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Abstract 

 

Hyperglycaemia is the medical term for a state caused by a high level of 

blood glucose, resulting from defects in insulin secretion, insulin action, or both. 

Hyperglycaemia is a common dangerous complication to glycaemic control in Type 

1 diabetic patients. The chronic hyperglycaemia of diabetes is associated with long-

term damage, dysfunction, and failure of different organs, especially the eyes, 

kidneys, nerves, heart, and blood vessels. Therefore, reliable detection of 

hyperglycaemic episodes is important in order to avoid major health conditions.  

 Conventionally, diabetic patients need to frequently monitor blood glucose 

levels to determine whether they have hyperglycaemia or not. A patient has to prick 

their finger (finger-stick) for a drop of blood several times a day, which can therefore 

significantly discourage many patients from periodically checking blood glucose 

levels. Another choice for hyperglycaemia detection might be continuous glucose 

monitoring systems (CGMS), which measure the glucose level in the interstitial fluid. 

For patients using CGMS, finger-sticks are still required to calibrate the sensor. The 

main shortcoming of CGMS is that glucose levels in interstitial fluid lag temporally 

behind blood glucose values, normally 10-15 minutes, which absolutely limits the 

accuracy of the detection. There is a strong demand to have a non-invasive technique 

to help patients to diagnose the disease easily and painlessly. Few methods have been 

reported to detect hyperglycaemia non-invasively or minimally invasively such as in 

exhaled methyl nitrates, and early detection of ongoing β cell death. However, the 

purpose of these studies was on real-time glucose control rather than disease 

diagnosis. 

Electrocardiography (ECG) is a broadly used technique to obtain a quick, 

non-invasive clinical and research screen for diagnosing abnormal rhythms of the 

heart caused by diseases. In fact, observations of ECG changes have been found in 

hypoglycaemia and hyperglycaemia states in T1DM, such as increased heart rate and 

prolongation of QT interval in hypoglycaemia, whereas hyperglycaemia was related 

to reduced heart rate variability. By using these findings in hypoglycaemia, 
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researchers have developed an effective and sensitive system to detect 

hypoglycaemia non-invasively. These excellent performances of hypoglycaemia 

detection using ECG is the motivation of this thesis to study the effect of 

hyperglycaemia on ECG signals, and based on the findings to exploit the 

computational intelligence on the non-invasive detection of hyperglycaemia. 

This research firstly explores the changes of ECG parameters associated with 

the hyperglycaemic state in T1DM. The ECG parameters consist of ECG intervals 

relating to repolarisation phase and heart rate variability (HRV) measures. A clinical 

study of ten T1DM patients and ECG feature extraction process are conducted to 

collect ECG features. Statistical analysis is then applied to every ECG feature to 

estimate the significant difference between hyperglycaemic and normoglycaemic 

states. The results show that the selected ECG parameters in hyperglycaemia differ 

significantly from those in normoglycaemia (p< 0.05). It implies that certain ECG 

parameters are correlated with high blood glucose levels and they possibly contribute 

to the performance of hyperglycaemia detection. Thus, the ECG parameters are used 

for input data of hyperglycaemia classifiers in this thesis. 

 Furthermore, the thesis introduces novel computational intelligent methods 

for hyperglycaemia detection using the ECG parameters. A neural network using 

Levenberg-Marquardt algorithm is the first method explored for hyperglycaemia 

detection in this thesis, known as LM-NN. The second algorithm is the integration of 

principal component analysis (PCA) with a neural network utilising the Levenberg-

Marquardt algorithm, which is called a PCA-LM-NN network. PCA is a useful tool 

for dimensionality reduction to diminish the computational requirement and 

overcome the problem of multicollinearity. It is employed to filter the data so that 

only the significant independent ECG variables responsible for the high blood 

glucose levels can be used as input for the network training, in order that the neural 

network performs well for hyperglycaemia detection. The third method is for the 

improvement of the second method where particle swarm optimization is included. 

This algorithm is a combination of PCA, PSO and neural network, which is called 

PSO-NN. The PSO is utilised as an effective training algorithm to optimise the 

weights of the neural network. The proposed methods are compared with each other 
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and with other traditional classifiers. All the algorithms are investigated with the 

clinical electrocardiographic data extracted from ten T1DM patients.  

The results show that the performance of PCA-LM model for hyperglycaemia 

detection is better than that of LM-NN (70.88% vs. 67.94%, in terms of geometric 

mean). In addition, the PSO-NN outperforms the PCA-LM-NN (77.58% vs. 70.88%, 

in terms of geometric mean). In short, the PSO-NN significantly improves the 

performances of both the LM-NN and PCA-LM-NN, with considerable sensitivity, 

specificity and geometric mean of 82.35%, 73.08% and 77.58%, respectively.   
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CHAPTER 1  .         INTRODUCTION 

 

 

 

Diabetes mellitus is a globally challenging problem, which is responsible for 

an enormous public health and social burden. The number of people living with 

diabetes is increasing in every country and half of these people do not know they 

have it. Meanwhile, hyperglycaemia, the most common complication of diabetes, has 

been recognised as detrimental and one of the risk factors for adverse outcomes. 

Achieving normoglycaemia can be difficult due to variable insulin protocols without 

consensus. There is still limited literature related to hyperglycaemia detection. 

Therefore, adequate detection of hyperglycaemia is absolutely essential for diabetic 

patients to avoid circulation problems and other diseases caused by diabetes such as 

kidney failure, heart disease, etc.  

 Chapter 1 begins with the background of this research to provide a brief 

introduction about the meaning of hyperglycaemia and a general understanding of 

the key topics discussed throughout the rest of the thesis. The second section 

explains the motivation for conducting this research and the necessity for a novel 

non-invasive detection of hyperglycaemia. Continuously, the third section introduces 

the aim of the thesis. The next two parts present the contribution and structure of the 

thesis. Finally, publications relating to this thesis during the PhD candidature are 

provided in the last section. 
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1.1 BACKGROUND 

Diabetes mellitus is a collection of diseases characterised by insufficient 

insulin production and/or insulin resistance. Insulin is a hormone that mediates the 

uptake of glucose in liver, muscle and fat tissue. The lack of insulin or insulin 

resistance results in elevated blood glucose concentration (BG), hyperglycaemia, 

which is the cardinal symptom of diabetes. Over time, high blood glucose damages 

nerves and blood vessels, leading to complications such as heart disease, stroke, 

kidney disease, blindness, dental disease, and amputations. The alternative condition 

in diabetes is hypoglycaemia, an opposite state resulting from too low blood glucose 

levels. Severe hypoglycaemia can lead to seizures, coma, and even death. 

The two major types of diabetes are type 1 (T1DM) and type 2 (T2DM) 

constituting approximately 10% and below 90% of the total diabetes population, 

respectively. A small proportion (3-5%) of pregnant women develop gestational 

diabetes (GDM) that resembles T2DM in manifestation and aetiology (Ben-Haroush 

et al., 2004). GDM along with other types of the disease including pre-diabetes will 

not be discussed further in this report. In T1DM, a progressive destruction of the 

insulin producing beta cells in the pancreas causes an absolute insulin deficiency 

(Committee, 2003). Therefore, people with T1DM are dependent on daily insulin 

injections. Without exogenous insulin people with T1DM will die from ketoacidosis 

within a short time. Type 1 diabetes typically occurs in children and young adults, 

though it can appear at any age. In the past, type 1diabetes was called juvenile 

diabetes or insulin-dependent diabetes mellitus. 

T2DM, the most common type of diabetes, is characterised by impaired 

insulin sensitivity and secretion. Unlike T1DM, persons with T2DM retain a certain 

production of insulin, although of an insufficient level to keep the BG within normal 

range. T2DM progresses slowly and as a result people can have the disease for years 

without knowing it. This form of diabetes can be controlled by a properly managed 

diet and exercise, by taking oral anti-diabetes drugs; or by insulin therapy (Joslin et 

al., 2005). Hyperglycaemia is the technical term for high blood glucose (blood sugar). 

High blood glucose happens when the body has too little insulin or when the body 
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cannot use insulin properly. People who have type 1 and have not have given 

themselves enough insulin may experience hyperglycaemia symptoms. Other causes 

for this condition include eating too much food, infection or illness, injury, surgery 

and emotional stress. The common symptoms of this condition are frequent urination, 

thirst, drowsiness, fatigue, excessive hunger, dry mouth, blurry vision and 

unexplained weight loss. If people do not treat it properly, hyperglycaemia can also 

lead to more serious conditions, including ketoacidosis, mostly in people with type 1. 

Hyperglycaemia witnesses worse effects in conjunction with severe illness. 

Hyperglycaemia was reported as being present in up to 68% of patients admitted to a 

medical ICU (Intensive Care Unit) (Freire et al., 2005). It is an independent predictor 

of death in many acute settings, including acute myocardial infarction (Capes et al., 

2000), trauma, head injury, and stoke (Mowery et al., 2009; Prakash et al., 2008). 

Postulated mechanisms by which hyperglycaemia causes harm include decreased 

cerebral blood flow, intracellular acidosis, and low ATP levels; these may be similar 

to the actions of hyperglycaemia witnessed in diabetes mellitus (Brownlee). A raised 

blood glucose level is also a risk factor for infection and is associated with increased 

mortality in acute illness (Lin et al., 2009). Furthermore, hyperglycaemia is 

associated with poor gut motility, a factor that may be important in bacterial 

overgrowth and translocation (Brealey et al., 2009). In general, hyperglycaemia 

causes harm through a variety of mechanisms, and this damage is accentuated in the 

critically ill where there is concurrent activation of multiple inflammatory processes. 

There is broad consensus that hyperglycaemia should be avoided, and predicted as 

early as possible before optimal treatment end points can be clarified. 

In contrast, hypoglycaemia, the most acute and common complication of type 

1 diabetes, is a condition characterized by abnormally low blood glucose. Extreme 

hypoglycaemia is suggested as a factor of death in diabetic patients. Hypoglycaemia 

of a type 1 diabetic patient, which often happens during sleep, is associated with the 

cause of the “dead in bed” syndrome (Tattersall et al., 1991). To prevent or minimize 

the consequences of hypoglycaemia, a lot of research has been done to obtain 

comprehensive understanding of hypoglycaemia mechanisms and to develop early 

detection systems of hypoglycaemia based on physiological signals. For example, 
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hypoglycaemia has been found to alter results in cardiac repolarisation such as 

significant prolonged QT interval (Eckert et al., 1998; Christensen et al., 2010; 

Robinson et al., 2004). The patho-physiological mechanism of changes in QT 

interval during hypoglycaemia has been clarified by a physiologically longer cardiac 

repolarisation at night and thus an electrically instable myocardium worsened by the 

hypoglycaemia induced adrenergic stimulation (Cryer, 2004). Non-invasive and 

minimally invasive methods of hypoglycaemia detection have been covered by 

several patents (Hung Nguyen, 2008; Bharmi, 2009; Evans, 2006). Many researches 

have also been undertaken to improve the performance of hypoglycaemia detection 

(Alexakis et al., 2006; Ling et al., 2011; Nuryani et al., 2012). Hence, there is no 

need for further explorations regarding perception in hypoglycaemia detection but 

hyperglycaemia. 

In clinical settings, the best screening test for high blood glucose is the 

fasting plasma glucose (FPG), which is also a component of diagnostic testing. The 

FPG test and the 75-g oral glucose tolerant test (OGTT) are both suitable tests for 

diabetes; however, the FPG test is preferred because it is easier and acceptable to 

patients, and less expensive. If there is a high suspicion for hyperglycaemia, an 

OGTT should be performed to confirm on alternative days. Fasting is defined as no 

consumption of food or beverage other than water for at least 8h before testing. If 

necessary, plasma glucose testing may be required on individuals who have taken 

food or drink shortly before testing. A confirmatory FPG test or OGTT should be 

completed on a different day if the clinical condition of the patient permits. Normally, 

it takes quite a lot of time for the completion of clinical diagnosis of hyperglycaemia 

in diabetes.  

Intermittent measurement of blood glucose for self-monitoring is currently 

one of the main obstacles in achieving glycaemic control in Type 1 diabetic patients. 

Conventionally, to determine whether they are hyperglycaemic or not, diabetic 

patients need to frequently monitor blood glucose levels. One conventional self-

monitoring technique of glucose concentration, for example, requires that the 

patients draw blood, typically by pricking the finger. The drawn blood is then 

analysed by a portable device to determine blood glucose levels. The technique can 
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be painful and therefore can significantly discourage the patent from periodically 

checking blood glucose levels. Finger-stick measurements can only provide 

information regarding a few minutes of each day and cannot be used to easily 

identify patterns of abnormal glycaemia (Kaufman et al., 2001). There is a strong 

demand to have non-invasive or minimally invasive techniques to help patients to 

diagnose the disease easily and painlessly. 

Non-invasive up to date methods proposed include systems such as: 

infrared/near-infrared spectroscopy (Malin et al., 1999), iontophoresis (Tamada et al., 

1999), skin conductance (Rebrin et al., 1999), etc. However, none of these have 

proved sufficiently reliable or unobtrusive. The ideal solution to this problem would 

be the development of a subcutaneous sensor, which could monitor glucose 

concentrations continuously. Even though recent technological advances offer the 

development of such a sensor, there are still significant technological problems to 

overcome (Ireland et al., 2000). Continuous blood glucose monitors measure the 

glucose level in the interstitial fluid. Shortcomings of continuous glucose monitoring 

systems (CGMS) due to this fact are that continuous systems must be calibrated with 

a traditional blood glucose measurement and therefore require both the CGM system 

and occasional finger-stick measurement. Another limitation is that glucose levels in 

interstitial fluid lag temporally behind blood glucose values. With glucose 

fluctuations, it has been shown that there is a 5-min lag time with the CGMS which 

may vary up to 26 minutes in some systems. This lag is due to the delay in 

equilibration between blood and interstitial glucose, which limits the accuracy of 

CGM for predicting blood glucose concentrations especially when these 

concentrations are changing rapidly (Burge et al., 2008). In summary, it is still more 

desirable to have an alternative non-invasive method to detect hyperglycaemia 

efficiently. 

There are a few methods to detect hyperglycaemia non-invasively or 

minimally invasively such as in exhaled methyl nitrates (Galassetti, 2007), early 

detection of ongoing β cell death (Akirav et al., 2011). To predict hyperglycaemia, 

other studies have focused on predicting blood glucose levels to forecast glycaemic 

states using dynamic models (Sparacino et al., 2008; Le Compte et al., 2010). 
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Alternatively, neural network approaches have been developed for early detection of 

hypoglycaemia/hyperglycaemia events based on glucose data from continuous 

glucose monitoring (CGM) (Daskalaki et al., 2012; Pappada et al., 2010). 

Nevertheless, the purpose of these studies was on real-time glucose control rather 

than disease diagnosis. 

According to a variety of medical and healthcare information, 

electrocardiography (ECG) is a broadly used technique to obtain information ranging 

from a simple pulse to a very detailed description of heart activity.  It indicates the 

overall rhythm of the heart, so ECG is known to be the best way to measure and 

diagnose abnormal rhythms of the heart (Bonow et al., 2011). In ECG, during every 

heartbeat, P, Q, R, S, T and U waves can be seen. These waveforms result from 

depolarization and repolarisation of different parts of heart muscle. By evaluation 

and prognosis, ECG parameters can give early predictions of many heart diseases 

with a high rate of accuracy for patients. In fact, observations of ECG changes have 

been found in hypoglycaemia and hyperglycaemia states in T1DM, such as increased 

heart rate and prolongation of QT interval in hypoglycaemia (Christensen et al., 

2010), whereas hyperglycaemia has been related to reduced heart rate variability 

(Singh et al., 2000). By using these findings in hypoglycaemia, researchers at the 

Centre for Health Technologies in University of Technology Sydney have developed 

an effective and sensitive system to monitor hypoglycaemia non-invasively (Nguyen 

et al., 2009; Nguyen et al., 2006). This hypoglycaemia monitor called Hypomon 

enables the identification of approximately 80% of night-time hypoglycaemic events 

and has been commercialised by AiMedics Pty Ltd. Based on this excellent 

performance of hypoglycaemia detection, ECG becomes a very promising technique 

to obtain more ubiquitous and non-invasive clinical and research screening for 

detection of hyperglycaemia than other physiological signals. To date, there has been 

no research into hyperglycaemia detection in T1DM based on changes in ECG. 

1.2 MOTIVATION OF THE THESIS 

With the idea of employing ECG to detect hyperglycaemia, comprehension of 

the effects of hyperglycaemia on ECG signals should be firstly investigated. Several 
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studies have been reported regarding ECG abnormalities which can possibly be 

found in hyperglycaemia. For example, shorter mean RR intervals were found in 

hyperglycaemic patients (Bathula et al., 2010). Increased PR in hyperglycaemia have 

been discussed in a research with acute hyperglycaemia in healthy males (Marfella et 

al., 2000). Besides, while hypoglycaemia was widely proved to alter ventricular 

repolarisation by lengthening of QTC (corrected QT interval corrected by Bazett’s 

formula), the role of hyperglycaemia in causing abnormal cardiac repolarisation in 

people with diabetes is not yet clear. Marfella reported significant increments of QTC 

interval and PR interval in cases of acute hyperglycaemia in normal subjects 

(Marfella et al., 2000). Gordin suggested that a hyperglycaemic glucose clamp 

induces QTC interval prolongation in diabetic patients and in healthy control subjects 

(Gordin et al., 2008). Inversely, in a recent study (Suys et al., 2006) where 

simultaneously recorded QTC values and glucose levels were analysed in patients 

with Type 1 Diabetes, QTC prolongation was associated only with hypoglycaemia, 

not with hyperglycaemia. Results from clinical studies are less consistent; therefore 

further studies are needed in order to establish the clinical relevance of the 

relationship between hyperglycaemia and QT interval. 

As mentioned above, hyperglycaemia may alter results in a corrected QT 

interval which are normally used as an index of ventricular repolarisation duration. 

QT interval covers the distance from the beginning of Q-wave to the end of T-wave. 

Therefore, there is no doubt that alteration in a QTC interval may influence other 

ventricular repolarisation parameters such as corrected RT interval (interval from R 

point to peak of T-wave corrected by Bazett’s formula) and corrected TPTE interval 

(depicted as interval from the peak to the end of T-wave corrected by Bazett’s 

formula). So far, to the best of my knowledge, there is no report about the effect of 

hyperglycaemia on RTC and TPTEC intervals. In addition, research regarding the 

relation of ventricular repolarisation parameters on the outcome of hyperglycaemia 

detection has not been explored. 

Recently, reduced heart rate variability (HRV) has been seen among patients 

with Type 1 diabetic mellitus (Singh et al., 2000; Jaiswal et al., 2013). Diabetes 

mellitus is widely known as one of the main causes of autonomic neuropathy, which 
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can lead to abnormalities in heart rate control (Kudat et al., 2006) and the main 

driver to the abnormality in heart rate variability appears to be hyperglycaemia. 

However, changes in HRV parameters have not yet been investigated for detection of 

hyperglycaemia. Thus, a question arises as to the contribution of HRV parameters in 

the performance of hyperglycaemia detection. 

Other problems being considered are the methodology for the 

hyperglycaemia detection system and which computational intelligences are chosen 

to detect hyperglycaemia accurately and efficiently. Hung Nguyen et al. have 

suggested a lot of algorithms to detect the onset of hypoglycaemia using ECG 

parameters (Ling et al., 2011; Nuryani et al., 2012; Nguyen et al., 2009). These 

studies have been reported with good sensitivities and with acceptable specificities. 

However, they have not yet been employed to detect hyperglycaemia. Among 

advanced computational intelligent algorithms, artificial neural networks (ANN) 

have been proved to be a powerful tool for classification models. Neural networks 

with the ability to learn by example achieve flexibility and effectiveness in medical 

diagnosis. Because of its advantages, ANN is selected as a classification technique 

for this research. Further investigation is going to be undertaken in a combination 

system which employs ANN. There is motivation to examine the contribution of a 

combined ANN system to the effectiveness of hyperglycaemia detection. 

1.3 AIMS OF THESIS 

According to the motivation statements above, this PhD research aims to 

introduce a novel non-invasive hyperglycaemia detection system for diabetic patients 

utilising computational intelligent algorithms. The classification techniques use 

electrocardiographic parameters as input signals. Hence, two main purposes are 

investigated in this study.  

The first aim is to explore the changes of ECG parameters associated with the 

hyperglycaemic state in T1DM. The ECG parameters consist of ECG intervals and 

heart rate variability (HRV) measures. The objective of this investigation is to 

identify hyperglycaemic and normoglycaemic states based on ECG changes in 
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diabetic patients. To do that, statistical analysis is applied to every ECG feature to 

estimate the significant difference between hyperglycaemic and normoglycaemic 

states. Moreover, correlation analysis is performed to evaluate the relationship 

between ECG parameters and blood glucose levels. Then, the identification is used to 

find the potential ECG features which possibly contribute to the performance of 

hyperglycaemia detection. 

The second aim is to introduce several computational intelligent methods for 

hyperglycaemia detection. The algorithms are arranged from the simple to advanced 

ones in order to compare the improvement of results. At the heart of the methodology 

in this research is the development of an artificial neural network (ANN) for 

hyperglycaemia detection. A basic approach of neural network is presented as the 

second algorithm. Five training methods are examined to choose the appropriate 

training type for the later hyperglycaemia detection. Following the idea of neural 

network development, an advanced two-stage ANN classifier is established with a 

combination of principal component analysis (PCA) to enhance the performance of 

detection. PCA is employed as the first stage to transform the original group of ECG 

parameters into a new appropriately lower dimensional size of variables to diminish 

the computational requirement and overcome the problem of multicollinearity. The 

objective of PCA focused especially on identification of the most important ECG 

factors among cardiac intervals and HRV measures that are responsible for the 

variation of high blood glucose levels in diabetic patients. The last method is the 

improvement of the third one which is the hybrid of the two-stage ANN classifier 

using PCA and particle swarm optimisation (PSO). PSO is adopted as the training 

method for ANN classifier to optimise the neural network parameters. PSO 

technique could be an effective alternative training algorithm for ANN since it is 

found to be quite accurate when compared to the existing conventional algorithms. 

Besides this, since PSO is a heuristic optimisation technique, convergence to a local 

minimum is avoided and instead a global optimal solution can be obtained (Ch et al., 

2012) so that performance of ANN could be improved. 

A clinical study in ten T1DM patients is carried out to investigate the effects 

of hyperglycaemia in cardiac intervals and variations. An ECG acquisition and 
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analysis system based on LabVIEW software is developed for collecting ECG 

signals and extracting features with abnormal changes. Observations of ECG 

alterations are categorised and estimated by means of statistical software SPSS (IBM) 

to find out the significant changes among ECG parameters between hyperglycaemic 

and normoglycaemic states.  The proposed hyperglycaemia detection system is 

performed in MATLAB environment. Performances of different algorithms are 

compared to show the enhancement in the outcome and reveal the advantages of 

combined ANN classifier.  

