and negative in operant conditioning refer to the addition and the removal

of stimulation respectively.

7.2.3 Classical Conditioning

Classical conditioning (or Pavlovian conditioning) [180, p.109–110] [174] is an asso-

ciation of a neutral stimulus that does not elicit a response (called the conditioned

stimulus or CS) with another stimulus that elicits a response (called the uncondi-

tioned stimulus or US), such that the presence of the CS will elicit the same response

that would be elicited by the US, despite the US not actually being present. For

example, if John repeatedly asks Mary to cook him the same dish every time he

visits Mary, then Mary may develop the association between his visit and the dish,
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such that his presence will trigger Mary to accidentally start cooking the dish, even

though John had asked Mary to go to a restaurant.

In classical conditioning, the CS initially does not elicit any particular response

whereas the US elicits a response (called the unconditioned response or UR). How-

ever, after the association is made, the presence of CS will elicit the UR even though

the US is not actually present. In other words, the CS will elicit the same response

as if the US was present. This response elicited by the CS is called the conditioned

response or CR, and is the same as the UR.

Similar to operant conditioning, classical conditioning is a form of associative

learning. However, classical conditioning creates an association between involun-

tary behaviours and stimulus before the behaviours are performed, whereas operant

conditioning creates an association between voluntary behaviours and their conse-

quences after the behaviours are performed [49, p. 132].

7.2.4 Observational Learning

Observational learning (or vicarious learning) [180, p. 563] [50, p. 281] is the repro-

duction of results or behaviours of others (called the teachers or experts) through

observation, demonstration, examples, teaching or supervision. Less formally, this

learning may also be called learning with a teacher, learning from the experts, learn-

ing by observation or learning by demonstration. For example, a player can learn

how to move its legs to kick a ball by observing other players’ behaviours, even

though he has not experienced the kick for himself.

Observational learning is different to imitation. Paul Chance [49, p. 281] argued

that observational learning may occur even if imitation has failed. Some parts of

the behaviours may have been learned even if they cannot be imitated perfectly. He

also argued that observational learning may not occur even if imitation is successful.

Behaviours are not learned if there is no permanent modification in the internal

mechanism even if they can be imitated perfectly.

Observational learning is a form of social learning [26] as it involves more than

one individual. It can produce different results and behaviours depending on the

teachers or the demonstrators.

In artificial intelligence and machine learning, supervised learning [192, p. 695]
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is typically used as a mechanism for observational learning. It is often referred to

as learning from labelled data or inductive machine learning [119]. In supervised

learning, the labelled data is assumed to be correct. The objective of the supervised

learning is to model the labelled data as precisely and with as much generality as

possible.

7.3 Computational Design and Model

Each theory of learning described in the previous section is translated and modelled

into a learning mechanism in ASMO, as described as follows:

1. Theory of Habituation and Sensitisation

Inspired by theories of habituation learning, ASMO’s habituation mechanism

is created to decrease the boost value of a non-reflex module based on the

significance of a repetitive stimulus. Decreasing the boost value will eventually

make the module lose the attention competition and thus the stimulus will

not be responded to. Similarly, inspired by theories of sensitisation learning,

ASMO’s sensitisation mechanism is created to increase the boost value of a

non-reflex module based on the significance of a repetitive stimulus. Increasing

the boost value will eventually make the module win the attention competition

and thus the stimulus will be responded to.

2. Theory of Operant Conditioning

Inspired by a theory of operant conditioning learning, ASMO’s operant con-

ditioning mechanism is created to increase and decrease the boost value of a

non-reflex module based on positive and negative feedback respectively. In-

creasing the boost value of a module will increase the module’s chance of

winning the attention competition, thus it will also increase the probability of

the module’s actions being executed. Similarly, decreasing the boost value of

a module will decrease the module’s chance of winning the attention compe-

tition, thus it will also decrease the probability of the module’s actions being

executed.

3. Theory of Classical Conditioning

Inspired by a theory of classical conditioning, ASMO’s classical conditioning

mechanism is created to trigger non-reflex modules to propose actions based
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on the presence of the conditional stimulus even though the unconditional

stimulus is not actually present.

4. Theory of Observational Learning

Inspired by a theory of observational learning, ASMO’s observational learning

mechanism is created to modify the boost value of a non-reflex module based on

labelled examples provided by (or observed from) the experts. Modifying the

boost values of modules will change the winners of the attention competition,

thus it will also change the actions performed by ASMO according to the

experts’ examples.

7.4 Implementation

ASMO’s learning mechanisms uses multiple algorithms. Wolpert [245] has shown

that there is no best algorithm in learning. Each algorithm has strengths and weak-

nesses that solve some problems better than other problems. Thus, using multiple

algorithms provides ASMO with the capability to solve a wider range of problems

more effectively.

Each learning mechanism is implemented in a supervisor module. It can be

enabled or disabled by simply enabling and disabling the corresponding module

respectively. Recall from Section 5.4.1 that a supervisor module is a module that has

a meta-level control of the system and that can modify the attention values and/or

boost values of other non-reflex modules (i.e. ordinary and supervisor modules).

Recall also that a supervisor module can modify these values in two ways, namely

competitive modification and direct modification.

All ASMO’s learning mechanisms (i.e. supervisor modules) affect the boost val-

ues of other non-reflex modules. If the supervisor modules are designed in a compet-

itive modification, then only one supervisor module (i.e. one learning mechanism)

can win an attention competition to modify the boost values. If the supervisor

modules are designed in a direct modification, then they all can modify the boost

values and their net results will determine the final boost values. The higher the

change of boost value given by a supervisor module, the more dominance the learning

mechanism.

These competitive and direct modifications serve as a mechanism to prevent
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supervisor modules having contradictory effects, which may cause them to cancel

each other (i.e. causing learning to not occur). This prevention mechanism will

not work for supervisor modules that have equal strength in direct modification.

However, having contradictory effects is fine just like what happens in humans (i.e.

inspired by biological agents). For example, in playing a soccer, we can habituate

to the opponent’s attack and become less fear to the attack, but at the same time,

we can also be reinforced to feel fear of the attack. In this case, our habituation

learning and reinforcement learning (i.e. operant conditioning learning) will have

contradictory effects, which may cancel each other.

7.4.1 Habituation and Sensitisation

ASMO’s habituation and sensitisation mechanisms [164] decrease and increase the

boost values of non-reflex modules. Habituation occurs when the boost value of a

winning module is decreased because the repeated situation is not significant (i.e. it

is not necessary for the module to have higher attention). In contrast, sensitisation

occurs when the boost value of a module that does not win the attention is increased

because the repeated situation is significant (i.e. it is necessary for the module to

have higher attention).

There are three functions used by ASMO’s habituation and sensitisation mech-

anisms:

1. Significance Function

The significance function measures the significance of the repeated stimulus.

It provides a value between -1.0 to 1.0. A value of less than zero is insignificant

whereas a value of greater than zero is significant.

ASMO’s habituation and sensitisation mechanisms require at least the signif-

icance function to perform habituation and sensitisation learning. They will

not modify the boost value of a module (i.e. skip the module) if this function

is not provided.

2. Delta (δ) Function

The delta function determines the amount by which the boost value will be

decreased or increased (i.e. for habituation and sensitisation respectively).
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The boost value of a module is modified in proportion to this function (see

Equation 7.1).

This delta function can be provided optionally in the competing non-reflex

modules. If it is not provided, then ASMO’s habituation and sensitisation

mechanisms will use the default delta function defined internally in the ha-

bituation and sensitisation supervisor module (see Equation 7.2). By default,

the mechanisms will modify the boost value of a module in proportion to the

significance function.

3. Termination Function

The termination function specifies the condition for the learning to stop. It

can be provided optionally in the competing non-reflex modules. If it is not

provided, then ASMO’s habituation and sensitisation mechanisms will use the

default termination function defined internally in the habituation and sensiti-

sation supervisor module (see Equation 7.3). By default, the mechanisms will

terminate when the root mean square deviation of the previous 20 consecutive

boost values is less than or equal to a defined threshold (see Equation 7.4).

Bt(p) = Bt−1(p) + δ(p) (7.1)

δ(p) = Significance(p)× C − 1.0 ≥ Significance(p) ≤ 1.0 (7.2)

Termination(p) =

True if RMSD(p) ≤ TRMSD

False otherwise
(7.3)

RMSD(p) =

√√√√ 1

n

t∑
i=t−n

(Bi(p)−Bi−1(p))
2 (7.4)

Where:

Bt(p) is the boost value of process p at time t

δ(p) is the delta function of process p

Significance(p) is the significance function of process p

C is the maximum value of change

Termination(p) is the termination function of process p

RMSD(p) is the root-mean-square deviation of process p

TRMSD is the threshold to stop learning

n is the number of previous boosts
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7.4.2 Operant Conditioning

ASMO’s operant conditioning mechanism increases and decreases the boost values

of non-reflex modules by performing the following four steps:

1. Pick A Candidate

ASMO’s operant conditioning mechanism uses its policy function to pick a

non-reflex module as the candidate for the winner of the attention competition

with respect to the module’s required resources. This candidate can happen

to be the module that has the highest total attention level (i.e. the module

that was originally supposed to win), or another competing module that has

lower total attention level (i.e. the module that was originally not supposed

to win).

2. Promote The Candidate

ASMO’s operant conditioning mechanism makes the candidate temporarily

win the attention competition by increasing the candidate’s boost value to a

value such that the candidate’s total attention level is higher than the total

attention level of other competing modules.

3. Reinforce or Punish The Candidate

After the candidate wins the attention competition, ASMO’s operant condi-

tioning mechanism reverts its boost value back to its original value (i.e. to the

value it had before its boost value was temporarily increased).

ASMO’s operant conditioning mechanism will use the candidate’s reward func-

tion to check for feedback and measure the candidate’s performance. If the

reward function returns a non-zero value, then ASMO’s operant conditioning

mechanism will reinforce or punish the candidate as follows:

• The mechanism will increase the candidate’s boost value by the value

given by the reward function (i.e. reinforce the candidate) if the candidate

was originally not supposed to win, but the candidate receives a positive

reward.

• The mechanism will decrease the candidate’s boost value by the value

given by the reward function (i.e. punish the candidate) if the candidate

was originally supposed to win, but the candidate receives a negative

reward.
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4. Repeat Step 1 to 3 Until Termination

ASMO’s operant conditioning mechanism repeats Step 1 to Step 3 and stops

learning when a condition given by the termination function is reached.

There are three functions used by ASMO’s operant conditioning mechanism:

1. Policy Function

The policy function determines a candidate as the new winner of the competi-

tion with respect to required resources. It is defined internally in the operant

conditioning supervisor module. By default, it determines a candidate ran-

domly. However, it can be redefined by developers.

2. Reward Function

The reward function checks for feedback and measures the candidate’s per-

formance. It provides a positive value for reinforcement, a negative value for

punishment and zero for no feedback. It is also used to determine the amount

by which the boost value will be decreased or increased. The boost value of a

module is modified in proportion to this function (see Equation 7.5).

ASMO’s operant conditioning mechanism requires at least the reward function

to perform operant conditioning learning. It will not modify the boost value

of a module (i.e. will skip the module) if this function is not provided.

3. Termination Function

The termination function specifies the condition for the learning to stop. It

can be provided optionally in the competing non-reflex modules. If it is not

provided, then ASMO’s operant conditioning mechanism will use the default

termination function defined internally in the operant conditioning supervisor

module (see Equation 7.6). By default, the mechanism will terminate when

the root mean square deviation of the previous 20 consecutive boost values is

less than or equal to a defined threshold (see Equation 7.7).



152 Chapter 7. ASMO’s Learning Mechanisms

Bt(p) = Bt−1(p) +Reward(p) (7.5)

Termination(p) =

True if RMSD(p) ≤ TRMSD

False otherwise
(7.6)

RMSD(p) =

√√√√ 1

n

t∑
i=t−n

(Bi(p)−Bi−1(p))
2 (7.7)

Where:

Bt(p) is the boost value of process p at time t

Reward(p) is the reward function of process p

Termination(p) is the termination function of process p

RMSD(p) is the root-mean-square deviation of process p

TRMSD is the threshold to stop learning

n is the number of previous boosts

ASMO’s operant conditioning mechanism is similar to ASMO’s habituation and

sensitisation mechanisms, except that developers do not need to specify how to eval-

uate the effectiveness of the behaviours. Instead, the effectiveness of the behaviours

is reflected in the environment where explicit feedback can be directly perceived.

7.4.3 Classical Conditioning

ASMO’s classical conditioning mechanism [168] triggers modules to propose actions

based on only the presence of the conditional stimulus. It performs the following

four steps:

1. Capture sequences of stimuli

ASMO’s classical conditioning mechanism captures sequences of stimuli. It

represents each sequence of stimuli by using a Markov chain where each node

represents a stimulus.

2. Find the stimulus that will most likely occur given the current stim-

ulus

When a stimulus occurs (i.e. the conditioned stimulus occurs), ASMO’s clas-

sical condition mechanism calculates each probability that another stimulus
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will occur afterwards (i.e. each possible unconditioned stimulus) given the

occurrence of the current stimulus. It calculates this probability by using the

maximum likelihood estimation algorithm [33, p. 615]. It will then find the

stimulus that has the highest probability (i.e. the most likely unconditioned

stimulus).

