UNIVERSITY OF TECHNOLOGY SYDNEY

DOCTORAL THESIS

Feature Fusion, Feature Selection and Local N-ary Patterns for Object Recognition and Image Classification

Author:

Sheng WANG

Supervisor: Qiang WU, Xiangjian HE

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in the

School of Computing and Communications Faculty of Engineering and Information Technology

January 2015

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date:

"Concern for man and his fate must always form the chief interest of all technical endeavors. Never forget this in the midst of your diagrams and equations."

Albert Einstein

UNIVERSITY OF TECHNOLOGY, SYDNEY

Abstract

Faculty of Engineering and Information Technology School of Computing and Communications

Doctor of Philosophy

Feature Fusion, Feature Selection and Local N-ary Patterns for Object Recognition and Image Classification

by Sheng WANG

Object recognition is one of the most fundamental topics in computer vision. During past years, it has been the interest for both academies working in computer science and professionals working in the information technology (IT) industry. The popularity of object recognition has been proven by its motivation of sophisticated theories in science and wide spread applications in the industry. Nowadays, with more powerful machine learning tools (both hardware and software) and the huge amount of information (data) readily available, higher expectations are imposed on object recognition. At its early stage in the 1990s, the task of object recognition can be as simple as to differentiate between object of interest and non-object of interest from a single still image. Currently, the task of object recognition may as well includes the segmentation and labeling of different image regions (i.e., to assign each segmented image region a meaningful label based on objects appear in those regions), and then using computer programs to infer the scene of the overall image based on those segmented regions. The original two-class classification problem is now getting more complex as it now evolves toward a multi-class classification problem. In this thesis, contributions on object recognition are made in two aspects. These are, improvements using feature fusion and improvements using feature selection. Three examples are given in this thesis to illustrate three different feature fusion methods, the descriptor concatenation (the low-level fusion), the confidence value escalation (the mid-level fusion) and the coarse-to-fine framework (the high-level fusion). Two examples are provided for feature selection to demonstrate its ideas, those are, optimal descriptor selection and improved classifier selection.

Feature extraction plays a key role in object recognition because it is the first and also the most important step. If we consider the overall object recognition process, machine learning tools are to serve the purpose of finding distinctive features from the visual data. Given distinctive features, object recognition is readily available (e.g., a simple threshold function can be used to classify feature descriptors). The proposal of Local N-ary Pattern (LNP) texture features contributes to both feature extraction and texture classification. The distinctive LNP feature generalizes the texture feature extraction process and improves texture classification. Concretely, the local binary pattern (LBP) is the special case of LNP with n = 2 and the texture spectrum is the special case of LNP with n = 3. The proposed LNP representation has been proven to outperform the popular LBP and one of the LBP's most successful extension - local ternary pattern (LTP) for texture classification.

Acknowledgements

I wish to thank Associate Professor Qiang WU and Professor Xiangjian HE, my principle and cosupervisors, for their many suggestions and constant encouragement, help and support during my candidature. I gratefully acknowledge the invaluable discussion with them and I have the honour of studying and working with them in the past four years and nine months which is stamped indelibly in my life.

I appreciate the support of the International Research Scholarship (IRS) provided by the Faculty of Engineering and Information Technology (FEIT), University of Technology, Sydney (UTS). I appreciate the financial support for my living and for attending the international conferences received from the FEIT and the UTS Vice-Chancellor's Conference Fund.

I wish to thank my fellow colleagues and the staff of the faculty for providing various assistance for the completion of this research work. In particular, Wenjing Jia, Min Xu for their invaluable help and support.

Last but not least, I would like to thank my parents for their understanding and support. This thesis could not have been completed without their encouragements and financial assistance.

Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP	i
Abstract	iii
Acknowledgements	v
Contents	vi
List of Figures	x
List of Tables	xiv
Abbreviations	XV

1	Intr	oduction		1
	1.1	Backgrou	nd Information	2
		1.1.1 G	eneral Object Recognition Framework with Supervised Learning Methods	3
		1.1.2 Ту	ypical Classification Methods	5
		1.	1.2.1 Boosting Method and AdaBoost Classifier	5
		1.	1.2.2 Naive Bayes Classifier	8
		1.	1.2.3 SVM Classifier	9
		1.1.3 E	xample Datasets in Object Recognition	11
		1.1.4 E	valuation Methods and Measurements	12
		1.1.5 Su	ummary	15
	1.2	List of Pu	blications	16
		1.2.1 Jo	ournal Articles	16
		1.2.2 C	onference Proceedings	16
	1.3	Thesis Or	ganization	17
2	Sum	mary of F	eature Extraction Methods	18
	2.1	Over-com	plete Template Based Feature Description	19
		2.1.1 H	aar-like Feature for Face Detection	19
		2.1.2 H	istogram Distance of Haar Regions for Object Recognition	22
		2.1.3 E	dgelet Features for Pedestrian Detection	23
	2.2	Sparse Ke	ey-point Based Feature Description	26