1.4 CONTRIBUTIONS 

Changes in electrocardiogram during hyperglycaemia in T1DM are still far 

from being well understood. This PhD research has contributed important findings 

about the effects of hyperglycaemia on electrical activity of the heart. This approach 

has provided useful clinical perception. The study focuses on the observations of 

abnormal changes in ECG parameters under hyperglycaemia conditions including the 

degradations of repolarisation parameters and HRV measures. This provides 

important insight into the development of a non-invasive strategy for the 

classification of hyperglycaemia in patients with diabetes. Advanced intelligent 

algorithms and ECG parameters have been introduced for hyperglycaemia detection. 

These results have been presented in several journal and conference papers which are 

mentioned in the section 1.6. All papers are full-reviewed, organised by the IEEE 

associations and published in IEEE Xplore (ieeexplore.ieee.org). 

The contributions of this doctoral research are: 

(i) This study has investigated and discovered the abnormal changes of 

ECG parameters under hyperglycaemic conditions in T1DM. 

Ventricular repolarisation parameters and HRV measures are 

decreased significantly under a hyperglycaemia state compared to 

normoglycaemia. Both cardiac intervals and HRV measures are 

highly correlated with high blood glucose levels. These findings 
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contribute to the limited literature of alterations in electrocardiogram 

during hyperglycaemia.  

(ii) This research has indicated the potential ECG parameters for the 

classification of hyperglycaemia. By means of PCA, the most 

important ECG factors among cardiac intervals and HRV measures 

that are responsible for the variation of high blood glucose levels in 

diabetic patients have been identified. This optimal group of ECG 

variables is selected as input in order that the intelligent algorithms 

perform well for hyperglycaemia detection. 

(iii) An advanced neural network has been introduced for a 

hyperglycaemia detection model. It is a two-stage ANN classifier 

using PCA to reduce the dimensional size of input and then 

implemented by the most popular training technique Levenberg-

Marquardt. This approach produces very good sensitivity and 

acceptable specificity in hyperglycaemia detection. 

(iv) A combined neural network with PSO has been investigated to 

enhance the performance of hyperglycaemia detection. PSO trained 

feed forward neural network can avoid local minimum and converge 

to global minimum to achieve better results. This combination shows 

significant improvement in the performance of hyperglycaemia 

detection compared with the previous approach.  

1.5 STRUCTURE OF THESIS 

This thesis consists of seven chapters, appendix and reference. Each of the 

main chapters III, IV, and V is completed with a discussion and conclusion. 

Excluding the first chapter, the remaining chapters of the thesis are organised as 

follows:  

 Chapter II presents the literature review related to hyperglycaemia in 

diabetes. It describes the glucose regulation in hyperglycaemia and the 

blood glucose threshold definition of hyperglycaemia. Alternatively, the 

chapter introduces the effects of hyperglycaemia on the electrical activity 
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of the heart. It provides basic information on ECG intervals including QT 

and QTC, RT and RTC, TPTE and TPTEC, and PR intervals. Besides, the 

section describes heart rate variability and an analysis tool for HRV.  This 

chapter also reports on current techniques in detecting hyperglycaemia 

either minimally invasively or non-invasively. It shows the advantages 

and disadvantages in each method and reveals the gap in the literature of 

identifying hyperglycaemia to motivate a novel non-invasive strategy of 

hyperglycaemia detection. 

 Chapter III provides a basic method applying artificial neural network 

and ECG parameters for hyperglycaemia detection. The chapter begins 

with clinical study to generate the data set which would be used for 

hyperglycaemia detection in this research. This part includes the 

description of the study, the process of ECG acquisition, the feature 

extraction and the ECG parameters obtained from the study.   After that, a 

multilayer feed-forward artificial neural network (ANN) is introduced for 

classification of hyperglycaemia. Different training algorithms are 

implemented to choose the best one. A comparison of results between 

multiple regression and ANN is also displayed to show the outperforming 

of ANN.   

 Chapter IV proposes a novel method for classification of hyperglycaemia 

by including PCA to an ANN classifier. PCA provides the features 

dimensionality reduction to find the optimal group of ECG variables as 

input. Variety of inputs and training algorithms are implemented to 

compare the performance of hyperglycaemia detection when including, 

and not including PCA. 

 Chapter V indicates an optimisation of ANN classifier for 

hyperglycaemia detection. The optimal group of ECG variables which 

resulted from PCA is fed to the input of the classifier and then PSO is 

used to train the feed-forward neural network with back-propagation. The 

performance of this approach is also compared with the outcomes of other 

methods in chapter IV and V. 
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 Chapter VI provides discussion and the overall conclusion for this 

research. The discussion involves the clinical insight of the influences of 

hyperglycaemia on abnormal changes in ECG parameters. It also 

discusses the performances of different methods utilised in the study. 

Main findings of the research are discussed as significant contributions of 

this thesis to the knowledge.  In addition, the chapter presents future 

research on hyperglycaemia mechanism and other potential methods for 

hyperglycaemia detection.  

1.6 PUBLICATIONS RELATED TO THESIS 

The following journal and conference papers have been presented during the 

doctoral research:  

Journal paper: 

L. L. Nguyen, Steven Su, Hung Nguyen, "Non-invasive Detection of 

Hyperglycaemia in Type 1 Diabetes Mellitus using Electrocardiographic 

Parameters", submitted to IEEE Trans on Biomedical Engineering, 2014. 

 

Conference papers: 

 L. L. Nguyen, Steven Su, Hung Nguyen, "Identification of Hypoglycaemia 

and Hyperglycaemia in Type 1 Diabetic patients using ECG parameters," in 

Engineering in Medicine and Biology Society (EMBC), 34th Annual 

International Conference of the IEEE, pp. 2716-2719, 2012. 

 L. L. Nguyen, Steven Su, Hung Nguyen, "Effects of Hyperglycaemia on 

Variability of RR, QT and corrected QT intervals in Type Diabetic Patients," 

in Engineering in Medicine and Biology Society (EMBC), 35th Annual 

International Conference of the IEEE, pp. 1819-1822, 2013. 

 L. L. Nguyen, Steven Su, Hung Nguyen, "Neural Network Approach for 

Non-invasive Detection of Hyperglycaemia using Electrocardiographic 
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Signals", accepted in Engineering in Medicine and Biology Society (EMBC), 

36th Annual International Conference of the IEEE, August 26-30, 2014. 
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CHAPTER 2  .    LITERATURE REVIEW 

 

 

 

The literature review in chapter 2 presents a comprehensive insight into 

hyperglycaemia and current research on hyperglycaemia detection. To understand 

the physiology of hyperglycaemia and propose a novel non-invasive method for 

hyperglycaemia detection, a detailed background of blood glucose regulation related 

to hyperglycaemia and the effect of hyperglycaemia on the electrical activity of the 

heart are described. An outline and evaluation on the current research and 

technologies available to monitor the blood glucose levels and hyperglycaemia are 

provided in the later section. The gap in the work of hyperglycaemia detection based 

on physiological signals is revealed afterwards. The proposed strategy for 

hyperglycaemia detection is presented in the last part of this chapter. 

2.1 HYPERGLYCAEMIA 

2.1.1 Definition and causes of hyperglycaemia 

Hyperglycaemia is the technical term for high blood glucose (sugar). High 

blood glucose happens when the body has too little insulin or when the body can't 

use insulin properly. 

Glucose levels are measured in either: 



 
 

16 
 

 Milligrams per decilitre (mg/dl), or 
 Millimoles per litre (mmol/l), which can be acquired by dividing (mg/dl) 

by factor of 18 

Scientific journals are moving towards using mmol/l; some journals now use mmol/l 

as the primary unit but quote mg/dl in parentheses (Wikipedia, 2013). 

Chronic hyperglycaemia that persists even in fasting states is most commonly 

caused by diabetes mellitus, and in fact chronic hyperglycaemia is the defining 

characteristic of the disease. Intermittent hyperglycaemia may be present in pre-

diabetic states. Acute episodes of hyperglycaemia without an obvious cause may 

indicate developing diabetes or a predisposition to the disorder. 

In diabetes mellitus, hyperglycaemia is usually caused by low insulin levels 

(type 1 diabetes mellitus) and/or by resistance to insulin at the cellular level (type 2 

diabetes mellitus), depending on the type and state of the disease. Low insulin levels 

and/or insulin resistance prevent the body from converting glucose into glycogen (a 

starch-like source of energy stored mostly in the liver), which in turn makes it 

difficult or impossible to remove excess glucose from the blood. With normal 

glucose levels, the total amount of glucose in the blood at any given moment is only 

enough to provide energy to the body for 20-30 minutes, and so glucose levels must 

be precisely maintained by the body's internal control mechanisms. When the 

mechanisms fail in a way that allows glucose to rise to abnormal levels, 

hyperglycaemia is the result. 

2.1.2 Blood glucose regulation 

Glucose in the blood is the most important carbohydrate fuel in the body; it 

provides a source of energy for all tissues of the body. Glucose levels vary before 

and after meals, and at various times of day; the definition of "normal" varies among 

medical professionals. Glucose levels are usually lowest in the morning, before the 

first meal of the day (termed "the fasting level"). In the fasting level, the blood sugar 

concentration is between 80 and 90 mg. per 100 cc. of blood. Even after several days 

of fasting the blood sugar will be maintained around this level in a well-nourished 

individual. It is essential to normal health that the blood sugar be maintained at this 
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level, and that it should not fall below this level for periods longer than an hour. 

After a meal containing sugar the blood sugar rises at once, usually reaches a 

concentration of 120 to 140 mg after 11/2 to 2 hours, and then gradually falls during 

the third and fourth hours to the previous fasting level (Sandler, 1951). 

 

Figure 2.1:  Blood glucose curves of three glycaemic states after a meal containing 100 grams of 
glucose 

 

The body maintains blood glucose homeostasis mainly through the action of 

two hormones secreted by the pancreas. These hormones are insulin, which is 

released when glucose levels are high, and glucagon, which is released when glucose 

levels are low. Throughout the day, the release of insulin and glucagon by the 

pancreas maintains relatively stable levels of glucose in the blood. The maintenance 

of the blood sugar at normal levels is brought about by an efficient regulatory 

mechanism. The main organs in this mechanism are the liver, the autonomic nervous 

system, and certain glands of internal secretion called endocrine glands. The liver is 

at the centre of this mechanism and serves as a storehouse of the blood sugar supply. 

The foods are digested and broken down into simpler chemicals which are absorbed 

from the gastrointestinal tract, carried to the liver, and there built up (synthesised) by 

the liver cells into a complex compound called glycogen. This breakdown of liver 
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glycogen is controlled chiefly by nerves of the autonomic system which consists of 

two divisions, the sympathetic and the parasympathetic. 

In the liver, insulin promotes conversion of glucose into glycogen and into fat. 

In muscle, insulin promotes the use of glucose as fuel and its storage as glycogen. In 

fat cells, insulin promotes the uptake of glucose and its conversion into fats. If 

glucose is being absorbed from the small intestine and there is no circulating insulin, 

most cells of the body cannot make use of the circulating glucose and its levels can 

rise to dangerous levels. This is what happens in a form of diabetes in which the 

pancreas does not secrete insulin. This condition is called hyperglycaemia, 

accompanying the high level of blood glucose; excess glucose may be found in the 

urine. 

2.1.3 Blood glucose threshold definition 

The blood glucose level threshold for defining hyperglycaemic events varies 

by study, depending on different patient populations, such as non-diabetic or diabetic 

patients, critically ill patients in intensive care units or outpatients. In this research, 

we focus on juvenile T1DM patients. Therefore, based on the recommendations of 

scientists (Hirshberg et al., 2008) regarding levels of blood glucose among juvenile 

diabetic patients, glycaemic states can be classified as follows: 

 Hypoglycaemia (Low range): blood glucose level (BGL) ≤ 60 mg/dl 

(or  ≤ 3.33 mmol/l) 

 Normoglycaemia (Normal range):   60 mg/dl <BGL < 150 mg/dl  (or 

3.33 mmol/l < BGL < 8.33 mmol/l) 

 Hyperglycaemia (High range): BGL ≥ 150 mg/dl (or ≥ 8.33 mmol/l) 

Cut-off value of 8.33 mmol/l is high enough for symptoms of hyperglycaemia 

to arise in adolescent diabetic patients during the night (Association, 2012). Levels 

that are significantly and persistently above this may necessitate treatment in 

hospitalised patients to avoid worsening outcomes. 
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2.2 EFFECT OF HYPERGLYCAEMIA ON THE ELECTRICAL 

ACTIVITIES OF THE HEART 

2.2.1 Effect of hyperglycaemia on electrocardiogram intervals 

The electrocardiogram (ECG) is a graphic recording of the electrical activity 

produced by the heart. It can be measured in twelve leads to give information about 

the regulation of heartbeats. In ECG signal, the important components are normally 

P-wave, QRS complex and T-wave. These components provide most of the useful 

information in the ECG in terms of intervals and characteristics defined by their 

features. The ECG features under investigation involve the parameters in 

depolarization and repolarisation stages of the heart. Medications or diseases that 

affect the cardiovascular system might reflect alterations in the characteristics of 

ECG signals.  

In the past few years, several studies have reported a small number of ECG 

alterations in patients with hyperglycaemia. ECG alterations caused by the effects of 

hyperglycaemia have demonstrated changes of some ECG parameters, including QT 

interval, PR interval and mean RR interval (as shown in Figure 2.2). QT interval on 

the surface of ECG is measured from the beginning of the Q-wave to the end of T-

wave. It is an indirect measure of the duration of depolarization, which is reflected 

by QRS complex, and ventricular repolarisation, which is indicated by the length 

from J point to the end of T-wave. PR interval is measured from the beginning of the 

P-wave to the beginning of the Q-wave. The PR interval reflects the time the 

electrical impulse takes to travel from the sinus node through the AV node where it 

enters the ventricles and is therefore a good estimate of AV node function. RR 

interval is the duration between the two consecutive R waves which occurs during 

ventricular depolarization. Heart rate in beats-per-minute can be calculated by 60 

(number of seconds in a minute) divided by RR interval (measured in seconds). 
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Figure 2.2:   QT, PR and RR intervals in an electrocardiogram 

 

The ability to define QT interval changes is important because of its 

association with ventricular abnormalities. The QT interval abnormalities are 

hampered by the fact that the QT interval is not constant and highly dependent on the 

preceding cardiac cycles and therefore on the heart rate. The QT interval varies not 

only with the heart rate, but also with many factors, including gender and because of 

diurnal variability, time of the day (Gowdar, 2010). To correct the inconstancy of 

dependence of the QT interval on preceding R-to-R changes, a rate-normalized or 

corrected QT interval (QTC interval) is used. The object of QTC is to normalize the 

QT interval to the value that it would have had if the heart rate was 60 beats/min, that 

is QTC = QT when RR interval is equal to one second. This is the meaning of QT 

correction formula developed by Bazett. In Bazett’s formula, QTC is defined as the 

QT interval divided by the square root of its preceding R to R time interval, which is 

given by: 

                                                   (2.1) 

Many other empirical formulas have been developed; however, there is no agreement 

as to which is the best method for QT correction. Bazett’s formula therefore remains 

the most widely accepted method for rate normalisation of QT interval and is used in 

this research hereafter.      

Changes in QT interval and QTC under hyperglycaemic conditions have been 

observed, however, results from clinical studies are less consistent. Gordin et al. 
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(2008) recently reported that maintaining a plasma glucose concentration of 15 

mmol/l by hyperglycaemia glucose clamp induces QTC interval prolongation in type 

1 diabetic patients and in healthy control subjects. The report stated that compared 

with normoglycaemia, acute hyperglycaemia increased the QTC interval from 23 to 

28 ms in type 1 diabetes and from 34 to 44 ms in healthy volunteers (as described in 

Figure 2.3) after 0, 60, 120 minutes of hyperglycaemia. These results agree with 

Marfella et al.’s finding that QTC increased in a similar experiment of acute 

hyperglycaemia in healthy men (Marfella et al., 2000). 

 

Figure 2.3:   QTC interval changes during 0, 60, 120 minutes of hyperglycaemia vs. 
normoglycaemia in study of Gordin et al. (Gordin et al., 2008) 

 

Inversely, in a recent study where simultaneously recorded QTC values and 

glucose levels were analysed in patients with Type 1, QTC prolongation was 

associated only with hypoglycaemia, not with hyperglycaemia (Suys et al., 2006). 

They simultaneously recorded QT and QTC values using 24-h Holter registration and 

glucose levels with a continuous glucose monitoring system in children and 

adolescents with type 1 diabetes mellitus. In this study, a significant correlation was 

found between QT, QTC and QTCmax and glucose levels, with the higher QTC values 

coinciding with lower glucose readings and vice versa (as shown in Figure 2.4). 

Apparently, the role of hyperglycaemia in causing QT abnormalities in people with 

diabetes is not clear. Pertinent to the reports of Gordin and Marfella et al. are the 
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results of a study showing that QTC duration was significantly related to glucose 

concentrations 60 and 120 minutes after an oral glucose load in elderly men (Dekker 

et al., 1996). Contrary findings have shown that on oral glucose test induced QTC 

prolongation only in long QT syndrome patients; QTC did not change in healthy 

control subjects (Nishizaki et al., 2002). Further studies in type 1 diabetic patients 

are therefore needed to establish the clinical relevance of the findings of either 

Gordin and Marfella et al. or Suys.   

 

Figure 2.4:   Individual correlation QTC per hour versus glycaemia (r = 0.672, p = 0.003) in a 
study of Suys et al. (Suys et al., 2006) 

 

Increased PR interval in hyperglycaemia has been discussed in the research of 

Marfella et al. (Marfella et al., 2000) with acute hyperglycaemia in healthy males. 

They reported that PR interval showed a significant increment at 120 min of the 

clamp (Figure 2.5). This effect is due to PR intervals commonly associated with 

atrial fibrillation (Lorsheyd et al., 2005; Homoud, 2009), and chronic 

hyperglycaemia but not hypoglycaemia which may contribute to atrial fibrillation 

burden in several ways (Aksnes et al., 2008; Gandhi et al., 2005). The PR interval on 

the surface ECG serves as an index of atrio-ventricular conduction, in which the 

main component, P-wave duration, represents atrial depolarization that causes atrial 

contraction. Prolonged P-wave duration and P-wave dispersion have also been 

widely seen in pre-diabetic patients without coronary artery disease, hypertension or 

ischemia (Karabag et al., 2011; Yazici et al., 2007). This explains why diabetes 
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mellitus is known as an independent and strong risk factor for the development of 

atrial fibrillation. 

A possible mechanism of the increments of any durations regarding P-wave 

under hyperglycaemic condition is that chronic hyperglycaemia causes structural and 

functional disorders by changing the chemical composition of the proteins present in 

cell membrane structure (Yazici et al., 2007). An experimental study has reported 

that extracellular protein deposition and interstitial myocardial fibrosis might be 

other mechanisms responsible for the prolongation of P-wave dispersion, by 

influencing heterogeneity of atrial conduction time and atrial refractoriness in 

diabetic patients (Kato et al., 2006). The reason for the prolongation of P-wave 

dispersion may be a structural defect in the atrium, which is likely to be caused by 

damage due to hyperglycaemia (Karabag et al., 2011). At present, although there is 

no adequate explanation for the mechanism of increased PR interval in diabetic 

patients, the same mechanism contributing to the effect of hyperglycaemia on P-

wave dispersion is possibly also operative.  

 

Figure 2.5:   PR interval during hyperglycaemic clamps in Marfella et al.’s study (Marfella et 
al., 2000). Left dark bar basal values, right light bar 120 min clamp values. 

** p < 0.01 vs basal values.   

2.2.2 Effect of hyperglycaemia on Heart rate variability 

Variability of RR interval, known as heart rate variability (HRV) measures, 

has a close relationship to sympathetic and parasympathetic branches of the 

autonomic nervous system (ANS) (Electrophysiology, 1996). These branches are 

linked to the heart at the sinoatrial node (SA) where the beat is initiated for a normal 

heart. The sympathetic branch will raise heart rate, blood sugar and blood pressure 
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under stress while the parasympathetic branch will have an opposite effect once the 

body gets rest and relaxation (Shin et al., 1989). The use of HRV has emerged as a 

simple, reliable and non-invasive method to evaluate the sympatho-vagal balance at 

the sinoatrial level. HRV signal, which is generated from ECG by calculating the 

inter beat intervals, is a non-stationary signal that represents the autonomic activity 

of the nervous system and the way it influences the cardiovascular system 

(Yaghouby, 2009). In addition, diabetes mellitus is one of the main causes of 

autonomic neuropathy, which can lead to abnormalities in heart rate control (Kudat 

et al., 2006). Therefore, it is no doubt that there is association between HRV changes 

and diabetic patients. Changes of RR interval under hyperglycaemic conditions are 

then included in the analysis of HRV in this part. Since RR time intervals are less 

affected by the noise, analysis of HRV signal can be considered as a robust method 

in cardiology.  

2.2.2.1 HRV measures 

Measure of HRV features are basically relied on when analysing the 

variations of inter-beat RR time intervals. The variation analysis can be accomplished 

in the time or frequency domain. The time domain analysis, the simpler way, 

calculates a number of variables that describe beat to beat changes. The simplest time 

domain variable is mean RR interval. The most commonly used variable is the 

standard deviation of the RR intervals (SDNN), that is, the square root of variance. 

Since variance is mathematically equal to total power of spectral analysis, SDNN 

reflects all the cyclic components responsible for variability in the period of 

recording (Electrophysiology, 1996). Other popular measures derived from interval 

differences include RMSSD, the square root of the mean squared differences of 

successive RR intervals, and pNN50, the proportion derived by dividing the number 

of interval differences of successive RR intervals greater than 50 ms to the total 

number of RR intervals. These two measures of short-term variation estimate high-

frequency variations in the heart rate and thus are highly correlated. In addition, the 

series of RR intervals also can be converted into a geometric pattern such as the 

sample density distribution of RR interval durations. The HRV triangular index 
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measurement is the integral of the density distribution (that is, the number of all RR 

intervals) divided by the maximum of the density distribution. The triangular 

interpolation of RR interval histogram (TINN) is the baseline width of the distribution 

measured as a base of a triangle approximating the RR interval distribution.  

The frequency domain components of HRV signal, derived from its power 

spectrum analysis, has been commonly used to quantify the relative dominance of 

parasympathetic and sympathetic influence on the heart (Malliani et al., 1991). 

Spectral analysis technique can distinguish among the intrinsic sources of HRV, as 

these rhythms occur at different frequencies. Typically, frequency domain has been 

divided into three major groups: high, low and very low frequency bands. Relative 

power in high frequency (HF) areas (0.15-0.4 Hz) has been used to infer 

parasympathetic nervous system activity. The low frequency (LF) component (0.04-

0.15 Hz) reflects inputs from both branches of the autonomous nervous system. Very 

low frequency (0.0033-0.04 Hz) is influenced by many factors, including 

thermoregulation and the rennin-angiotensin system. The ratio of the LF to HF 

components represents a measure of sympatho-vagal balance (Barron et al., 1996; 

Pagani et al., 2000).  