3. Trigger modules to propose actions

ASMO’s operant conditioning mechanism adds the most likely unconditioned

stimulus to ASMO’s memory as if this stimulus is currently occurring. The

addition will cause non-reflex modules to believe that this stimulus is present,

despite the fact that this stimulus is not physically present. As a result, it

will trigger non-reflex modules to propose actions in order to respond to this

stimulus. Hence, the conditioned stimulus has triggered actions that are asso-

ciated with the unconditioned stimulus, despite the fact that the unconditioned

stimulus is not physically present.

4. Repeat step 2 and 3 for other occurring stimuli

ASMO’s operant conditioning mechanism repeats step 2 and step 3 if there

are other stimuli that are currently occurring.

The Markov chain model used by ASMO’s operant conditioning mechanism may

require many observations to provide an accurate estimation of reality. However,

many observations are often not available and can be difficult to obtain. Thus, the

mechanism uses a smoothing technique, such as the Laplace smoothing (also called

additive smoothing) [192], to smooth the observations in order to provide a better

estimation.

In the current implementation, ASMO’s classical conditioning mechanism works

with symbolic data instead of non-symbolic data. For example, in order to associate

a ball at coordinate (0.5, 0.8, 0.0) and an action to move to coordinate (0.6, 0.7,

0.0), these data have to be discretised into ball location(region1) and move(forward)

before the mechanism can learn to associate them.

7.4.4 Observational Learning

ASMO’s observational learning mechanism uses a neural network [192, p. 727] to

modify the boost values of non-reflex modules (see Figure 7.1)). The inputs of
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the neural network are situations in the environment (stored in ASMO’s memory).

The outputs of the neural network are the boost values of the non-reflex modules.

The neural network learns the patterns of what should be the right boost values

given the situations. ASMO’s observational learning mechanism does not correct

the actions proposed by the non-reflex modules, instead it corrects the boost values

of the non-reflex modules.

Figure 7.1: Neural Networks for Observational Learning

The neural network is trained from examples provided by experts. Each exam-

ple is a pair of situations and correct (or desired) boost values. Experts do not

need to provide the correct (or desired) boost values manually. Instead, they can

provide which modules they think should be the winners of an attention competi-

tion (i.e. called experts’ winners). ASMO’s observational learning mechanism will

compare these winners selected by experts with the winners originally selected by

ASMO’s attention mechanism to determine the correct boost values automatically,

as described in the following two conditions (see Algorithm 7.1):

1. Winners selected by experts and ASMO are the same
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If a winner selected by experts and ASMO is the same, then ASMO’s obser-

vational learning mechanism does not need to increase the winner’s ranking.

Thus, it will use the existing boost values as the correct boost values.

2. Winners selected by experts and ASMO are different

If a winner selected by the experts is not selected by ASMO (i.e. because its

ranking is less than the rankings of its competitors), then ASMO’s observa-

tional learning mechanism has to increase its ranking to be higher than its

competitors’ rankings. In the current implementation of ASMO, this means

that the winner’s total attention level has to be higher than the competitors’

highest total attention level.

Developers can choose between two equivalent modes in ASMO’s observational

learning mechanism to increase the winner’s ranking:

• Increase Mode

In the increase mode, ASMO’s observational learning mechanism will not

change the boost values of the winner’s competitors. Instead, it will just

increase the winner’s boost value in order for the winner’s ranking to be

higher than the competitors’ rankings. It determines the correct boost

value for the winner based on the competitors’ highest total attention

level and the winner’s attention value (Equation 7.8 shows the derivation

of the boost value needed).

• Decrease Mode

In the decrease mode, ASMO’s observational learning mechanism will

not change the winner’s boost value. Instead, it will decrease the boost

values of the competitors that have total attention levels higher than the

winner’s total attention level, so that the winner’s ranking will be higher

than the competitors’ rankings. It determines the correct boost values

for the competitors based on the winner’s total attention level and the

competitors’ attention values (Equation 7.8 shows the derivation of the

boost value needed).
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TAL(w) > TAL(hc)

AV (w) +BV (w) > TAL(hc)

BV (w) > TAL(hc)− AV (w)

BV (w) = TAL(hc)− AV (w) + delta


increase mode

TAL(w) > TAL(hc)

TAL(w) > AV (hc) +BV (hc)

TAL(w)− AV (hc) > BV (hc)

BV (hc) = TAL(w)− AV (hc)− delta


decrease mode

(7.8)

Where:

w is the winner selected by the experts

hc is the highest competitor, which is the module that has the highest ranking

among the competitors

TAL(m) is the total attention level of module m

AV (m) is the attention value of module m

BV (m) is the boost value of module m

delta is the difference desired between the winner and the highest competitor

7.5 Other Work

Other learning mechanisms or models have been proposed in the literature. In each

of the following subsections, I describe other learning models of habituation and

sensitisation, operant conditioning, classical conditioning and observational learning

respectively.

7.5.1 Habituation and Sensitisation

In the literature, there have been more computational models of habituation than

sensitisation. The majority of computational models of habituation are based on

neural networks [116, 139, 51, 205, 140, 56], which range from feed-forward neural

networks and recurrent neural networks to artificial spiking neural networks. Some

of these models have been implemented in robots [51, 205, 140, 56]. While these
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1 used resources = [ ]

2 # expert winners: winners selected by experts

3 ranked expert winners = sort(expert winners)

4 # The highest ranking is 1

5 for i ← 1 to count(ranked expert winners) do

6 w ← ranked expert winners[i]

7 # asmo winners: winners selected by ASMO

8 if w not in asmo winners and required resources(w) not in

used resources then

9 # find modules(r) returns sorted modules that require

resources r

10 competing modules ← find modules(required resources(w))

11 highest module ← competing modules[1]

12 # total attention level = attention value + boost value

13 if is increasing mode then

14 # increase the boost value of the winner selected by

the expert (i.e. w)

15 w.boost value ← highest module.total attention level -

w.attention value + delta

16 else

17 # decrease the boost values of other competing modules)

18 for j ← 1 to count(competing modules) do

19 if competing modules[j].total attention level ≥
w.total attention level then

20 competing modules[j].boost value ← w.total attention level

- competing modules[j].attention value - delta

21 end

22 end

23 end

24 end

25 used resources ← used resources + required resources(w)

26 end

Algorithm 7.1: ASMO’s Observational Learning Mechanism
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networks have various details to simulate habituation effects, all these networks

share a common fundamental approach. They have to be trained based on some

prior input stimuli. Thus, they cannot learn online and they can only habituate to

stimuli that have been trained.

Sirois and Mareschal [206] have reviewed a range of computational models of ha-

bituation that include neural-based and non neural-based models. They classify the

models into six categories, namely function estimators, symbolic, simple recurrent

networks, auto-encoders, novelty filter and auto-associators. The function estima-

tors and symbolic categories are not based on neural network whereas the other four

are based on neural network. Sirois and Mareschal assess these models against seven

features, namely temporal unfolding, exponential decrease, familiarity-to-novelty

shift, habituation to repeated testing, discriminability of habituation items, selec-

tive inhibition and cortical-subcortical interactions. Their analysis discovers that

none of these models accommodates the familiarity-to-novelty shift feature. Thus,

Sirois later proposes a hebbian-based neural network model of habituation that can

accommodate this familiarity-to-novelty shift feature [205].

While as to our understanding, there is no existing computational model designed

specifically for sensitisation, there are computational models that can accommodate

both habituation and sensitisation. The most commonly found model of both ha-

bituation and sensitisation is the following model that estimates the exponential

strength of a response over time and defines the change in response as a single dif-

ferential equation (see Equation 7.9). It is often credited to Stanley [211], although

in his paper, he used few different equations to describe his model. He refers to his

model as a simplification of the dual-process theory of Groves and Thompson [89].

This model accounts for the exponential decay or growth in responses as found in

biological habituation and sensitisation respectively. It also accounts for recovery

of responses (i.e. dishabituation or desensitisation). However, it lacks a mechanism

to accommodate the significance and specificity of the stimulus. The response is

a function of stimulus intensity. A stimulus is represented by its strength. The

response decays when a stimulus is on and recover when a stimulus is off regardless

of the significance of the stimulus.

τ
dy(t)

dt
= α(y0 − y(t))− S(t) (7.9)

Where:
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y(t) is the strength of the response at current time t

τ is the time constant that adjusts the exponential decay or growth

α is the rate of recovery

y0 is the initial strength before habituation or sensitisation

S(t) is the intensity of the stimulus

Damper, French and Scutt have proposed alternative computational model of

habituation and sensitisation based on a spiking neural network [59]. They have

implemented this model on a Khepara robot called ARBIB. This model is connected

such that if neuron A synapses onto neuron B then the repetition of fire of neuron

A causes the synaptic strength to decrease, which causes the response of neuron B

to decrease too. In this model, habituation is achieved by decreasing the weight of

a synapse every time it fires such that the the weight will return toward the base

weight with a time constant determined by recovery. In addition, sensitisation is

achieved by using a facilitatory interneuron I with synapse-on-synapse connection

to an A→ B synapse.

ASMO’s habituation and sensitisation mechanisms are real-time non-neural net-

work models. They have been implemented in a physical robot and embedded in a

cognitive architecture. They are different from previous works in the following: (i)

they account for both habituation and sensitisation, and (ii) they accommodate the

significance of the situation.

7.5.2 Operant Conditioning

In computer science (artificial intelligence and machine learning), an operant condi-

tioning has been studied in and designed as a reinforcement learning [219]. In this

subsection, I describe computational models of operant conditioning that are both

designed and not designed as reinforcement learning.

There are surveys on computational models of reinforcement learning in the liter-

ature [115, 133]. An example of well-known computational models of reinforcement

learning is Q-learning [235]. This model updates a utility (called Q-value) of every

pair of state and action based on the reward received for that state (see Equation

7.10). This pair means that this model will have different Q-values for different

actions even though the actions were executed from the same state. This model

can use the Q-values to update its policy and to correct actions. It can determine
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a sequence of actions by finding the action that has the highest Q-value in every

state.

Qt+1(st, at) = Qt(st, at)+αt(st, at)×
[
Rt+1 + γmax

a
Qt(st+1, at)−Qt(st, at)

]
(7.10)

Where:

Qt(st, at) is the Q-value of state s and action a at time t

αt(st, at) is the learning rate of state s and action a at time t

Rt is the reward at time t

γ is the discount factor

Unlike reinforcement learning, some computational models of operant condi-

tioning are developed based on an artificial neural network (ANN) and its variant

[57, 82, 24, 88]. Other computational models of operant conditioning have been

demonstrated to also model classical conditioning [25, 222]. Touretzky and Saksida

[222] proposed a model that attempts to capture some aspects that are missing from

simple reinforcement learning. Balkenius [25] proposed a model of visual attention

that also models habituation, classical conditioning and operant conditioning.

ASMO’s operant conditioning mechanism is very similar to Balkenius’ compu-

tational model of attention incorporating operant conditioning [25]. However, while

Balkenius’ model focused on visual attention, ASMO’s operant conditioning mech-

anism involves a general kind of attention that can be used for visual, motor co-

ordination and processes. This mechanism is different from previous works in the

following: (i) it integrates learning with action selection and attention, (ii) it is

embedded in a cognitive architecture, (iii) it is a real-time model and not based on

neural network, and (iv) it is implemented in a physical agent.

7.5.3 Classical Conditioning

Computational models of classical conditioning can be divided into models depend-

ing on whether they are trial-level or real-time, and whether they are designed

based on neural network or not [78, p. 47]. In trial-level models, the association

between the stimuli is computed after all relevant stimuli have been observed and

terminated. In real-time models, the association between stimuli is computed at

every time-frame and the computation can cope with those frames being arbitrarily
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small. Furze [78, pp. 47–59] has reviewed a large number of both trial-level and

real-time computational models of classical conditioning (for both neural network

and non-neural network models) in his dissertation:

• The trial-level neural network models reviewed were the Pearce and Hall model

and the Kehoe model.

• The trial-level non-neural network models reviewed were the Stimulus Sub-

stitution model, the Rescorla–Wagner model and the Mackintosh’s Attention

model.

• The real-time neural network models reviewed were the Grossberg model, the

Grossberg–Schmajuk (G.S) model, the Klopf model (also called the drive-

reinforcement model), the Schmajuk–DiCarlo (S.D) model and the Schmajuk–

Lam–Gray (S.L.G) model.

• The real-time non-neural network models reviewed were the Temporal Dif-

ference (TD) model, the Sometimes Opponent-Process (SOP) model and the

Sutton–Barto (S.B) model.

In this subsection, I focus more details on the real-time non-neural network

models: SOP, TD and S.B models. This is because most robots are required to

operate in real-time. In addition, non-neural network models allow robots to learn

without the need to be trained based on some prior input stimuli. Thus, they allow

robots to predict stimuli that have not been trained previously.