		2.2.1 Image Matching Using Scale Invariant Feature Transform	26
	2.3	Dense Spatial Sub-block Based Feature Description	32
		2.3.1 Dense SIFT Feature for Image Alignment and Face Recognition	32
		2.3.2 Histogram of Oriented Gradient Feature for Pedestrian Detection	36
		2.3.3 Density Variance Feature for License Plate Detection	42
	2.4	Hybrid Filter Response Based Feature Description	43
		2.4.1 Object Bank Representation for Scene Classification	43
	2.5	Kernel Based Feature Description	45
		2.5.1 Locally Adaptive Regression Kernels for Car Detection	46
	2.6	Summary	48
3	Feat	ture Fusion for Object Recognition	51
	3.1	Concatenation of Histogram Distances Between Intensity Histograms of Different	
		Spatial Sub-blocks	52
		3.1.1 Exploring Relationships Between Different Spatial Sub-blocks	53
		3.1.2 Correlated Histogram of Haar Regions	54
		3.1.2.1 Original HDHR Distance	55
		3.1.2.2 Minkowski City Block L_1 Manhattan Distance	56
		3.1.2.3 Minkowski Euclidean L_2 Euclidean Distance	56
		3.1.3 Experimental Results	57
	3.2	Multi-scale Mid-level Fusion Based on Escalating Confidence Values	60
		3.2.1 Multi-scale Gaussian Smoothing	61
		3.2.2 Adaptive Combination of Weak Learners Based on Edgelet	63
		3.2.3 Concatenation of Confidence Values Across Multi-scale Spaces	66
		3.2.4 Experimental Results	67
	3.3	Coarse-to-fine Fusion Based on Fast Region of Interest Selection and Discrimina-	
		tive Learning	69
		3.3.1 Fast Region of Interest Selection in Coarse Stage	70
		3.3.2 Boosting Distinctive DSIFT Features in Fine Stage	71
		3.3.3 Experimental Results	74
	3.4	Summary	76
4	Feat	ture Selection for Image Classification and Object Recognition	79
	4.1	A Compact Descriptor Based on Optimal Max Pooling Orientation	80
		4.1.1 A Simplified Strip-like Spatial Configuration	82
		4.1.2 Selecting Optimal Strip-like Partition Scheme Based on SVM Classifica-	
		tion Results	85
		4.1.3 Experimental Results	87
	4.2	An Improved Classifier which Requires Less Training Examples	95
		4.2.1 An Observation from Using Insufficient Training Examples	96
		4.2.2 An Improved AdaBoost Algorithm with Spatial Constraints	97
		4.2.3 Experimental Results	103
	4.3	Summary	105
5	Loc	al N-ary Pattern for Texture Image Classification	109
	5.1	More Distinctive Texture Features in High Dimension Feature Space	110
		5.1.1 Mapping Local Patterns to Integer Values	111