The variety of time and frequency measures of HRV is summarised in Table 

2.1. It also includes the overview of the significations of components and their 

correlations between others. Although time domain measures can investigate the 

differences in heart rate or cardiac cycle length, the frequency measures are usually 

able to provide results that are more easily interpretable in terms of physiological 

regulations (Electrophysiology, 1996). These measures are sensitive indicators of 

autonomic function in diabetic patients and may provide important insight into the 

pathogenesis of autonomic neuropathy in hyperglycaemia (Noritake et al., 1992).  
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 HRV 
measures Units Definition Signification 

Time 

domain 

Mean RR ms mean of the RR intervals 
between two normal heartbeats 

The same as average heart rate 

 

SDNN ms standard deviation of all normal 
RR intervals 

Reflect both the sympathetic 
and parasympathetic influence 
on HR variability 

RMSSD ms 
Square root of mean squared 
differences of successive RR 
intervals 

Reliable index of cardiac 
parasympathetic activity 

 

 

pNN50 ms 
percentage of beats with a 
consecutive RR interval 
difference > 50 ms 

Reliable index of cardiac 
parasympathetic activity 

 

HRV 
triangular 

index 
 

the integral of the density 
distribution (that is, the number 
of all NN intervals) divided by 
the maximum of the density 
distribution Both these measures express 

overall HRV measured over 
24 hours and are more 
influenced by the lower than 
by the higher frequencies 

TINN ms 

The triangular interpolation of 
NN interval histogram (TINN) is 
the baseline width of the 
distribution measured as a base 
of a triangle approximating the 
NN interval distribution  

Frequency 

domain 

VLF ms2 
Very low frequency, 

from 0.0033 – 0.04 Hz 

Represent an assortment of 
factors such as 
thermoregulation fluctuation 

LF ms2 
Low frequency, 

from 0.04 – 0.15 Hz 

Represent a mixture of 
parasympathetic and 
sympathetic activity of ANS 

HF ms2 
High frequency, 

from 0.15 – 0.4 Hz 
Represent the parasympathetic 
activity of ANS 

LF/HF  Low frequency/High frequency 
ratio 

Reflect 
sympathetic/parasympathetic 
balance or sympathetic 
modulation 

Total Power ms2 ≤ 0.4 Hz Variance of all RR intervals 

 
Table 2.1:   Selected time and frequency domain measures of HRV 
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2.2.2.2 HRV in hyperglycaemia 

Recently, reduced HRV has been seen among patients with Type 1 diabetic 

mellitus and the main driver to this abnormality appears to be hyperglycaemia. In the 

Framingham study, Singh et al. (2000) presented the association of hyperglycaemia 

with reduced HRV. The cohort study carried out with 1,919 subjects categorised by 

levels of fast blood glucose (FBG), including 1,779 who had normal FBG (< 110 

mg/dl); 56 who had impaired FBG (≥ 110 and < 126 mg/dl) and 84 who were 

diabetic (FBG ≥ 126 mg/dl). They found that FBG levels were inversely and 

significantly correlated with SDNN and LF and HF powers, which mean high blood 

glucose levels caused lower HRV in subjects with diabetes. SDNN and LF and HF 

powers were reduced in the diabetic group and in subjects with impaired FBG 

compared with those with normal FBG. Their findings suggest that the presence of 

reduced HRV in subjects with diabetes imply the occurrence of heightened 

sympathetic activity and/or reduced vagal activity. Singh et al. agreed with the 

hypothesis that elevated FBG levels may be involved in the pathogenesis of 

autonomic neuropathy. An important strength of this population-based study was that 

subjects have been well characterized through many years of follow-up. The 

availability of reliable long-term data allowed researchers to select subjects who 

were free of clinical cardiovascular disease, which can alter autonomic function and 

HRV measurements. 

Kudat et al. (2006) investigated heart rate variability in 31 diabetic patients (8 

patients having Type 1 and 23 having Type 2) and in 30 control healthy individuals. 

None of the patients was on drugs that may affect HRV analysis, such as α- and β-

blockers, and none of the patients had heart failure or uraemia. The study revealed 

that, all time and frequency domain parameters except mean RR interval and LF/HF 

were significantly lower in diabetic patients than in healthy controls, and among 

diabetes patients those with microvascular complications had the lowest HRV 

parameters. Their findings showed a relation between decreased HRV and the 

presence of micro vascular complications in diabetes. 
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The latest published study in the effect of hyperglycaemia on HRV, by 

Jaiswal et al. (2013), compared HRV measures in 354 youths with and 176 youth 

without type 1 diabetes mellitus and explored potential contributors of altered HRV. 

The results showed that HRV variables were altered among individuals with Type 1 

diabetes compared with control subjects; such as SDNN, a marker of overall HRV, 

was significantly lower in Type 1 diabetic patients, and RMSSD and HF power, 

markers of parasympathetic function, were decreased in youth with Type 1 diabetes 

versus control subjects where LF power, a surrogate for sympathetic dysfunction, 

was higher among those with Type 1. The study found evidence of reduced overall 

HRV, including a pattern of parasympathetic loss with sympathetic overdrive, among 

youth and young adults with Type 1 diabetes mellitus, independent of traditional 

CVD risk factors. Their findings suggested an important role for hyperglycaemia in 

mediating these abnormalities in a contemporary cohort of diverse youth with an 

average duration of diabetes of approximately 10 years.   

2.3 CURRENT RESEARCH OF HYPERGLYCAEMIA DETECTION 

Early detection of hyperglycaemia is considered as a priority in preventing 

and controlling this dangerous condition. Many studies have been undertaken to 

establish effective methods and develop medical devices to detect hyperglycaemia. 

Basically, all methods are focused on monitoring the blood glucose to detect the high 

glucose levels. Optimal hyperglycaemia management relies on accurate glucose 

monitoring techniques. Figure 2.2 shows different classification methods of blood 

glucose monitoring: invasive, minimally invasive and non-invasive.  

The following is the description of current methods used to identify 

hyperglycaemic episodes in diabetic patients. Existing techniques commonly used 

invasive point sample methods like finger stick and minimally invasive/non-invasive 

continuous glucose monitoring methods. Others utilised electrochemical and optical 

methods, such as reverse iontophoresis and near infrared spectroscopy, respectively. 

Alternative methods for hyperglycaemia detection employed effects of 

hyperglycaemia on physicochemical patterns on the body including β cell, methyl 

nitrates and tear glucose. Current techniques have their own outstanding features; 
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however every method still shows some drawbacks that need more investigation to 

overcome the limitations.   

 

Figure 2.6:   Overview of technologies for blood glucose monitoring (Ferrante do Amaral et al., 
2008) 

 

2.3.1 Test of blood glucose level - Finger stick method 

Blood glucose level may be determined in whole blood, plasma or serum 

samples. If whole blood is used, the concentration of glucose will be lower than if the 

plasma or serum is used. This is due to the greater water content of the cellular 

fraction. Under usual circumstances, the concentration of glucose in whole blood is 

about 15% lower than in plasma or serum, but the difference will be less in patients 

with low hematocrits. The concentration of glucose is highest in the arterial 

circulation. The concentration of glucose in capillary samples is intermediate 

between venous and arterial. Glucose oxidase and reagents to measure the generation 

of hydrogen peroxide can be bonded to filter paper and the system used to measure 

glucose concentrations in a drop of capillary blood, is usually known as finger stick 



 
 

30 
 

method. This has resulted in the most important change in diabetes management 

since the introduction of insulin (McMillin, 1990). 

Finger stick is the most common invasive method for blood glucose 

monitoring in patients (invasive means the penetration of body tissue with a medical 

instrument). This method is exactly as the name suggests. It’s a stick for puncturing 

the finger to acquire a blood sample. Blood glucose monitoring can be done at home 

with a variety of blood glucose monitors (also called a glucose meter- more details 

available in http://diabetesinsight.ie/) to obtain the blood sample. Surprisingly, many 

patients consider the discomfort of the finger stick preferable to the inconvenience 

and aesthetic unpleasantness of obtaining a urine sample for testing. 

Usually a drop of whole capillary blood obtained through a finger prick is 

sufficient to use on a test strip that is then measured in a monitor to detect how much 

glucose is present in the blood. A finger prick can be done with a small lancet 

(special needle) or with a spring-loaded lancet device that punctures the fingertip 

quickly. The drop of whole blood is then placed on the reagent bonded to a testing 

(paper) strip. Instead of using a known volume of blood, an excess of blood is 

exposed to a fixed quantity of glucose oxidase for a finite period of time to estimate 

concentration. After the specified time, usually 1 minute, the excess blood is 

removed by washing or wiping and the colour is allowed to develop. The 

concentration is then estimated by comparing to a colour chart, or by using a portable 

reflectance meter specific to the reagent strip, to measure the developed colour to 

read the blood sugar level. Reflectance meters or glucose meters for measuring blood 

glucose are becoming increasingly sophisticated, compact, and reliable. Shirt-pocket-

size models are now available, and prototype models that store the time, date, result, 

and insulin doses for later graphic printing at the patient's home or physician's office 

have been developed.  

In most hands, the glucose oxidase strip method or finger stick is accurate 

and reliable. Since whole blood is used, the results tend to be slightly lower than 

simultaneous venous samples, but this is balanced by the fact that capillary blood has 

a higher glucose concentration than venous blood. The major sources of error are in 

failing to put a large enough drop of blood on the strip and inaccurate timing. For 
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patients who use reflectance meters, another source of error is failure to keep the 

machine clean and calibrated.  

A wide variety of diabetes test strips are available on the Australian market. 

The Free Style Lite® Blood Glucose Monitoring System, a product of Abbott, USA, 

is a typical example for blood glucose test device 

(https://www.abbottdiabetescare.com/products/patient/fs-lite-overview.html). This 

device is intended for use in the quantitative measurement of glucose in capillary 

whole blood from the finger, upper arm and palm and venous whole blood. It is used 

by healthcare professionals and people with diabetes mellitus at home as an aid in 

monitoring the effectiveness of a diabetes control program. Results of the test are 

available almost immediately.   The meter displays results from 20 – 500 mg/dl. 

Repeating the test with a new test strip is recommended if low (hypoglycaemic) or 

high (hyperglycaemic) blood glucose results are found to confirm a potentially 

serious medical condition. 

Undeniably, finger stick method is still chosen to be a popular choice among 

diabetic patients for self-monitoring in the management of diabetes mellitus due to 

its quick response, simplicity and high reliability. Checking blood sugar levels by 

finger prick several times a day is often a necessary task in the lives of many people 

with diabetes. However, pricking fingers multiple times a day is painful, time 

consuming, can cause calluses and sensitive fingers, and is difficult if you have 

visual or dexterity limitations. Therefore, despite being the most accurate method for 

blood glucose monitoring, finger-stick still discourages people to do it on a regular 

basis because of the pain and discomfort of the puncture. An alternative method for 

blood glucose monitoring that would not require pricking the finger for a blood 

sample to eliminate the pain is quite essential. 

2.3.2 Continuous glucose monitoring system (CGMS) 

Continuous glucose monitoring (CGM) systems use a tiny sensor inserted 

under the skin to check glucose levels in tissue fluid. The sensor stays in place for 

several days to a week and then must be replaced. A transmitter sends information 

about glucose levels via radio waves from the sensor to a pager-like wireless monitor. 
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Results of at least four finger stick blood sugar readings taken with a standard 

glucose meter at different times each day are entered into the monitor for calibration. 

Because currently approved CGM devices are not as accurate and reliable as 

standard blood glucose meters, users should confirm glucose levels with a meter 

before making a change in treatment (Johnson, 2012). 

CGM systems are more expensive than conventional glucose monitoring, but 

they may enable better glucose control. CGM devices produced by Abbott, DexCom, 

and Medtronic (http://www.medtronicdiabetes.com/treatment-and-

products/guardian-real-time-cgm-system) have been approved by the U.S. Food and 

Drug Administration (FDA) and are available by prescription. These devices provide 

real-time measurements of glucose levels, with glucose levels displayed at 5-minute 

or 1-minute intervals. Users can set alarms to alert them when glucose levels are too 

low or too high. Special software is available to download data from the devices to a 

computer for tracking and analysis of patterns and trends, and the systems can 

display trend graphs on the monitor screen. 

The main advantage of continuous glucose monitoring is that with CGMS the 

patients can easily and discreetly view their current glucose values continuously 

throughout the day. Moreover, it can help identify fluctuations and trends that would 

otherwise go unnoticed with standard HbA1c tests and intermittent finger stick 

measurements. The monitors have trend arrows that show the patient if his level is 

rising or falling quickly. Most CGMS have alarm systems that tell the patient when 

he is getting close to a pre-set high or low limit.  

CGMS, however, still exhibit many problems. Firstly, CGMS doesn’t replace 

the finger prick method. Patients still have to check their blood glucose levels 2 to 4 

times a day to keep the CGMS calibrated. Additionally, CGMS requires a sensor 

inserted under the skin, potentially making the patients uncomfortable from the pain 

of the insertion. The major disadvantage of CGMS is the time delay between blood 

and interstitial glucose that can reduce the accuracy of the monitoring system. It 

takes glucose around 10–15 minutes to move from blood into tissue fluid, or back, so 

the CGMS measures lag behind what’s really happening in the blood if conditions 

change rapidly (Keenan et al., 2009).  
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2.3.3 Reverse iontophoresis technique 

Iontophoresis, a technique involving the application of a low electric current 

to the skin, has been used for transdermal delivery of drugs for over a century. This 

technique was firstly investigated to measure glucose concentration by glucose 

extraction through intact skin in a study by G.Rao (Rao et al., 1993). Because 

glucose extraction proceeds in the opposite direction (from the skin outward), this 

process has been termed “reverse iontophoresis”. Glucose collected through the skin 

via reverse iontophoresis has been shown to correlate well with blood glucose 

(Tamada et al., 1995). 

Success of measuring glucose concentration using reverse iontophoresis 

techniques has led to the development of the GlucoWatch® Biographer (Cygnus Inc.). 

This commercialised wrist-worn device monitors glucose continuously for up to 13h, 

recording six glucose readings per hour (Sieg et al., 2004). It is a typical non-

invasive blood glucose monitoring device that is designed to have an alarm system, 

detect trends and track patterns in glucose levels for diabetic patients. The 

GlucoWatch®, however, still has considerable drawbacks, which may limit 

widespread use. These include a long warming-up period of 3 hours to adjust for the 

variability in skin permeability, device malfunctioning particularly in cold weather, 

significant skin irritation, and sensitivity to excessive sweating. Each time before the 

GlucoWatch® is used it must be calibrated with the results of a finger-stick blood 

glucose test. There is also a lag-time of approximately 18-20 minutes corresponding 

to real-time glucose (Chan et al., 2002). These potential problems may restrict its 

acceptability for hyperglycaemia detection. 

2.3.4 Near-infrared light (NIR) spectroscopy technique 

Non-invasive blood glucose sensing by near infrared spectroscopy requires 

glucose dependent absorption of near-infrared light as it passes through a selected 

region of the human body. The term “near infrared light” refers to the use of an 

external light source with wavelengths in the infrared spectrum near the wavelengths 

of visible light. An NIR source can pass through or be reflected by a body part. 
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Glucose and other body constituents absorb a small amount of the light at each 

wavelength. Spectroscopy, an established technology used to measure energy 

containing many wavelengths, detects the amounts of NIR absorbed at each 

wavelength. With spectroscopy, a data processing technique known as multivariate 

analysis simultaneously analyses the amount of light absorption at selected 

wavelengths for each blood glucose level. A polynomial formula is generated that 

converts the sum of relative contributions of absorption at the selected wavelengths 

to the blood glucose concentrations (Klonoff, 1997).  

 

Figure 2.7:  Reference glucose and NIR-predicted glucose profiles (Malin et al., 1999) 

 

The major problem with using NIR spectroscopy for blood glucose 

monitoring is the necessity for frequent recalibration. Glucose is responsible for < 

0.1% of NIR absorbed by the body, whereas, water, fat, skin, muscle, and bone 

account for the vast majority of NIR absorption. Perturbations in the amounts of 

these substances can alter NIR absorption and thus invalidate the calibration formula 

for correlating light absorption with blood glucose concentrations that was generated 

during the calibration process (Aldhous, 1992). In addition, different probing 

locations and contact pressures between the probe and skin cause variations in the 

light propagation paths within tissue, making it very hard to obtain stable near-

infrared spectra concerning body content. Selection of a measurement site must 

consider the physical and chemical characteristics regarding the accuracy of 
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measurement. Therefore, NIR spectroscopy is not a potential choice for an up-to-date 

hyperglycaemia detection system. 

2.3.5 Early detection of β cell death 

In diabetes mellitus, β cell destruction is largely silent and can be detected 

only after significant loss of insulin secretion capacity. Scientists at the University of 

Chicago proposed a suggestion of early detection of ongoing β cell death which 

would allow for earlier interventions at a time before the development of 

hyperglycaemia, when a more significant β cell mass is present (Akirav et al., 2011). 

They reported a non-invasive method for the detection of circulating β cell-derived 

DNA in murine models of acute and chronic β cell destruction that provides a 

sensitive biomarker for β cell death in pre-diabetic mice in vivo and in human tissues 

and serum. Their method can identify β cell death before the onset of 

hyperglycaemia and soon after the onset of T1DM. 

This finding is still under investigation in pre-diabetic mice in vivo and in 

human tissues and serum. Further human studies are needed to evaluate and validate 

this method’s general applicability in human clinical settings. This strategy may 

prove useful for monitoring the development of hyperglycaemia with possible 

ongoing β cell destruction. However, reviewers raise concerns about accuracy of this 

method in real-life human experiments and unknown possible side effects. 

2.3.6 Testing of methyl nitrates in exhaled air 

UC Irvine scientists have been testing the levels of methyl nitrates in exhaled 

air as a marker for elevated blood sugar levels (Novak et al., 2007). They 

hypothesized that different exhaled VOC (volatile organic compounds) profiles could 

be present in children with type 1 diabetes during spontaneous hyperglycaemia, due 

to the presence of low insulin and increased free fatty acids and ketones in 

individuals with diabetes. The children received intravenous insulin and glucose as 

needed, and the levels of plasma glucose and exhaled gases were monitored during 

constant normoglycaemia or initial hyperglycaemia with gradual correction. By 
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using a chemical analysis method developed for air-pollution testing, UC Irvine 

chemists and paediatricians have found that the kinetic profile of exhaled methyl 

nitrate was most strongly correlated with that of plasma glucose; children with type-1 

diabetes exhale significantly higher concentrations of methyl nitrates when they are 

hyperglycaemic. 

 

Figure 2.8:   Plasma glucose and exhaled methyl nitrate profiles in one child with T1DM in 
study of Novak et al. (2007) 

 

This study, however, showed estimation of glucose curves from exhaled gas 

only on an individual basis, not yet employed to a whole study population that 

requires identification and quantification of the relative contribution of all pertinent 

covariates. This technique, itself, has intrinsic difficulties in measurement and 

analysis, which have resulted in inconsistent outcome, limiting its practical 

applicability.  

2.3.7 Measuring glucose concentration in tears 

Tear glucose has been studied for several decades. Many reports have 

demonstrated that tear glucose is higher in diabetic subjects than in healthy ones. The 

correlation between tear glucose and blood glucose has been studied by different 
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methods in both humans and animals. Based on these promising results, scientists 

have attempted to continuously monitor the concentration of ocular tear glucose by 

using nano-structured and disposable contact lens-based sensors for diabetes (Zhang 

et al., 2011; Bishop et al., 2010). Sensors built onto lenses would let diabetic wearers 

keep tabs on blood-sugar levels without the need for finger pricks. Monitoring the 

tear glucose level may provide a feasible approach for non-invasive diagnosis and 

diabetes control.  

 

 

Figure 2.9:   Contact based-lens sensors for tear glucose monitoring developed by researchers at 
University of Washington (Parviz, 2009) 

 

A group of researchers at the University of Washington have fabricated 

prototype lenses with additional enhancements, including an antenna, which measure 

glucose concentration in tears and send the signals to a receiver (Yao et al., 2011), as 

displayed in Figure 2.9. They have tested their first few prototypes successfully on 

animals and are undertaking developments for humans. However, accuracy and 

sensitivity of this technique are still unclear due to interfering factors when 

conducting tear glucose measurements. These include standards for normal tear 

concentration in users; time-lag between blood glucose and anterior aqueous humour 
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glucose concentrations; discrepancy in tear glucose levels with different methods of 

tear sampling. Further efforts are needed to develop a new design for contact based-

lens sensors to overcome the shortcomings.   

     

Figure 2.10:  Measured glucose response and calibration curve of sensor in study of Yao et al. 
(2011) 

2.4 THE GAP IN LITERATURE REVIEW 

Despite the fact that almost all commercially successful blood glucose 

monitoring systems are invasive, there is an immense need to develop alternative 

techniques that will alleviate the pain and suffering from frequent pricking of fingers 

for blood samples in diabetic patients. Efforts have been made in order to reduce the 

level of invasiveness by decreasing the blood sample volume to a few micro-litres, 

and measuring areas of the body less sensitive to pain than fingertips, such as the 

forearm, upper arm, or thigh. Drawbacks of such systems are lack of control during 

sleep or manual activities, undiscovered episodes of hyperglycaemia, risks of 

infection, nerve damage and the discomfort of pricking the finger several times a day 

(Ferrante do Amaral et al., 2008). Minimally invasive measurements, i.e. sampling 

the interstitial fluid (ISF) with subcutaneous sensors, remain uncomfortable for the 

patient’s therapy, require continuous calibration, and are highly susceptible to bio-

fouling (Gross et al., 2000; Vashist, 2012). Hence, a non-invasive method is the goal 
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for the future of hyperglycaemia detection. Nevertheless, past attempts at non-

invasive glucose monitoring failed to reliably separate glucose values from noise 

without an actual blood sample. By progressing different techniques, scientists are 

overcoming difficulties faced in the past. Some of the devices under development are 

truly non-invasive, while others require something to be injected or implanted under 

the skin to enable glucose detection (Ramchandani et al., 2012). 

The glucose concentrations can be determined by analysing the changes in 

measured body compartments, a substitution of blood, to minimize the invasiveness 

of blood glucose monitoring systems.  For example, one option to non-invasive 

intermittent glucose control is using body fluids that could contain glucose, like 

saliva, urine, sweat or tears. Non-invasive continuous glucose monitoring could be 

accomplished through direct measurement of body tissues such as skin, aqueous 

humour of the eye, tongue or tympanic membrane (Ferrante do Amaral et al., 2008). 

