

Analysis of the Performance of Cable-Stayed Bridges under Extreme Events

Thesis by

Yukari Aoki

In University of Technology, Sydney Faculty of Engineering and Information Technology The Centre for Built Infrastructure Research (*CBIR*) For the degree of Doctoral of Philosophy

April 2014

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Student name: Yukari Aoki

Production Note: Signature of Student: Signature removed prior to publication.

Date: April 2014

Acknowledgement

I would like to express my special appreciation and thanks to my supervisors Professor Bijan Samali, Dr Ali Saleh and Dr Hamid Valipour. I would like to thank you for encouraging my research and for allowing me to grow as a researcher. Your advice on both research as well as on my career have been priceless. It would not have been possible to write this doctoral thesis without the help and support of you.

I would also like to thank ARC linkage research committee members from UNSW and UWS, as well as RMS (Road and Maritime Service,NSW) to support this project. I also want to thank to the UTS structural lab member (Mr Rami Haddad, Mr Peter Brown, Mr, David Hooper and Mr David Dicker) to help my experimental project. All of you have been there to support me when I recruited patients and collected data for my Ph.D. thesis.

A special thanks to my parents. Words cannot express how grateful I am to my father (Mr Takayuki Aoki) and my mother (Ms Yoshiko Aoki) for all of the sacrifices that you've made on my behalf. Your prayer for me was what sustained me thus far. Finally, I thank all my friends in Australia, Japan and elsewhere for their support and encouragement.

List of Publications

- AOKI, Y., SAMALI, B., SALEH, A. and VALIPOUR, H. 2011. Impact of sudden failure of cables on the dynamic performance of a cable-stayed bridge. *In:* PONNAMPALAM, V., ANCICH, E. & MADRIO, H. (eds.) *AUSTROADS 8th BRIDGE CONFERENCE*. Sydney, Australia.
- AOKI, Y., SAMALI, B., SALEH, A. and VALIPOUR, H. 2012a. Assement of Key Response Quantities for Design of a Cable-Stayed Bridge Subjected to Sudden Loss of Cable(s). *In:* SAMALI, B., ATTARD, M. M. & SONG, C. (eds.) *Australasian Conference on The Mechanics of Structures and Matreials, ASMCM 22.* Sydney, Australia: Taylor&Francis Group.
- AOKI, Y., VALIPOUR, H. R., SAMALI, B. and SALEH, A. 2012b. A Study on Potential Progressive Collapse Response of Cable-Stayed Bridges. *Advances in Structural Engineering*, 16, 18.
- SAMALI, B., AOKI, Y., SALEH, A. & VALIPOUR, H. 2014. Effect of loading pattern and deck configuration on the progressive collapse response of cable-stayed bridges. *Australian Journal of Structural Engineering,* In Progress.

ABSTRUCT

In bridge structures, loss of critical members (e.g. cables or piers) and associated collapse may occur due to several reasons, such as wind (e.g. Tacoma narrow bridge), earthquakes (e.g. Hanshin highway) traffic loads (e.g. I-35W Mississippi River Bridge) and potentially some blast loadings. One of the most infamous bridge collapses is the Tacoma Narrow Bridge in United States. This suspension bridge collapsed into the Tacoma Narrow due to excessive vibration of the deck induced by the wind. The collapse mechanism of this bridge is called "zipper-type collapse", in which the first stay snapped due excessive wind-induced distortional vibration of the deck and subsequently the entire girder peeled off from the stays and suspension cables. The zipper-type collapse initiated by rupture of cable(s) also may occur in cable-stayed bridges and accordingly guideline, such as PTI, recommends considering the probable cable loss scenarios during design phase. Moreover, the possible extreme scenario which can trigger the progressive collapse of a cable-stayed bridge should be studied. Thus, there are three main objectives for this research, which are the effect of sudden loss of critical cable(s), cable loss due to blast loadings and progressive collapse triggered by the earthquake. A finite element (FE) model for a cable-stayed bridge designed according to Australian standards is developed and analysed statically and dynamically for this research purpose. It is noted that an existing bridge drawing in Australia cannot be used due to a confidential reason. The bridge model has steel deck which is supported by total of 120 stays. Total length of this bridge is 1070m with 600m mid-span.

