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Object recognition is one of the most fundamental topics in computer vision. During past years, it
has been the interest for both academies working in computer science and professionals working
in the information technology (IT) industry. The popularity of object recognition has been proven
by its motivation of sophisticated theories in science and wide spread applications in the industry.
Nowadays, with more powerful machine learning tools (both hardware and software) and the huge
amount of information (data) readily available, higher expectations are imposed on object recogni-
tion. Atits early stage in the 1990s, the task of object recognition can be as simple as to differentiate
between object of interest and non-object of interest from a single still image. Currently, the task
of object recognition may as well includes the segmentation and labeling of different image regions
(i.e., to assign each segmented image region a meaningful label based on objects appear in those
regions), and then using computer programs to infer the scene of the overall image based on those
segmented regions. The original two-class classification problem is now getting more complex as
it now evolves toward a multi-class classification problem. In this thesis, contributions on object
recognition are made in two aspects. These are, improvements using feature fusion and improve-
ments using feature selection. Three examples are given in this thesis to illustrate three different
feature fusion methods, the descriptor concatenation (the low-level fusion), the confidence value
escalation (the mid-level fusion) and the coarse-to-fine framework (the high-level fusion). Two
examples are provided for feature selection to demonstrate its ideas, those are, optimal descriptor

selection and improved classifier selection.



Feature extraction plays a key role in object recognition because it is the first and also the most
important step. If we consider the overall object recognition process, machine learning tools are
to serve the purpose of finding distinctive features from the visual data. Given distinctive features,
object recognition is readily available (e.g., a simple threshold function can be used to classify
feature descriptors). The proposal of Local N-ary Pattern (LNP) texture features contributes to both
feature extraction and texture classification. The distinctive LNP feature generalizes the texture
feature extraction process and improves texture classification. Concretely, the local binary pattern
(LBP) is the special case of LNP with n = 2 and the texture spectrum is the special case of LNP
with n = 3. The proposed LNP representation has been proven to outperform the popular LBP and

one of the LBP’s most successful extension - local ternary pattern (LTP) for texture classification.
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