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ABSTRUCT 
 

In bridge structures, loss of critical members (e.g. cables or piers) and associated 

collapse may occur due to several reasons, such as wind (e.g. Tacoma narrow bridge), 

earthquakes (e.g. Hanshin highway)  traffic loads (e.g. I-35W Mississippi River Bridge) 

and potentially some blast loadings. One of the most infamous bridge collapses is the 

Tacoma Narrow Bridge in United States. This suspension bridge collapsed into the 

Tacoma Narrow due to excessive vibration of the deck induced by the wind. The 

collapse mechanism of this bridge is called "zipper-type collapse", in which the first 

stay snapped due excessive wind-induced distortional vibration of the deck and 

subsequently the entire girder peeled off from the stays and suspension cables. The 

zipper-type collapse initiated by rupture of cable(s) also may occur in cable-stayed 

bridges and accordingly guideline, such as PTI, recommends considering the probable 

cable loss scenarios during design phase. Moreover, the possible extreme scenario 

which can trigger the progressive collapse of a cable-stayed bridge should be studied. 

Thus, there are three main objectives for this research, which are the effect of sudden 

loss of critical cable(s), cable loss due to blast loadings and progressive collapse 

triggered by the earthquake. A finite element (FE) model for a cable-stayed bridge 

designed according to Australian standards is developed and analysed statically and 

dynamically for this research purpose. It is noted that an existing bridge drawing in 

Australia cannot be used due to a confidential reason. The bridge model has steel deck 

which is supported by total of 120 stays. Total length of this bridge is 1070m with 600m 

mid-span. 

This thesis contains 8 chapters starting with the introduction as chapter 1. 

In chapter 2, comprehensive literature review is presented regarding three main 

objectives. 

In chapter 3 to 5, results of the cable loss analyses are presented. In chapter 3, the 

dynamic amplification factor (DAF) for sudden loss of cable and demand-to-capacity 

ratio (DCR), which indicate the potential progressive collapse, in different structural 

components including cables, towers and the deck are calculated corresponding with the 

most critical cable. The 2D linear-elastic FE model with/without geometrical 
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nonlinearity is used for this analysis. It is shown that DCR usually remains below one 

(no material nonlinearity occurs) in the scenarios studied for the bridge under 

investigation, however, DAF can take values larger than 2 which is higher than the 

values recommended in several standards. Moreover, effects of location, duration and 

number of cable(s) loss as well as effect of damping level on the progressive collapse 

resistance of the bridge are studied and importance of each factor on the potential 

progressive collapse response of the bridges investigated.   

As it was shown in chapter 3, a 2D linear-elastic model is used commonly to determine 

the loss of cable. However, there is a need to study the accuracy and reliability of 

commonly-used linear elastic models compared with detailed nonlinear finite element 

(FE) models, since cable loss scenarios are associated with material as well as 

geometrical nonlinearities which may trigger progressive collapse of the entire bridge. 

In chapter 4, 2D and 3D finite element models of a cable-stayed bridge with and 

without considering material and geometrical nonlinearities are developed and analysed. 

The progressive collapse response of the bridge subjected to two different cable loss 

scenarios at global and local levels are investigated. It is shown that the linear elastic 2D 

FE models can adequately predict the dynamic response (i.e. deflections and main 

stresses within the deck, tower and cables) of the bridge subject to cable loss. Material 

nonlinearities, which occurred at different locations, were found to be localized and did 

not trigger progressive collapse of the entire bridge. 

In chapter 5, using a detailed 3D model developed in the previous chapter, a parametric 

study is undertaken and effect of cable loss scenarios (symmetric and un-symmetric) 

and two different deck configurations, i.e. steel box girder and open orthotropic deck on 

the progressive collapse response of the bridge at global and local level is investigated. 

With regard to the results of FE analysis, it is concluded that deck configuration can 

affect the potential progressive collapse response of cable-stayed bridges and the stress 

levels in orthotropic open decks are higher than box girders. Material nonlinearities 

occurred at different locations were found to be localized and therefore cannot trigger 

progressive collapse of the entire bridge. Furthermore, effect of geometrical 

nonlinearities within cables (partly reflected in Ernst’s modulus) is demonstrated to 

have some effect on the progressive collapse response of the cable-stayed bridges and 

accordingly should be considered.  
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In chapter 6, the blast loads are applied on the bridge model and determined the bridge 

responses, since the blast load is one of the most concerned situations after 911 terrorist 

attacks. The effect of blast loadings with different amount of explosive materials and 

locations along the deck is investigated to determine the local deck damage 

corresponding to the number of cable loss.  Moreover, the results obtained from the 

cable loss due to blast loadings are compared with simple cable loss scenarios (which 

are shown in chapter 3 to 5). In addition, the potential of the progressive collapse 

response of the bridge at global and local level is investigated. With regard to the results 

of FE analysis, it is concluded that the maximum 3 cables would be lost by the large 

amount of TNT equivalent material due to damage of the anchorage zone. Simple cable 

loss analysis can capture the results of loss of cable due to blast loadings including with 

local damages adequately. Short cables near the tower are affected by blast loadings, 

while they are not sensitive for the loss of cables. Furthermore, loss of three cables with 

damaged area did not lead progressive collapses. 

Finally, in chapter 7, dynamic behaviour of cable-stayed bridges subjected to seismic 

loadings is researched using 3D finite element models, because large earthquakes can 

lead to significant damages or even fully collapse of the bridge structures. Effects of the 

type (far- or near-field) and directions of seismic loadings are studied in several 

scenarios on the potential progressive collapse response of the bridge at global and local 

level. According to the case studies in this chapter, it is shown that near filed 

earthquakes applied along the bridge affected to deck and cables significantly. 

Moreover, the mechanism of bridge collapsed due to longitudinal excitation is analysed 

by an explicit analysis, which showed the high plastic strain occurring around the pin 

support created the permanent damage. 

The summary and suggestions for this research are shown in final chapter 8. 
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