This thesis contains 8 chapters starting with the introduction as chapter 1.

In chapter 2, comprehensive literature review is presented regarding three main objectives.

In chapter 3 to 5, results of the cable loss analyses are presented. In chapter 3, the dynamic amplification factor (DAF) for sudden loss of cable and demand-to-capacity ratio (DCR), which indicate the potential progressive collapse, in different structural components including cables, towers and the deck are calculated corresponding with the most critical cable. The 2D linear-elastic FE model with/without geometrical

nonlinearity is used for this analysis. It is shown that *DCR* usually remains below one (no material nonlinearity occurs) in the scenarios studied for the bridge under investigation, however, *DAF* can take values larger than 2 which is higher than the values recommended in several standards. Moreover, effects of location, duration and number of cable(s) loss as well as effect of damping level on the progressive collapse resistance of the bridge are studied and importance of each factor on the potential progressive collapse response of the bridges investigated.

As it was shown in chapter 3, a 2D linear-elastic model is used commonly to determine the loss of cable. However, there is a need to study the accuracy and reliability of commonly-used linear elastic models compared with detailed nonlinear finite element (FE) models, since cable loss scenarios are associated with material as well as geometrical nonlinearities which may trigger progressive collapse of the entire bridge. In chapter 4, 2D and 3D finite element models of a cable-stayed bridge with and without considering material and geometrical nonlinearities are developed and analysed. The progressive collapse response of the bridge subjected to two different cable loss scenarios at global and local levels are investigated. It is shown that the linear elastic 2D FE models can adequately predict the dynamic response (i.e. deflections and main stresses within the deck, tower and cables) of the bridge subject to cable loss. Material nonlinearities, which occurred at different locations, were found to be localized and did not trigger progressive collapse of the entire bridge.

In chapter 5, using a detailed 3D model developed in the previous chapter, a parametric study is undertaken and effect of cable loss scenarios (symmetric and un-symmetric) and two different deck configurations, i.e. steel box girder and open orthotropic deck on the progressive collapse response of the bridge at global and local level is investigated. With regard to the results of FE analysis, it is concluded that deck configuration can affect the potential progressive collapse response of cable-stayed bridges and the stress levels in orthotropic open decks are higher than box girders. Material nonlinearities occurred at different locations were found to be localized and therefore cannot trigger progressive collapse of the entire bridge. Furthermore, effect of geometrical nonlinearities within cables (partly reflected in Ernst's modulus) is demonstrated to have some effect on the progressive collapse response of the cable-stayed bridges and accordingly should be considered.

In chapter 6, the blast loads are applied on the bridge model and determined the bridge responses, since the blast load is one of the most concerned situations after 911 terrorist attacks. The effect of blast loadings with different amount of explosive materials and locations along the deck is investigated to determine the local deck damage corresponding to the number of cable loss. Moreover, the results obtained from the cable loss due to blast loadings are compared with simple cable loss scenarios (which are shown in chapter 3 to 5). In addition, the potential of the progressive collapse response of the bridge at global and local level is investigated. With regard to the results of FE analysis, it is concluded that the maximum 3 cables would be lost by the large amount of TNT equivalent material due to damage of the anchorage zone. Simple cable loss analysis can capture the results of loss of cable due to blast loadings including with local damages adequately. Short cables near the tower are affected by blast loadings, while they are not sensitive for the loss of cables. Furthermore, loss of three cables with damaged area did not lead progressive collapses.

Finally, in chapter 7, dynamic behaviour of cable-stayed bridges subjected to seismic loadings is researched using 3D finite element models, because large earthquakes can lead to significant damages or even fully collapse of the bridge structures. Effects of the type (far- or near-field) and directions of seismic loadings are studied in several scenarios on the potential progressive collapse response of the bridge at global and local level. According to the case studies in this chapter, it is shown that near filed earthquakes applied along the bridge affected to deck and cables significantly. Moreover, the mechanism of bridge collapsed due to longitudinal excitation is analysed by an explicit analysis, which showed the high plastic strain occurring around the pin support created the permanent damage.

The summary and suggestions for this research are shown in final chapter 8.