Still, there are always limitations regarding the accuracy of these measurements 

because of time-lag between real-time blood glucose levels and body fluid/tissue 

glucose. Moreover, the ratio of body fluids (intracellular, interstitial, plasma) are not 

only affected by factors such as activity level, diet or hormone fluctuations, but also 

by blood circulation, body temperature shift, metabolic activity and medication. 

Problems also occur due to changes in the tissue after the original calibration and the 

lack of transferability of calibration from one part of the body to another. Day-to-day 

changes in vasculature and tissue texture as well as the aging process may affect the 

long-term stability of glucose monitoring. Thus, there is a need to find an alternative 

potential physiological signal, which is highly associated with blood glucose level 

for effective non-invasive blood glucose monitoring strategy. 

With hypoglycaemia, scientists have successfully detected this complication 

by utilising various physiological signals, especially non-invasive hypoglycaemia 

detection using electrocardiographic (ECG) signals. It indicates that ECG offers a 

quicker, more ubiquitous, non-invasive clinical and research screen for the early 

detection of hypoglycaemia, and potentially for hyperglycaemia, than other 

physiological signals. Indeed, few researches have revealed the association of 

hyperglycaemia and ECG parameters, so that further investigations are still required 
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to have a comprehensive insight in this issue. At least three main studies on 

hypoglycaemia detection, which employ the electrical activity of the heart, have 

achieved excellent performances with different computational intelligent algorithms. 

Meanwhile, there is no research on hyperglycaemia detection using ECG so far and 

no advanced computational algorithms have been employed for the classification of 

hyperglycaemia. Exploring this area may provide a great potential method for non-

invasive hyperglycaemia detection to help patients manage the disease conveniently. 

2.5 PROPOSED STRATEGY OF HYPERGLYCAEMIA DETECTION 

Several ECG parameters have been investigated to correlate with the 

prevalence of hyperglycaemia. There still exists the controversy about the effect of 

hyperglycaemia on ventricular repolarisation parameters, like QT interval, RT 

interval and TPTE interval. Thus, this research carries out a new clinical study of a 

group of adolescent T1DM patients who only suffer from hyperglycaemic and 

normoglycaemic conditions to evaluate the influence of hyperglycaemia to the 

alterations of ventricular repolarisation intervals. Reduced heart rate variability has 

been seen among hyperglycaemic patients. In agreement with previous studies, this 

study demonstrates that high blood glucose levels cause lower HRV in subjects with 

diabetes. It extends with further observations of abnormalities and goes across the 

spectrum of hyperglycaemic and normoglycaemic events. Based on these 

explorations, certain ECG parameters could be determined as good markers for 

classification models to identify hyperglycaemic and normoglycaemic states in 

diabetics. 

This research proposes a new non-invasive hyperglycaemia detection system 

based on electrocardiograms. The proposed hyperglycaemia detection system is 

presented in Figure 2.11. In general, input of the detection are ECG signals, which 

are then fed into the classification unit, including the computational intelligence. 

Computational intelligent algorithms play the most important role in the strategy of 

hyperglycaemia detection in order to achieve good performance of the classification. 

This classifier detects output of either hyperglycaemic, or normoglycaemic states. 

This thesis focuses on the developments of artificial neural network (ANN) for the 
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ECG-based hyperglycaemia classification. In biomedical areas, artificial neural 

networks (ANN) have been proved to be a powerful computational intelligence for 

classification models and pattern recognition. Neural networks with the ability to 

learn by example achieve flexibility and effectiveness in medical diagnosis. They 

have been widely used because of their high performance in complex situations.  

 

 

Figure 2.11:   ECG-based hyperglycaemia detection system using ANN 
 

At the beginning, capability of basic ANN was investigated using inputs of 

ECG parameters and compared with other classification techniques such as K-nearest 

neighbours and Linear discriminant analysis. Later advanced approaches attempted 

to improve the performance of hyperglycaemia detection. Principal component 

analysis (PCA) is proposed to reduce dimensionality of inputs and search for the 

appropriate ECG parameters. The integration of PCA and ANN is employed for 

classifying hyperglycaemia based on a subgroup of chosen datasets. Moreover, 

particle swarm optimisation (PSO), a heuristic optimisation technique, can 

potentially enhance classification performance by obtaining global optimal and 

disposing of local minima. PSO technique could be an effective alternate training 

algorithm for ANNs since it is found to be more accurate when compared to the 

existing conventional algorithms (Ch et al., 2012). Also, impact of maximum 

velocity and acceleration constants of PSO on ANN convergence determines the best 

possible values of ANN’s parameters to minimize classification error. The proposed 

PSO trained ANN is developed for hyperglycaemia classification to increase 

performance of the classification and the results are compared with the other existing 

gradient algorithms. 
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CHAPTER 3  .         ELECTROCARDIOGRAPHIC 

BASED HYPERGLYCAEMIA DETECTION 

EMPLOYING ARTIFICIAL NEURAL 

NETWORK 

 

3.1 INTRODUCTION 

Artificial neural networks (ANN) have been widely applied in many 

scientific areas during the past few years. Already, they have been successfully used 

in various branches of biomedical systems, especially in medical diagnosis. Medical 

diagnosis using ANNs is currently a very active research area in medicine and it is 

believed that it will be more widely used in biomedical systems in the next few years. 

ANNs provide a powerful tool to help doctors to analyse, model and make sense of 

complex clinical data across a large number of medical applications. Most 

applications of ANNs to biomedical systems are classification problems; those are 

extensively utilised in pattern recognition to detect diseases or complex medical 

conditions. The task is on the basis of the measured features, which are extracted 
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from a background of irrelevant detail, to assign the patient to one of a small set of 

classes.  

ANNs are ideal in recognizing diseases using scans since there is no need to 

provide a specific algorithm on how to identify the disease. Neural networks learn by 

example so the details of how to recognise the disease is not needed. In many 

instances, ANNs have proven more robust than other expert systems like rule-based 

or object-oriented systems in dealing with noise environments, and have been easier 

to train since they do not require intricate and potentially unreliable heuristics. 

Obviously, ANNs can achieve high performance and computation rates, which are 

vital in biomedical applications.        

This chapter presents an ANN classification model for hyperglycaemia 

detection, which is based on ECG parameters. Multilayer feed-forward network is 

chosen to estimate the glycaemia states from T1DM data, because it is the most 

suitable network for generating nonlinear relationships for a given problem. The 

input of ANN classification consists of 16 original ECG variables which are 

extracted from ECG signals. The model provides output of binary glycaemic states (1 

for hyperglycaemia or 0 for normoglycaemia) according to the data set fed into the 

ANN classification unit. The construction of the feed-forward ANN classification 

model is presented as follows. At first, an experimental environment is set up to 

generate the ECG data set which is used throughout this PhD research for 

hyperglycaemia detection models. It includes the subjects of clinical study, ECG 

acquisition, feature extraction, ECG parameters obtained and ECG statistical analysis. 

After that, methodology of feed-forward ANN classification model for 

hyperglycaemia detection is introduced. Five training algorithms are selected for 

ANN classification and their performances on hyperglycaemia detection are 

presented respectively. Furthermore, the influences of ANN training algorithms on 

the performance of hyperglycaemia detection are also discussed at the end of the 

chapter. 
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3.2 ARTIFICIAL NEURAL NETWORK FOR HYPERGLYCAEMIA 

DETECTION 

The development of hyperglycaemia detection model based on ANN is 

presented in Figure 3.1. There are three main components in the strategy, including 

ECG acquisition, ECG feature extractions and ANN classifier. Firstly, the ECG 

signal is measured and acquired from the body of patients. In the second part, feature 

extraction component is developed to determine and obtain specific ECG parameters, 

such as PR and QTC intervals, etc. A HRV analysis tool has been also utilised to 

generate certain necessary HRV measures. All ECG parameters are then fed into the 

ANN classifier. The output of ANN classifier is a binary glycaemic level 

(hyperglycaemia or normoglycaemia), which indicates a random episode to be under 

the state of hyperglycaemia or normoglycaemia.  

 

 

     

 
Figure 3.1:   General structure of hyperglycaemia detection based on ANN and ECG 

parameters 
 

3.2.1 ECG acquisition 

3.2.1.1 Subjects 

This thesis aims to explore the effects of natural occurrence of 

hyperglycaemic events on ECG parameters. Glycaemic levels were used to classify 

glycaemic states, normally considered as having low blood glucose levels or a 

hypoglycaemic state at the level of BGL less than or equal 3.33 mmol/l, as having 

normoglycaemic state when BGL varies from 3.33 mmol/l to 8.33 mmol/l and as 

having high blood glucose levels or a hyperglycaemic state at the level of BGL more 

than or equal 8.33 mmol/l. To prevent the interference of the hypoglycaemic state 

that may weaken the evaluation of the influence of hyperglycaemia in changes of 

ECG 
parameters 
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cardiac ventricular intervals, this thesis only focuses on subjects with normal and 

high blood glucose levels.  

To perform, the database is based on the adolescent patients with T1DM 

(between ages of 12 to 18 years old) who volunteered for an overnight 

hypoglycaemia and hyperglycaemia study at the Princess Margaret Hospital for 

Children in Perth, Australia. In this thesis, the BGL threshold to define 

hyperglycaemia is set at 8.33 mmol/l (150 mg/dl), which is a high enough level for 

worsening outcomes (Hirshberg et al., 2008). Ten Type 1 diabetic patients, who 

mostly had two glycaemic states, hyperglycaemia (BGL ≥ 8.33 mmol/l) and 

normoglycaemia (3.33 mmol/l < BGL < 8.33 mml/l), are chosen for collecting data 

in this thesis. All data were collected with approval of the Women’s and Children’s 

Health Service, Department of Health, Government of Western Australia, and with 

written informed consent. A comprehensive patient information and consent form 

was formulated and approved by the Ethics Committee. For the children participating 

in this study, the parent or guardian signed the relevant form. 

3.2.1.2 Performance of ECG acquisition 

A Compumedics system, which was the Siesta, was used to continuously 

measure and record electrocardiographic (ECG) signals every minute during the 

night with the sampling rate of 512 Hz. This study used single lead which was lead-II. 

The Siesta provides amplified channels for physiological signal collection. The 

software of Profusion PSG was installed in the PC to operate the Siesta for ECG 

acquisition. Data from this medical device are all clean signals to make sure artefacts 

and ectopic beats have been eliminated. The obtained ECG signals were exported 

into text files (*.txt). These files were then processed in the next stage of feature 

extraction for further required ECG parameters.   

Actual blood glucose levels (BGLs) were routinely collected as reference 

using Yellow Spring Instruments (www.ysi.com). BGL was sampled at every 30-

minute duration from 9 pm to 6 am corresponding to measured ECG parameters, 

approximately 17-20 data points were used for each patient. The results were then 

exported to text format files. None of the diabetic patients showed clinical evidence 
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of cardiac autonomic function. Their blood glucose levels increased during the 

hyperglycaemic phase, as shown in their actual BGL profiles, Figure 3.2. 

 

 

Figure 3.2:   Actual blood glucose level profiles in 10 T1DM patients 
 

3.2.2 ECG feature extraction 

The ECG signals obtained from the ECG acquisition were processed in the 

feature extraction. This stage is aimed to extract an electrocardiogram to find the 

required ECG parameters. The ECG signals were processed using analysis software 

developed in LabVIEW Professional 2010. There were two main steps in the feature 

extraction, including ECG pre-processing and feature determination. 

3.2.2.1 ECG pre-processing 

After collecting data from the Compumedics system, to effectively remove 

noise effects on ECG signals (i.e., low frequency noise, baseline wander, power line 

interference, etc.), a pre-processing procedure was required and feature 

determination was then used to verify the ECG parameters. The algorithm that was 
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developed uses a digital Butterworth band-pass filter with high and low cut-off 

frequencies of 0.5 Hz and 40 Hz respectively. The baseline wandering was reduced 

in the filtered signal due to the removal of low frequency components, therefore 

improving signal-to-noise ratio. The electrocardiogram was then passed through a 

differentiator to enhance the signal (Figure 3.3). 

 

 

 

Figure 3.3:   Block diagram of ECG pre-processing 

3.2.2.2 Position of ECG characteristic points 

ECG signal is characterized by several main points in a cycle length. Position 

of these characteristic points in the ECG signal was compulsory before performing 

feature determination. This description is to determine the positions of ECG 

characteristic points in time in an ECG recording. In this research, ECG parameters 

include ECG intervals and HRV measures. An ECG interval indicates time duration 

(in milliseconds) between two specific ECG points. HRV measures have been 

described in Table 2.1. 

The position of ECG characteristic points is presented in Figure 3.4, which consists 

of: 

- P : the beginning of P-wave 

- Q : the beginning of QRS complex 

- R-peak: the peak of QRS complex 

- S: the end of QRS complex 

- Tpeak (TP): the peak of T-wave 

- Tend (TE): the end of T-wave 

3.2.2.3 ECG intervals 

For the purpose of examining the effects of hyperglycaemia on ventricular 

repolarisation, the ECG intervals used in this work are as follows: 

ECG signal Differentiator ECG filtered signal Filtering  
process 
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- RR: the interval between two continuous R peaks 

- QTC: the interval from the beginning of QRS complex (Q) to the end of T-

wave (TE)  

- RTC: the interval from the R-peak of QRS complex to the peak of T-wave (TP) 

- TPTEC: the interval from the peak of T-wave (TP) to the end of T-wave (TE) 

- PR: the interval from beginning of P-wave (P) to the beginning of QRS 

complex (Q) 

Index of c in the parameters indicates the correction by heart rate for the variables 

using the Bazett’s formula 2.1, which is normalized using the square root of RR 

interval (the period between two continuous R-peaks). 

 
Figure 3.4:   Schematic representation of normal ECG points and intervals 

 

3.2.2.4 Feature determination 

R peaks are found by setting a threshold in order to find a peak having higher 

amplitude than that value. Detection of peaks of P-waves, Q beginnings and 

peaks/end of T-waves are carried out by zero crossing method and window 
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thresholds. Once R peaks are found, these are taken as reference and the waves are 

scanned on both sides of the R peaks to get the zero crossing points for obtaining 

peaks of P-waves, Q, and peak/end of T-waves (TP, TE). To detect the beginning/end 

of the P-wave, an optimum window width of 100 ms is selected in which 50 ms are 

on either side of the peak of P-wave. Within the window, if the signal is not crossing 

an isoelectric line, then the minimum values are considered as beginnings and ends. 

Q points are one zero crossing behind R peaks. T peaks (TP) are two zero crossings 

ahead of R peaks. T ends (TE) are three zero crossings ahead of the R peaks. During 

the peaks/ends detections, signal annotation was also checked visually to eliminate 

the improper one. If a U-wave happened (which was very rarely seen in this study), 

followed by a T-wave before returning to baseline, the end of the T-wave was 

defined as the zero crossing point between T-wave and U-wave. The zero-crossing 

method has better advantages compared to other methods using ECG baseline (i.e., 

tangent method) that is not sensitive with ECG baseline drift. Figure 3.5 presented an 

example of two free-noise electrocardiogram signals with denoted significant ECG 

points, one is normoglycaemic ECG and one is hyperglycaemic ECG. The required 

ECG parameters have also been computed in LabVIEW program, which is shown in 

Figure 3.6. Compared to manual method, all features measurements have the error 

differences under 5%.  
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Figure 3.5:   The ECG signals with denoted significant points, upper graph with non-hyper ECG 
and lower graph with hyper ECG 
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Figure 3.6:   Processed ECG signals with zero crossing detector and calculated ECG parameters 
 

3.2.2.5 HRV analysis tool 

After extracting R peaks from raw ECG signals, RR interval time series were 

formed to analyse HRV. A selection of time domain and frequency domain measures 

of HRV were considered and performed following the Task Force guidelines 

(Electrophysiology, 1996). These HRV measures have been described in section 

2.2.2.1 and are now again summarized as below: 

Time domain measures: 

- Mean RR interval (MeanRR) 

- Standard deviation of the RR interval index (SDNN) 

- Root mean square of successive RR interval differences (RMSSD) 
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- Percentage of beats with a consecutive RR interval more than 50 ms (pNN50) 

- HRV triangular index (HRVi) 

- Baseline width of the RR interval histogram evaluated through triangular 

interpolation (TINN) 

Frequency domain measures: 

- Very low frequency (VLF)  

- Low frequency (LF) 

- High frequency (HF) 

- Total spectral power (TotalPw) 

- Ratio between LF and HF components (LF/HF) 

HRV analysis was conducted using the Kubios HRV analysis software package 

(http://kubios.uku.fi/). This software package was used for analysing the variability 

of heart beat intervals. It has an easy-to-use graphical interface that shows the HRV 

waveform and calculates the time-domain, frequency domain, and non-linear 

dynamics parameters from the raw RR signals. The software computed all required 

time and frequency domain features.  

In the frequency domain analysis, the power spectrum is calculated either by 

using established Fast Fourier Transform (FFT) based method or parametric spectral 

estimation based on autoregressive time series modelling. Compared to 

autoregressive modelling, FFT based methods have been preferred for HRV analysis 

in diabetic patients (Chemla et al., 2005). In this work, frequency domain analysis 

was done by FFT using Hanning window to derive spectral power. The intervals 

were linearly interpolated at the rate of 5 Hz to obtain evenly sampled values. The 

power components are usually expressed in absolute units (ms2). The Kubios 

software generated a report sheet for each sample, as shown in Figure 3.7, including 

results of RR and heart rate distributions, time and frequency domain measures.  
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Figure 3.7:   HRV analysis results in Kubios for 1 patient under hyperglycaemic condition 
 

3.2.3 ANN classifier for hyperglycaemia detection 

3.2.3.1 Neural network 

An artificial neural network (ANN) is a computational model that attempts to 

account for the parallel nature of the human brain. An ANN is a network of highly 

interconnecting processing elements (neurons) operating in parallel. These elements 

are inspired by biological nervous systems. A neural network is a massively parallel-

distributed processor that has a natural propensity for storing experiential knowledge 

and making it available for use. It resembles the brain in two respects: 

(i) Knowledge is acquired by the network through a learning process, 
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(ii) Inter-neuron connection strengths known as synaptic weights are used 

to store the knowledge 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Neural network structure 

 

In theory, neural networks can do anything a normal computer can do. We 

can train a neural network to perform a particular input which leads to a specific 

target output (Demuth H., 2001). The network is adjusted based on a comparison of 

the output and the target, until the network output matches the target, which is called 

supervised learning. Typically, many input/target pairs are used, in this supervised 

learning, to train a network. 

In practice, neural networks have been trained to perform complex functions 

in various fields of application. As in nature, the connections between elements 

largely determine the network function. They are especially useful for signal 

classification. If there are enough training examples and enough computing resources 

it is possible to train a feed-forward neural network to perform almost any mapping 

to an arbitrary level of precision. A subgroup of processing element is called a layer 

in the network. The first layer is the input layer and the last layer is the output layer. 

Between the input and output layer, there may be additional layer(s) of units, called 

input values 

input layer 

weight matrix 1 

hidden layer 

weight matrix 2 

output layer 

output values 
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hidden layer(s). Figure 3.8 represents the typical neural network. A neural network 

can be trained to perform a particular function by adjusting the values of the 

connections (weights) between elements. 

The most common ANN architecture consists of many neurons organised in 

layers. Each neuron in a layer is connected to all the neurons of the next layer. It can 

always distinguish between input, hidden and output layers. There is only one input 

and one output layer whereas more than one hidden layer is allowed. The most 

common form of ANN is the multilayered neural network.       

3.2.3.2 ANN architecture 

In this study, the detection of hyperglycaemic state (BGL ≥ 8.33 mmol/l) 

using sixteen ECG variables is based on an advanced neural network algorithm 

developed from the obtained clinical data. This neural network has a multilayer feed-

forward neural network structure with one input layer, one hidden layer and one 

output layer, which is shown in Figure 3.9. 

In total, there are 16 ECG parameters employed as inputs in a multilayer 

neural network for hyperglycaemia detection in this thesis. They are: 

(i) HR 

(ii) QTC 

(iii) PR 

(iv) RTC 

(v) TPTEC 

(vi) VLF 

(vii) LF 

(viii) HF 

(ix) TotalPw 

(x) LF/HF 

(xi) MeanRR 

(xii) SDNN 

(xiii) RMSSD 

(xiv) pNN50 



 
 

56 
 

(xv) HRVi 

(xvi) TINN 

 

Figure 3.9:   Hyperglycaemia detection feed-forward Multilayer neural network classifier and 
input of ECG parameters 

 

Normalized values of ECG parameters, which have been shown previously in Table 

3.2, are used for the input of ANN to reduce the patient-to-patient variability because 

of different scales from different ranges of features.  

The structure of the neural network has 16 input nodes which are 16 

mentioned ECG parameters above. The hidden nodes are varied from 3 to 20 in order 

to select the one that gives the best performance with the minimum mean square 

error (MSE). The training set, validation set and testing set are randomly selected 

with proportions of 35%, 35%, and 30% out of overall data, respectively. A 

validation set is utilised for determining early stopping of the network.  
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The output layer has one node which indicates the state of hyper or non-hyper. 

The input-output relationship of the proposed three-layer neural network for the 

output target can be written as follows: 

                                   (3.2) 

where H denotes the number of the hidden nodes; , i= 1, 2, …, H is the weight of 

the link between ith hidden nodes and the output; , i = 1,2,…, H;  j = 1,2,…, N is 

the weight between the ith hidden nodes and the jth input; , are the biases for ith 

hidden nodes and output node, respectively; tansig denotes the hyperbolic tangent 

sigmoid transfer function used in both the hidden layer and the output layer: 

                                           (3.3) 

3.2.3.3 Initialisation 

To compare the performance of different networks, the same condition was 

kept in initialising the networks. The same training parameters and learning function 

were adopted during the training process. 

The Nguyen-Widrow (Nguyen et al., 1990) initialisation algorithm was used 

in this research. This algorithm chooses values in order to distribute the active region 

of each neuron in the layer evenly across the layer’s input space. It generates initial 

weight and bias values for a layer, so that the active regions of the layer’s neurons 

will be distributed roughly evenly over the input space. The Nguyen-Widrow 

initialisation algorithm has advantages over purely random weights and biases with 

few neurons wasted (all the neurons are in the input space) and the training works 

faster (each area of the input space has neurons). 

3.2.3.4 Training algorithms 

To accelerate the convergence of the error back propagation learning method, 

the ANN is trained by the Levenberg-Marquardt (LM) algorithm, which appears to 

be a fast and effective training algorithm. In general, The LM algorithm estimates the 
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second directional derivative of the error function, in order to direct the training 

process to a local minimum and find the optimised network parameters (i.e, wi, vij, bi, 

b2).  

Training parameters were chosen delicately. Maximum epoch was 1000. 

Minimum gradient limited was 0.0001 and goal was set to 0.001. Training networks 

were done to evaluate the performance of the algorithms after all details of the 

algorithms and parameters had been finalised.    

The overall data set consists of a training set, validation set, and testing set. 