		5.1.2	Generalization of Feature Extraction to The Bachet De Meziriac Weight	
			Problem	114
		5.1.3	Distinctive Local Patterns of The N -ry Coding Scheme $\ldots \ldots \ldots 1$	120
			5.1.3.1 Distinctiveness of LNP Compared to LTP 1	120
			5.1.3.2 An Observation of The Statistical Characteristics of The Local	
			N ary Representation $\ldots \ldots 1$	121
			5.1.3.3 Rotation Invariant and Uniform Patterns	125
			Uniform Patterns	126
			Rotation Invariant Patterns	126
			5.1.3.4 Texture Classification	127
			One-against-rest SVM Classifier	127
			Nearest Neighbor Classifier	128
		5.1.4	Experimental Results	128
	5.2	Summa	ary	133
6	Con	aluciona	and Entrum Works	124
U	COII	Conclu	and Future works	134
	0.1	6 1 1	Improved Object Decognition Decod on Facture Euclon	125
		0.1.1	(111) Consistencial Distances Between Intensity Histograms of Dif	133
			6.1.1.1 Concatenating Distances between intensity histograms of Dif-	125
			6.1.1.2 Multi scale Mid level Eusien Desed on Escalating Confidence	155
			Velues 1	126
			6.1.1.2 Course to fine Euclon Decad on East Decion of Interest Selection	150
			and Distinctive Features	138
		612	Improved Object Decognition Resed on Facture Selection	130
		0.1.2	6.1.2.1 A Compact Descriptor Based on Optimel May Dealing Orientation 1	140
			6.1.2.1 A Compact Descriptor Based on Optimal Max Pooling Orientation 1	140
		(12	0.1.2.2 A Classifier which Requires Less Training Examples	141
	()	0.1.3 E		142
	6.2	Future	WORKS	143
Δ	The	Genera	lized Bachet De Meziriac Weight Problem 1	46
	A 1	A Gen	eralization to The BMWP	146
	Δ 2	Proof	of Proposition 1 (Proof by Contradiction)	147
	11.2	A 2 1	Details of The Contradition	148
	Δ3	Proof	of Proposition 2 (Proof by Mathematical Induction)	148
	11.5	A 3 1	When $n = 1$ is An Even Number 1	1/8
		11.3.1	$\Delta 3 1 1 \text{ Basis} 1$	148
			$\Delta 3 1 2 \text{Inductive Step} \qquad \qquad 1$	
		A 2 2	When $m = 11c$ An Odd Number 1	150
		п. <i>э</i> .2	$\mathbf{M} = \mathbf{M} = $	150
			A 2 2 2 Inductive Step 1	151
			A.5.2.2 inductive Step	131

B Some Implementations in Matlab		153	
	B .1	Recursive SPM Max Pooling	153
	B .2	Edgelet Feature Extraction	154

С	List of Technique Abbreviation Terms	157

Bibliography

161

ix

List of Figures

1.1	A schematic depiction of the AdaBoost VJ cascade	8
1.2	Max-margin hyperplane and margins for an SVM trained with samples from two	
	classes (image courtesy of [1])	10
1.3	Two example car images for license plate detection	13
1.4	An example of ROC curve (image courtesy of [2])	14
2.1	A few exemplar Haar-like feature templates [3][4]. Subfigure (A), (B), (C) and (D) are edge templates. Subfigure (E) to (L) are line templates. Subfigure (M), (N), (O) and (P) are center templates. Subfigure (Q), (R), (S) and (T) are diagonal templates	21
2.2	A comparison of detection rates versus false positive regions on the MIT+CMU	22
22	A few examples adgelets [5]. Subfigure (A) is a line adgelet. Subfigure (B) (C)	
2.3	and (D) are $\frac{1}{8}$, $\frac{1}{4}$ and $\frac{1}{2}$ circle edgelets, respectively. Subfigure (E) is a $\frac{1}{4}$ circle symmetric pair	23
2.4	An example of the gradient and the Edgelet response map. Top row from left to right: original image, gradient magnitude map, gradient orientation map. Bottom row from left to right: Edgelet line template 1, Edgelet line template 2, Edgelet map	24
~ ~	for line template 1, Edgelet map for line template 2	24
2.5	The FB, HS, T and L body parts	25
2.6	An evaluation of the edgelet part based detector (image courtesy of [5])	26
2.7	Calculate the DoG images (image courtesy of [6])	27
2.8	Scale space extrema selection (image courtesy of [6])	27
2.9	An example of SIFT keypoints selection process. Subfigure (a) is the original im- age, Subfigure (b) is the image with all 832 SIFT keypoints extracted, Subfigure (c) is the image after low contrast keypoints are removed and Subfigure (d) is the image after removal of both low contrast keypoints and poorly located keypoints,	
	such as keypoints located on an edge (images courtesy of [6])	28
2.10	An illustration of the SIFT feature extraction process, the circle represents the	
	weighing Gaussian window (image courtesy of [6])	29
2.11	An example illustration of SIFT descriptors for object recognition with occlusion (images courtesy of [6])	30
2.12	An example illustration of SIFT descriptors for location recognition (images courtesy of [6])	31
2.13	Emblematic examples of selected DSIFT keypoints in the 3D pyramid in the scale space. White dots are the location of the reference point for DSIFT descriptors and black regions represent the DSIFT patches	33
2.14	An illustration of the <i>SIFT image</i> , pixels of a similar structure are grouped together	20
	(image courtesy of [7])	34