Table of Contents

Acknowledgement	I
List of Publications	II
Abstract	III
Table of Contents	IV
List of Figures	VIII
List of Tables	XII
List of Symbols	XIII
Chapter 1 : Introduction	1
1.1 Introduction	1
1.2 Objectives	3
1.3 Thesis Organization	6
Chapter 2 : Literature review	
2.1 Introduction	8
2.2 Progressive collapse due to sudden loss of cable(s)	9
2.2.1 Background	9
2.2.2 The effect of the critical cable loss	9
2.2.3 Dynamic amplification factor (DAF) due to sudden loss of cable(s)	10
2.3 Bridges subjected to blast loadings	15
2.3.1 History of terrorist attacks	15
2.3.2 Bridges subjected to terrorist attacks	15
2.3.3 Buildings subjected to blast loading	16
2.3.4 Bridges subjected to blast loadings	16
2.3.5 Cable-stayed bridges subjected to blast loadings	17
2.4 Earthquake analysis	21
2.4.1 Background	21
2.4.2 Cable-stayed bridge design in Japan	22
2.4.3 General seismic design for cable-stayed bridges	23
2.4.4 Design criteria and standards	
2.5 Summary	26

Chapter 3 : Determining Critical Cable Loss Scenarios, DAF and DC	'R by
2D FE modelling	
Summary of chapter	
3.1 Introduction	
3.2 Dynamic amplification factor (DAF) and demand-to-capacity ratio (DCR).	31
3.3 Description of materials, geometry and loads	
3.3.1 Material properties and geometry of the bridge	
3.3.2 Design loads	
3.3.3 Cable loss scenarios	
3.3.4 Finite element model	
3.3.5 Load combinations adopted for progressive collapse assessment	37
3.3.6 Cable removal method and type of analysis	
3.3.7 Discussion on the adequacy of the proposed 2D model	
3.4 Parametric studies and discussion	41
3.4.1 Time step over which the cable is removed (cable removal time step)	41
3.4.2 Structural damping	46
3.4.3 Geometrical nonlinearities	47
3.4.4 Cable removal scenarios	47
3.5 Concluding remarks	54

Chapter 4 : Model verification - A Comparative Study of 2D and 3D FE Models of a Cable-Stayed Bridge Subjected to Sudden Loss of Cables 56

Summary of chapter	56
4.1 Introduction	56
4.2 Principal Assumptions	57
4.2.1 Geometry and material properties	57
4.2.2 Modelling and analysis	60
4.2.3 Design Loads	62
4.2.4 Calibration of 2D and 3D FE models	62
4.3 Cable Loss Scenarios	64
4.3.1 Cable removal method	64
4.3.2 Load combinations adopted for progressive collapse assessment	64
4.3.3 Cable loss scenarios	65
4.3.4 Equivalent Modulus of Elasticity for Cables	66
4.4 Results	67
4.4.1 Deck and Towers	67

4.4.2 Cables	70
4.5 Conclusions and Discussion	72
Chapter 5 · Effect of loading pattern and deck configuration on the	
progressive collapse response of cable-stayed bridges	74
Summary of chapter	74
5.1 Introduction	74
5.2 Adopted assumptions	75
5.3 Cable loss scenarios	77
5.4 Analysis Results	78
5.4.1 Healthy bridge (before loss of cables)	78
5.4.2 Deck and Tower	81
5.4.3 Cables	86
5.4.4 Sensitivity Analysis	91
5.5 Conclusions and Discussion	93
Chapter 6 : Cable-Stayed Bridges and Blast Loads	95
Summary of chapter	95
6.1 Introduction	95
6.2 Adopted assumptions	97
6.2.1 Geometry, material properties and design loads	97
6.2.2 Modelling and analysis	97
6.2.3 Verification and calibration of LS-DYNA model (Explicit Solver)	100
6.3 Blast load analysis and sudden loss of cable	101
6.3.1 Blast load analysis by explicit analysis (LS-DYNA)	101
6.3.2 Load combinations adopted for blast and sudden loss of cable analyses .	103
6.3.3 Scenario considered for Blast load analysis	103
6.3.4 Analysis of sudden cable loss using ALP approach and implicit solver (ANSYS)	106
6.4 Results and discussion	106
6.4.1 Results of blast analysis (LS-DYNA)	106
6.4.2 Comparative study between blast load and simple cable loss according t (blast around the pin support)	o ALP 109
6.4.3 Comparative study between blast load and simple cable loss according t (blast near tower and mid-span)	o ALP 116
6.5 Conclusions	120

