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Abstract

Heterogeneous networks are a type of complex network model which can have multi-

type objects and relationships. Nowadays, research on heterogeneous networks has

been increasingly attracting interest because these networks are more advantageous

in modeling real-world situations than traditional networks, that is homogenous net-

works, that can only have one type of object and relationship. For example, the

network of Facebook has vertices including photographs, companies, movies, news

and messages and different relationships among these objects. Besides that, hetero-

geneous networks are especially useful for representing complex abstract concepts,

such as friendship and academic collaboration. Because these concepts are hard to

measure directly, heterogeneous networks are able to represent these abstract concepts

by concrete and measurable objects and relationships. Because of these features, het-

erogeneous networks are applied in many areas including social networks, the World

Wide Web, research publication networks and so on. This motivates the thesis to

work on network analysis in the context of heterogeneous networks.

In the past, homogeneous networks were the research focus of network analysis

and therefore many methods proposed by previous studies for social network analy-

sis were designed for homogenous networks. Although heterogeneous networks can

be considered as an extension of homogenous networks, most of these methods are

6
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not applicable on heterogeneous networks because these methods can only address

one type of object and relationships instead of dealing with multi-type ones. In net-

work analysis, there are three basic problems including community detection, link

prediction and object ranking. These three questions are the basis of many practical

questions, such as network structure extraction, recommendation systems and search

engines. Community detection, also called clustering, aims to find the community

structure of a network including subgroups of vertices that are closely related, which

can facilitate people to understand the structure of networks. Link prediction is a

task for finding links which are currently non-existent in networks but may appear

in the future. Object ranking can be viewed as an object evaluation task which aims

to order a set of objects based on their importance, relevance, or other user defined

criteria. In addition to these three research issues, approaches for determining the

number of clusters a priori is also important because it can improve the quality of

community detection significantly. This thesis works on heterogeneous network and

proposes a set of methods to address the four main research problems in network

analysis including community detection, determining the number of clusters, link

prediction and object ranking.

There are four contributions in this thesis. Contribution 1 proposes a Multiple

Semantic-path Clustering method which can facilitate users to achieve a desired clus-

tering in heterogeneous networks. Contribution 2 develops a Leader Detection and

Grouping Clustering method which can determine the number of clusters a priori,

thereby improving the quality of clustering. Contribution 3 introduces a Network

Evolution-based Link Prediction method which can improve link prediction accuracy

by modeling evolution patterns of objects. Contribution 4 proposes a co-ranking
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method which can work on complex bipartite heterogeneous networks where one type

of vertex can connect to themselves directly and indirectly.

The performance of all developed methods in the thesis in terms of clustering

quality, link prediction accuracy and ranking effectiveness, is evaluated in the con-

text of a research management dataset of University of Technology, Sydney (UTS)

and public bibliographic DBLP (DataBase systems and Logic Programming) dataset.

Moreover, all the results of the proposed methods in this thesis are compared with

state-of-the-art methods and these experimental results suggest that the proposed

methods outperform these state-of-the-art methods in quantitative and qualitative

analysis.
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Symbols Description

G Networks or graphs

V Vertex set

|V | the number of vertices

E Edge set

|E| the number of edges

P Semantic path set

|P | the number of semantic paths

Vn The set of vertices in type n

Em The set of edges in type m

v, u vertices

euv The edge from vertex u to v

A Adjacency matrix

auv An element of adjacency matrix A.

If auv = 1, there is an edge from u and v;

If auv = 0, vertex u and v are not connected.
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Symbols Description

W Weighted adjacency matrix

wuv the weight of edge euv

dv Degree of vertex v, dv =
∑|V |

i=1wvi

D Degree matrix which is a diagonal matrix

with the degrees d1, . . . , d|V |

L Laplacian matrix

li ith eigenvalue of Laplacian matrix

I Identify matrix

S Similarity matrix

suv The similarity beween vertex u and v

C Cluster indicator matrix

k Number of clusters

W ViVj The weight adjacency matrix

between object type Vi and Vj

w
ViVj
uv w

ViVj
uv = wuv where u ∈ Vi and v ∈ Vj

CD Vertex degree centrality

CB Vertex betweenness centrality

LGi ith leader group
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Symbols Description

Nuv(i) The number of paths between vertex u and v

and that belong to semantic path i

len(i) The length of semantic path i

X, Y Network partitions

T (u, v) Time of randomly moving agent from

starting vertex u to the end vertex v

Ω Network evolution

neighor(v, t) The neighborhood set of vertex v in timeslot t

rank(v, i) The ranking scores of vertex v in ith iteration

Diff(i, i+ 1) The difference of vertex ranking scores

between ith iteration and (i+ 1)th iteration
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