The validation set is used as an early stopping method to make sure the ANN does 

not over-train. The testing set is then used to test the generalization of the neural 

network. For these, the whole data set which includes both hyperglycaemic data part 

and normoglycaemic data part were used. 

Moreover, five different training methods were also applied to the neural 

network model to compare their performances with the proposed one. Same input 

and structure were used with different algorithms: Levenberg-Marquardt, Gradient 

descent with momentum, Scaled conjugate gradient, Resilient back-propagation, 

Conjugate gradient back-propagation with Fletcher-Reeves updates, which are called 

LM, GDX, SCG, RP and CGF, respectively. 

(a) Levenberg-Marquardt 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 

designed to approach second-order training speed without having to compute the 

Hessian matrix. When the performance function has the form of a sum of squares (as 

is typical in training feed-forward networks), then the Hessian matrix can be 

approximated as: 

                                                   (3.4) 

and the gradient can be computed as 

                                                     (3.5) 
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where  is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights and biases, and is a vector of network errors. The 

Jacobian matrix can be computed through a standard back-propagation technique that 

is much less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update: 

                                      (3.6) 

When the scalar is zero, this is just Newton’s method, using the approximate 

Hessian matrix. Newton’s method is faster and more accurate near an error minimum, 

so the aim is to shift towards Newton’s method as quickly as possible. In this way, 

the performance function will always be reduced at each iteration of the algorithm. 

This algorithm appears to be the fastest method for training moderate-sized 

feed-forward neural networks (up to several hundred weights). It also has a very 

efficient MATLAB implementation, since the solution of the matrix equation is a 

built-in function, so its attributes become even more pronounced in a MATLAB 

setting. 

(b) Conjugate gradient with Fletcher-Reeves update 

Conjugate Gradient Algorithms are a basic back-propagation algorithm 

adjusting the weights in the steepest descent direction (negative of the gradient). This 

is the direction in which the performance function is decreasing most rapidly. It turns 

out that, although the function decreases most rapidly along the negative of the 

gradient, this does not necessarily produce the fastest convergence. In the conjugate 

gradient algorithms a search is performed along conjugate directions, which produces 

generally faster convergence than steepest descent directions (Demuth H., 2001). 

Fletcher-Reeves Update 

All of the conjugate gradient algorithms start out by searching in the steepest descent 

direction (negative of the gradient) on the first iteration. 

                                                        (3.7) 

J

e

1
1 [ ]T T

k kx x J J I J e

0 0p g



 
 

60 
 

A line search is then performed to determine the optimal distance to move along the 

current search direction: 

                                               (3.8) 

Then the next search direction is determined so that it is conjugate to previous search 

directions. The general procedure for determining the new search direction is to 

combine the new steepest descent direction with the previous search direction: 

                                            (3.9) 

For the Fletcher-Reeves update the procedure is: 

                                              (3.10) 

This is the ratio of the norm squared of the current gradient to the norm squared of 

the previous gradient.  

The conjugate gradient algorithms are usually much faster than variable 

learning rate back-propagation, and are sometimes faster than resilient back-

propagation, although the results will vary from one problem to another. The 

conjugate gradient algorithms require only a little more storage than the simpler 

algorithms, so they are often a good choice for networks with a large number of 

weights. 

(c) Scaled Conjugate Gradient 

The scaled conjugate gradient (SCG) algorithm is based on conjugate 

directions, but this algorithm does not perform a line search at each iteration. SCG 

algorithm is a variation of a standard conjugate gradient algorithm. The major idea of 

conjugate gradient is that they up to second order produce non-interfering directions 

of search. This means that minimization in one direction dt followed by minimization 

in another direction dt+1 imply that the error has been minimized over the whole 

subspace spanned by dt and dt+1. The search directions are given by: 

                                           (3.11) 

1k k k kx x p

1k k k kp g p

1 1

T
k k

k T
k k

g g
g g

1 1'( )t t t td E w d



 
 

61 
 

where wt is a vector containing all weight values at time step t and is 

                                (3.12) 

In the standard conjugate gradient algorithms the step size єt is found by a 

line search which can be very time consuming because this involves several 

calculations of the error and the first derivative. The step size is estimated by a 

scaling mechanism thus avoiding the time consuming line search. The step size is 

given by: 

                                              (3.13) 

where st is 

  ,            0 < ≤ 1                         (3.14) 

єt is the step size that minimizes the second order approximation to the error function. 

st is one sided difference approximation of E’’(wt)dt. λt is a scaling parameter whose 

function is similar to the scaling parameter found in Levenberg Marquardt method. 

The calculation work per iteration for SCG can be shown to be in the order of two 

times the calculation work quick-prop algorithm. SCG contains no dependent 

parameters (Müller et al., 1995). 

3.2.3.5 Matlab Toolboxes 

All ANN models in this thesis will be developed and run by the Neural 

Network Toolbox (Matlab). Neural network toolbox is a very powerful tool that is 

commonly used in applications where formal analysis would be difficult or 

impossible, such as pattern recognition and non-linear system identification. The 

Neural Network Toolbox provides a comprehensive support for many proven 

network paradigm as well as an inclusive set of training and learning functions. It 

supports modular network representation, allowing an unlimited number of inputs 

setting layers and network interconnections that enable the experiment to design and 
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manage the networks. The toolbox also supplies pre- and post-processing functions 

for improving network training and assessing network performance. 

Moreover, Classification toolbox (version 3.1) in Matlab has also been used 

to perform alternative classification techniques in order to compare the performances 

of hyperglycaemia detection with ANN results. Matlab Classification Toolbox 

contains implementations of the various classifiers, including supervised and 

unsupervised classification algorithms. This toolbox allows users to compare 

classifiers across various data sets. Linear Discriminant Analysis and K-nearest 

neighbours have been chosen to test the classification of hyperglycaemia. 

3.3 EXPERIMENTAL RESULTS 

3.3.1 ECG parameters obtained from the study 

There are 16 ECG parameters obtained from ten T1DM patients for 

hyperglycaemia detection in this thesis. These are a combination of ECG intervals 

and HRV measures, which are generally indicated following: 

(i) HR 

(ii) QTC 

(iii) PR 

(iv) RTC 

(v) TPTEC 

(vi) VLF 

(vii) LF 

(viii) HF 

(ix) TotalPw 

(x) LF/HF 

(xi) MeanRR 

(xii) SDNN 

(xiii) RMSSD 

(xiv) pNN50 
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(xv) HRVi 

(xvi) TINN 

The dataset from 10 T1DM patients consists of 143 data points with 2 classes, 

hyperglycaemia and normoglycaemia. Among those, 56 samples are hyperglycaemia 

and 87 samples are normoglycaemia. The dataset is stored in a text file in the form of 

16x143 arrays, the rows being the ECG parameters and the columns being the 

samples.  

An independent t-test was applied to every parameter to estimate the 

significant differences between hyperglycaemia and non-hyperglycaemia conditions. 

Moreover, Pearson’s correlation analyses were used to evaluate and test the strengths 

of association between BGLs and variables in time and frequency domains. All 

statistical analyses were conducted with IBM SPSS version 19 (SPSS Inc, Chicago, 

IL, USA). Significance value (p-value) less than 0.05 is considered to be significant. 

Results are presented as mean ± standard errors. Table 3.1 shows the changes of 16 

natural ECG parameters under hyperglycaemic conditions compared to 

normoglycemic conditions with corresponding p values. 

To reduce patient-to-patient variability and dealing with parameters with 

different scales, normalisation was performed by using rescaling on the data set, 

which scales all numeric variables in the range [0,1]. Suppose that a d-dimensional 

ECG parameter vector x at time i is xi. Its normalization will be transformed to 

have normal distribution with its maximum value and minimum value as defined by 

the equation below: 

* min

max min

i
i

x xx
x x

;  i = 1,2,…,d;                                    (3.1) 

where xmax denotes the maxima and xmin represents the minima among all the data 

points. After normalisation, all parameters have the same scale for further 

comparison between them. Normalised data are presented in Table 3.2. 
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ECG 
parameters Hyperglycaemia Normoglycaemia p value 

HR 69.089 ± 7.209 70.379 ± 8.407 0.346 

QTC 394 ± 18.172 402.701 ± 16.112 0.003 

PR 119.732 ± 11.887 112.299 ± 11.92 < 0.0001 

RTC 264.607 ± 16.891 273.299 ± 13.897 0.001 

TpTeC 90.143 ± 7.506 93.149 ± 8.344 0.03 

VLF 208.879 ± 242.913 803.548 ± 1713.039 0.001 

LF 531.570 ± 682.075 1496.638 ± 3359.613 0.006 

HF 999.238 ± 1263.431 1929.816 ± 2430.304 0.002 

TotalPw 1739.691 ± 1801.946 4250.792 ± 6246.882 < 0.0001 

LF/HF 0.881 ± 0.932 1.047 ± 1.509 0.455 

MeanRR 857.037 ± 81.288 879.670 ± 66.095 0.077 

SDNN 54.043 ± 22.482 73.966 ± 38.544 < 0.0001 

RMSSD 67.658 ± 30.550 87.034 ± 38.801 0.002 

pNN50 30.622 ± 17.562 38.471 ± 15.776 0.005 

HRVi 5 ± 1.783 5.886 ± 1.882 0.005 

TINN 173.036 ± 77.252 222.598 ± 86.525 < 0.0001 

 

Table 3.1:   Changes of natural 16 ECG parameters under hyperglycaemic conditions compared 
to normoglycaemic conditions 
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ECG 
parameters Hyperglycaemia Normoglycaemia p value 

HR 0.313 ± 0.160 0.342 ± 0.187 0.346 

QTC 0.438 ± 0.204 0.536 ± 0.181 0.003 

PR 0.572 ± 0.229 0.429 ± 0.229 < 0.0001 

RTC 0.433 ± 0.231 0.552 ± 0.190 0.001 

TpTeC 0.27 ± 0.167 0.337 ± 0.185 0.03 

VLF 0.016 ± 0.018 0.06 ± 0.129 0.001 

LF 0.016 ± 0.022 0.047 ± 0.108 0.006 

HF 0.077 ± 0.101 0.151 ± 0.193 0.002 

TotalPw 0.032 ± 0.035 0.080 ± 0.120 < 0.0001 

LF/HF 0.092 ± 0.103 0.111 ± 0.167 0.455 

MeanRR 0.475 ± 0.245 0.543 ± 0.2 0.077 

SDNN 0.128 ± 0.085 0.203 ± 0.146 < 0.0001 

RMSSD 0.220 ± 0.131 0.303 ± 0.167 0.002 

pNN50 0.368 ± 0.211 0.462 ± 0.189 0.005 

HRVi 0.469 ± 0.167 0.552 ± 0.176 0.005 

TINN 0.393 ± 0.176 0.506 ± 0.197 < 0.0001 

 

Table 3.2:   Changes of normalised 16 ECG parameters under hyperglycaemic conditions 
compared to normoglycaemic conditions 

 

The responses from 10 T1DM patients exhibited significant changes during 

the hyperglycaemic state against normoglycaemic state in both real data shown in 

Table 3.1 and normalised data in Table 3.2. This comparison resulted from a t-test, 

presenting ECG parameters in the form of (mean ± SD) with the associated p-values. 

It can be seen that thirteen out of sixteen parameters in hyperglycaemia significantly 

differed from those in normoglycaemia. There was no change in HR, while LF/HF 



 
 

66 
 

ratio and MeanRR were reduced but did not achieve statistical significance. Further 

details of these findings have been outlined in our previous studies (Nguyen et al., 

2012; Nguyen et al., 2013). This result was expected since these altered ECG 

parameters are highly correlated with blood glucose, indicating that a rise in blood 

glucose levels is associated with a drop in QTC, RTC, TpTeC and HRV measures. 

3.3.2 Performance of hyperglycaemia detection using ANN 

3.3.2.1 Measuring the performance 

To measure the performance of the classification results, sensitivity and 

specificity are use (Altman et al., 1994). The definitions of sensitivity and the 

specificity are given as follows: 

                                              (3.15) 

                                            (3.16) 

where TP (True Positive) is the number of hyperglycaemic events which are 

correctly classified as hyperglycaemia; FN (False Negative) is the number of 

hyperglycaemic events which are wrongly classified as normoglycaemia; TN (True 

Negative) is the number of normoglycaemic events which are correctly classified as 

non-hyperglycaemia; FP (False Positive) is the number of normoglycaemic events 

which are wrongly classified as hyperglycaemia. For the comparisons of the 

performances, a geometric mean gm was also used. The geometric mean equals to 

the square root of the multiplication of sensitivity and specificity.  

                                  (3.17) 

Satisfactory results of sensitivity and specificity for disease diagnosis are 

required as follows: 

- Sensitivity ≥ 70% 

- Specificity ≥ 50% 

- Sensitivity ≥ Specificity 

TPSensitivity
TP FN

TNSpecificity
TN FP

.gm Sensitivity Specificity
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3.3.2.2 ANN classification results 

The neural networks applying five algorithms, namely LM, SCG, GDX, CGF, 

and RP used all 16 original ECG parameters as inputs. One performance of the error 

cycles is shown in Figure 3.10. MSE of training set decreased smoothly while the 

validation set dropped from the beginning up to 3 epochs then it started to increase 

continuously. Therefore, the training of the network was stopped at 3 epochs as the 

validation performance has started to increase continuously. This is how the 

validation set is used to prevent over-training of the ANN (Tetko et al., 1995). 

 

Figure 3.10:   Training and validation error cycles of hyperglycaemia classification using ANN 
 

The training performance of proposed detection has been analysed by means 

of ROC curves for five different algorithms in which the sensitivity (true positive 

rate) and the 1- specificity (false positive rate) are plotted in Figure 3.11. LM 

achieved the best corresponding AuR (area under ROC curve) of 0.8742 for the 

training set with input of all sixteen parameters, while the other comparison 

algorithms, GDX, SCG, RP, CGF only have 0.7726, 0.7980, 0.7740 and 0.7869, 

respectively.  These ROC curves were used to find the optimal cut-off point to 

classify hyperglycaemic and normoglycaemic states. In order to analyse the optimum 

sensitivity and specificity, the cut-off point is selected at the point producing the 

sensitivity higher than 75%. 
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Figure 3.11:   ROC curve: Sensitivity vs. 1-Specificity 
 

At the defined cut-off point, the average (mean) training, validation and 

testing results in terms of sensitivity, specificity and gm are analysed and listed in 

Table 3.3 in which mean values are calculated by averaging over 20 runs. It can be 

seen in Table 3.3, the average (mean) testing result of ANN using LM algorithm with 

16 inputs is satisfactorily found by giving the best sensitivity and specificity (70.37%     

and 62.58%) compared with other four algorithms such as GDX, SCG, RP and CGF 

whose mean sensitivity and specificity are (50.13% and 72.33%), (69.21% and 

61.6%), (53.75% and 76.26%) and (59.95% and 64.65%), respectively. 
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Algo-

rithms 

Training Validation Testing 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec 
(%) 

gm 
 (%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

LM 88.43 75.42 80.86 70.33 68.35 67.71 70.37 62.58 65.05 

GDX 63.93 80.27 70.07 50.13 75.77 60.17 50.13 72.33 58.57 

SCG 83.65 67.94 72.98 70.34 66.31 64.41 69.21 61.6 62.24 

RP 74.3 81.82 76.18 62.48 79.13 68.87 53.75 76.26 61.88 

CGF 83.09 72.09 76.29 64.99 73.3 66.52 58.95 64.65 59.52 

 

Table 3.3:   Mean values of training, validation and testing results using five different 
algorithms 

 

Algo-

rithms 
Hid. 
node 

Train-
ing 
AuR 

Training Validation Testing 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec 
(%) 

gm 
 (%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

LM 9 0.8742 89.47 83.87 86.63 80 77.41 78.69 70.59 65.38 67.94 

GDX 12 0.7726 78.57 81.82 80.18 75 61.76 68.06 66.67 54.84 60.47 

SCG 10 0.7980 72.22 68.75 70.46 90.91 53.57 69.79 68.75 59.26 63.83 

RP 11 0.7740 88.89 68.75 78.17 72.73 75 73.86 62.5 62.96 62.73 

CGF 7 0.7869 82.35 81.82 82.09 71.42 86.21 78.47 55.56 68 61.47 

 
Table 3.4:   Best performance of hyperglycaemia detection using 16 ECG parameters and five 

different algorithms 
 

The best performances of hyperglycaemia detection using five algorithms are 

presented in Table 3.4. Using LM algorithm, 9 hidden nodes produces the best 

classification in which the training results of 89.47% sensitivity and 83.87% 

specificity are gained and the testing set leads to 70.59% sensitivity and 65.38% 

specificity. These testing sensitivity and specificity are considered to be satisfactory 

result which meets the requirements of disease diagnosis (sensitivity ≥ 70% and 
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specificity ≥ 50%). The best testing geometric mean of 67.94% by using LM 

algorithm is also achieved with these sensitivity and specificity. Apart from LM, the 

sensitivities of the other four algorithms are less than 70%, which are not directed in 

biomedical application. 

3.3.3 Comparison with other methods 

Hyperglycaemia detection has been performed with other methods to 

compare with the performance of proposed ANN model. Linear Discriminant 

Analysis (LDA) and K-Nearest Neighbours (KNN), two of the most conventional 

and common classification techniques, have been chosen for the comparison. The 

methods are applied to the same ECG dataset from 10 diabetic patients. LDA and 

KNN classifiers have been run in training, validation and testing sets with 

proportions of 35%, 35%, and 30% out of overall data, respectively. The 

performances have been undertaken by using the Classification Toolbox (version 3.1) 

in Matlab.  

LDA and KNN can easily handle the case where the within-class frequencies 

are unequal and their performance has been examined on randomly generated test 

data. LDA can provide class separability and draw a decision region between given 

classes to help to better understand the distribution of feature data (Balakrishnama S. 

et al., 1998). KNN is a nonparametric lazy learning algorithm, which means it does 

not make any assumptions on the underlying data distribution. It appears to be a 

useful technique in classification as well as regression, as most of the practical data 

does not obey the typical theoretical assumptions made (eg. Gaussian mixtures, 

linearly separable, etc.). To ensure the stability of the classifier, cross-validation has 

been performed in both classification techniques.  

Different numbers of folds for cross-validation have been tested in order to 

discover the best results in hyperglycaemia detection. Finally, LDA using 3-fold and 

KNN using 4-fold cross validation with venetian blinds achieved the best outcomes, 

as shown in Table 3.5. Compared to the performance of ANN model using 

Levenberg-Marquardt for hyperglycaemia detection, LDA and KNN still got worse 

results with lower sensitivities and their sensitivities were much less than their 
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specificities in all three sets of training, validation and testing. The best testing 

sensitivities of LDA and KNN are 50% and 43.75%, which are poorer than the 

sensitivity of ANN (70.59%).  Even Specificities of LDA and KNN are higher than 

ANN’s (77.78% and 85.19% vs. 65.38%), LDA and KNN do not satisfy with the 

requirements for disease diagnosis. In general, ANN outperforms LDA and KNN 

with higher achievement in overall accuracy.   

Algo-

rithms 

Training Validation Testing 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec 
(%) 

gm 
 (%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

ANN 89.47 83.87 86.63 80 77.41 78.69 70.59 65.38 67.94 

LDA 73.68 84 78.61 57.14 79.31 67.32 50 77.78 62.36 

KNN 78.94 93.55 85.94 57.14 93.1 72.94 43.75 85.19 61.04 

 

Table 3.5:   Comparison of best performances of three different classification techniques for 
hyperglycaemia detection 

 

3.4 DISCUSSION 

Based on the findings in the relation of hyperglycaemia with electrical 

activities of the heart, the proposed hyperglycaemia detection has been presented. It 

employs ANN algorithm and the input of ECG parameters. The system consists of 

ECG acquisition, feature extraction and ANN classification. Output of ANN 

classifier displays a binary value representing a hyperglycaemic or normoglycaemic 

event. The input was electrocardiographic clinical data. The ANN model is used to 

indicate whether the ECG parameters in the input belong to hyperglycaemia or 

normoglycaemia. Primarily, this ANN model could be used for the classification of 

hyperglycaemia.  

The ECG parameters are extracted from ECG signals which are acquired 

through lead II. Lead II is frequently used for QT interval measurement (Salvi et al., 

2011), where U-wave is less prominent to minimize the error in the determination the 

end of T-wave (Garson, 1993). A zero-crossing detector was used to mark the points 
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of P, Q, R, TP and TE. The zero-crossing method has better advantages compared to 

other methods using ECG baseline (i.e., tangent method) that is not sensitive with 

ECG baseline drift. To avoid the error of finding those points, manually checking on 

the results of delineation was performed after the implementation of the zero-

crossing detector. Compared to manual method, all feature measurements have the 

error differences under 5%.  

It is generally accepted that hyperglycaemia among persons with diabetes 

causes degradation of the microvasculature that results in central and peripheral 

autonomic neuropathy. Yet, there are numerous pathways whereby autonomic 

dysfunction could in turn affect insulin function and glucose regulation. Major 

organs, including the pancreas, liver, and skeletal muscle, which are responsible for 

insulin secretion, glucose production, and glucose metabolism, respectively, are 

innervated by autonomic fibres (Carnethon et al., 2003). In this study, as shown in 

Table 3.1, hyperglycaemia was related to thirteen out of sixteen original ECG 

parameters (i.e, QTC, PR, RTC, TPTEC, etc.) and had no relation with HR, LF/HF ratio 

and MeanRR. Interestingly, a higher blood glucose level was associated with 

decreased QTC, RTC, TpTeC, increased PR and reduced HRV measures.   

Hyperglycaemia has been shown highly correlated to ventricular 

repolarisation intervals (RTC, QTC, TpTeC) in this study. Obviously, the shortened 

QTC led to the reduction of RTC, TpTeC. While the prolonged repolarisation in 

hypoglycaemia could be explained by a physiologically longer cardiac repolarisation 

at night and thus an electrically instable myocardium worsened by the 

hypoglycaemia induced adrenergic stimulation, there is currently no clear 

explanation for the reduced repolarisation in hyperglycaemia. Meanwhile, these 

parameters should be utilised further for hyperglycaemia detection. 

Increased PR in hyperglycaemia has been discussed in the research of 

Marfella et al. (2000) with acute hyperglycaemia in a healthy man. It can be 

explained that this effect is due to PR intervals commonly associated with atrial 

fibrillation (Lorsheyd et al., 2005; Homoud, 2009) and chronic hyperglycaemia, but 

not hypoglycaemia which may contribute to atrial fibrillation burden in several ways 

(Aksnes et al., 2008; Gandhi et al., 2005). Therefore, the hyperglycaemic state in 



 
 

73 
 

type 1 diabetic patients with both hypoglycaemic and hyperglycaemic states can 

result in changes of PR interval. However, our ECG assessments of diabetic patients 

did not indicate atrial dysfunction. 