Chapter 7 : Dynamic Response of a Cable-Stayed Bridge Subjected to	
Seismic Loading	. 122
Summary of chapter	122
7.1 Introduction	122
7.2 Adopted assumptions	123
7.3 Seismic analysis scenarios	124
7.3.1 Seismic analysis method	124
7.3.2 Scenario considered for Earthquake load analysis	126
7.3.3 Earthquake acceleration data	126
7.3.4 Scenarios considered	127
7.4 Results and discussion	128
7.4.1 Results of implicit analysis (ANSYS model)	128
7.4.2 Progressive collapse analysis – Scenario K1	131
7.5 Effect of traffic load distribution on the seismic response	138
7.6 Sensitivity analysis	141
7.7 Preparing for experimental work	144
7.7.1 Numerical model	144
7.7.2 Design for experimental model	146
7.7.3 Pre-test	148
7.7.4 Re-modelling	149
7.8 Concluding remarks	150
Chapter 8 : Conclusions	. 151
8.1 Summary of each chapter	151
8.2 Overall Conclusions	155
8.3 Suggestion for further research	155
References	. 157

List of Figures

Figure 1-1 Timber bridge damaged by floodwater (Pritchard, 2013)	1
Figure 1-2 Bridges damaged by tsunami (Unjoh, 2012)	2
Figure 1-3 I-35W Mississippi River bridge collapse	2
Figure 1-4 Zipper-type collapse of the Tacoma Narrows Bridge (Starossek, 2011)	3
Figure 2-1 A tied arch bridge	9
Figure 2-2 Bridge with under deck stay cable(s)	10
Figure 2-3 DAFs for cable-stayed bridge with sudden loss of cable	10
Figure 2-4 Bridge configurations - parameters considered in Mozos and Aparicio	
(2010a)	11
Figure 2-5 DAFs along the deck obtained from negative bending moment in all	
scenarios with undamped and damped system	12
Figure 2-6 A cable-stayed bridge model and cross sectional area of tower and deck use	ed
in Hao and Tang, Tang and Hao (2010)	16
Figure 2-7 Yokohama Bay Bridge	19
Figure 2-8 The effect of tower shapes (Hayashikawa et al. (2000)	21
Figure 2-9 FEM model for multi-span cable stayed bridge (Okamoto and Nakamura,	
2011)	22
Figure 3-1 Different types of static analyses	32
Figure 3-2 Adopted constitutive law for steel within deck and tower	34
Figure 3-3 Bridge elevation and principal dimensions.	35
Figure 3-4 S1600 stationary traffic load according to AS5100.2 (2004)	36
Figure 3-5 Applied load cases.	37
Figure 3-6 Comparison of results obtained from 2D models developed in (a) ANSYS	
and (b) MicroStran for the healthy bridge under LC-1	39
Figure 3-7 Outline of the (a) 3D FE model and internal force and deflections predicted	ł
by a (b) 2D linear-elastic model (c) 3D model with material & geometrical	
nonlinearity.	40
Figure 3-8 Time history of mid-span deflection predicted by 2D and 3D FE models for	r
the bridge subjected to loss of cable no. 1 and LC-1	40
Figure 3-9 (a) Load direction in the lost cable and (b) cable force versus time schemes	
adopted for dynamic removal of cables.	45
Figure 3-10 Time history of bending moment in scenario-1, case-3 at section C-C of the	ne
deck after removing cable no. 30	45
Figure 3-11 Time history of bending moment in scenario-3 at section A-A of the deck	
obtained from dynamic analysis with different damping ratios	46
Figure 3-12 Time history of bending moment at the bottom of the left tower for	
different cable loss cases under scenario-1/LC-1 (only one cable is lost)	48
Figure 3-13 Time history of bending moment at the bottom of the left tower for	
different cable loss cases under scenario-1/LC-2 (only one cable is lost)	50
Figure 3-14 Time history of the bending moment at section A-A of the deck under	
scenario-2/LC-2 (two cables are lost).	52
Figure 3-15 DAF versus DCR values for scneaio-2 (LC-2, loss of cables no. 1 and 2).	53
Figure 3-16 DAF versus DCR values for scneaio-3 (LC-2, loss of cables no. 1, 2 & 3).	•
	53