The SOP model [234] represents a stimulus in one of three states: A1 (high

activation), A2 (low activation) or I (inactive). A stimulus in the A1 state will elicit

a primary A1 response (observed as an unconditioned response) whereas a stimulus

in the A2 state will elicit a secondary A2 response. Two stimuli that are both in

the A1 state will become associated and cause the strength of their association to

increase. A stimulus that is either in the A1 or A2 state will induce its associated

stimuli to enter their A2 states, which will then elicit their A2 responses (observed

as conditioned responses). This inducement occurs in proportion to the strength of

the association between the two stimuli. This model supports different phenomena

of classical conditioning. However, it requires a stimulus to be represented in one of

the three states and it is not implemented in robots.
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The Temporal Difference (TD) model [218] is an extension of the Sutton–Barto

model [217] proposed by the same authors. These two models rely on reinforce-

ment (or rewards) and eligibility to determine the association strength of a stimulus

(7.11). They have the same operations and equations, except that the reinforcement

is determined by RTD for the TD model (7.12) or RSB for the SB model (7.13). Un-

conditioned stimuli have a starting association strength of a positive value. Other

stimuli have a starting association strength value of zero.

∆Vt(i) = βR× α(i)X(i)

X t+1(i) = δX t(i) + (1− δ)Xt(i)
(7.11)

RTD = λt + γYt − Yt−1 (7.12)

RSB = Ẏt = Yt − Yt−1 (7.13)

Where:

R ∈ RTD, RSB, 0 < β < 1, 0 < α < 1

V (i) and ∆V (i) are the association strength and the change of the association

strength of stimulus i respectively

β and α are the constant reinforcement and eligibility learning rates respectively

Xt(i) and X t(i) are the strength and the weighted average strength (called eligibility

trace) of conditioned stimulus i at time t respectively

δ is the decay rate of the eligibility trace

λt is the strength of the unconditioned stimulus at time t

γ is the discount factor

Yt is the prediction made at time t of the unconditioned stimulus being associated

ASMO’s classical conditioning mechanism is a real-time non-neural network

model. It has been implemented in a physical robot and embedded in a cogni-

tive architecture. It is different from previous works in the following: (i) it does not

require reinforcement values to learn, and (ii) it incorporates attention and memory

manipulation in the learning.

7.5.4 Observational Learning

There are extensive work on computational models of observational learning in the

literature (also called imitation learning or learning from demonstration) [17, 46, 31].
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Argall et al. divided these models into three approaches based on policy derivation

from demonstration data [17]:

1. Mapping Function

In this approach, demonstration data is used to directly approximate the

underlying function mapping from the robot’s state observations to actions

(f() : Z → A). Models in this approach are further categorised into classifi-

cation models or regression models depending on whether the outputs of the

algorithm are discrete or continuous respectively. Examples of these models

have been proposed and developed using several techniques, such as Gaussian

Mixture Model [108], Bayesian inference [52], hierarchical neural networks [32],

and a combination of Hidden Markov Model and Gaussian Mixture Regression

[45].

2. System Model

In this approach, demonstration data is used to determine a model of the world

dynamics (T (s′|s, a)), and possibly a reward function (R(s)). A policy is then

derived using this information. This approach is typically formulated within

the structure of reinforcement learning (see Section 7.2.2 and 7.5.2). Models

in this approach are further categorised into models with engineered reward

functions or models with learned reward functions depending on whether the

reward functions are manually defined by the user or learned from demon-

stration respectively. Examples of these models include the model that uses

Expectation-Maximization based reinforcement learning [118], the model that

incorporates future directed rewards [220] and the model that uses apprentice-

ship learning via inverse reinforcement learning [1].

3. Plans

In this approach, demonstration data, and often additional user intention in-

formation, is used to learn rules that associate a set of pre-conditions and

post-conditions with each action (L(preC, postC|a)), and possibly a sparsified

state dynamics model (T (s′|s, a)). A sequence of actions is then planned using

this information. Example of models in this approach have been proposed and

developed using several techniques, such as skill trees construction [117] and

behaviour network [156].
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ASMO’s observational learning mechanism has been implemented in a physical

robot and embedded in a cognitive architecture. It falls into an approach similar to

the system model approach, because it does not directly map the robot’s perceptions

to actions. Neither it does generate rules that associate conditions with each action.

However, unlike the system model approach, it uses demonstration data without

a reward function to determine a learning model (i.e. boost values of non-reflex

modules), whereas the system model approach uses demonstration data with a re-

ward function to determine a model of the world dynamics. Learning with a reward

function (i.e. based on the reward feedback from the environment) is classified as

an operant conditioning, which is different to an observational learning.
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Chapter 8

Evaluation

In Chapter 5, 6 and 7, I described ASMO’s attention, emotion and learning mecha-

nisms respectively. In this chapter, I evaluate ASMO and its mechanisms based on

the four criteria of cognitive architecture identified in Section 2.5, namely versatil-

ity, reactivity, robustness and extensibility. I start by describing the application of

ASMO in the RoboCup Soccer SPL standard benchmark problem in Section 8.1. I

follow by describing the application of ASMO in the Smokey robot companion prob-

lem in Section 8.2. Finally, I analyse ASMO and discuss how ASMO meets all of the

four criteria, which results in addressing the gaps identified in the research literature

in Section 8.3.

8.1 RoboCup Soccer SPL Standard Benchmark

Problem

As described in Section 1.1, the RoboCup Soccer SPL standard benchmark problem

is an excellent problem for evaluating the ASMO cognitive architecture, because of

the following main reasons:

1. New Grand Challenge

This problem has been viewed as a new grand challenge in artificial intelligence

after computer chess [114].

2. Common Benchmark Problem
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This problem provides a common benchmark where different cognitive archi-

tectures can be compared, examined and shared.

3. Regular Refinement

This problem is evaluated through international competitions where their rules

are refined annually to advance the state of the art of artificial intelligence.

4. Most Difficult Properties

This problem has the most difficult properties characterised by Russel and

Norvig [192, p. 44]: partially observable, non-deterministic, sequential, dy-

namic and continuous.

I have evaluated ASMO in this RoboCup Soccer SPL standard benchmark prob-

lem at the RoboCup SPL competition in 2010 (i.e. based on the rules in 2010)

[163]. I was part of the team (called WrightEagleUnleashed! ) that participated

the RoboCup SPL competition 2010. Our team was (and is) a joint team between

two institutes. It consisted of students and researchers in two physically separated

locations. The students had various backgrounds. They might or might not know

advanced programming.

In our team, we developed techniques independently as modules to achieve the

robot soccer task. We used ASMO to integrate all of the independently developed

techniques. We applied ASMO in each robot to govern the robot’s behaviours to

play soccer.

In the RoboCup SPL competition 2010, robots must achieve many goals simulta-

neously. However, for simplicity, I describe only five of these goals in this dissertation

(see Figure 8.1), as listed as follows:

1. Chase the ball

2. Defend an attack

3. Track the ball

4. Track the opponent’s goal

5. Get up autonomously when fall down
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Figure 8.1: RoboCup Soccer Scenario

The robots cannot pursue all the five goals simultaneously, because they have

limited resources (e.g. head, legs, CPU, RAM, etc). They cannot chase the ball

and defend an attack at the same time, because they have only a pair of legs. In

addition, they cannot track the ball and track the opponent’s goal at the same time

because they have only one head.

Instead, the robots have to decide between chasing the ball and defending an

attack. Chasing the ball may increase the chances of controlling the ball sooner.

However, it may also leave a defensive position unguarded or unattended, thus

opening an opportunity for the opponent to attack. In contrast, defending an attack

may decrease the chances of the opponent’s attack being successful. However, it may

also decrease the chances of controlling the ball because the opponent may get to

the ball sooner.

In addition, the robots have to decide between tracking the ball and tracking the

opponent’s goal. Tracking the ball may allow the robots to keep track of the location

of the ball, thus increase the confidence about the location of the ball. However, it

may cause the robots to not see the opponent’s goal, thus decreasing the confidence

about the location of the opponent’s goal. In contrast, tracking the opponent’s goal

may increase the confidence about the location of the opponent’s goal. However, it

may decrease the confidence about the location of the ball.
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In order to achieve the five goals above, six modules are created in ASMO (see

Figure 8.2):

1. The update world Ordinary Module

The update world module captures images and processes the images to recog-

nise objects in the environment, such as the ball, the field, field lines, the

opponent’s goal, the own team’s goal, opponent robots and same team robots.

It proposes an action to store the identified objects in ASMO’s memory and

update the model of the environment. This action is set to require a visual

perception virtual resource identified as ‘/asmo/perception/visual’. The up-

date world module is the only module that requires this resource. Thus, it will

always be selected in an attention competition.

The update world module mainly perceives objects in the environment and

updates the model of the environment, as described as follows:

• Update Confidence

The environment is partially observable. The robot player may not see

some objects in the environment. It has to remember the objects that it

has previously seen. The update world module increases the confidence

about the locations of objects when the objects are recognised in the

environment. It reduces the confidence when the objects are not seen for

a long time or not seen at the expected locations. The robot is said to

know or not know the location of the object if its confidence is high (i.e.

above or equal to a threshold) or low (i.e. below a threshold) respectively.

• Determine Nearest Opponent to Ball

The update world module will determine the location of the nearest op-

ponent to the ball when the ball is known and at least one opponent is

recognised (see Equation 8.1).

no = arg min
op
|b− op| (8.1)

Where:

no is the location of the nearest opponent

b is the location of the ball

op is the location of an opponent
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• Infer Opponent’s Goal or Own Team’s Goal

The update world module will infer the location of the opponent’s goal

from the location of the own team’s goal when only the own team’s goal

is known, and vice versa. The opponent’s goal and the own team’s goal

are opposite to each other in x-dimension.

2. The chase ball Ordinary Module

The chase ball module proposes an action only if the location of the ball is

known. It proposes to chase the ball by the fastest route if the ball is far from

where the robot can kick (i.e. the kicking distance). Otherwise, if the ball is

within the kicking distance, then the module proposes to align the robot with

the opponent’s goal in order to kick the ball effectively. Both of these actions

require control of the robot’s left leg and right leg (i.e. both leg resources).

3. The defend attack Ordinary Module

The defend attack module proposes an action to block the opponent’s attack-

ing angle and then approach the ball while blocking this angle (i.e. this action

is like chasing the ball by the safest route in terms of defending the attack).

It proposes this action only if the location of the own team’s goal (or the op-

ponent’s goal) is known. Note that the location of the own team’s goal can

be inferred from the location of the opponent’s goal, and vice versa. This

defend action requires control of both of the robot’s legs (i.e. both leg re-

sources). The defend attack module requires the same resources as required

by the chase ball module. Thus, ASMO will only select one among the two

modules in an attention competition.

4. The track ball Ordinary Module

The track ball module proposes an action to look at the ball if the location of

the ball is known. Otherwise, it determines the location to search for the ball

and proposes to look at this location if the location of the ball is unknown.

This looking action requires control of the robot’s head (i.e. head resource).

5. The track opponent goal Ordinary Module

The track opponent goal proposes an action to look at the location to search

for the opponent’s goal only if the location of the opponent’s goal or the own

team’s goal is unknown. This action requires control of the robot’s head (i.e.

head resource). The track opponent goal module requires the same resources
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as the track ball module. Thus, ASMO will only select one among the two

modules in an attention competition.

6. The get up Reflex Module

The get up module analyses the robot’s accelerometer to detect whether the

robot has fallen down. It proposes an action to get up if the robot has fallen

down. This action requires a control to the whole body (i.e. whole body’s

resources).

Recall that a reflex module is given a higher priority than an ordinary or a

supervisor module. Designing the get up module as a reflex module ensures

that the module and its proposed action (i.e. to get up) can use the whole

body’s resources immediately when necessary, without the need to compete

with other ordinary and supervisor modules. Its action will occupy the whole

body’s resources, so other modules cannot be selected. Performing this get up

action immediately is crucial, because a fallen robot is unable to play, walk or

look at objects and is potentially subject to removal from the game.

Note that modules do not always propose actions in every attention competition.

Instead, they propose actions only when necessary, depending on the situation in

the environment. For example, the chase ball module proposes an action only when

the location of the ball is known whereas the track ball module proposes an action

regardless of whether the location of the ball is known or not.

In the following subsections, I describe how ASMO’s attention mechanism man-

ages resources and select modules to achieve goals. I also describe the potential use

of ASMO’s emotion and learning mechanisms to bias and modify the selection of

modules.

8.1.1 ASMO’s Attention Mechanism

ASMO’s attention mechanism runs attention competitions to select modules (i.e.

perform decision making) and manage limited resources. It selects modules based

on their rankings. Recall from Section 5.4.1 that a reflex module is given a higher

ranking when competing against ordinary and supervisor modules. Otherwise, its

ranking is determined based on its priority when competing among each other. An

ordinary or a supervisor module has to compete for attention and its ranking is
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Figure 8.2: Pseudocode of Some Modules Used in RoboCup Soccer System

determined by its total attention level, which is determined by the sum of its boost

value and attention value. It determines its own attention value based on Equation

5.1, as also shown below:

AVt︸︷︷︸
next value

← αt AVt−1︸ ︷︷ ︸
accumulation

+ βt Ot︸ ︷︷ ︸
objective

+ γt St︸︷︷︸
subjective

In the RoboCup SPL competition 2010, ASMO’s attention mechanism is set

to run an attention competition at every image frame. While the get up module

does not have an attention value since it is a reflex module, the other five ordinary

modules update their own attention values, as described as follows:

1. update world

The update world module sets its attention value to a constant value of 100.0

(see Equation 8.2). This module is necessary to have a very high attention

value, because it has to perceive objects in the environment and update the

model of the environment in order to play soccer. However, its attention
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value actually does not affect the outcome of the winners selected by ASMO,

because it does not have a conflict of resources with other modules. It requires

a resource that is not required by other modules. Thus, it will still be selected

even if it has just an attention value of 0.0.