Recent studies have emphasized the importance of HRV in evaluation of the 

autonomic nervous system on heart rate. Our study demonstrated that it is possible to 

use time domain measures and power spectral techniques to analyse autonomic 

influence on the cardiac cycle length and ventricular repolarisation. In agreement 

with previous studies, high blood glucose levels caused lower HRV in subjects with 

diabetes. Our findings extended the previous observations made in selected T1DM 

patients and went across the spectrum of hyperglycaemic and normoglycaemic 

events. SDNN was much lower in hyperglycaemic events than in normoglycaemic 

events, which means that both the sympathetic and parasympathetic influence HRV. 

SDNN is probably the best known HRV index (Bigger et al., 1992), mostly used as a 

time domain measure of HRV, because the additional information from other time 

domain parameters of HRV is relatively scant. In frequency domain measurements, 

LF can be used to quantify the sympathetic component of autonomic function in 

addition to HF, the parasympathetic component. Table 3.1 showed that both these 

two features were significantly decreased under hyperglycaemic conditions.  

Therefore, SDNN, LF and HF are potentially good markers to identify 

hyperglycaemic and non-hyperglycaemic states using HRV in T1DM. 

The Levenberg-Marquardt (LM) algorithm is often the fastest back-

propagation algorithm in training a moderate-sized feed forward neural network (up 

to several hundred weights). It is highly recommended as a first-choice supervised 

algorithm, although it does require more memory than other algorithms. A three-

layer feed forward neural network training with LM using the whole data set for 

hyperglycaemia detection received reasonable classification results (as tabulated in 

Table 3.2) though it might take more time and higher hidden nodes. The proposed 

ECG classifier achieved best results (70.59% sensitivity, 65.58% specificity and 

67.94% geometric mean) with LM algorithm. In cases where other algorithms are 

applied, the proposed ECG classifier still resulted in worse performances as their 
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sensitivities were less than 70%, which does not meet requirements in medical 

diagnosis. 

Two other conventional classification methods, Linear discriminant analysis 

(LDA) and K-nearest neighbours (KNN), have been tested to compare their 

performances with ANN’s using LM algorithm. The results show that ANN model 

using LM detects hyperglycaemia events more accurately than LDA and KNN. 

Although ANN, compared to LDA and KNN, lacks a comprehensive visual 

representation, it cannot be denied that ANN is a more effective classification 

technique for hyperglycaemia detection than those usual methods.  

As far as we are concerned, this study is the first to report a non-invasive 

hyperglycaemia detection system using ECG signals. To predict hyperglycaemia, 

many other studies have been worked on in different ways using various input 

parameters, but none of them examined the abnormal ECG parameters under 

hyperglycaemia conditions. Most of the alternative studies focus on predicting blood 

glucose levels to forecast glycaemic states. For example, Le Compte (Le Compte et 

al., 2010) built a dynamic model for blood glucose prediction to provide the most 

probable future insulin sensitivity. Other approaches developed neural networks for 

early detection of hypoglycaemia/hyperglycaemia events based on glucose data from 

continuous glucose monitoring (CGM) (Daskalaki et al., 2012; Pappada et al., 2010). 

Nevertheless, the purpose of these studies was on real-time glucose control rather 

than the disease diagnosis. By the way of hyperglycaemia diagnosis, classification 

models concentrate on keeping sensitivity and specificity high enough in balance, 

although specificity should be lower than sensitivity as the true positive rate 

(proportion of hyperglycaemic events are correctly detected) is more important than 

false positive rate (proportion of normoglycaemic events are correctly detected). 

These findings contribute to the limited literature of problems related to 

hyperglycaemia diagnosis based on physiological signals among T1DM. Moreover, 

this study draws attention to the need for further investigations to understand the 

mechanisms responsible for abnormal changes in ECG signals during a state of 

hyperglycaemia. It should also be assessed whether subclinical changes in ECG are 
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predictive of the subsequent development of clinical hyperglycaemia conditions in 

these patients.   

On the other hand, the results using the ANN model in this chapter is still not 

high enough for an accurate hyperglycaemia detection system. The proposed strategy 

needs to be enhanced to improve the overall accuracy of hyperglycaemia detection. 

Sixteen ECG parameters took extensive memory-cost and slowed down the 

computation rate. Moreover, a data set of a large number of variables may cause the 

multicollinearity which leads to incorrect classification where some of those 

variables are somehow dependent on each other. A strategy of reducing the 

dimension of input size such as Principal Component Analysis should be carried out 

to establish a set of interrelated parameters and find important ECG parameters, 

which significantly contribute to the performance of hyperglycaemia detection.     

In this chapter, the changes of ECG parameters associated with 

hyperglycaemic and normoglycaemic states in Type 1 diabetic patients have been 

explored. An ECG acquisition and feature extraction based on LabVIEW has been 

developed to detect these alterations. Several statistical analyses have been done to 

evaluate the effect of ECG parameters on hyperglycaemia and normoglycaemia. The 

study also showed the different findings of decreased ventricular repolarisation and 

reduced HRV measures in Type 1 diabetic patients under hyperglycaemic states. A 

classification unit using the artificial neural network was developed to determine the 

presence of hyperglycaemia episodes based on T1DM patients’ ECG parameters. 

The results of 70.59% sensitivity and 65.58% specificity by using LM algorithm are 

considered reasonable and meet the requirement for biomedical application. Various 

training algorithms also have been developed and compared. In general, the proposed 

ECG classifier using LM algorithm outperforms other algorithms. This result 

indicates that hyperglycaemic events in T1DM can be detected non-invasively and 

effectively by using ECG signals and ANN approach. The best performance of ANN 

models for hyperglycaemia detection in the experiment was 67.94% in terms of 

geometric mean with 9 hidden nodes using LM algorithm. This performance was 

slightly slow and thus a more advanced ANN is necessary to achieve higher results.   
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CHAPTER 4  .             COMBINED PRINCIPAL 

COMPONENT ANALYSIS AND NEURAL 

NETWORK FOR HYPERGLYCAEMIA 

DETECTION 

 

4.1 INTRODUCTION 

As mentioned in chapter 3, an ANN has been applied using ECG signals for 

hyperglycaemia detection in Type 1 diabetic patients. Although that result of ANN is 

satisfactory, performance of classifier for hyperglycaemia detection still needs to be 

improved to adapt into the practical environment. Chapter 4 aims to develop another 

approach of ANN for classifying the events of hyperglycaemia and normoglycaemia 

with better results. Sixteen original ECG parameters seem to be a large input 

dimensionality that may create more redundancy due to correlation among features 

and increase in uncertainty within input datasets. These factors, might lead to a 

significant decrease of classification accuracy as well as an increase in processing 

costs. Features which do not make any or very little contribution to the performance 

of classification should be removed. Hence, the application of dimensionality 

reduction techniques, which reduce the data dimensionality while preserving 

informative features, is very important in order to enhance the performance of the 

classifier. 
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Dimensionality reduction is one of the key techniques in pattern recognition 

which focuses on revealing meaningful structures and unexpected relationships in the 

multivariate data. The main aim of the dimensionality reduction algorithms is to 

obtain a compact, accurate representation of the data that reduces or eliminates 

statistically redundant components. There are obviously three major advantages in 

using dimensionality reduction techniques. Firstly, the performance of a 

classification might be improved by selecting a subset of a smaller number of 

informative and less correlated variables. This issue is important for recovering the 

generalisation capability of a training dataset. Secondly, the processing time will be 

reduced with the use of a smaller number of input features. Thirdly, the smaller 

datasets would be more appropriate in cases where there exists multicollinearity in 

original datasets because of direct relationships among HRV measures.  

Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) are the two popular independent feature extraction algorithms. Both of them 

extract features by projecting the parameter vectors into a new feature space through 

a linear transformation matrix. But they optimise the transformation matrix with 

different intentions. PCA optimises the transformation matrix by finding the largest 

variations in the original feature space; whereas LDA pursues the largest ratio of 

between-class variation and within-class variation when projecting the original 

feature space to a subspace. For the purpose of reducing the size of original inputs to 

diminish the computational requirement while retaining the variations present in the 

data set, PCA has been selected to use as an ultimate choice.  

The main contribution of chapter 4 is to propose and to evaluate a 

combination of PCA and ANN in a two-stage classifier for hyperglycaemia detection. 

This chapter investigates PCA for dimensionality reduction and proposes the 

application of ANN for classification of hyperglycaemia episodes. ECG variables, 

which contribute significantly to the performance of hyperglycaemia detection, have 

also been revealed by using PCA. Five training algorithms are selected for ANN 

classification and their performances on hyperglycaemia detection are presented 

respectively. Furthermore, the influences of PCA and not using PCA on the 

performance of hyperglycaemia detection are also discussed at the end of the chapter. 
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4.2 PRINCIPAL COMPONENT ANALYSIS (PCA) 

4.2.1 Overview of PCA 

Principal components analysis (PCA) is one of a family of techniques for 

taking high-dimensional data, and using the dependencies between the variables to 

represent it in a more tractable, lower-dimensional form, without losing too much 

information. PCA is one of the simplest and most robust ways of doing such 

dimensionality reduction. It is also one of the oldest, and has been rediscovered many 

times in many fields, so it is also known as the Karhunen-Loève transformation, the 

Hotelling transformation, the method of empirical orthogonal functions, and singular 

value decomposition. 

Conceptually, the goal of PCA is to reduce the number of variables of interest 

into a smaller set of components. In other words, the goal is to extract as much 

variance with the fewest components. PCA analyses all the variance in the variables 

and reorganises it into a new set of components equal to the number of original 

variables. Regarding the new components, they are independent and decrease in the 

amount of variance in the originals they account for. First component captures most 

of the variance, second most and so on until all the variance is accounted for. Only 

some will be retained for further study (dimension reduction) since the first few 

capture most of the variance they are typically off focus. 
In essence, PCA seeks to reduce the dimension of the data by finding a few 

orthogonal linear combinations (the PCs) of the original variables with the largest 

variance. The first PC, s1, is the linear combination with the largest variance. We 

have , where the p-dimensional coefficient vector solves 

                                       (4.1) 

The second PC is the linear combination with the second largest variance and 

orthogonal to the first PC, and so on. There are as many PCs as the number of the 

original variables. For many datasets, the first several PCs explain most of the 

variance, so that the rest can be disregarded with minimal loss of information. 

1 1
Ts x w 1 1,1 1,( ,..., )T

pw

1 1arg max T
ww Var x w
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Since the variance depends on the scale of the variables, it is customary to first 

standardize each variable to have a mean zero and standard deviation one. After the 

standardization, the original variables with possibly different units of measurement 

are all in comparable units. Assuming a standardized data with the empirical 

covariance matrix 

                                                  (4.2) 

we can use the spectral decomposition theorem to write ∑ as 

                                                     (4.3) 

where Λ=diag(λ1,…,λp) is the diagonal matrix of the ordered eigenvalues λ1≤ … ≤λp, 

and U is a p p orthogonal matrix containing the eigenvectors. It can be shown 

(Mardia et al., 1995) that the PCs are given by the p rows of the p p matrix S, 

where  

                                                       (4.4) 

The subspace spanned by the first k eigenvector has the smallest mean square 

deviation from X among all subspaces of dimension k. 

Another property of the eigenvalue decomposition is that the total variation is equal 

to the sum of the eigenvalues of the covariance matrix, 

                             (4.5) 

and that the fraction  gives the cumulative proportion of the variance 

explained by the first k PCs. By plotting the cumulative proportions in (4.5) as a 

function of k, one can select the appropriate number of PCs to keep in order to 

explain a given percentage of the overall variation. The number of PCs to keep can 

also be determined by first fixing a threshold λ0, then only keeping the eigenvectors 

such that their corresponding eigenvalues are greater than λ0. In this case, the 

problem is to Figure out how many components need to be considered, standard 

advice to keep only the eigenvalues larger than 1 is used. 
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An alternative way to reduce the dimension of a dataset using PCA is 

suggested in (Mardia et al., 1995). Instead of using the PCs as the new variables, this 

method uses the information in the PCs to find important variables in the original 

dataset. As before, one first calculates the PCs, then studies the scree plot to 

determine the number k of important variables to keep. Next, one considers the 

eigenvector corresponding to the smallest eigenvalue (the least important PC), and 

discards the variable that has the largest (absolute value) coefficient in that vector. 

Then, one considers the eigenvector corresponding to the second smallest eigenvalue, 

and discards the variable contributing the largest (absolute value) coefficient to that 

eigenvector, among the variables not discarded earlier. The process is repeated until 

only k variables remain. 

4.2.2 Rotation 

After the number of components has been determined, and in order to 

facilitate the interpretation, the analysis often involves a rotation of the components 

that were retained. When the data follow a model (such as the psychometric model) 

stipulating 1) that each variable load on only one factor and 2) that there is a clear 

difference in intensity between the relevant factors (whose eigenvalues are clearly 

larger than one) and the noise (represented by factors with eigenvalues clearly 

smaller than one), then the rotation is likely to provide a solution that is more reliable 

than the original solution. 

Two main types of rotation are used: orthogonal when the new axes are also 

orthogonal to each other and oblique when the new axes are not required to be 

orthogonal. Because the rotations are always performed in a subspace, the new axes 

will always explain less inertia than the original components (which are computed to 

be optimal). When performing a rotation, the term loadings almost always refer to 

the elements of loading matrix. An orthogonal rotation is specified by a rotation 

matrix, where the rows stand for the original factors and the columns for the new 

(rotated) factors. With oblique rotations, the new axes are free to take any position in 

the component space, but the degree of correlation allowed among factors is small 

because two highly correlated components are better interpreted as only one factor. 
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Oblique rotations, therefore, relax the orthogonal constraint in order to gain 

simplicity in the interpretation.  

The rotation used in this thesis is an orthogonal rotation, called varimax 

rotation. It was developed by Kaiser (1958) and is the most popular rotation method. 

For varimax a simple solution means that each component has a small number of 

large loadings and a large number of zero (or small) loadings. This simplifies 

interpretation because, after a varimax rotation, each original variable tends to be 

associated with one (or a small number) of components, and each component 

represents only a small number of variables. In addition, the components can often be 

interpreted from the opposition of few variables with positive loadings to few 

variables with negative loadings. Formally, varimax searches for a linear 

combination of the original factors such that the variance of the squared loadings is 

maximized. 

4.2.3 Analysis of principle component 

In general, components are linear combinations of variables. These 

combinations are based on weights (eigenvectors) developed by the analysis. With 

multivariate research we come to eigenvalues and eigenvectors. Eigenvalues can be 

considered to measure the strength (relative length) of an axis in N-dimensional 

space and derived via eigen-analysis of the square symmetric matrix (the covariance 

or correlation matrix). Each eigenvalue has an associated eigenvector. While an 

eigenvalue is the length of an axis, the eigenvector determines its orientation in space. 

The values in an eigenvector are not unique because any coordinates that described 

the same orientation would be acceptable. Any factor whose eigenvalue is less than 

1.0 is in most cases not going to be retained for interpretation of components. 

PCA will give the loadings of variables. The loading for each variable is the 

correlation between it and the component. Loadings that are more than 0.5 are 

typically considered strong, between 0.3 and 0.5 are acceptable, and less than 0.3 are 

typically considered weak.  
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The correlation matrix of each data set was obtained to assess the measure of 

pair wise association among the various variables. Stepwise multiple regressions 

were then carried out, and the results were also checked for multicollinearity by 

examining the variance inflation factors (VIF) of the predictor variables. The 

principal components of the predictor variables were obtained using the correlation 

coefficients of the variables. The results of the principal component analysis were 

employed for two purposes. First, they were used for principal component regression 

analysis (PCR), applying the stepwise regression option in the choice of the principal 

components to enter the regression equation. Next, a varimax rotation of the 

principal components was used as a variable selection technique to choose the 

appropriate variables for inclusion in the ultimate regression model. The objectives 

of this approach were to minimize the effect of multicollinearity on the estimation of 

the regression coefficients and achieve parsimony. The analysis of the data was 

carried out using the statistical software, SPSS (Statistical Package for Social 

Science, version 10.0).  

4.3 TWO-STAGE ANN CLASSIFIER USING PCA FOR 

HYPERGLYCAEMIA DETECTION 

A two-stage ECG classifier based neural network is developed for 

hyperglycaemia episodes detection. This classifier uses inputs of ECG parameters to 

detect output of either hyperglycaemic, or normoglycaemic states. In this study, PCA 

performs the features dimensionality reduction to find the optimal group of ECG 

variables as input. An overview of the proposed hyperglycaemia detection system is 

described in Figure. 4.1. 
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Figure 4.1:  Hyperglycaemia detection using two-stage PCA-Multilayer neural network 
classifier and input of ECG parameters 

4.3.1 First stage – PCA for feature reduction 

PCA is an appropriate multivariate technique to reduce the dimension of a 

data set consisting of a large number of interrelated variables, while retaining as 

much as possible of the variation present in the data set (Sharma et al., 1996). It is a 

special case of factor analysis that transforms the original set of inter-correlated 

variables into a new set of an equal number of independent uncorrelated variables or 

principal components that are linear combinations of the original variables. Therefore, 

high correlations (multicollinearity) between predictor variables can be avoided for 

correct identification of the most important variables. The principal components are 

ordered in a way that the first few principal components explain most of the variation 

in all of the original variables, and each subsequent one accounts for the largest 

proportion of variability that has not been retained by its predecessors (Jolliffe, 2002). 

The components are equally useful in regression analysis for mitigating the problem 

of multicollinearity and in exploring the relations among the independent variables, 

particularly if it is not obvious which of the variables should be the predictors. The 

new variables from the PCA become ideal to use as predictors in a regression 

equation since they optimise spatial patterns and remove possible complications 
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caused by multicollinearity. A multiple regression based on PCA is going to be 

utilised to components analysis. 

The magnitudes of the coefficients give the contributions of each variable to 

that component. PCA can be formally stated in the following equations, assuming 

that there are p original variables x and producing p linear combinations: 

                                       (4.6)

 

where are the p principal components and is the weight of the jth variable for the 

ith principal component. Due to the differences in the units of variables, correlation 

matrix of variables was used to get eigenvalues and weight of variables. 

After generalizing the principal component, varimax rotation was used to 

maximize the loading of a predictor variable on one component. Generally, 

implementation of the PCA procedures followed by an orthogonal rotation method 

(varimax rotation) produces a ranked series of factors. The higher the loading a 

variable, the more that variable contributes to the variation accounted for by the 

particular principal component. In practice, only loadings with absolute values 

greater than 50% are selected for the principal component interpretation (Jolliffe, 

2002). A principal component with an eigenvalue greater than or equal to one is 

commonly considered for statistical significance (the Kaiser criterion). The statistical 

analyses of the data were carried out using the SPSS software (Statistical Package for 

Social Science, IBM, version 19.0). 

In this study, firstly, Pearson correlation matrices of the ECG variables were 

obtained to access the measure of pair-wise association among the various variables. 

If multicollinearity exists with high correlations among variables, then PCA should 

be used to avoid this problem. Kaiser-Meyer-Olkin (KMO) and Bartlett’s test was 

also mandatory for the verification of the applicability of PCA to our data set. We 

then employed PCA as the first stage to transform 16 original ECG parameters into a 

new appropriate lower dimensional size of variables, which will be used as input in 
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the second stage of ECG classifier, multilayer neural network. The objective of PCA 

focused especially on identification of the most important ECG factors among 

cardiac intervals and HRV measures that are responsible for the variation of high 

blood glucose levels in diabetic patients. The selection of the subset of ECG 

predictor variables followed two steps: 

(1) Choose principal components that have eigenvalues equal or greater than 

one; 

(2) Select variables with high loading associated with each principal 

component. 

4.3.2 Second stage – ANN classifier 

In the second stage of the ECG classifier, these features are employed as 

inputs in a multilayer neural network. The structure of neural network has nine input 

nodes which are the nine mentioned ECG parameters above. The hidden nodes are 

varied from 3 to 20 in order to select the one that gives the best performance. The 

overall data set consists of 107 episodes of normoglycaemia and 80 episodes of 

hyperglycaemia. The training set, validation set and testing set are randomly selected 

with proportions of 40%, 30%, and 30% out of overall data, respectively. To find the 

contribution of cardiac intervals and HRV measures to the classification of 

hyperglycaemia, different neural networks are trained with inputs from cardiac 

intervals. The training performance of proposed detection has been analysed by 

means of ROC curves for five groups of inputs. 

The ANN is trained by the Levenberg-Marquardt (LM) algorithm, which 

appears to be a fast and effective training algorithm. For comparison of performances, 

five approaches using different training algorithms with the same structure and same 

input of all nine ECG features are presented as well. The algorithms are Gradient 

descent with momentum (PCA_GDX), Scaled conjugate gradient (PCA_SCG), 

Resilient back propagation (PCA_RP), Conjugate gradient back-propagation with 

Fletcher-Reeves updates (PCA_CGF). 
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4.4 EXPERIMENTAL RESULTS 

4.4.1 PCA results 

Multiple regression analysis based on 16 original ECG features has given the 

results of collinearity statistics which is been shown in Table 4.1.  The result shows 

that there was a multicollinearity problem with the variance inflation factor (VIF) 

where some of VIFs are more than 5.0.  

 

ECG 
parameters 

Collinearity Statistics 

Tolerance VIF 

HR .843 1.186 

QTC .175 5.714 

PR .965 1.036 

RTC .217 4.601 

TpTeC .510 1.959 

VLF .135 7.408 

LF .132 7.571 

HF .269 3.717 

TotalPw .548 1.824 

LF/HF .800 1.250 

MeanRR .079 12.709 

SDNN .091 11.037 

RMSSD .449 2.228 

pNN50 .608 1.646 

HRVi .272 3.678 

TINN .096 10.372 

 
Table 4.1:    Collinearity Statistics of original ECG data 
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 HR QTC PR RTC TpTeC VLF LF HF LF/HF 
Mean 

RR 
SDNN RMSSD pNN50 HRVi TINN 

Total 

Pw 

HR 1 .356** -.132 .210* .129 -.046 -.053 -.049 -.074 -.537** -.064 -.063 -.089 .187* .136 -.052 

QTC - 1 -.160* .792** .374** .066 .091 .079 .045 .116 .109 .085 -.060 -.009 .038 .083 

PR - - 1 -.149* -.021 -.154* -.166* -.086 -.149* -.022 -.198* -.160* .032 -.120 -.188* -.160* 

RTC - - - 1 -.061 .074 .083 .080 .051 .141* .121 .112 -.031 .008 .107 .083 

TpTeC - - - - 1 .052 .050 -.006 -.048 .045 -.003 -.022 -.001 -.020 -.132 .047 

VLF - - - - - 1 .972** .504** .384** .120 .774** .432** .008 -.018 .255* .982** 

LF - - - - - - 1 .589** .420** .156* .859** .539** .049 .034 .283** .992** 

HF - - - - - - - 1 .035 .233* .792** .802** .490** .292** .378** .637** 

LF/HF - - - - - - - - 1 .021 .319** .041 -.206* .141* .104 .378** 

MeanRR - - - - - - - - - 1 .234* .241* .169* -.168* -.050 .158* 

SDNN - - - - - - - - - - 1 .852** .360** .256* .475** .861** 

RMSSD - - - - - - - - - - - 1 .597** .318** .546** .554** 

pNN50 - - - - - - - - - - - - 1 .396** .349** .090 

HRVi - - - - - - - - - - - - - 1 .288** .045 

TINN - - - - - - - - - - - - - - 1 .298** 

TotalPw - - - - - - - - - - - - - - - 1 

Statistical significant coefficients were denoted with * for p< 0.05 and with ** for p< 0.0001 

Table 4.2:   Pearson correlations matrix of original ECG parameters 
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Cross correlation (Pearson correlation) between 16 original ECG variables 

was also examined in this study. As shown in Table 4.2, statistically significant 

correlation coefficients r were denoted to confirm strong associations between ECG 

variables. There have existed high correlations between each component among 

cardiac intervals and HRV measures, i.e., QTC with RTC, VLF with LF and TotalPw, 

LF with SDNN and TotalPw, HF with RMSSD (r > 0.7 and p < 0.0001). It again 

proved that there was a significant amount of multicollinearity among ECG 

parameters, which may lead to high standard errors of the parameters’ estimation in 

neural networks later. PCA is one of the approaches to avoid this problem. The main 

objective of PCA was to obtain a small number of components that would explain 

most (typically 60-90%) of the total variation in the original ECG parameters. 