Figure 4-1	Geometrical outline of the bridge and cross-sections of deck and tower	58
Figure 4-2	Adopted stress-strain model for steel in the (a) tower and deck and	59
Figure 4-3	Outline of the (a) 2D and (b) 3D finite element model.	60
Figure 4-4	S1600 stationary traffic load according to AS5100 (2004)	62
Figure 4-5	Comparison between results of 2D and 3D finite element models	63
Figure 4-6	Pattern of (a) gravity loads along the bridge deck (Dead + traffic load) (b) traffic loads across the deck including accompanying lane factors for	
	progressive collapse assessment	65
Figure 4-7	Time history of (a) vertical deflection at mid-span ($x = 535$ m) and stress component on the (b) top and (c) bottom surface of the deck for scenario-S	1.
		68
Figure 4-8	Time history of (a) vertical deflection at mid-span ($x = 535$ m) and stress	•
	component on the (b) top and (c) bottom surface of the deck for scenario-S	2. 69
Figure 4-9	(a) Deflected configuration of the deck when maximum vertical	
	displacement has occurred (b) time history of lateral displacement on top o left tower.	f 70
Figure 4-1	0 Envelops of the maximum tensile stress in the cables for (a) Scenario S1	
	and (b) Scenario S2 (expressed as a percentage of ultimate strength)	71
Figure 4-1	1 (a) Ratio of the minimum tensile stress over ultimate strength for cables (l	b)
	the minimum equivalent modulus of elasticity (Ernst's modulus of cables)
	expressed as a percentage of modulus of elasticity E.	72
Figure 5-1	Cross section of the deck (a) box girder (b) open orthotropic deck	76
Figure 5-2	Gravity loads applied (a) along the bridge deck and in a (b) symmetrical an (c) un-symmetrical pattern across the deck (accompanying lane factors	id
Б. СО		/6
Figure 5-3	Comparison between responses of cable stayed bridges with Deck-1 and Deck-2 under symmetrical load (SL) pattern (a) vertical displacements alor the deck (b) ratio of axial force (stress) over breakage load (stress) for stay	ng
	and (c) stress component on top surface of the deck.	s 79
Figure 5-4	Comparison between responses of cable stayed bridges with Deck-1 and Deck-2 under unsymmetrical load (UL) pattern (a) vertical displacements	
	along the deck (b) ratio of axial force (stress) over breakage load (stress) fo	or
Eiguro 5 5	stays and (c) stress component on top surface of the deck	8U I
rigule 5-5	configuration of the deck (when maximum vertical displacement has	L
	occurred) (c) stress component on the top surface of the deck (when	
	maximum stress has occurred) for symmetrical (SL) cable loss and loadin	g
D' 5 (scenarios.	82
Figure 5-6	Deflected configuration of the deck (when maximum vertical displacement	
	nas occurred) for different unsymmetrical (UL) cable loss and loading	02
E:	scenarios.	83
Figure 5-7	Average stresses (when maximum vertical displacement has occurred) for	01
Figure F 0	Maximum twist of the deak due to unsummatrical achieves	04 05
rigure 5-8	waximum twist of the deck due to unsymmetrical cable loss.	03