AVt(uw) = Ot(uw) = 100.0 (8.2)

Where:

αt = 0.0, βt = 1.0, γt = 0.0

AVt(uw) is the attention value of the update world module at time t

2. chase ball

The chase ball sets its attention value to simply a constant value when the

location of the ball is known (see Equation 8.3). This constant value means

that the robot player demands a constant attention to chase the ball. When

the location of the ball is not known, this module’s attention value will not

affect the attention competition, because this module does not propose an

action.

The constant value, c, is determined by developers depending on how strong

the opponent team is and whether the team wants to play more offensive or

defensive against the opponent team. For example, in a normal match, this

value is typically set to 75.0.

AVt(cb) = Ot(cb) = c (8.3)

Where:

αt = 0.0, βt = 1.0, γt = 0.0

AVt(cb) is the attention value of the chase ball module at time t

c is the constant demand of attention

3. defend attack

The defend attack module modifies its attention value based on the distance

of the ball to the own team’s goal and the distance of the ball to the nearest

opponent (see Equation 8.4). The closer the ball to the own team’s goal

or to the nearest opponent, the higher the attention value. This equation

will provide a maximal attention value when the ball is in the own team’s

goal (i.e. when an opponent has scored a goal). As a result, it will cause
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the defend attack module to propose a defend action although the attack has

already over. However, this behaviour was not a problem in the competition,

because referees would remove the ball and would restart the game when a

goal was scored.

Note that the distance of the ball to the own team’s goal, |b − owg|, can be

inferred from the distance of the ball to the opponent’s goal, since the location

of the opponent’s goal is the opposite of the own team’s goal. When the

location of the own team’s goal is not known, this module does not propose

an action and it does not update its attention value.

r =


|b− owg|+ |b− no|

2l
owg and no are known

|b− owg|
l

owg is known

AVt(da) = Ot(da) = 100.0(1− r)

(8.4)

Where:

αt = 0.0, βt = 1.0, γt = 0.0

|b− owg| ≤ l, |b− no| ≤ l

AVt(da) is the attention value of the defend attack module at time t

r is the ratio of the distance of the ball to the own team’s goal and the distance

of the ball to the nearest opponent

b is the location of the ball

owg is the location of the own team’s goal

no is the location of the nearest opponent

l is the length of the field

4. track ball

The track ball module increases its attention value linearly to search for the

ball when the location of the ball is unknown (see Equation 8.5). The longer

the robot does not know where the ball is, the higher the attention value

demanded by the robot in order to search for the ball. When the ball is found

or when the location of the ball is known, this module resets its attention value
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to zero (i.e. demands the least attention to look at the ball).

Ot(tb) =

1.0 Ball is not known

−AVt−1(tb) Otherwise

AVt(tb) = AVt−1(tb) +Ot(tb)

=

AVt−1(tb) + 1.0 Ball is not known

0.0 Otherwise

(8.5)

Where:

αt = 1.0, βt = 1.0, γt = 0.0

AVt(tb) is the attention value of the track ball module

5. track opponent goal

The track opponent goal module increases its attention value linearly to search

for the opponent’s goal when the location of the opponent’s goal or the own

team’s goal is unknown (see Equation 8.6). The longer the robot does not

know where the opponent’s goal is, the higher the attention value demanded

by the robot in order to search for the opponent’s goal. When the opponent’s

goal or own team’s goal is found, or when the location of the opponent’s goal or

own team’s goal is known, this module resets its attention value to zero. The

location of opponent’s goal can be inferred geometrically from the location of

own team’s goal and vice versa.

Ot(tog) =

1.0 Opponent’s goal is not known

−AVt−1(tog) Otherwise

AVt(tog) = AVt−1(tog) +Ot(tog)

=

AVt−1(tog) + 1.0 Opponent’s goal is not known

0.0 Otherwise

(8.6)

Where:

αt = 1.0, βt = 1.0, γt = 0.0

AVt(tog) is the attention value of the track opponent goal module

Both the track ball module and the track opponent goal may have the same

attention value since they update their attention values in the same way. This means
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that ASMO can choose one of them during an attention competition. However, the

track ball module is more preferred than the track opponent goal module, because

knowing the location of the ball gives the robot more choices than knowing the

location of the opponent’s goal. Knowing the location of the ball gives the robot a

choice between chasing the ball and defending an attack. In contrast, knowing the

location of the opponent’s goal (hence the own team’s goal) only gives the robot a

choice to defend an attack.

In order to ensure that the track ball module wins the attention competition

against the track opponent goal module, the boost value of the track ball module

is set to 1.0 while the boost values of other modules (i.e. update world, chase ball,

defend attack and track opponent goal) remain unchanged at an initial value of 0.0.

Note that a boost value is normally learned during the operation of ASMO. However,

in this case, it is simply set at the design stage to simulate the learning.

Figure 8.3 shows the result of the robot playing soccer. It shows that the

chase ball module’s total attention level was constant over time when the robot

knew the location of the ball. The defend attack module’s total attention level

was increased overall as the ball was getting closer to the own team’s goal and the

nearest opponent was getting nearer to the ball. It was eventually higher than the

chase ball module’s total total attention level and the robot decided to defend the

attack rather than to chase the ball. The track ball and track opponent module’s

total attention levels were increased to a maximum value when the robot could not

find the ball and its vision to the opponent’s goal was blocked by referees and other

robots. The track opponent goal module’s total attention level was bumping (i.e.

increasing and decreasing) repeatedly as the robot demanded attention to look at

the opponent’s goal when the confidence about the location of the opponent’s goal

was low and to look back at the ball when the confidence was high repeatedly.

8.1.2 ASMO’s Emotion and Learning Mechanisms

Our team did not use ASMO’s emotion and learning mechanisms in the RoboCup

Soccer SPL competition, because we did not have much time to test these mech-

anisms. Thus, the use of these mechanisms in the RoboCup Soccer SPL problem

remains future work (see Section 9.2). In the following, I speculate how these mech-

anisms will be used for this problem:
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Figure 8.3: Attentional Decision Making in The RoboCup Soccer SPL Competition

2010

• Aggressive Attitude

ASMO’s emotion mechanism can potentially be used to build a more aggressive

robot player by modifying the chase ball module’s subjective rate and weight

(i.e. γt and St) to a non-zero positive value. A higher subjective weight results

in a higher attention value demanded by the chase ball module. It increases

the chance of the module winning the attention competition, which increases

the chance of performing the chase action. As a result, the player is more

likely to chase the ball and thus becomes more aggressive.

• Defensive Attitude

ASMO’s emotion mechanism can potentially be used to build a more defen-

sive robot player by modifying the defend attack module’s subjective rate and

weight (i.e. γt and St) to a non-zero positive value. A higher subjective weight

results in a higher attention value demanded by the defend attack module. It

increases the chance of the module winning the attention competition, which

increases the chance of performing the defend action. As a result, the player

is more likely to defend an attack and thus becomes more defensive.

• Association Between Ball and Opponents

ASMO’s classical conditioning learning mechanism can potentially be used to

learn the association between the area of the ball and the direction of oppo-
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nents. This association is used to chase the ball in the direction of where most

opponents are going despite the ball is not seen. ASMO’s classical condition-

ing mechanism will simulate the perception of the ball as if the ball is seen.

It will indirectly cause the chase ball module to propose the chase action even

though the ball is not actually seen.

• Effective Path to Chase the Ball

ASMO’s operant conditioning learning mechanism can potentially be used to

find most effective paths to chase the ball. Modules can use various tech-

niques to propose different paths to chase the ball, such as the shortest path,

the fastest path and the path that has the least opponents. ASMO’s operant

conditioning mechanism will increase or decrease the boost values of modules

based on whether the chase action through a path is successful or not respec-

tively. The more frequent the chase action through a path is successful, the

higher the chance that the path is effective.

Section 8.3 further discusses the evaluation of ASMO in the RoboCup problem.

In the next section, I will first explain the evaluation of ASMO in the Smokey Robot

Companion problem.

8.2 Smokey Robot Companion Problem

In addition to the RoboCup soccer SPL standard benchmark problem, ASMO is

evaluated in the Smokey robot companion project to demonstrate its application

in another domain using a different type of robot. This project, created by the

University of Technology Sydney, aims to bring a bear-like robot (called Smokey)

to ‘life’ and explores the meaning of life by interacting socially with people. It

has potential applications in nursing, healthcare and entertainment industries by

providing companionship to people with disabilities, people with autism, the elderly

and children.

Unlike the soccer problem, the robot companion problem is very subjective.

There is no single correct way of accompanying a person and, even if there is, it

would vary from person-to-person according to their unique personalities.

ASMO is evaluated in an experiment as part of the project. In the experiment,

Smokey has to accompany or entertain a person (i.e. the target user) while simulta-
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neously regulating the person’s rest (see Figure 8.4). Smokey can play either a red

ball game or drums to accompany the user. It can also go to sleep to encourage the

user to rest (since it will not interact with the user when it is sleeping). When play-

ing, Smokey will also pay attention to any motion in the environment from people

other than the user.

Figure 8.4: Smokey Robot Companion Experiment

In addition, Smokey can receive a request from the user through a graphical user

interface to either play the red ball game, play the drums or go to sleep. Smokey

will consider this request, but does not necessarily have to perform this request. As

a companion robot, Smokey is designed to have an emotion towards the colour red

and to like being praised. The more frequent Smokey receives the same request from

a user, the more the user wants to see Smokey performing the request, the higher

Smokey will believe that it will be praised for performing that request.

Furthermore, Smokey should adapt to its environment and should be able to

improve its decisions over time in four situations :

1. Improving Object Tracking

Paying attention to the motions of people other than the target user can cause

Smokey to lose track of the ball or the drums. Smokey should be able to focus

on significant motions and ignore insignificant motions in order to improve its

object tracking.

2. Adapting to Feedback
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When interacting with a user, Smokey can receive feedback from the user after

it performs an action. The feedback indicates whether the user likes Smokey’s

behaviour or not. Smokey should be able to adapt to the user’s feedback. It

should improve its decisions to suit the user’s personality based on the user’s

feedback.

3. Predicting Requests

Smokey should be able to predict the request that the user tends to ask and to

perform this request before the user asks. This prediction can make Smokey

more personalised to the user, which results in better companionship.

4. Taking Advantage of Training Data

Smokey should be able to make and improve its decisions based on training or

labelled data, if provided by developers. Training data can be used to improve

performance, especially when the model about the world is unknown.

In the experiment, improving object tracking, adapting to feedback, predict-

ing requests and taking advantage of training data were achieved through ASMO’s

habituation/sensitisation, operant conditioning, classical conditioning and observa-

tional learning mechanisms respectively.

ASMO is used to govern Smokey’s behaviours in the experiment. In ASMO,

modules are created to use various techniques in order to solve Smokey’s tasks.

Note that ASMO does not put restrictions on how modules should be created and

organised as well as how techniques should be used in the modules.

In this experiment, each module was simply created to handle each of Smokey’s

behaviours, as described as follows:

1. The attend motion Ordinary Module

The attend motion module proposes an action when Smokey is not sleeping to

look at the fastest motion of people other than the user in the environment. It

does not propose any action if there is no motion detected in the environment

or if Smokey is sleeping. It requires control of Smokey’s head to look at the

motion (i.e. head resource).

2. The play ball Ordinary Module
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The play ball module proposes an action when Smokey is not sleeping to track

the ball or search for the ball depending on whether the location of the ball

is known or not respectively. It does not propose any action if Smokey is

sleeping. It requires control of Smokey’s head to track or to search for the ball

(i.e. head resource).

3. The play drums Ordinary Module

The play drums module proposes an action when Smokey is not sleeping to

search for the drums when the location of the drums is unknown, to track the

drums when the location of the drums is known but not within reach, and to

beat the drums when the location of the drums is known and within reach.

It does not propose any action if Smokey is sleeping. It requires a control of

only Smokey’s head to track and to search for the drums (i.e. head resource).

Meanwhile, it requires a control of both Smokey’s head and arms to beat the

drums relative to the position of the drums (i.e. head, left arm and right arm

resources).

4. The go sleep Ordinary Module

The go sleep module proposes an action to go to sleep when Smokey is not

sleeping and to wake up after Smokey has enough sleep. It requires control of

Smokey’s whole body (i.e. whole body’s resources).

5. The attend request Supervisor Module

The attend request module proposes an action to increase the boost value of

the play ball, play drums or go sleep module when Smokey is not sleeping and

Smokey receives a request from the user to play the red ball game, play the

drums or go to sleep respectively. It increases these boost values proportionally

to the probability of the request (see Equation 8.7). The probability is 1.0 when

a request is received through a graphical user interface. This module does not

require any resource. Thus, it will always be selected when it participates in

the attention competition.