Kaiser-Meyer-Olkin (KMO) Measure of sampling adequacy and Bartlett’s 

test for Sphericity were then applied to verify the applicability of PCA on an ECG 

data set, which has been shown in Table 4.3. The Bartlett’s sphericity test is for all 

correlations, zero or for testing the null hypothesis where the correlation matrix is an 

identity matrix which was used to verifying the applicability of PCA. The value of 

Bartlett’s sphericity test is 1536.187 which suggest that the PCA is applicable to our 

data sets (p < 0.0001). The value of KMO’s Measure of Sampling was adequately 

found to be 0.783 which is higher than 0.5 implying that the sample size of ECG data 

set was enough for applying PCA. 

 

Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy 
0.783 

Bartlett’s 

Test of Spericity 

Approx. Chi-

Square 
1536.187 

df 55 

Sig. .000 

Table 4.3:   KMO and Bartlett’s test for ECG data 
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4.4.2 Subgroup data set 

In PCA, original ECG parameters were transformed into an equal number of 

principal components. Sixteen original ECG parameters will give sixteen principal 

components (PC). After the transformation, varimax rotation was used to maximize 

the loading of a variable on one component. According to the results of PCA in 

Table 4.4, the first five principal components (PC1, PC2, PC3, PC4, PC5) which 

have eigenvalues greater than 1 are selected as reference for feature reduction. 

Because eigenvalues represent variances, a component with an eigenvalue of less 

than 1 is not significant. Thus, the first of five principal components provides an 

adequate summary of the data for most purposes. Only the first five principal 

components, explaining 76.635% of the total variation, should be sufficient for 

almost any applications. The first PC accounted for 33% of the total variation in the 

data. It is loaded heavily on VLF, TotalPw, LF and SDNN. The second PC, which 

accounted for 13% of the total variation, exhibited strong loadings on RTC and QTC. 

Principal components three, four and five loaded heavily on pNN50, TpTeC and TINN. 

Based on these PCA results, the final set with nine features are selected as inputs of 

classification, namely: 

- VLF 

- TotalPw 

- LF 

- SDNN 

- RTC 

- QTC 

- pNN50 

- TpTeC 

- TINN 
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Table 4.4:   Total variance and rotated principal components loadings 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 

VLF .985 .020 -.022 .022 .056 -.040 .011 -.043 -.013 .096 -.013 -.052 -.014 -.057 -.081 .000 

TotalPw .982 .029 .027 .018 .073 .001 .039 -.043 -.013 .098 .117 .026 -.002 -.024 -.001 .000 

LF .978 .031 -.005 .022 .063 -.004 .041 -.047 -.013 .140 .065 .063 .010 .006 .083 .000 

SDNN .802 .062 .218 -.016 .207 .145 .110 -.076 -.025 .104 .238 .346 .015 .188 .004 .000 

RTc .051 .968 -.006 -.129 .043 .007 .053 -.054 .041 .006 -.002 .009 -.185 -.003 -.001 .000 

QTc .044 .891 -.028 .303 .003 -.017 .061 -.063 .187 .026 .037 .022 .259 .006 .001 .000 

pNN50 .047 -.038 .937 .007 .162 .206 .086 .032 -.046 -.125 .128 .088 -.001 .005 .000 .000 

TpTec .035 .067 .005 .992 -.068 -.006 .020 -.007 .057 -.027 -.008 -.006 .005 .000 .000 .000 

TINN .215 .041 .172 -.081 .936 .120 -.041 -.085 .067 .028 .072 .083 -.001 .003 .000 .000 

HRVi .014 -.007 .201 -.007 .116 .955 -.088 -.056 .085 .085 .081 .052 -.001 .003 .000 .000 

MeanRR .108 .106 .093 .029 -.035 -.089 .934 -.014 -.282 -.002 .062 .043 .002 .002 .000 .000 

PR -.106 -.088 .021 -.009 -.074 -.051 -.010 .983 -.053 -.054 -.008 -.023 -.001 -.001 .000 .000 

HR -.037 .201 -.047 .076 .067 .092 -.304 -.065 .916 -.048 -.006 -.012 .005 .000 .000 .000 

LF_HF .294 .024 -.125 -.031 .026 .087 -.001 -.061 -.044 .939 -.039 -.012 .001 .002 .000 .000 

HF .542 .041 .302 -.016 .136 .166 .115 -.008 -.010 -.081 .719 .171 .003 .004 .001 .000 

RMSSD .473 .062 .411 -.019 .300 .160 .122 -.072 -.036 -.061 .319 .601 .000 -.017 .001 .000 

Eigenvalue 5.349 2.14 2.05 1.6 1.122 0.949 0.842 0.598 0.361 0.354 0.314 0.181 .095 0.032 0.012 0 

% of Variance 33.43 13.376 12.811 10.003 7.015 5.931 5.261 3.738 2.259 2.212 1.962 1.129 0.594 0.203 0.076 0 

Cumulatives % 33.43 46.806 59.617 69.62 76.635 82.566 87.827 91.565 93.825 96.037 97.998 99.127 99.721 99.924 100 100 
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4.4.3 Performance of two-stage ANN classifier using PCA for hyperglycaemia 

detection 

In the second stage of the ECG classifier, these features are employed as 

inputs in a multilayer neural network. The structure of the neural network has nine 

input nodes which are the nine mentioned ECG parameters above. The hidden nodes 

are varied from 3 to 20 in order to select the one that gives the best performance. The 

overall data set consists of 107 episodes of normoglycaemia and 80 episodes of 

hyperglycaemia. The training set, validation set and testing set are randomly selected 

with proportions of 40%, 30%, and 30% out of overall data, respectively. To find the 

contribution of cardiac intervals and HRV measures to the classification of 

hyperglycaemia, different neural networks are trained with inputs from cardiac 

intervals (RTC, QTC, TpTeC), 4 features selected from PC1 (VLF, TotalPw, LF, 

SDNN), HRV measures including time-domain (SDNN, pNN50, TINN) and 

frequency-domain (VLF, TotalPw, LF), separately. 

The training performance of proposed detection has been analysed by means 

of ROC curves for five groups of inputs in which the sensitivity (true positive rate) 

and the 1- specificity (false positive rate) are plotted in Figure 4.2. The results of 

hyperglycaemia detection using LM algorithm are presented in Table 4.5. The 

corresponding AuR (area under ROC curve) for the training set with input of all nine 

parameters is 0.8455. This ROC curve is used to find the optimal cut-off point to 

classify hyperglycaemic and normoglycaemic states. In order to analyse the optimum 

sensitivity and specificity, the cut-off point is selected at the point producing the 

sensitivity higher than 80%. At that point, 6 hidden nodes produce the best 

classification in which the training results of 88.89% sensitivity and 71.88% 

specificity are gained and the testing set leads to 85.71% sensitivity and 58.62% 

specificity. These testing sensitivity and specificity are considered to be a 

satisfactory result which meets the requirements of disease diagnosis (sensitivity ≥ 

70% and specificity ≥ 50%). The best testing geometric mean of 70.88% is also 

achieved with these sensitivity and specificity. 
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Figure 4.2:   ROC plot 
 
 
 
 

Inputs 
Hid. 
node 

AuR 
Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

9 
parameters 

6 0.8455 88.89 71.88 79.93 66.67 57.69 62.02 85.71 58.62 70.88 

RTC, QTC, 
TpTeC 

4 0.7419 78.95 64.52 71.37 66.67 58.62 62.52 68.75 59.26 63.83 

VLF, 
TotalPw, 

LF, SDNN 
14 0.6216 66.67 43.48 53.84 68.75 52.94 60.33 69.23 60 64.45 

VLF, 
TotalPw, 

LF 
10 0.6747 73.19 51.85 61.91 50 64.29 56.69 72.73 62.5 67.42 

SDNN, 
pNN50, 
TINN 

18 0.6978 84.21 45.16 61.67 52.63 54.84 53.72 83.33 48 63.24 

 

Table 4.5:   Performances of ECG classifier using PCA and LM algorithm 
 

 



 
 

93 
 

The classification results from smaller groups of ECG parameters show comparable 

testing results such as input of (VLF, TotalPw, LF) and (RTC, QTC, TpTeC) whose 

sensitivity and specificity are (72.73% and 62.5%) and (68.75% and 59.26%), 

respectively. These results indicate a potential non-invasive detection of 

hyperglycaemia using neural network combined PCA and ECG parameters. 

For comparison of performances, five approaches using different training 

algorithms with the same structure and same input of all nine ECG features are 

presented as well. The algorithms are Gradient descent with momentum (PCA-GDX), 

Scaled conjugate gradient (PCA-SCG), Resilient back propagation (PCA-RP), 

Conjugate gradient back-propagation with Fletcher-Reeves updates (PCA-CGF). In 

the terms of sensitivity, specificity, and geometric mean, the performances of the 

detections using SCG, GDX, CGF, and RP algorithms, respectively, are described in 

Table 4.6. It can be clearly seen that the obtained testing LM result outperforms other 

algorithms such as SCG, GDX, RP and CGF in terms of sensitivity (85.71% 

against %. 69.23%, 70%, 71.43%, and 52.94%, respectively). 

 

Algorithms 
Hidden 
node 

Sen (%) Spec (%) gm (%) 

PCA-LM 6 85.71 58.62 70.88 

PCA-GDX 13 70 63.64 66.74 

PCA-SCG 9 69.23 66.67 67.94 

PCA-RP 6 71.43 62.07 66.59 

PCA-CGF 8 52.94 88.46 68.43 

 
Table 4.6:   Testing performances of neural network using PCA and five different algorithms 

 

To evaluate the results of using PCA to reduce features dimensionality, 

hyperglycaemia detections utilising neural network which did not use PCA in the 

first stage, are also performed. The neural networks applying five algorithms, namely 

LM-NN, SCG-NN, GDX-NN, CGF-NN, and RP-NN used all 16 original ECG 
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parameters as inputs. Table 4.7 shows the best testing performances of five 

algorithms. As expected, multicollinearity problem in the data set led to a worsening 

performance, where the highest classification by using LM-NN was only 70.59%, 

65.38%, and 67.94%, in terms of sensitivity, specificity and geometric mean, 

respectively. In terms of geometric mean, their performances are comparable to 

neural networks using PCA, however, apart from LM-NN, the sensitivities of the 

other four algorithms are less than 70%, which are not directed in biomedical 

application. 

Algorithms 
Hidden 
node 

Sen (%) Spec (%) gm (%) 

LM-NN 9 70.59 65.38 67.94 

GDX-NN 12 66.67 54.84 60.47 

SCG-NN 10 68.75 59.26 63.83 

RP-NN 11 62.5 62.96 62.73 

CGF-NN 7 55.56 68 61.47 

 
Table 4.7:   Testing performances of neural network without PCA using all 16 original 

parameters and five different algorithms 
 

4.5 DISCUSSION 

In this study, according to PCA results, HRV measures such as VLF, TotalPw, 

SDNN, TINN, which have the strongest significant decreases under hyperglycaemia 

conditions in statistical t-test, are selected to examine the presence of 

hyperglycaemia episodes. Although HF and RMSSD components are more 

statistically significant than LF and TINN, LF and TINN are still chosen as PCA 

considering the total variation of all the data associated with the contributions of each 

component. As a result, VLF, TotalPw and LF variables, which are ranked on the top 

of PC1 components, yielded better classification results compared to the group of 

time-domain measures including SDNN, pNN50 and TINN. This outcome implies 

that there might be a continuous relation between glycaemia and all measures of 
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absolute spectral power of HRV (VLF, LF, HF). In our study, based on the PCA 

result, we found the most suitable group of parameters for hyperglycaemia detection. 

However, for clinical use, there is still no consensus about the most accurate HRV 

parameter. 

The relation of hyperglycaemia and ventricular repolarisation intervals (RTC, 

QTC, TpTeC) has been reported in previous studies (Suys et al., 2006; Nguyen et al., 

2012). The geometric mean of 63.83% in the classification using these parameters 

indicates that they have an important contribution for hyperglycaemia detection. This 

important role also matches with results of statistical t-test showing that RTC, QTC, 

TpTeC are smaller in hyperglycaemia than in normoglycaemia with p < 0.05. Besides, 

based on Pearson correlation matrix (Table 4.2), RTC, QTC, TpTeC have strong 

correlations with each other which led to their high contributions to the total variance 

of the all data set. PR interval is significantly higher in hyperglycaemia than in 

normoglycaemia (p < 0.0001), yet its variance was not effectively reflected in the 

total variance of all variables (under 4% out of 100%) explaining why PR was 

rejected in PCA. 

Levenberg-Marquardt (LM) algorithm is often the fastest back-propagation 

algorithm in training a moderate-sized feed forward neural network (up to several 

hundred weights). It is highly recommended as a first-choice supervised algorithm, 

although it does require more memory than other algorithms. A three-layer feed 

forward neural network training with LM using the whole data set for 

hyperglycaemia detection received reasonable classification results (as tabulated in 

Table 4.7) though it might take more time and higher hidden nodes. After being 

accompanied with principal component analysis to reduce the dimension of data set, 

the proposed ECG classifier achieved even better results (85.71% sensitivity, 58.62% 

specificity, 70.88 % geometric mean vs. 70.59% sensitivity, 65.38% specificity, 

67.94% geometric mean) due to the multicollinearity between predictor variables 

which has been prevented to avoid incorrect identification of the most important 

predictors. In cases where other algorithms are applied, the proposed ECG classifier 

still results with acceptable performances, such as GDX (70% sensitivity, 63.64% 
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specificity, 66.74% geometric mean) and RP (71.43% sensitivity, 62.07% specificity, 

and 66.79% geometric mean). 

As far as we are concerned, this study is the first to report a non-invasive 

hyperglycaemia detection system using ECG signals. To predict hyperglycaemia, 

many other studies have been worked on in different ways using various input 

parameters, but none of them examined the abnormal ECG parameters under 

hyperglycaemia conditions. Most of the alternative studies focus on predicting blood 

glucose levels to forecast glycaemic states. For example, Le Compte (2010) built a 

dynamic model for blood glucose prediction to provide the most probable future 

insulin sensitivity. Other approaches developed neural networks for early detection 

of hypoglycaemia/hyperglycaemia events based on glucose data from continuous 

glucose monitoring (CGM) (Pappada et al., 2010; Daskalaki et al., 2012). 

Nevertheless, the purpose of these studies was on real-time glucose control rather 

than disease diagnosis. By the way of hyperglycaemia diagnosis, classification 

models concentrate on keeping sensitivity and specificity high enough in balance, 

although specificity should be lower than sensitivity as the true positive rate 

(proportion of hyperglycaemic events are correctly detected) is more important than 

false positive rate (proportion of normoglycaemic events are correctly detected). Our 

findings contribute to the limited literature of problems related to hyperglycaemia 

diagnosis based on physiological signals among T1DM. Moreover, this study draws 

attention to the need for further investigations to understand the mechanisms 

responsible for abnormal changes in ECG signals during a state of hyperglycaemia. It 

should also be assessed whether subclinical changes in ECG are predictive of the 

subsequent development of clinical hyperglycaemia conditions in these patients. 

In the next stage, we are pursuing the enhancement of the proposed strategy 

to improve overall accuracy of hyperglycaemia detection. In addition, other 

optimisation techniques, such as particle swarm optimisation (PSO), might need to 

be explored to optimise the neural network parameters in order to obtain better 

results. This hyperglycaemia detection strategy, after further validation, might have a 

prospect to be a non-invasive and painless method for diabetic patients who have a 

risk of high blood glucose. 
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In this chapter, a two-stage classification unit using artificial neural network 

combined PCA is developed to determine the presence of hyperglycaemia episodes 

based on T1DM patients’ ECG parameters. The group of nine ECG parameters after 

being reduced by PCA shows significant contributions to the performance of 

hyperglycaemia detection. The results of 85.71% sensitivity and 58.62% specificity 

by using LM algorithm are considered reasonable and meet the requirement for 

biomedical application. Various training algorithms, which have been employed and 

not employed in the proposed classifier, also have been developed and compared. In 

general, the proposed ECG classifier using PCA and LM algorithms is a robust 

method and outperforms other ones. This result indicates that hyperglycaemic events 

in T1DM can be detected non-invasively and effectively by using ECG signals. 
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CHAPTER 5  . PARTICLE SWARM 

OPTIMISATION BASED NEURAL 

NETWORK FOR HYPERGLYCAEMIA 

DETECTION 

 

5.1 INTRODUCTION 

Artificial Neural Networks (ANN) have shown potential results in the 

classification of hyperglycaemic episodes in T1DM patients, which have been 

described in chapter 3 and 4. On the way to improve the performance of 

hyperglycaemia detection using ANN, particle swarm optimisation (PSO) is 

considered to associate with ANN to optimise the neural network’s parameters.  

Usually some gradient algorithms including the Back Propagation (BP) 

technique are used for training a network, because they can achieve faster convergent 

speedaround the global optimum. However they are prone to being trapped in the 

local minimum. On the contrary, the PSO algorithm converges rapidly during the 

initial stages of a global search, while it becomes extremely slow around the global 

optimum. Therefore, an adaptation with a transition from PSO search to train the 

weights and thresholds of neural network, which aims to exploit the advantage of 
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both algorithms, is proposed in this chapter. This PSO based neural network (PSO-

NN) can achieve the strong global search ability of PSO, which could be an effective 

alternate training algorithm for ANN's since PSO is a heuristic optimisation 

technique and is found to be more accurate when compared to the existing 

conventional algorithms.  

Regarding to optimisation techniques, the PSO algorithm and genetic 

algorithm (GA) are both popular methods. Similar to GA, PSO is an optimisation 

tool based on population, and the system is initialised with a population of random 

solutions and can search for optima by updating of generations. Conversely, unlike 

the GA, PSO has no complicated evolutionary operators such as crossover and 

mutation (Boeringer et al., 2004). Particles update themselves with the internal 

velocity; they also have a memory important to the algorithm. Also, in PSO only the 

‘best’ particle gives out the information to others. It is a one-way information sharing 

mechanism, the evolution only looks for the best solution. Compared to GA, the 

advantages of PSO are that PSO is easy to implement and there are few parameters to 

adjust. In general, the PSO algorithm has a strong ability to find the most optimistic 

result, although easily getting into a local minimum. After suitably modulating the 

parameters for the PSO, the rate of convergence can be speeded up and the ability to 

find the global optimistic result can be enhanced. That’s why PSO has been chosen 

over GA as the optimization method to improve the hyperglycaemia performance. 

Chapter 5 proposes a new hyperglycaemia detection model, which consists of 

two stages: feature dimensionality reduction and PSO based neural network 

classification unit. In the first stage, the dimension of features is reduced using 

Principal Component Analysis (PCA) to form more essential features. In the 

classification stage, a hybrid classification algorithm combines PSO and NN which is 

used to train the perceptrons of a three-layer neural network to optimise the weights 

of ANN. Further, a sensitivity analysis is later carried out in the study to evaluate the 

most suitable PSO-NN characteristics which include maximum velocity; acceleration 

constants to obtain minimize error. The proposed particle swarm optimisation trained 

neural network is employed in hyperglycaemia detection and the results are 

compared with the other existing algorithms. 
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5.2 PARTICLE SWARM OPTIMISATIONBASED NEURAL NETWORK 

(PSO-NN) 

5.2.1 PSO algorithm 

Particle Swarm Optimisation (PSO) algorithm is based on the theory of 

swarm intelligence. This algorithm can provide efficient solutions for optimisation 

problems through intelligence generated from complex activities such as cooperation 

and competition among individuals in the biologic colony. Compared with 

evolutionary computation, PSO still maintains the population based global search 

strategy, but its velocity displacement search model is simple and easy to implement. 

Inspired by the social behaviour of animals such as fish schooling and birds 

flocking, Eberhart and Kennedy designed the Particle Swarm Optimisation (PSO) in 

1995. This method is a kind of evolutionary computing technology based on swarm 

intelligence (Gao et al., 2006).The basic idea of birds flocking can be depicted as 

follows: In a bird colony, each bird looks for its own food and in the meantime they 

cooperate with each other by sharing information between them. Therefore, each bird 

will explore a new area of potential by utilise its own experience and that of the 

others. Due to these attractive characteristics, i.e. memory and cooperation, PSO is 

widely applied in many research areas and real-world engineering fields as a 

powerful optimisation tool. 

The basic PSO model consists of a swarm of particles moving in a d-

dimensional search space. The direction and distance of each particle in the hyper-

dimensional space is determined by its fitness and velocity. In general, the fitness is 

primarily related with the optimisation objective and the velocity is updated 

according to a sophisticated rule. 

5.2.2 Adaptation of PSO to train neural networks 

A population of particles is initialised for a random position wi and velocity vi 

in a sample problem space of dimension d, which can be expressed as: 

( 1) ( 1)d I H H O                                      (5.1) 
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where I, H, O are the numbers of input, hidden and output nodes, respectively. It then 

simulates the social behaviour of the particles in the swarm until it achieves the 

optimum solution by updating generations. The position and velocity of the ith 

particle is denoted as 1 2( , ,..., )i i i idw w w w  and 1 2( , ,..., )i i i idv v v v  respectively. At 

each iteration step, the velocity is updated and the particle is moved to a new position 

by following two “best” values. The first one is the best solution (fitness) of the ith 

particle it has achieved so far. This value is called pbest, which denotes as

1 2( , ,..., )besti best best bestdp p p p . Another “best” value that is tracked by the particle 

swarm optimiser is the best value, obtained so far by any particle in the whole swarm, 

also called the global best position gbest. It is denoted as

1 2( , ,..., )besti best best bestdg g g g . When a particle takes part of the population as its 

topological neighbor, the best value is a local best and is called lbest (Birge, 2003). 