Figure 5-9 Envelop of the (a) maximum tensile stress over ultimate strength (b)
minimum tensile stress over ultimate strength and (c) the minimum
equivalent modulus of elasticity (Ernst's modulus of cables) expressed as a
percentage of modulus of elasticity in the cables during symmetrical (SL)
cable loss and loading scenarios
Figure 5-10 Envelop of the maximum tensile stress in cables "a" (z=9.6) during
unsymmetrical (UL) scenarios
Figure 5-11 Envelop of the maximum tensile stress in cables "b" (z=-9.6) during
unsymmetrical (UL) scenarios
Figure 5-12 The minimum equivalent modulus of elasticity (Ernst's modulus of
cables) expressed as a ratio of modulus of elasticity during unsymmetrical
(UL) scenarios90
Figure 5-13 Sensitivity of the deflected configuration of the deck (when maximum
vertical displacement has occurred in scenario U4-UL) with respect to steel
yield strength and elastic modulus91
Figure 5-14 Sensitivity of average stress component on top surface of the deck (when
maximum vertical displacement has occurred in scenario U4-UL) with
respect to steel yield strength and elastic modulus
Figure 6-1 Outline of the 3D finite element models
Figure 6-2 Comparison between results of 2D, implicit (ANSYS) and explicit (LS-
DYNA) 3D FE models (a) ratio of axial force (stress) over breakage load
(stress) for stays (under service load) (b) stress component on top surface of
the deck
Figure 6-3 Comparison of validation model with other references102
Figure 6-4 Locations of the applied blast loadings
Figure 6-5 Damages of the deck under blast loadings (blast occurred around pin-
support)107
Figure 6-6 Time history of stress (expressed as a percentage of breakage stress) for
cables No.1a and 1b (Scenario: 27t_7.5m)
Figure 6-7 vertical displacements along the deck for scenarios with 1, 2 and 3 cable
losses
Figure 6-8 σxx stress component on top surface of the deck for scenarios with 1, 2 and 3
cable losses
Figure 6-9 σxx stress component on bottom surface of the deck for scenarios with 1, 2
and 3 cable losses
Figure 6-10 Envelop of the maximum tensile stress over breakage stress in the cables
"a" (z=9.6)
Figure 6-11 Envelop of the maximum tensile stress over breakage stress in the cables
"b" (z= - 9.6)
Figure 6-12 Maximum of (a) vertical deflection (b) σxx on top of the deck and (c) σxx
on bottom of the deck (loss of cable 30a)
Figure 6-13 Maximum of (a) vertical deflection (b) σxx on top of the deck and (c) σxx
on bottom of the deck (loss of cable 15a)
Figure 6-14 Cable stress ratio (loss of cables 30a/15a)
Figure /-1 The natural period and mode shapes for the first 6 natural modes of
vibration. 125
Figure 7-2 (a) ground acceleration time history (b) acceleration response spectrum127
Figure /-3 vertical deflection along the deck (a) Scenario K2-K4 (b) Scenario E1-E4.

Figure 7-4 σxx stress component on the (a) top and (b) bottom surface of the deck	for
scenario-K3 compared with healthy structure	130
Figure 7-5 Envelop of the maximum tensile stress over ultimate strength in the cat	oles
(a) Scenarios K2-K4 and (b) Scenarios E1-E4.	131
Figure 7-6 (a) has occurred along with stress components on the (b) top and (c) bo	ttom
surface of the deck for scenario-SH (only gravity loads) and scenario-K	.1
	132
Figure 7-7 (a) σxx on bottom of the deck at 9.7 seconds and (b) time history of σxx	x at
x = 7.5 m (stress exceeded the yield strength at 9.7 sec).	134
Figure 7-8 oxx and plastic strain around pin-support using ANSYS and LS DYNA	135
Figure 7-9 (a) Bridge configuration at 60 seconds (after earthquake) and (b) uplift	of the
deck around the pin-support, Higashi-Kobe Bridge after 1995 Kobe	
Earthquake	136
Figure 7-10 Time history of σ eqv at the bottom of towers.	136
Figure 7-11 (a) Envelop of the maximum tensile stress in the cables and (b) time	
histories of tensile stress in cables No.1 and No. 48	137
Figure 7-12 Traffic load distribution	138
Figure 7-13 σxx on bottom of the deck around 10 seconds into the K5 earthquake	
scenario (first element reached the plastic strain).	139
Figure 7-14 Envelop of (a) vertical displacement and (b) σxx on the bottom surface	e of
the deck at 60 seconds into the K5 earthquake scenario	140
Figure 7-15 Envelop of the maximum tensile stress in the cables	141
Figure 7-16 σxx on the bottom of deck at 9.7 seconds into the K5 earthquake scenario	ario.
	142
Figure 7-17 (a) Deflected configuration of the deck and (b) σxx on the bottom surf	face
of the deck at 60 seconds into the K5 earthquake scenario	142
Figure 7-18 Envelop of the maximum tensile stress in the cables	143
Figure 7-19 Configuration for numerical model	145
Figure 7-20 Experimental bridge model (dimensions in mm)	147
Figure 7-21 End support system for experimental prototype	148
Figure 7-22 Devised mechanism for post-tensioning the cables.	148
Figure 7-23 (a) Prototype on the shake table, (b) LVDT and (c) accelerometer	149