BV (pb) = P (b)× 20.0

BV (pd) = P (d)× 20.0

BV (gs) = P (s)× 20.0

(8.7)
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Where:

BV (pb) is the boost value of the play ball module

BV (pd) is the boost value of the play drums module

BV (gs) is the boost value of the go sleep module

P (b) is the probability that the request to play ball is received

P (d) is the probability that the request to play drums is received

P (s) is the probability that the request to go to sleep is received

The attend request supervisor module influences the boost value of an ordinary

module, instead of the attention value of an ordinary module. Recall from

Section 5.4.1 that a supervisor module can influence the attention value and

boost value of an ordinary module to favour or disfavour the actions proposed

by the ordinary module. Influencing the boost value is intended to create a

long-term bias in the ordinary module, while influencing the attention value

is intended to create a short-term bias in the ordinary module.

In addition to Smokey’s actuators, the five modules above actually also require

computing resources, such as memory and hard disk. However, in this experiment,

these resources are assumed to be negligible. Thus, modules do not compete for

these resources.

In the following subsections, I demonstrate the application of ASMO’s attention,

emotion and learning mechanisms in this Smokey robot companion problem.

8.2.1 ASMO’s Attention Mechanism

ASMO’s attention mechanism runs attention competitions to select modules (i.e.

perform decision making) and manage resources in Smokey. It selects modules based

on their rankings. Recall from Section 5.4.1 that a reflex module is given a higher

ranking when competing against ordinary and supervisor modules. Otherwise, its

ranking is determined based on its priority when competing among each other. An

ordinary or a supervisor module has to compete for attention and its ranking is

determined by its total attention level, which is determined by the sum of its boost

value and attention value. It determines its own attention value based on Equation

5.1 as also shown below:

AVt︸︷︷︸
next value

← αt AVt−1︸ ︷︷ ︸
accumulation

+ βt Ot︸ ︷︷ ︸
objective

+ γt St︸︷︷︸
subjective
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In the experiment, the five modules determine their attention values as described

as follows:

1. The attend motion Module

The attend motion module determines its attention value based on only its

objective weight (see Equation 8.8). It uses a simple connection-based neural

network to determine its objective weight (thus its attention value), which is

based on the speed and intensity of the fastest motion in the environment (see

Figure 8.5). The neural network is trained such that the faster the motion

that has a medium to high average of intensity, the more attention demanded

by the module in order to look at the motion, the higher the attention value.

AVt(am) = Ot(am) = NN(speed, average intensity) (8.8)

Where:

am is the attend motion module

αt(am) = 0.0, βt(am) = 1.0, γt(am) = 0.0

AVt(am) is the attention value of the attend motion module

NN(speed, average intensity) is the output of the neural network given the

speed and average intensity

Figure 8.5: Neural Network Used by The attend motion Module
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2. The play ball Module

The play ball module determines its attention value based on the user’s prefer-

ence of playing ball (see Equation 8.9). Its subjective weight, St(pb), is initially

set to zero and will be determined by ASMO’s emotion mechanism in the next

subsection. The user’s preference is determined by using a priority-based or

hierarchical-based approach (see Table 8.1).

AVt(pb) = Ot(pb) =

60.0 if play ball is more preferred

50.0 Otherwise
(8.9)

Where:

pb is the play ball module

αt(pb) = 0.0, βt(pb) = 1.0, γt(pb) = 1.0, St(pb) = 0.0

AVt(pb) is the attention value of the play ball module

Name Condition Priority

Anshar Morning Play Ball = Play Drums

Afternoon Play Ball < Play Drums

Evening Play Ball > Play Drums

Ben Before Meal Play Ball > Play Drums

After Meal Play Ball < Play Drums

Evelyn Before Exercise Play Ball < Play Drums

After Exercise Play Ball > Play Drums

Michelle All times Play Ball < Play Drums

Xun After Meal Play Ball > Play Drums

Table 8.1: Users’ Preferences of Playing Ball and Drums

3. The play drums Module

The play drums module determines its attention value based on the user’s

preference of playing drums (see Equation 8.10). Its subjective weight, St(pd),

is initially set to zero and will be determined by ASMO’s emotion mechanism

in the next subsection. The user’s preference is determined by using a priority-
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based or hierarchical-based approach (see Table 8.1).

AVt(pd) = Ot(pd) =

60.0 if play drums is more preferred

50.0 Otherwise
(8.10)

Where:

pd is the play drums module

αt(pd) = 0.0, βt(pd) = 1.0, γt(pd) = 1.0, St(pd) = 0.0

AVt(pd) is the attention value of the play drums module

4. The go sleep Module

The go sleep module determines its attention value based on its previously

accumulated attention value and its objective weight (see Equation 8.11). Its

accumulated attention value, AVt−1(gs), is initially set to 0.0. Its objective

weight, Ot(gs), is determined by three operators using a goal-based action

description, as described as follows:

AVt(gs) = AVt−1(gs) +Ot(gs) (8.11)

Where:

gs is the go sleep module

αt(gs) = 1.0, βt(gs) = 1.0, γt(gs) = 0.0

AVt(gs) is the attention value of the go sleep module

(a) Increase Operator

The increase operator sets the objective weight to a constant value in

order to increase the attention value linearly when the following pre-

conditions are true:

¬ReachLimit(AV (gs)) ∧ ¬Winner(gs)

The ReachLimit(AV (gs)) proposition is true if the attention value of

the go sleep module is more than or equal to the maximum value of the

module’s ranking (i.e. AV (gs) ≥ 100.0).

The Winner(gs) proposition is true if the go sleep module wins the at-

tention competition.
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(b) Maintain Operator

The maintain operator sets the objective weight to 0.0 in order to main-

tain the attention value when the following pre-conditions are true:

Winner(gs) ∧ ¬enough sleep

The enough sleep proposition is true if the duration of the sleep is greater

than or equal to a defined period (i.e. Time(sleep) ≥ Tsleep).

(c) Clear Operator

The clear operator sets the objective weight to the previous attention

value (i.e. Ot(gs) = −AVt−1(gs)) in order to clear the attention value to

0.0 when the following pre-condition is true:

enough sleep

The go sleep module will repetitively select operators to modify its objec-

tive weight in order for Smokey to have a regular sleep (i.e. to have the

enough sleep proposition true and false regularly). An operator can only be

selected when its pre-conditions are satisfied.

5. The attend request Module

The attend request module sets its attention value to a constant value of 10.0

(see Equation 8.12). This value does not hold any significant meaning. It does

not have to be 10.0. It can be any value between 0.0 to 100.0. The reason

is because the attend request module does not need to compete for attention

to gain access to resources since this module does not require any resource.

Thus, this module will always be selected regardless of its attention value.

AVt(ar) = Ot(ar) = 10.0 (8.12)

Where:

ar is the attend request module

αt(ar) = 0.0, βt(ar) = 1.0, γt(ar) = 0.0

AVt(ar) is the attention value of the attend request module

Figure 8.6 shows the result of the experiment without an emotional subjective

bias and learning. It shows every module’s total attention level (i.e. the sum of the

attention value and the boost value) when Smokey was interacting with a user that
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prefers Smokey to play ball than to play drums. It shows that the total attention

level of the attend motion module was fluctuating based on the speed and average

intensity of the motion. When it was higher than other modules’ total attention

levels, Smokey chose to attend to the motion rather than to search for the ball or

the drums. The total attention levels of the play ball, play drums and attend request

modules were constant. The total attention level of the play ball module was higher

than the attention value of the play drums module, because the user prefers Smokey

to play ball than to play drums. The total attention level of the go sleep module

increased linearly until it exceeded other modules’ total attention levels and then it

reset back to zero after Smokey had enough sleep.

Figure 8.6: Attentional Decision Making in Smokey

8.2.2 ASMO’s Emotion Mechanism

ASMO’s emotion mechanism biases the selection of modules (i.e. decision making)

in Smokey. In the experiment, Smokey is designed to have emotions toward the

colour red and toward praise. These emotions are modelled in ASMO as nodes in a

causal Bayesian network (see Figure 8.7):

1. Action Node

The action node represents Smokey’s actions that may affect its emotions.

2. Red Sensation and Praise Nodes
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The red sensation and praise nodes represent the biological and cognitive

factors that cause the emotions respectively.

3. Robot’s Happiness and User’s Happiness Nodes

The robot’s happiness and user’s happiness nodes represent the happiness of

Smokey and the happiness of the user respectively.

4. Positive Valence, Negative Valence and Arousal Nodes

The positive valence, negative valence and arousal nodes represent the dimen-

sions of the emotions.

Figure 8.7: Causal Bayesian Network Used in Smokey

The emotion towards the colour red is an innate emotion and indicated by a

biological node, because there is no an explicit reason for Smokey to like the colour

red, apart from the design decisions of its developers (i.e. inherentance). In con-

trast, the emotion towards praise is a learned emotion and indicated by a cognitive

node, because Smokey can learn that being praised is relevant to, and impacts, the
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performance of accompanying the user. In this experiment, however, it is assumed

that the desire to be praised is already learned.

ASMO’s emotion mechanism is implemented in a supervisor module called emo-

tion mechanism. This module uses the causal Bayesian network described above to

predict Smokey’s and the user’s happy feelings when Smokey plays the ball or the

drums (i.e. based on Equation 6.1). It will then determine the subjective weights

of the play ball and play drums modules (i.e. bias the modules) according to the

expected desirability of these feelings (i.e. based on Equation 6.2).

Table 8.2 shows the predictions of Smokey’s happy and the user’s happy feelings

and also the subjective weights of the play ball and play drums modules for different

probabilities of receiving praise. The higher the probability of receiving praise,

the higher the subjective weight of the play drums module. Both desirabilities of

Smokey’s happy and the user’s happy are set to 20.0. Symbols used in the table are

as described as follows:

P (pr|pda) is the probability of receiving praise given Smokey plays the drums

P (rh|pba) is the probability of Smokey is happy given Smokey plays the ball

P (uh|pba) is the probability of the user is happy given Smokey plays the ball

P (rh|pda) is the probability of Smokey is happy given Smokey plays the drums

P (uh|pda) is the probability of the user is happy given Smokey plays the drums

St(pb) is the subjective weight of the play ball module at time t

St(pd) is the subjective weight of the play drums module at time t

P (pr|pda) Play Ball Play Drums

P (rh|pba) P (uh|pba) S(pb) P (rh|pda) P (uh|pda) S(pd)

0.5 0.696 0.38 10.76 0.435 0.5 9.35

0.55 0.696 0.38 10.76 0.4585 0.52 9.785

0.6 0.696 0.38 10.76 0.482 0.54 10.22

0.65 0.696 0.38 10.76 0.5055 0.56 10.655

0.7 0.696 0.38 10.76 0.529 0.58 11.09

0.75 0.696 0.38 10.76 0.5525 0.6 11.525

0.8 0.696 0.38 10.76 0.576 0.62 11.96

Table 8.2: The Subjective Weights of the play ball and play drums Modules

Figure 8.8 shows the results of the two experiments without and with ASMO’s

emotion mechanism respectively. In the experiment, the user’s preferences of Smokey
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playing the ball and the drums were equal and Smokey received requests to play

drums. These requests to play drums increased the probability of receiving praise

given that Smokey plays the drums (i.e. P (pr|pda)).

Without ASMO’s emotion mechanism, both the play ball and play drums mod-

ules had an equal total attention level, since the user’s preference is equal (see Figure

8.8a). Thus, Smokey relied on a conflict resolution strategy (see Section 5.4.4) to

choose between the two modules.

With ASMO’s emotion mechanism, the play ball and play drums modules’ total

attention levels were increased by their subjective weights (see Figure 8.8b). The

play drum module’s subjective weight was increased as the probability of receiving

praise was increased. Over time, the total attention level of the play drums module

was slightly higher than the total attention level of the play ball module. Thus,

Smokey chose to play drums instead of to play ball when interacting with the user.

In addition, Smokey’s sleep time was shifted because the go sleep module took a

longer time to win the attention competition against the play ball and play drums

modules.

8.2.3 ASMO’s Habituation and Sensitisation Mechanisms

ASMO’s habituation and sensitisation mechanisms learn to modify the boost val-

ues of non-reflex modules based on the significance of the modules. Recall from

Section 7.4.1 that these mechanisms are implemented in a supervisor module and

they modify the boost value of any non-reflex module that has defined a significance

function.

In the experiment, ASMO’s habituation and sensitisation mechanisms were en-

abled to learn to focus on significant motion and to ignore insignificant motion in

order to improve object tracking (described on Page 178). Since attending to mo-

tion was handled by the attend motion module, ASMO had to learn to modify the

boost value of the attend motion module in order to focus and ignore motion appro-

priately. Thus, the attend motion module was added with a significance function

required for habituation and sensitisation learning.

The significance function of the attend motion module measures the significance

of paying attention to motion based on the distance between the centre of the ball

and the bounding sphere of the motion (see Equation 8.13). It returns a positive
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(a) Without Emotional Subjective Bias

(b) With Emotional Subjective Bias

Figure 8.8: Experiments of Emotional Subjective Bias in Smokey
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value for a distance less than or equal to the significant boundary threshold b, a

negative value for a distance greater than b but within the space threshold, and a

minimum negative value of -1.0 for a distance beyond the space threshold. Motion

that occurs closer to the ball (i.e. the object of interest) has higher significance than

motion that occurs far from the ball since Smokey’s goal is to track the ball when

it is not sleeping.

significance(attend motion) =


b−d
b

if d ≤ b

−d
l

if d > b, d < l

−1.0 if d > l

(8.13)

Where:

b < l

−1.0 ≤ significance(attend motion) ≥ 1.0

d is the distance between the centre of the ball and the bounding sphere of the

motion

b is the threshold of the significant boundary from the ball

l is the space threshold

ASMO’s habituation and sensitisation mechanisms modify the boost value of

the attend motion module directly. ASMO’s habituation mechanism evaluates the

significance of the attend motion module when the module wins the attention com-

petition and decrease the module’s boost value if the significance is negative (i.e.

not significant). In contrast, ASMO’s sensitisation mechanism evaluates the signif-

icance of the attend motion module when the module does not win the attention

competition and increase the module’s boost value if the significance is positive (i.e.

significant).