2.15	A few example images and their visualized DSIFT images	35
2.16	An example of the various gradient maps. From left to right: original image, hor-	
	izontal gradient map, vertical gradient map, gradient magnitude map and gradient	
	orientation map (images courtesy of [8])	37
2.17	An illustration of the HOG feature extraction process. The colored rectangles rep-	
	resent image sub-blocks	37
2.18	The HOG representation of an example test image and the average gradient map	
	(images courtesy of [9])	39
2.19	Examples images in the MIT CBCL Pedestrian Dataset and INRIA Person Dataset	
	(Images are scaled to fit page width, images in the top two rows are selected from	
	the MIT dataset and images in the bottom two rows are selected from the INRIA	
	dataset)	40
2.20	A comparison of 100, 300 and 500 images averaged on the MIT pedestrian dataset	
	and INRIA human dataset	41
2.21	Sub-block geometry for density variance features (images courtesy of [10])	42
2.22	A comparison between GIST [11], SIFT-SPM [12] and OB representations (image	
	courtesy of [13])	43
2.23	Illustration of the OB representation	44
2.24	An example usage of the 'kernel trick'. Data points not linearly separable in the	
	two dimensional space become linearly separable in a three dimensional space	46
2.25	A graph illustration of the LARK feature extraction process, $p = 3$ in this example	47
2.26	Summary of descriptors relevant to this thesis (descriptors proposed in the author's	
	publications are highlighted in bold font)	49
31	Pairwise comparisons of histograms between different sub-blocks. The intensity	
3.1	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to	
3.1	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each	
3.1	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53
3.13.2	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58
3.13.23.3	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59
3.13.23.33.4	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 59
 3.1 3.2 3.3 3.4 3.5 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 59 61
 3.1 3.2 3.3 3.4 3.5 3.6 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 59 61
 3.1 3.2 3.3 3.4 3.5 3.6 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 59 61 63
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 61 63 64
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 61 63 64
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 59 61 63 64 65
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 59 61 63 64 65
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	53 58 59 61 63 64 65
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 59 61 63 64 65 66
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68 70
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68 70 73
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68 70 73 75
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68 70 73 75
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 4.1 	Pairwise comparisons of histograms between different sub-blocks. The intensity histogram extracted from the sub-block filled by horizontal lines is compared to that of the sub-block filled by vertical lines and a distance is calculated for each comparison	 53 58 59 61 63 64 65 66 68 70 73 75 82

4.3	Example max pooling of OB using SPM on the response map. The global max response value, 65 (represented by a circle), appears three times in the feature representation, other redundant response values which appear twice are 43 (represented by a rectangle), 57 (represented by a triangle) and 61 (represented by a cross). In this example, the feature representation is {65, 43, 65, 57, 61, 43, 31, 50, 60, 33, 27, 65, 47, 29, 54, 38, 49, 11, 57, 41, 61}	84
4.4	Some misclassified examples in Scene 15 dataset. Top row from left to right: bedroom misclassified as livingroom, industrial misclassified as suburb, industrial misclassified as tallbuilding and industrial misclassified as store (by LWOB). Top-middle row from left to right: kitchen misclassified as livingroom (LWOB) or bedroom (OB), livingroom misclassified as bedroom, coast misclassified as highway and coast misclassified as opencountry. Bottom-middle row from left to right: forest misclassified as mountain (OB), highway misclassified as insidecity, mountain misclassified as opencountry and opencountry misclassified as mountain. Bottom row from left to right: street misclassified as insidecity, tallbuilding misclassified as insidecity (OB), office misclassified as store and store misclassified as industrial	00
4.5	Some misclassified examples in UIUC sport. Tow row from left to right: croquet misclassified as bocce or polo, badminton misclassified as bocce, bocce misclassified as snowboarding. Bottom row left: RockClimbing misclassified as snowboard-	90
4.6	ing. Bottom row middle and right: rowing misclassified as sailing	91
4.7	as wall1 and wall1 misclassified as stone1	91
4.8	to OB and red bars correspond to the LWOB	92
4.9	Best to be viewed in color with magnification. In each figure, blue bars correspond to OB, red bars correspond to the LWOB	92
	dataset. Best to be viewed in color with magnification. In each figure, blue bars correspond to OB, red bars correspond to the LWOB	93
4.10	An illustration of diversity comparison between features. Feature f_3 is more prefer- able than f'_3 because f_3 is more diverse than f'_3 . In comparison, the image patch corresponding to feature f'_3 significantly overlaps with that of f_2 . Consequentially, although the <i>E</i> value for both f_3 and f'_3 are the same, the $\frac{A}{G}$ value for f_3 is smaller	
4 1 1	than that of f'_3 . Therefore, f_3 is more preferable than f'_3	99 102
4.11 4.12	Examples of the UIUC Car training subset	103
4.12	Example of the UIIIC Car multiple scale test subset	103
4.14	Performance comparison between constraint optimization boosting and original	104
	boosting on UIUC car single scale test subset (best viewed in color)	105
4.15	Spatial locations of features of five detector models	106