List of Tables

Table 2-1 Earthquake intensity 20
Table 3-1 Material and geometrical properties of the deck, towers and cables
Table 3-2 Scenarios considered. 36
Table 3-3 Maximum DCR and corresponding DAF values for scenario-1/LC-1 in which
one cable is lost (Gravity load case 1- critical damping ratio is taken as
0.5%)
Table 3-4 Maximum DCR and corresponding DAF values for scenario-2/LC-2 in which
two cables are lost (Gravity load case 2- critical damping ratio is taken as
0.5%)
Table 3-5 Maximum DCR and corresponding DAF values for scenario-3/LC-2 in which
three cables are lost (Gravity load case 2)
Table 3-6 Maximum DCR and corresponding DAF values in towers, deck and cables
under scenario-1/LC-1 (Gravity load case 1 – critical damping ratio is taken
as 0.5%)
Table 3-7 Maximum DCR and corresponding DAF values for scenario-1/LC-2 in
which one cable is lost (Gravity load case 2 - critical damping ratio is taken 51
as 0.5%)
under scopario 1/LC 2 (Gravity load asso 2) critical damping ratio is taken
250.5%
Table $4-1$ Material and geometrical properties of the deck towers and cables 59
Table 4-2 The periods of the first five in-plane global natural modes of vibration 64
Table 4-3 Cable loss scenarios considered in this chapter 66
Table 4-4 Material and geometrical properties of the deck towers and cables 67
Table 5-1 Cable loss scenarios and loading natterns considered in this study 78
Table 5-2 Summary of the maximum twist (θ_{max}) maximum stresses within the deck
maximum drift on top and maximum equivalent stresses on the bottom of the
right tower obtained from unsymmetrical load pattern and cable loss
scenarios
Table 6-1 Scenarios considered for blast load analysis (using LS-DYNA software)105
Table 6-2 Scenarios considered - equivalent cable loss analysis (simple cable loss
analysis) -implicit analysis by ANSYS
Table 6-3 Summary of the cable losses and damaged areas obtained from blast load
analysis
Table 6-4 Summary of maximum deflection, stresses for deck and tower obtained from
explicit analysis (blast loading analysis) and implicit analysis (loss of cable
analysis)110
Table 7-1 The natural frequency and period of the first fifteen modes of vibration124
Table 7-2 Scenarios considered for applying seismic action. 128
Table 7-3 Summary of the maximum vertical deflections, drift on top of right tower and
stresses within the deck obtained from implicit 3D ANSYS FE models129
Table 7-4 Summary of sensitivity analysis results
Table 7-5 Deck properties. 146

List of Symbols

A	Cross-sectional area
b	Width of the deck
CLDF	Cable loss dynamic forces
DC	Dead load of structural components and non-structural attachments
DW	Dead load of wearing surfaces and utilities
Ε	Modulus of elasticity
\overline{E}	Equivalent modulus of elasticity
E_{sh}	Hardening modulus of steel
EV	Extreme event load
Ι	Moment of inertia of the section
IM	Vehicular dynamic load allowance taken
1	Horizontal span
LL	Full vehicular live load placed in actual stripped lanes
M	Bending moment
M_y	Yield moment
N	Axial force
N_y	Yield Force
R	Distance between contact surface and the denote centre
t	Thickness of the steel plate
W	Equivalent TNT amount
у	Distance from the neutral axis moment of inertia of the section
Ζ	Scaled distance (in m/kg ^{1/3}),
ε _{<i>i</i>-<i>PT</i>}	Initial post-tensioning strain in cables
γ	Density
σ	Existing stress from dynamic analysis
σ_{u}	Ultimate stress
σ_{y}	Yield stress
λ_{ey}	Yield limit slenderness ratio