Figure 8.9 shows the results of the experiments with and without ASMO’s habit-

uation and sensitisation learning mechanisms for two situations. The first situation

was when people other than the target user were moving fast but far from the ball,

whereas the second situation was when they were moving slowly but near to the

ball. The attention value of the attend motion (thus the response to the motion)

changed based on the speed of the motion.

Without ASMO’s habituation and sensitisation learning mechanisms (i.e. with-

out accommodating the boost value of the attend motion module), Smokey tended

to look at the fast motion although that motion was far from the ball (see Figure
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(a) Faster & Far Motion, Without Habituation Learning

(b) Faster & Far Motion, With Habituation Learning

Figure 8.9: Habituation and Sensitisation Learning Experiment in Smokey
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(c) Slower & Near Motion, Without Sensitisation Learning

(d) Slower & Near Motion, With Sensitisation Learning

Figure 8.9: Experiments of Habituation and Sensitisation Learning in Smokey
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8.9a). In addition, Smokey also tended to ignore the slow motion although that

motion was near to the ball (see Figure 8.9c). Any fast motion could easily dis-

tract Smokey from tracking the ball and any slow motion could easily be ignored by

Smokey.

With ASMO’s habituation and sensitisation learning mechanisms (i.e. accom-

modating the boost value of the attend motion module), Smokey tended to ignore

the motion far from the ball although that motion was fast (see Figure 8.9b). In

addition, Smokey also tended to focus on the motion near to the ball although that

motion was slow (see Figure 8.9d). Any fast motion did not easily distract Smokey

from tracking the ball, and any slow motion was not easily ignored by Smokey.

Thus, Smokey was habituated and sensitised to motion that was far from, and near

to, the ball respectively.

8.2.4 ASMO’s Operant Conditioning Mechanism

ASMO’s operant conditioning mechanism learns to modify the boost values of non-

reflex modules based on feedback received explicitly from the environment. Recall

from Section 7.4.2 that it is implemented in a supervisor module and it modifies the

boost value of any non-reflex module that has defined at least a reward function (to

capture the feedback in the environment).

In the experiment, ASMO’s operant conditioning mechanism was enabled to

improve Smokey’s decisions based on the user’s feedback. It used customised policy

and reward functions and the default termination function. The customised policy

and reward functions are as described as follows:

• Policy Function

The policy function picks a module as the trial candidate for the winner of the

attention competition based on Algorithm 8.1, as described as follows:

1. It picks the go sleep module if the go sleep module’s total attention level

is higher than the total attention levels of other modules.

2. It picks either attend motion, play ball or play drums module randomly

if the go sleep module’s total attention level is less than or equal to the

total attention levels of other modules and a motion is detected.
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3. It picks either play ball or play drums module randomly if the go sleep

module’s total attention level is less than or equal to the total attention

levels of other modules and a motion is not detected.

1 Function policy():

2 am ← module(attend motion)

3 pb ← module(play ball)

4 pd ← module(play drums)

5 gs ← module(go sleep)

6 if (total attention level(gs) > total attention level(am)) or

(total attention level(gs) > total attention level(pb)) or

(total attention level(gs) > total attention level(pd)) then

7 candidate ← gs

8 else if motion is detected then

9 candidate ← random(am, pb, pd)

10 else

11 candidate ← random(pb, pd)

12 end

13 end

Algorithm 8.1: Policy Function Used in Smokey

• Reward Function

All of the four ordinary modules (i.e. attend motion, play ball, play drums

and go sleep modules) used the same reward function. The user was given

two buttons to express his/her feedback, namely the like and dislike buttons.

The reward function returned 2.0, -2.0 or 0.0 when the user pressed the like

button, pressed the dislike button or did not press any button respectively.

As described in Section 7.4, ASMO’s operant conditioning mechanism performs

the two following actions to modify a candidate’s boost value:

1. Reinforce The Candidate

ASMO’s operant conditioning mechanism will increase a candidate’s boost

value (i.e. reinforce) if the candidate is not supposed to win, but receives a

positive feedback.
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2. Punish The Candidate

ASMO’s operant conditioning mechanism will decrease the candidate’s boost

value (i.e. punish) if the candidate is supposed to win, but receives a negative

feedback.

Figure 8.10 shows the results of the two experiments without and with ASMO’s

operant conditioning learning mechanism respectively. In the experiments, the user

punished Smokey for playing ball and reinforced Smokey for playing drums.

Without ASMO’s operant conditioning mechanism, the total attention level of

the play ball module was higher than the total attention level of the play drums

module (see Figure 8.10a). Thus, Smokey chose to play ball instead of to play

drums when interacting with the user.

With ASMO’s operant conditioning mechanism, both play ball and play drums

modules’ total attention levels were decreased and increased by their boost values

as the user punished and reinforced Smokey respectively (see Figure 8.10b). As a

result, the total attention level of the play drums module was higher than the total

attention level of the play ball module. Thus, Smokey chose to play drums instead

of to play ball when interacting with the user.

8.2.5 ASMO’s Classical Conditioning Mechanism

ASMO’s classical conditioning mechanism learns to create associations between

stimuli. Recall from Section 7.4.3 that it is implemented in a supervisor module,

but it does not modify the boost value of a non-reflex module directly. Instead, it

simulates the appearance of stimuli although they are not physically present, so that

modules propose actions based on the simulated stimuli.

In the experiment, ASMO’s classical conditioning mechanism was enabled to

predict and perform users’ requests without being asked whenever Smokey met

the users. It learned the associations between the appearance of a user and his/her

requests. It predicted a user’s most likely request and inserted this predicted request

into ASMO’s memory every time the user appeared. It simulated the user’s request

although the user did not ask. As a result, it triggered the play ball, play drums

and go sleep modules to propose actions as if the user made an actual request.

Table 8.3 shows the requests received during the interaction with five users where
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(a) Without Operant Conditioning Learning

(b) With Operant Conditioning Learning

Figure 8.10: Experiments of Operant Conditioning Learning in Smokey
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-, b, d and s denote no request, the play ball request, the play drums request and the

go to sleep request respectively. Table 8.4 shows the probability of each request that

might be asked by each user given the user is seen. These probabilities were calcu-

lated based on the users’ requests in Table 8.3 using the expectation maximization

algorithm and Laplace smoothing with k of 1.0.

User Requests

Anshar b,s,d,d

Ben d,d,d,d,d

Evelyn -,-,-

Michelle b

Xun s,d,b,-,s

Table 8.3: Users’ Requests

User Probability of Request Given User is Seen

Play Ball Play Drums Go to Sleep No Request

Anshar 0.25 0.375 0.25 0.125

Ben 0.1111 0.6666 0.1111 0.1111

Evelyn 0.1429 0.1429 0.1429 0.5714

Michelle 0.4 0.2 0.2 0.2

Xun 0.2222 0.2222 0.3333 0.2222

Table 8.4: Probability of Requests Asked by Users

Figure 8.11 shows the results of the two experiments without and with ASMO’s

classical conditioning learning mechanism respectively. In the experiments, the first

user preferred for Smokey to play ball rather than to play drums and the second

user replaced the first user to interact with Smokey.

Without ASMO’s classical conditioning mechanism, the total attention levels of

the play ball and play drums modules did not change when Smokey saw the second

user (see Figure 8.11a). Thus, Smokey still chose to play ball instead of to play

drums when interacting with the second user.

With ASMO’s classical conditioning mechanism, the play ball and play drums

modules’ total attention levels were increased by their boost values when Smokey

saw the second user (see Figure 8.11b). The total attention level of the play drums
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(a) Without Classical Conditioning Learning

(b) With Classical Conditioning Learning

Figure 8.11: Experiments of Classical Conditioning Learning in Smokey



200 Chapter 8. Evaluation

module was increased slightly higher than the total attention level of the play ball

module. Thus, Smokey chose to play drums instead of to play ball when interacting

with the second user.

8.2.6 ASMO’s Observational Learning Mechanism

ASMO’s observational learning mechanism learns to modify the boost values of

non-reflex modules based on labelled data. Recall from Section 7.4.4 that it is

implemented in a supervisor module and it takes inputs represented by variables

defined in ASMO’s memory.

In the experiment, ASMO’s observational learning mechanism was enabled to

improve Smokey’s behaviours based on how the user taught Smokey to behave. It

used a neural network, which was learned based on situations in the environment

to modify the boost values of attend motion, play ball, play drums and go sleep

modules (see Figure 8.12).

Figure 8.12: The Neural Network of The Observational Learning in Smokey Robot

Companion

Figure 8.13 shows the results of the two experiments without and with ASMO’s

observational learning mechanism respectively. It shows that the modules’ total

attention levels without ASMO’s observational learning mechanism were similar to

the total attention levels determined with ASMO’s observational learning mecha-
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nism. The total attention level of the attend motion module was different because it

changed based on the motion in the environment (i.e. different motions during the

two experiments). ASMO’s observational learning mechanism had achieved similar

behaviour without requiring the developers to hard-code the parameters.

8.3 Analysis and Discussion

The evaluations of ASMO in the RoboCup Soccer SPL standard benchmark and the

Smokey robot companion problems have demonstrated that ASMO meets the aims

of this dissertation. They validated my hypothesis about attention and emergence of

techniques. They also demonstrated ASMO’s capabilities to address the four issues

identified in the research literature (see Section 3.5) and demonstrated ASMO’s

natural programming benefit. I have discussed the comparative analysis of existing

architectures in Section 3.5. In the following, I describe the analysis of ASMO

cognitive architecture:

1. Complex and intelligent behaviours based on emergence

Robots’ complex and intelligent behaviours for playing soccer and accompa-

nying users emerged from the interaction of simple modules (e.g. the modules

simply demand constant or linear attention).

2. Validation of theories of attention and emergence

Robots are capable of achieving complex soccer and companion tasks based

on attention and the emergence of techniques. The evaluations validate the

theories of attention and emergence.

3. Resource management

ASMO’s attention mechanism runs attention competitions to select modules

and to control or manage limited resources explicitly and automatically. It

selects modules based on their rankings and required resources. Developers do

not need to manage the resources manually. Instead, they just need to specify

the resources required by each module. ASMO will manage the resources

automatically by ensuring that modules and their proposed actions can only

be selected if their required resources are available.
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(a) Without Observational Learning

(b) With Observational Learning

Figure 8.13: Experiments of Observational Learning in Smokey
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In the RoboCup Soccer SPL standard benchmark problem, ASMO automati-

cally ensured that the chase ball and defend attack modules were not selected

at the same time. ASMO also ensured that track ball and track opponent goal

modules were not selected at the same time.

In the Smokey robot companion problem, ASMO automatically ensured that

at most one of the attend motion, play ball, play drums and go sleep modules

was selected at any given time.

4. Integration of independently developed techniques

ASMO’s attention mechanism and its black-box design allow a diversity of

any kind of independently developed technique to be integrated as a module

without the need to know its internal algorithm, representation or mechanism.

In the RoboCup SPL competition 2010, students and team members were

required to individually develop techniques. ASMO allowed their techniques

to be integrated easily as modules.

In the Smokey robot companion problem, the attend motion module used a

neural network representation. The play ball and play drums modules used

a priority-based or hierarchical-based approach. The go sleep module used a

logic representation. The attend request module used a simple event-driven

approach. Despite having modules that used different representations and ap-

proaches, ASMO could still integrate and orchestrate this diversity of modules

through a common currency of attention.

5. Adaptation to design changes

ASMO’s attention mechanism and its ranking system based on an atten-

tion value and a boost value enable various techniques (i.e. modules) to be

(re)integrated or (re)structured on the fly with considerably less time and ef-

fort. The effects of techniques can be increased or eliminated on the fly by

changing the attention values or boost values.

In the RoboCup SPL competition 2010, changes in game strategies were

achieved simply by changing the mix of the attention and/or boost values

of modules as the means to improve system performance. In addition, in less

than a day, students and team members were able to modify the system con-

figured for soccer matches into a system for technical challenges (i.e. with

different purposes and requirements).
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In the development of Smokey robot companion system, techniques (i.e. mod-

ules) were tested simply by changing their attention and/or boost values.

In addition, the go sleep module was created by modifying or adapting the

track ball module in the robot soccer system into a goal-based approach. This

modification or adaptation was achieved in considerably less time and effort

than creating the go sleep module from scratch.

6. Support to robot operation

ASMO supports the following necessary capabilities required by robots:

(a) Fast Response

Since ASMO runs modules independently and concurrently, modules can

propose actions as soon as they are ready without having to wait for other

modules. In addition, attention competitions guarantee that modules will

be selected at the specified time or conditions. Both the soccer robot

and Smokey have demonstrated fast responses when playing soccer and

accompanying users.