5.1	Texture classes are difficult to discriminate (Images courtesy of [15]). The first and the fourth image (from left to right) in top row belong to the same texture
	class while all other images belong to different texture classes despite that they are
	visually similar. Those seven images in the bottom row belong to three texture classes 111
5 2	IBP feature extraction process
5.2	LTD feature extraction process 111
5.5	Ell'r feature extraction process
5.4	industration of original image and its LBP, LTP and LNP ($n = 3$) representations (best viewed in color)
5.5	The LNP (when $n = 3$) is able to discriminate subtle differences between patterns . 122
5.6	Locations of transitions for two exemplary patterns, a three-transition pattern is on
	the left and a five-transition pattern is on the right
5.7	Some example images in the Brodatz texture dataset. First row from left to right:
	pressedcl, raffia, raffia2, d10, ice, woodgrain, water, ricepaper. Second row from
	left to right: d51, d95, bark, beachsand, beans, burlap, d4, d5
5.8	Some example images in the CUReT 92 gray image subset. First row from left to
	right: sample 3, sample 7, sample 13, sample 15, sample 23, sample 30. Second
	row from left to right: sample 35, sample 38, sample 55, sample 57, sample 58,
	sample 60
5.9	Some example images in the UIUC texture dataset
5.10	Some example images in the Outex texture dataset. First row from left to right:
0.110	Sample 1 to Sample 10 are in the TC10 subset. Second row from left to right:
	Sample 11 to Sample 20 are in the TC12 subset 1000 for 10000 for 1000 for 1000 for 1000 for 1000 for 1000 for 1000 for 1
5 11	An overview of the TC10 and TC12 subsets in the Outer Database
J.11	T in Overview of the TCTV and TCT2 subsets in the Outer Database T is T in T

List of Tables

1.1	A list of classification algorithms and their references (Boosting, Naive Bayes and Support Vector Machine classifiers are adopted in this thesis)	4
1.2	Object recognition datasets used in this thesis	12
1.3	The various values for the parameter l and their influences on the sensitivity and the FPR \ldots	14
2.1	Definition of all symbols in (2.4)	24
3.1	The relationship between the correlation index i and indices of histograms a and b .	55
3.2	Detailed parameters of those three subsets (face, pedestrian and car)	57
3.3	Speed comparison between COHD and HOG on feature extraction (in seconds)	59
3.4	SVM Parameters	67
3.5	Performance comparison of global (coarse) feature level detectors	75
3.6	Performance comparison with [10] and [16]	76
3.7	Detector complexity comparison with previous work [10][16]	76
4.1	Confusion matrix (in percentage) for Scene 15 dataset (numbers for LWOB are in bold font, and numbers for OB are in italic font. Zeros are omitted for brevity)*	89
4.2	Confusion matrix (in percentage) for UIUC Sport dataset. Numbers for LWOB are in bold font, and numbers for OB are in italic font. Zeros are omitted for brevity** .	89
4.3	Confusion matrix (in percentage) for Kylberg Texture dataset. Numbers for LWOB are in bold font, and numbers for OB are in italic font. Zeros are omitted for brevity***	94
5.1	LBP representations follow binomial distribution	123
5.2	Details of those 9 groups of LBP representations in binary form	123
5.3	LBP representations are permutations of binary digits	123
5.4	LNP representations follow a trinomial distribution when $n = 3$	124
5.5	Summary of distributions for LNP representations	125
5.6	A brief summary of parameters of three non-RIU2 datasets	129
5.7	A brief summary of parameters of the TC10 and TC12 RIU2 datasets	130
5.8	A comparison of LNP and its variant descriptors' dimensionality under different n	
	values	131
5.9	Average of mean classification accuracies (in percentage) for non-RIU2 datasets	132
5.10	Mean classification accuracies (in percentage) for RIU2 datasets	132

Abbreviations

a.k.a	a lso k nown a s
e.g.	e xemplī g rātiā (for example)
i.e.	id est (that is)
max	maximum
min	minimum
Q.E.D.	Quod Erat Demonstrandum (which had to be proven)
s.t.	subject to
vs.	versus

To my paternal grandfather and maternal grandfather.