(b) Simultaneous Multiple Goals

Each module in ASMO can pursue different goals. ASMO’s attention

mechanism selects multiple modules simultaneously in every attention

competition to perform their proposed actions in order to simultaneously

achieve multiple goals.

In the RoboCup Soccer SPL standard benchmark problem, each module

pursued a different goal. ASMO selected multiple modules simultane-

ously to govern the robot’s head and legs. For example, ASMO allowed

the soccer robot to simultaneously chase the ball while searching for the

opponent’s goal.

The Smokey robot companion problem was not a good example to demon-

strate the capability to achieve multiple goals, because all modules hap-

pened to require the same resource of Smokey’s head. However, if more

modules that require different resources are developed, then ASMO can

select them concurrently to achieve simultaneous multiple goals.

(c) Fault tolerant

ASMO does not have a centralised perception system, reasoner, planner

or executor. Instead, ASMO’s modules are distributed and each mod-

ule can sense the environment, process information, reason the situation,
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make plans and propose actions. ASMO’s independent and distributed

modules allow them to continue to sense, process, reason, plan and pro-

pose despite the failure of other modules (i.e. robots will not fail but keep

operating and performing tasks).

In the RoboCup Soccer SPL standard benchmark problem, the soccer

robots could still chase the ball based on the chase ball module when the

defend attack module has failed, and vice versa.

In the Smokey robot companion problem, Smokey could still play the ball

based on the play ball module when the play drums module has failed,

and vice versa.

(d) Redundant

Since ASMO’s modules are independent and distributed, ASMO can have

a redundancy system simply by duplicating modules without the need to

restructure its design. In addition to a duplication, ASMO can have

different modules achieving the same tasks. Two or more modules can

have different types of sensing, reasoning, planning and action proposal.

In order to avoid duplicate outcomes, the modules can be designed to

require the same virtual resource (see Section 5.4.1). They do not cause

chaotic behaviours because ASMO’s attention mechanism will choose one

of them (if win) to perform.

In the robot soccer system and Smokey’s system, all modules were dupli-

cated and they kept working to provide redundant functionalities.

(e) Long-term operation

Slowing robots down due to the accumulation of knowledge and experi-

ence is not a major issue in ASMO, because ASMO can keep the system

being responsive. While waiting for some optimal modules to process

enormous knowledge, other suboptimal modules can still performing their

tasks in order to respond to the environment.

ASMO further supports long-term operation by not letting failed mod-

ules to crash the whole system. This capability is possible because failed

modules cannot participate in the attention competition due to non-

responsiveness, which result in a loss of attention and, therefore, a loss of

control over the system resources. Poorly designed modules tend to lose

attention and not be enacted.
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In the RoboCup SPL competition 2010, a module had returned the di-

vision by zero error. However, it did not crash the whole robot soccer

system. Instead, it was simply ignored by ASMO as it did not propose

actions nor request any control over the robot’s resources.

In the Smokey robot companion experiment, a module contained an in-

finite loop was tested. The module became unresponsive, but Smokey’s

behaviours were still normal as expected.

(f) Maintainable

In ASMO, each module is a black-box, independent, distributed, self-

contained, concurrent and modular. This design allows high cohesion

and low coupling modules that will make maintenance and extensibility

easy. It allows modules to be maintained in isolation. Modules can be

added, removed, modified or replaced without requiring the system to be

off and without affecting many other modules. Furthermore, the isolation

of behaviours into distributed modules will assist with the distribution of

work and maintenance across a team.

In the development of the soccer system for RoboCup SPL competition

2010, members modified and tested modules in both isolation and real-

time (while the robot was on). They did not depend on the work of other

team members to update modules. As a result, they saved considerable

time and effort. They also reported that creating high cohesion and

low coupling modules in ASMO was not difficult because modules work

independently and are self-contained.

In Smokey’s system, the maintainability was not really explored because

there were not many modules to maintain. However, ASMO’s modules

and designs will allow Smokey to be easy to maintain and extend.

(g) Learning

ASMO has various learning mechanisms to improve performance and

make extension easier, namely habituation, sensitisation, operant con-

ditioning, classical conditioning and observational learning mechanisms.

In the RoboCup SPL competition 2010, ASMO’s learning mechanisms

were not activated due to the lack of time to test. However, if they

were activated, they could help to improve the performance of the soccer

robots.
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In the Smokey robot companion experiment, each ASMO’s learning mech-

anism improved Smokey’s performance in each different situation de-

scribed in Page 178.

7. Natural programming approach to robots to accelerate the develop-

ment, deployment and adoption of robots

As demonstrated by the RoboCup soccer competition in 2010, our team used

ASMO cognitive architecture to integrate various representations and mecha-

nisms for developing a robust robot soccer system. The team had limited time

— less than three months — to build a fully functional robot soccer system

from scratch based on new rules (i.e. rules in 2010). New rules meant that

we had to work with a new robot platform (i.e. Aldebaran Nao). As a con-

sequence the team did not have sufficient time to build and fine-tune a new

robot soccer system for a new robot platform (unlike what we did in the 2008

competition). Utilising the novel more agile ASMO cognitive architecture al-

lowed the team to integrate various representations and mechanisms as well

as to have a fully functioning robot soccer team ready for competition in six

weeks of development.
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Chapter 9

Conclusion

In this dissertation, I described the novel ASMO cognitive architecture that ad-

dresses the gaps identified in the research literature to accelerate the development,

deployment and adoption of service robots in society.

9.1 Significance and Contributions

This dissertation studies and develops ASMO cognitive architecture to address the

gaps identified in the research literature (see Section 3.5). It is significant and

provides important contributions:

1. Accelerate the development, deployment and adoption of service

robots

Service robots have not been as widely deployed and adopted as industrial

robots. In this dissertation, I have demonstrated that ASMO manages re-

sources automatically, integrates independently developed techniques, easily

adapts to design changes and supports robotic tasks. These capabilities can

help to accelerate the development, deployment and adoption of service robots.

2. Develop a more intuitive approach to programming robots

Conventional robots are programmed in an unnatural manner and one that is

completely different to the way humans are instructed to perform tasks. ASMO

provides a more intuitive approach to programming robots based on managing
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their attention. This approach is more natural and easier to understand by

programmers because they themselves are attention-driven agents.

3. Test theories of attention and emergence

Theories of attention and emergence are traditionally difficult to test because

they involve the human mind that cannot be easily and fully inspected. In

this dissertation, I have implemented theories of attention and emergence and

tested them using robots. I have demonstrated that robots are capable of

achieving complex tasks based on attention and the emergence of techniques.

This successful implementation lends evidence to support the theories.

4. Advance the study in interdisciplinary fields

Many robotics studies focus on a single discipline. Studies in interdisciplinary

fields are more complicated than studies in a single field. This dissertation

advances the study in interdisciplinary fields pertinent to robots by taking

theories from cognitive science and psychology, and implementing the theories

into a system in engineering and computer science.

5. Put cognitive science into practice

Cognitive science is a new emerging field. Its problem is not as well-defined

as in other fields, such as engineering. It involves vague terms and definitions

and also philosophical issues that are not practical. In this dissertation, I have

studied and designed ASMO cognitive architecture based on the cognitive

science theories and implemented ASMO into a concrete working system in

robots.

6. Provide a better understanding of cognitive architectures

Previous work classifies cognitive architectures into three general categories,

namely top-down, bottom-up and a hybrid approach. This dissertation pro-

vides a more specific classification based on knowledge utilisation, which are

lookup-based, cased-based finite state machine, priority-based or hierarchical-

based, goal-based, connection-based and utility-based approach.

7. Motivate the use of a standard benchmark problem for evaluating

and sharing significant work

Existing cognitive architectures are difficult to compare, because they are eval-

uated in a variety of different problems. This dissertation motivates the use of
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a standard benchmark problem to compare or evaluate cognitive architectures,

share the work and measure progress. ASMO was evaluated in the RoboCup

Soccer SPL standard benchmark problem, where progress is evaluated each

year. In addition, Smokey robot companion problem was introduced as a

basis for benchmarking in the future.

9.2 Limitation and Future Work

The work in this dissertation provides a novel way and a number of capabilities

to govern agents (including robots). However, it has a limitation, which opens

new questions and opportunities in the field. These research questions stem not

only within the wide scope of the work, but also from its effects and potential

applications:

• Attention Value and Boost Value

In this dissertation, an attention value and a boost value are abstract numer-

ical values that quantify attention. They have no absolute measurement to

the quantity of human attention. In the future work, a measurement can be

developed to define these values. Future work may explore what it means to

have a change of 1.0 in an attention value or boost value.

In addition, the attention value is updated in this dissertation simply based on

Equation 5.1. In future it may be possible to explore other attention update

equations that, for example, more closely model empirical data relating to

human or animal attention.

• Total Attention Level

In this dissertation, a non-reflex module’s ranking is determined by its total

attention level, which is simply determined by the sum of its boost value and

attention value. In future work, this total attention level can be determined

by more complex methods, such as weighted sum or non-linear functions.

• Cyclic Modification of Supervisor Modules’ Attention and Boost

Values

In this dissertation, a cyclic modification of supervisor modules is not studied

and allowed. In other words, supervisor module A is not allowed to modify
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the attention and boost value of supervisor module B if B also modifies the

attention and boost value of A. Any form of transitivity is also not allowed.

Future work may include study of cyclic modifications and a mechanism that

allows for cyclic modifications.

• Jitter or Oscillation Prevention

In this dissertation, ASMO produces an attentive system that is intended to be

responsive and sensitive to changes, including small changes. This responsive-

ness may cause the system to jitter or oscillate. For example, two modules can

win an attention competition back and forth, causing the robot to not achieve

its goals. Future work may incorporate hysteresis or a mechanism that can

prevent or adjust the sensitivity of winning an attention competition.

• Overcoming Reflexes

In this dissertation, a reflex module is simply given higher ranking than non-

reflex modules. As a result, non-reflex modules cannot win an attention com-

petition against a reflex module no matter how high they demand attention.

However, humans seem to be able to perform non-reflex actions intentionally

to overcome reflexes that are supposed to be triggered (i.e. non-reflex actions

win over reflexes). For example, people can hold something that is hot to

avoid spilling it. Future work may include further study of theories of inten-

tion, reflexes and non-reflex actions, as well as a mechanism or conditions to

overcome reflexes.

• Multi-agent Architecture

In this dissertation, ASMO was evaluated in a multi-agent environment (i.e.

the RoboCup Soccer SPL Standard Benchmark Problem), but it was used

as a single agent architecture in every robot to manage the robot’ resources.

Future work may include further evaluation and extension of ASMO as a multi-

agent architecture (e.g. by integrating ASMO with other ASMOs) to manage

multiple robots’ resources.

• Emotion and Learning in the RoboCup Soccer SPL Standard Bench-

mark Problem

In this dissertation, I only speculate how emotion and learning mechanisms will

be used in the RoboCup Soccer SPL Standard Benchmark Problem, because

our team did not have much time to test these mechanisms in the RoboCup
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Soccer SPL competition. Future work may include the evaluation of these

mechanisms in this problem.

• Comparative Analysis in the Standard Benchmark Problem

In this dissertation, only ASMO was evaluated in the RoboCup Soccer SPL

Standard Benchmark Problem. Existing architectures reviewed in this dis-

sertation were not evaluated in the same problem, because they have been

designed with a specific goal in mind so evaluating them in the same problem

would not provide a fair and good comparison. As a result, statistical re-

sults could not be obtained for comparing ASMO with existing architectures.

Thus, the comparative analysis of architectures was discussed argumentatively

or descriptively, rather than statistically. Future work may include mapping

the problems where existing architectures were evaluated on to the RoboCup

Soccer SPL Standard Benchmark Problem in order to provide a comparative

analysis statistically. Alternatively, I hope that the RoboCup Soccer SPL

Standard Benchmark Problem will be adopted as the standard benchmark

problem for cognitive architecture, so developers will (re)-evaluate their archi-

tectures in this problem and therefore results can be compared.

• Theorems and Proofs

In this dissertation, ASMO is not defined and described formally using math-

ematical theorems and proofs. In addition, there is no mathematical proof

of the analysis between ASMO and existing architectures. It can be difficult

to replicate and compare the work without such formal theorems and proofs.

Future work may include mathematical theorems and proofs to formally define

and describe ASMO, as well as to compare ASMO with existing architectures.

9.3 Final Thoughts

I began my doctoral studies with an innocent ambition to create human-level intel-

ligent robotic systems. Of course, this long-term ambition is far beyond the scope

of a doctoral dissertation. Thus, I had to start from an achievable goal, cognitive

architecture, which may lead to my long-term ambition.

Due to practicality and high level of abstractions in cognitive science and psy-

chology, many robotics researchers focus on the engineering problems of robotics.



9.3. Final Thoughts 213

However, I feel that studying multi-disciplinary areas of engineering, cognitive sci-

ence and psychology, especially in cognitive architecture, is an important step to

advance the robotics technology. I hope that this dissertation contributes some

measure of progress towards a better world.
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Appendix A

Non-Cognitive Architectures

This appendix describes non-cognitive architectures that are similar to ASMO,

namely AuRA, DAMN and EGO. They are not considered as cognitive architec-

tures and therefore not described in Section 3.3, because they are designed for spe-

cific robotic tasks rather than general intelligent behaviours.

A.1 Autonomous Robot Architecture (AuRA)

Autonomous Robot Architecture (AuRA) [18, 23, 20, 19] was initially developed in

1986 for the purpose of governing intelligent mobile robots. It focuses on governing

robots for navigation. Its design motivation was to integrate deliberative and reac-

tive components in order to compensate for the lack of responsiveness in agents. It

has been deployed in robots, such as DARPA Demo II High Mobility Multi-purpose

Wheeled Vehicle (HMMWV) [23] and Nomadic Nomad 150 [23] (see Figure A.1).

AuRA has two components, namely hierarchical deliberative and reactive com-

ponents. The deliberative component consists of the mission planner, the spatial

reasoner and the plan sequencer that are arranged from the highest to the lowest

hierarchy. The reactive component consists of the schema controller.

The mission planner provides the high-level goal and constraints of the operation.

It acts as the interface between the users and the agents. The spatial reasoner

(originally known as the navigator) uses cartographic knowledge stored in long-term

memory to generate a sequence of navigational paths in order to achieve the goal.

The plan sequencer (originally known as the pilot) translates the path generated by
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(a) DARPA HMMWV [23] (b) Nomadic Nomad 150 [23]

Figure A.1: Robots Governed by AuRA

the spatial reasoner into a set of motor actions (called motor schema) for execution.

The schema controller is designed based on schema theory [16] to manage, con-

trol and monitor all motor schemas at run time. Each motor schema can operate

asynchronously and it is associated with a perceptual schema to perceive the envi-

ronment. It generates a response vector to control motors in a manner analogous to

the potential field method proposed by Khatib [109]. The vectors are summed and

normalised before sending the result to the motors for execution.

The deliberative component is not activated once the reactive component begins

to execute, unless a failure is detected in the reactive component. A typical failure is

caused by a velocity of zero or time-out. When a failure is detected, the deliberative

component is reactivated one hierarchy at a time from the lowest to the highest

hierarchy until the problem is resolved. First, the plan sequencer is reactivated to

choose a different path stored in the short-term memory. Second, if the problem is

not yet resolved, the spatial reasoner is reactivated to regenerate a new sequence

of path that avoids the failed path. Lastly, if the problem is still not resolved, the

mission planner is reactivated to inform the operator and ask for reformulation or

abandonment of the entire mission and goal.

Versatility

AuRA is not versatile. It is a specific architecture used for navigation. It does

not provide a way to integrate various techniques. All tasks must be be able

to be represented by a motor schema. In addition, robotic developers have to

manually accommodate resources in the design of the motor schemas in order

to avoid resource conflict.
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Reactivity

AuRA is semi-reactive. Once a path is found, the schema controller performs

the tasks by managing, controlling and monitoring motor schemas without the

deliberative component being activated. However, the mission planner cannot

achieve multiple goals simultaneously. The spatial reasoner cannot construct

multiple sequences of paths simultaneously.

Robustness

AuRA is robust. Motor schemas will keep sending vectors to the motors (i.e.

perform actions) when there is a failure in other motor schemas since they are

independent. In addition, AuRA can exploit redundancy because each mo-

tor schema can perceive the environment and control actions asynchronously.

AuRA’s control is decentralised. Furthermore, AuRA will not slow robots

down because a slow schema can be treated as a failed schema that does not

affect other schemas (i.e. other schemas will keep sending vectors to the mo-

tors).

Extensibility

AuRA is semi-extensible. Motor schema can be added or changed with less

effects to other motor schemas because they are normalised before the result

is sent to the motors. However, AuRA does not have learning mechanisms to

improve performance and make the extension easy.

A.2 Distributed Architecture for Mobile Naviga-

tion (DAMN)

Distributed Architecture for Mobile Navigation (DAMN) [186] was developed in 1997

for mobile robot navigation. Its design motivation is to integrate various distributed,

independent, asynchronous systems of different capabilities on mobile robots.

DAMN consists of independent, distributed and asynchronous modules that han-

dle the robot’s behaviours to achieve tasks. Several modules concurrently suggest

opinions to influence decision making. DAMN does not choose an action based on

the average of the opinions, instead it chooses an action that either satisfies all the

opinions, has the most positive opinions or has the most expected positive opinions.
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Currently, there are four action selection mechanisms in DAMN used to integrate

opinions:

1. Constraint Arbitration

In constraint arbitration, each module suggests an opinion in terms of an

expected maximum value (i.e. constraint). DAMN will choose the minimum

value among these maximum values to control agents’ actuators (i.e. min-max

function to satisfy all the maximum values) (see Figure A.2).

Figure A.2: DAMN Constraint Arbitration [186]

2. Actuation Arbitration

In actuation arbitration, each module suggests an opinion by voting an actu-

ator command. DAMN will choose and perform the actuator command with

the highest positive vote (see Figure A.3).

Figure A.3: DAMN Actuation Arbitration [186]
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3. Effect Arbitration

In effect arbitration, each module suggests an opinion by voting for an effect

of an action (i.e. a state). DAMN will choose and perform the action with the

highest positive vote on the state (see Figure A.4). Modules will vote for the

effect of actions instead of the direct control of the actuators as in actuation

arbitration.

Figure A.4: DAMN Effect Arbitration [186]

4. Utility Fusion

Utility fusion was proposed in DAMN architecture as the solution to the limita-

tions that were observed in constraint, actuation and effect arbitration mech-

anisms. It merely refers to the utility theory mechanism. In utility fusion,

opinions are provided in terms of the utility or the desirability of outcomes

(i.e. states). DAMN will calculate the utility for each action and will choose

and perform the action that has the highest utility (i.e. maximum expected

utility) (see Equation A.1).

Decision ← argmax
a

∑
s′

P (s′|a, k)U(s′)

︸ ︷︷ ︸
Expected Utility

(A.1)

Where:

EU(a|k) is the expected utility of action a given knowledge or evidence k

P (s′|a, k) is the probability of outcome s′ given action a and knowledge k

U(s′) is the utility value of outcome s′

Versatility
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DAMN is not versatile. It is a specific architecture designed for mobile robot

navigation. Although a voting mechanism can increase versatility if used prop-

erly, DAMN’s voting mechanisms are not versatile because they require mod-

ules to provide an opinion for every candidate. In addition, robotic developers

have to manually design the modules to avoid resource conflict.

Reactivity

DAMN is reactive. Modules can suggest opinions to control actuators directly

through the arbitration and fusion mechanisms. In addition, modules can

suggest opinions concurrently in order to achieve multiple goals.

Robustness

DAMN is robust. A failure in a module does not cause the whole robot to fail

since modules are distributed, independent and asynchronous. The constraint

arbitration mechanism allows modules to have redundancy of the processing

functions without altering the minimum value, despite the application of this

mechanism being limited. DAMN’s control is decentralised and distributed.

In addition, robots will not slow down as they accumulate experience because

a slow module can be treated as a failed module. Other modules can still

continue suggesting opinions in order to perform tasks.

Extensibility

DAMN is semi-extensible. Modules can be added or modified without affecting

other modules since modules are distributed, independent and asynchronous.

However, DAMN does not have a learning mechanism to improve performance

and make extension easy.

A.3 Emotionally Grounded (EGO) Architecture

Emotionally Grounded (EGO) Architecture [195, 77, 76] was initially developed in

2001 [76] and later improved in 2003 [77] for governing entertainment robots, which

are Sony SDR-4X (or simply called QRIO) [77] and Sony AIBO ERS-110 [210] (see

Figure A.5). Its design motivation is to integrate various technologies and advanced

technical features, such as real-time motion control, face recognition and speech

recognition.
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(a) Sony SDR-4X (QRIO) [77] (b) Sony AIBO [210]

Figure A.5: Robots Governed by EGO

EGO is designed based on homeostatic regulatory mechanisms from the ethol-

ogy literature. In these mechanisms, it activates behaviour modules (or just called

modules) based on external stimuli and internal variables in order to regulate and

maintain internal variables to be within proper ranges. EGO consists of five parts

(see Figure A.6):

1. Perception

The perception part contains three channels, namely visual, audio and tactile.

The main functions of the visual channel are to detect a floor to walk while

avoiding obstacles and to detect and identify human faces. The audio chan-

nel has a speech processing function that includes sound direction estimation,

sound event identification and Large Vocabulary Continuous Speech Recog-

nition (LVCSR). The tactile channel processes and identifies the signals from

touch sensors into the several types of touching, such as ‘hit’ and ‘pat’.

2. Memory

The memory part contains two types of memory, namely a short-term memory

(STM) and a long-term memory (LTM). The STM stores the result of speech,

face and object recognition. It uses this information and kinematics to com-

pute the direction of a sound based on multiple microphone localisation, the

direction and the approximate distance to a face based on a stereo vision (as-

suming that the face size is roughly known) and the relative positions to the
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detected objects (e.g. face and ball). It memorises these positions so that it

can locate objects that are outside the robot’s limited field of view.

The LTM is further divided into two types, namely associative memory and

frame-type (symbol) memory. The associative memory is implemented in neu-

ral networks to associate a user with the information in STM (i.e. to remember

an identified face, an identified voice and an acquired name). Using the as-

sociative memory, a user can be identified either from his/her face or voice

alone. The frame-type symbol memory is used to remember details of users,

such as birthday and favourite items. Using the frame-type symbol memory,

the robot can behave differently towards each individual user.

3. Internal State Model

Internal state model contains various internal state variables that change over

time depending on incoming external stimuli.

4. Behaviour Control

The behaviour control part contains three types of modules, namely reflex-

ive, deliberative and situated. A reflexive module depends on the robot’s

mechanical configuration to provide a rapid response to external stimuli. A

deliberative module performs computationally heavy tasks, such as path plan-

ning. A situated module performs two functions, namely action and monitor.

The action function uses a state machine to decide action commands based

on the robot’s state and inputs (i.e. it executes a behaviour). The monitor

function evaluates external stimuli and internal variables, and also calculates

the module’s activation level, which is a value indicating how much a given

behaviour is relevant in the current situation. This function is periodically

called by the behaviour control part. Some parameters of this function can

be adjusted to make several different personalities. For example, giving more

weight on the internal drives can result in behaviour selection that tends to

satisfy internal motivation, which seems like a ‘selfish’ personality.

5. Motion Control

The motion control part provides a real-time integrated adaptive motion con-

trol and a real-time gait pattern generation. These technologies enable QRIO

to walk on unbalanced terrain, to adaptively move against an external force,

to fall down with shock absorbing motions and to recover motions.
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Figure A.6: EGO Architecture

EGO employs a hierarchical tree structure to manage resources and to coordi-

nate, organise and connect modules. In this tree structure, developers manually

decompose a task into multiple sub-tasks, which are then handled by individual

modules (see an example in Figure A.7). Modules that have the same parent in the

tree will share the same target. For example, all of the search ball, approach ball

and kick ball modules have the same parent of the soccer module to play a ball, so

they share the same target of ball. Multiple modules can be executed concurrently

if their targets are different from each other. In this case, resources are managed in

the tree structure through the modules’ targets.

Figure A.7: An Example of A Module Tree Structure in EGO Architecture

EGO selects modules using a competition of their activation levels. The be-

haviour control part periodically calls each module’s monitor function to evaluate
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the module’s activation level. During this process, the module also provides infor-

mation regarding its required resources (such as head, arm, speaker, etc). EGO

will then select modules based on their activation levels and required resources as

described as follows. It first selects the module with the highest activation level. If

there are still remaining resources available, another competition is conducted be-

tween the modules to select another module. This process is repeated until there is

no remaining resource available. Once a module is selected, it is given permission to

execute its action function, which executes the behaviour implemented in the mod-

ule as a state machine (i.e. executing a state machine behaviour). As a result of this

competition, multiple modules can be executed with different resources in parallel.

In the case where there is no resource conflict among the modules, all modules are

given permission to execute concurrently.

Both of the tree structure and the competition mechanisms are introduced to

manage resources, but their capabilities have not been evaluated [77, p. 966]. In

addition, they have an exception that is not described in the papers: they allow

module to execute concurrently only if the modules do not share the same target

and require different resources. This means that modules that share the same target

cannot be executed concurrently despite that they require different resources.

Versatility

EGO is not versatile. It is a specific architecture designed for entertainment

robotic tasks. Although a resource management through competition can

increase versatility if it is used properly, EGO’s resource management is not

versatile because it requires modules to be manually decomposed into sub-

modules in a tree structure, which can be difficult. In addition, behaviours in

EGO’s modules are limited to use a state machine.

Reactivity

EGO is reactive. Modules can be selected concurrently as long as they require

different resources and share different targets.

Robustness

EGO is semi-robust. Its control is decentralised and distributed. However,

a failure in a higher hierarchy module in a tree will cause lower hierarchy

modules in the same branch to fail. EGO’s hierarchical tree structure does

not allow modules to have redundancy processing functions if they share the
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same target. In addition, robots may slow down as they accumulate experience

because a slow module will affect lower hierarchy modules in the tree.

Extensibility

EGO is semi-extensible. Modules can be added or modified without affecting

other modules since modules are distributed, independent and asynchronous.

However, EGO does not have a learning mechanism to improve performance

and make extension easy.
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