After finding the two best values, the new velocity and position of each 

particle are calculated as follows: 

1 1 2 2( ) ( )i i besti i besti iv v c rand p w c rand g w                (5.2) 

i i iw w v                                                       (5.3) 

where rand1 and rand2 are two independent random numbers uniformly distributed in 

the range of [0, 1]. c1, c2 are two constants called learning factors. ω is called the 

inertia factor to deliver a balance between global exploration and local exploitation.  

The inertia weight ω keeps the movement inertial for the particle. It describes 

the influence of the previous velocity to the current velocity, makes it have the trend 

to extend the search space and have the ability to explore the new district. There is a 

function to adjust the rate of velocity of particle, as shown in equation 5.4.  Usually 

the inertia weight ω is decreased linearly from 0.9 to 0.4. 

max max min max( / )i k iter                                 (5.4) 

where ωmax is the initial weight, usually ωmax= 0.9; ωmin is the final weight, usually  

ωmin = 0.4; itermax is the maximum number of iteration. k is the current number of 

iterations. 

The available search range for the particles plays an important role in 

resolving the solution convergence. Each component of velocity is within the range 
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[-vmax,+vmax] so that the maximum allowable velocity vmax can control the exploration 

and exploitation of the search space. vmax determines the maximum change one 

particle can take during iteration and determines the precision between current 

position and the global best position. If vmax is too high, the particle may fly beyond 

the best solution; If vmax is a small value, the particle cannot perform enough searches  

and get trapped in some local minima (Lee et al., 2008). 

It is noticeable that three components typically contribute to the new velocity. 

The first part is proportional to the old velocity and is the tendency of the particle to 

continue in the same direction it has been travelling (Yuhui et al., 1998). It can be 

thought of as a momentum term. The second component, which is associated with a 

local search, is considered as the cognitive part representing the private thinking. The 

third term, which is associated with a global search, is considered as the social part 

representing the social-psychological adaptation of knowledge. In addition, studies of 

inertia weight ω yield the conclusion that starting with a high value and lowering it 

throughout the iterations will help enhance the possibility of converging globally and 

save the computational expense in the local search procedure. 

As mentioned earlier in chapter 3, a three-layer feed-forward neural network, 

which basically consists of input layer, hidden layer and output layer, is composed of 

a series of interconnected nodes and the corresponding weights between them. ANN 

is characterised by the ability of self-learning and error toleration. With the 

appropriate activation functions and trained weights, ANN can approximate any 

smooth, nonlinear function or relationship between the input and output. The training 

process is carried out on a set of data including input and output parameters. Usually, 

the data are split into two parts namely training samples and validation samples. The 

learning procedure is based on the training samples and the testing samples are used 

to verify the performance of the trained network. During the training, the weights in 

the network are adjusted iteratively until a desired error depicted as equation (5.5) is 

obtained. 

2

1 1
( ) / 2

onm
k k
i i

i k
E t y                                      (5.5) 

where  and  represent the actual and the predicted values respectively, m is the 
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number of training samples. The neural network is trained by minimising the above 

error function in a search space of weights.  

The performance of each particle is evaluated according to a predefined 

fitness function, which is related to the problems to be solved. In this work, the 

fitness is determined by (5.5). The PSO algorithm has strong robustness for the initial 

weight of neural network. By the combination of the PSO into training neural 

network, it could improve the precision, speed and convergence rate of the network.  

5.2.3 Hyperglycaemia detection using PSO-NN 

A two-stage PSO-NN classifier has been developed for the classification of 

hyperglycaemia. It is an upgrade from the ANN model which has been explored in 

chapter 4. The PSO-NN still has stage 1 using PCA to reduce the feature 

dimensionality. After feature reduction, there are nine essential ECG variables 

needed for a hyperglycaemia classifier. A PSO based multi-layer ANN is 

implemented based on network in the second stage. PSO Research Toolbox (Evers et 

al., 2009), Matlab Neural Network Toolbox (version R2012a) and PSO Research 

Toolbox – NN Matlab add-on (Rambharose, 2011) are used to train the neural 

network.  

 

Figure 5.1:   PSO based feed-forward Neural network for hyperglycaemia detection 
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The specific hyperglycaemia classifier based on the PSO-NN is illustrated in 

Figure 5.1. Stage 1 is for feature reduction using PCA, which was described clearly 

in chapter 4. In stage 2, the input after reduction is sent to the neural network model 

and then the PSO algorithm is applied to train the neural network until the goal 

fitness or MSE arrives (as shown in equation 5.5). The network was trained using 

PSO to arrive at the initial network weights. 

Since a three-layer feed forward neural network is considered in this study, 

the weight matrix is presented as { , }ih how w w where wih and wio are the set of 

weights connecting the input to the hidden layer and the hidden layer to the output 

layer respectively. The initial ranges of ANN parameters used in the PSO model are 

fixed according to Table 5.1. The values of MSE are evaluated by using the current 

position of each particle as an input and its value subsequently compared for each 

particle as its current position and the position at which a best fit is achieved. If the 

current fitness happens to be the best one so far, it is stored as pbesti. A random 

weighted difference between pbesti and the weight matrix w is then added to the 

particle velocity and the current best fitness value is stored as gbesti. Supposing that 

every weight and threshold in the network is initially set in the range of [-1,1], then 

every initial velocity and position of the particles is a set of weights and thresholds 

generated randomly in the range of [-1,1]. In addition, the maximum velocity vmax 

was regulated by velocity clamping percentage vmax-perc. It is the percentage of the 

range to which each dimension should be clamped, according to the following 

equation: 

max max . ( )perc iv v range ;                                  (5.6) 

where max (0,1]percv  and ( ) U L
i i irange w w ; and is the search space. Other 

primary PSO parameters are presented in Table 5.2. 

The PSO algorithm uses local neighborhood best method, where the 

neighborhood was set to five particles. With this configuration, each neighborhood’s 

best performing particle affects only velocities and directions of its five nearest 

neighbors. This causes the particles to converge on a solution more slowly, but 
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allows the algorithm to search more of the solution space. The flowchart 5.1 

summarizes the local best PSO algorithm. 

 

Parameters Value 

Maximum number of epochs 1000 

Performance goal 0.001 

Maximum validation failures 6 

Epochs between display 10 

Learning rate 0.01 

 
Table 5.1:ANN parameters used in the PSO-NN model 

 

Parameters Value 

Population size 30 

Velocity clamping percentage  

vmax-perc 

0.2 

Maximum number of iterations 1000 

Acceleration constants (c1, c2) c1 = c2 = 2 

Inertia weight ω 0.7 

Error goal 0.001 

Minimum error gradient  10-9 

Dimension 
Based on ANN 

architecture 

 
Table 5.2:   PSO parameters used in the PSO-NN model 

 

TRAINPSO, a type of network training function, is used as the network 

training function that updates weight and bias values according to particle swarm 

optimisation. This is a modification of existing neural network training algorithms 

provided in Matlab's Neural Network toolbox, using ideas from Brian Birge's PSO 

toolbox (Birge, 2005). This PSO training function aims to be the interface between 
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the Matlab NN toolbox and the PSO Research Toolbox. This approach to training a 

NN by PSO treats each PSO particle as one possible solution of weight and bias 

combinations for the neural network. The PSO particles therefore move about in the 

search space aiming to minimise the output of the network performance function 

(Rambharose, 2011). 
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Flowchart 5.1:    Local best PSO algorithm 
 

The size of the feed-forward neural network is set as [9 H 1], which means 

there are nine neurons in the input layer according to nine input features and one 

neuron in the output layer of the network which indicates the state of hyper or normo. 

The hidden nodes “H” in the hidden layer are varied from 3 to 20 in order to find the 

optimal number of hidden nodes in the network. The Linear transfer function is the 

type of transfer function used for the last layer and hyperbolic tangent sigmoid 

transfer function is used for the rest of the layer of the designed neural network. 

Gradient descent with momentum weight and bias learning function is used as Back 

propagation weight/bias learning function. 

Data input is the diabetic dataset from 10 T1DM patients, which was 

mentioned in chapter 3 and divided into training, validation and testing exemplars 

(with proportions of 35%, 35% and 30% out of overall data, respectively). 

5.3 EXPERIMENTAL RESULTS 

5.3.1 Performance of PSO-NN 

Diabetic data sets are studied using neural network trained based on PSO 

algorithm. The architecture of neural network is obtained by varying the number of 

neurons in the hidden layer from 3 to 20. After initialising training variables (i.e., 

training data parameters, training record parameters, training state parameter, to keep 

track of as the network is trained), PSO Research Toolbox is called to adjust network 

weights and biases, which is aimed to determine new weight such that error 

performance is minimized. Swarm motions in the search space are graphed on the 3-

D coloured contour maps of Figure 5.2 (a, b, c, d), where particles can be seen flying 

from random initialization to eventual stagnation at the local minimiser. 

The true global minimiser at [0,0] (which is spotted in the centred green point) 

is not discovered. A particle finds the relative quality region near the just found local 

minimiser and communicates this new global best to the rest of the swarm. As other 

particles fly in its direction, none finds a better global best, so all converge around 
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the latest local minimiser as momenta wane. According to the trajectory of PSO 

particles searching for global best, Figure 5.3 locates the positions of global best in 

one trial of PSO training, which are mainly moving around vertical range [-1,1]. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.2:    Swarm motions on the 3-D coloured contour maps 

(a) Swarm initialisation – Particles are randomly initialised within the search space 

(b) Particles are converging to local minimum via their attraction to the global best in the vicinity 

(c) Cognitive accelerations toward personal best and momentum keep particles searching prior to 

settling down 

(d) As momentum wane and no better global best is found, the local minimum is being honed in on 

when the progress reaches to the maximum number iterations. 
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Figure 5.3:    History graph of global best positions 
 

The fitness function value of the global best at each iteration number is 

described in Figure 5.4 and Figure 5.5, with the iteration numbers of 1000 and 1200, 

respectively. The figures show that the convergence rates of the training by PSO 

algorithm at two different iteration numbers are nearly the same. The optimal fitness 

function value with 1000 iterations is 0.0626, which is nearly similar to the function 

value of 0.0658 with 1200 iterations. It shows that 1000 iterations are enough for the 

training with PSO to get the optimal fitness function.  

 

Figure 5.4:   The function value of the global best obtained with 1000 iterations 
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Figure 5.5:   The function value of the global best obtained with 1200 iterations 
 

From equation (5.3) it is clear that the particle swarm algorithm proceeds 

forward by updating the weight of each particle. If the velocity is not constrained, the 

equation could yield undesirable results since the search space expands and tends to 

infinity in the hyper space. The parameter vmax, which is manipulated by vmax_perc, is 

thus used to dampen the oscillations. The effects of vmax on the training and the 

performance of PSO-NN are thoroughly examined by assuming vmax_per values vary 

from 0.001 to 1. From Figure 5.6, it can be seen that when vmax_per is set to 0.001, the 

performance curve assumes nearly a horizontal line indicating no change in the 

weights. As the vmax_per increases to 0.1, the mean square error reduces to the value of 

0.199 during the first 35 iterations, and at vmax_per value of 0.2, the MSE falls down to 

0.143, giving properly the best performance value. 
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Figure 5.6:    Performance curves of PSO-NN at various velocities 
 

 

Figure 5.7:   Variations of the weights of PSO-NN at various velocities: 
vmac_perc = 0.2 and vmac_perc = 0.3 
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Figure 5.7 depicts the variation in the weights of neural network training by 

PSO algorithm with an increase of the number of iterations. The variations of the 

weights are observed while fixing the vmax_per values at 0.2 and 0.3. Comparing two 

graphs in Figure 5.7, it can be seen that as vmax_per increase to value further than 0.2, 

the particles converge and thereby, the weights of the neural network increases 

considerably in a cyclic manner resulting into larger errors. It shows that vmax_per 

value of 0.2 is the optimal choice for the PSO-NN. 

 
 

Figure 5.8:   PSO-NN Performance curves at various acceleration constants 
 

Acceleration constants have also affected the performance of the PSO 

algorithm. In this case, it has been assumed that c1 = c2. Figure 5.8 depicts the 

convergence curves of PSO algorithm for various values of c1, c2. Initially, at a value 

of acceleration constants equal to zero the MSE curve is more or less than a straight 

line because of equation 5.2. However, when c1 = c2 = 0.01, the network shows a 

very shallow convergence and the MSE value reaches 0.223 and remains constant 

thereafter. Similarly, when c1, c2 increase regularly until they approach to 2, a sharp 

drop in the value of MSE is observed within the first few iterations and the learning 

process is almost complete within 35 iterations. Furthermore, as c1, c2 increase 

beyond 2, the MSE value drops very rapidly in the initial iterations, yet higher than 
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MSE value at c1, c2 equal to 2. This shows that at high acceleration constants values, 

the ability of the network to generalise reduces.  

The effect of change in weights of the network due to different values of c1, 

c2 at 1 and 2 are observed to evaluate the chosen value of c1, c2 of 2. Figure 5.9 

depicts the fluctuations of the particles (value of the weights in the network) with an 

increase in the acceleration constants from 1 to 2. As c1, c2 are set at 2, the curve is 

seen to oscillate at slightly higher frequency of fluctuation than c1, c2 at 1. However, 

c1, c2 at 2 has smaller amplitude compared to the other. The choice of acceleration 

constants (c1 = c2 = 2) in PSO is based from the decrease of amplitude rather than the 

increase of frequency of fluctuation.    

 
 
 

Figure 5.9:    Values of weights in PSO-NN at c1 = c2 = 1 and c1 = c2 = 2 
 

With the chosen PSO parameters, table 5.3 shows the best results of 

hyperglycaemia detection at different hidden nodes, varied from 3 to 20. Within 20 

runs, the best performance for hyperglycaemia detection is found with 16 hidden 

nodes, in which the training results of 85% sensitivity and 70% specificity are gained 

and the testing set leads to 82.35% sensitivity and 73.08% specificity. These testing 

results not only meet the requirements of disease diagnosis (sensitivity ≥ 70% and 

specificity ≥ 50%), but also earn an excellent geometric mean of 77.58%.  
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Hidden 
node 

Training Validation Testing 

Sen (%) Spec (%) gm (%) Sen (%) Spec (%) gm (%) Sen (%) Spec (%) gm (%) 

3 65.22 77.78 71.22 60.87 62.96 61.91 60 57.58 58.78 

4 77.27 71.43 74.29 44.44 84.38 61.24 62.5 55.56 58.93 

5 84.62 66.67 75.11 41.18 57.58 48.69 69.23 63.33 66.22 

6 70.37 52.17 60.59 88.24 60.61 73.13 58.33 48.39 53.13 

7 71.43 79.31 75.27 62.5 65.38 63.93 63.64 62.5 63.07 

8 68.42 80.64 74.28 47.37 77.42 60.59 77.78 72 74.83 

9 78.26 66.67 72.23 50 53.13 51.54 73.33 71.43 72.37 

10 81.82 64.29 72.52 57.14 58.62 57.88 76.92 60 67.94 

11 81.82 42.86 59.22 88.24 30.3 51.71 76.47 42.31 56.88 

12 87.5 61.54 73.38 70 56.67 62.98 83.33 51.61 65.58 

13 83.33 53.85 66.99 81.25 38.24 55.74 81.25 59.26 69.39 

14 90.48 55.17 70.65 71.43 55.17 62.78 78.57 51.72 63.75 

15 70.59 60.61 65.41 50 76.67 61.91 68.42 66.67 67.54 

16 85 70 77.13 77.37   61.29 68.86 82.35 73.08 77.58 

17 75 76.67 75.83 55 66.67 60.55 62.5 59.26 60.86 

18 87.5 50 66.14 73.68 41.94 55.59 76.92 40 55.47 

19 95.45 71.43 82.57 78.95 54.84 65.8 60 39.29 48.55 

20 72.73 71.43 72.07 75 76.47 75.73 66.67 64 65.32 

 

Table 5.3:   Performances of hyperglycaemia detection at different hidden nodes 
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The corresponding ROC plot of PSO-NN for training set is also presented in Figure 

5.10. AUC of 0.8279 is found by the PSO-NN, which express a high training 

accuracy in the performance of hyperglycaemia detection. 

          

Figure 5.10:   The ROC curve of best performance of PSO-NN 

5.3.2 Comparison of PSO-NN with other NN-based algorithms 

The performance of PSO-NN has been compared to the outcome of 

Levenberg-Marquardt NN (PCA-LM-NN) using PCA (chapter 4) for 

hyperglycaemia detection. Over 20 runs, mean values of training, validation and 

testing results of PSO-NN are higher than those of PCA-LM-NN, in terms of 

sensitivity, specificity and gm (as shown in Table 5.4). Table 5.5 shows the training 

execution errors of two methods. PSO-NN has lower error rates, which means it has 

more powerful classification capability and ability in terms of biomedical 

applications. 

Method Hid. 
Node 

Training Validation Testing 

Sen 
(%) 

Spec  
(%) 

gm 
 (%) 

Sen 
(%) 

Spec 
(%) 

gm 
(%) 

Sen 
(%) 

Spec  
(%) 

gm 
(%) 

PCA-LM-NN 6 78.45 74.86 76.63 71.18 65.04 68.04 68.18 59.55 63.72 

PSO-NN 16 79.14 70.89 74.9 66.33 58.82 62.46 71.84 62.7 67.12 

 

Table 5.4:   Mean values of training, validation and testing results over 20 runs 
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Method 
Mean 

Absolute 
Error (MAE) 

Mean Square 
Error (MSE) 

Root Mean 
Square Error 

(RMSE) 

PCA-LM-NN  0.4076 0.1979 0.4449 

PSO-NN 0.3755 0.143 0.429 

 
Table 5.5:   Training execution errors of PCA-LM-NN and PSO-NN models 

 

For the assessment of agreement and reliability of two classification methods, 

Cohen’s Kappa statistic is also performed with PCA-LM-NN and PSO-NN. The 

Kappa statistic is used to access the accuracy of any particular classification cases 

and to distinguish between the reliability of the predicted data and their validity. 

Once the Kappa statistic is performed, the results usually come along with Z-score 

and p value of the assessment, which is used to take into account that classifiers 

might sometimes agree or disagree simply by chance or not. Table 5.6 presents the 

comparison of Kappa statistic between two classification methods based on neural 

network, PCA-LM-NN and PSO-NN. The results show that PSO-NN has a better 

Kappa coefficient than PCA-LM-NN and both Kappa scores are around 0.4-0.6, 

which means the accuracy of the classification purpose is moderately reliable. PSO-

NN has a significantly better Z-score than LM-NN (as p < 0.05), which means PSO-

NN has significant classification results better than random choice compared to the 

other. 

 

Method Kappa  
statistic Z-score p value 

PCA-LM-NN  0.4444 2.4898 < 0.05 

PSO-NN 0.5326 3.5552 < 0.001 

 
Table 5.6:   Cohen’s Kappa statistic of PCA-LM-NN and PSO-NN models 

 

The performance comparison of PSO-NN to previous NN-based algorithms, 

which are LM-NN (Chapter 3) and PCA-LM-NN (Chapter 4), is presented in Table 

5.7. PSO-NN achieved the best geometric mean of 77.58%, whereas those of PCA-

LM-NN and LM-NN are much lower (70.88% and 67.94%, respectively). Although 

the sensitivity of PSO-NN is not as high as PCA-LM-NN, its specificity is definitely 



 
 

118 
 

better than the others. Obviously, PSO-NN outperforms the other two algorithms, 

which prove to be an excellent method for hyperglycaemia detection. 

 

Method Input sen (%) spec (%) gm (%) 

LM-NN (Chapter 3) 16 original 
parameters 70.59 65.38 67.94 

PCA-LM-NN 
(Chapter 4) 9 parameters 85.71 58.62 70.88 

PSO-NN (Chapter 5) 9 parameters 82.35 73.08 77.58 

 

Table 5.7:   Best testing results of three methods 

5.4 DISCUSSION 

A neural network model, known as PSO-NN, is developed to detect 

hyperglycaemia based on the ECG parameters extracted from ECG signals of 10 

T1DM patients. The model is the improvement of the two-stage classifier ANN using 

PCA for hyperglycaemia detection, which has been explored in Chapter 4. The new 

model keeps the same stage 1, which uses PCA for feature reduction, and stage 2 is 

an advanced feed-forward neural network employing PSO algorithm to optimise the 

weights of the network. By means of PSO, the weights of the network are updated 

every iteration until the optimal weights are obtained. It takes advantage of the PSO 

algorithm’s global searching ability characteristic.  

For observing the movement of particles, PSO algorithm was run again by 

giving the same position and velocity of each particle initialised randomly. The 

dimension of search space is 177, according to equation 5.6 with 9 neurons in the 

input layer, 16 neurons in the hidden layer and 1 neuron in the output layer. From 

Figure 5.2 (a, b, c, d), it is easy to find out that the particles have searched more 

domains around the searching space then jumped from local optimal solution to 

converge to the global optimal solution when no better global best was found.  
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In the training process, the PSO algorithm overcomes the weakness of both 

algorithms and achieves the goal MSE. The PSO-NN, whose weights were initialised 

with PSO showed radically better performance than the networks without PSO pre-

training, which have been described in Chapter 3 and 4. The parameters, which were 

estimated previously to use in the PSO algorithm, are found to collaborate well with 

the hybrid neural network model. The error index values calculated in the 

comparison between PSO algorithms with other NN-based algorithms indicate that 

the detection executed by PSO-NN involves minimum possible errors. Thus, PSO 

could be an alternative training algorithm for neural networks. 

Sensitivity analyses for vmax_per and acceleration constants c1, c2 were also 

carried out to evaluate their impact on the network convergence and find out the 

optimal maximum velocity value and acceleration constants for the PSO algorithm 

with a minimum possible error. It was observed that as the maximum velocity 

percentage per clamp increases, the particles do not converge to the optimal weights 

and the weight of the network increase considerably in a cyclic manner thereby 

resulting in large errors while classifying hyperglycaemia. The evaluations of 

function values of global best at 1000 and 1200 iterations in Figure 5.4 and Figure 

5.5 have shown that 1000 iterations are enough for PSO algorithm to get the optimal 

fitness function value. Obviously, the 1000 iterations one is far more efficient in 

terms of time for the training process than the 1200 iterations one. Likewise, a large 

value of acceleration constants gives rise to a sharp decrease in MSE that contributes 

to over-fitting. Similarly, a very small value of c1, c2 has to be ruled out because it 

involves high error performance and considerable computation time to predict the 

desired results. Thus the appropriate values of vmax_per and c1, c2 are identified by 

varying them at different values and observing the fluctuation of values of the 

weights in the network.       

The number of hidden nodes of PSO-NN is varied from 3 to 20 to find the 

appropriate hidden node in order that the network performs well. From Table 5.3, 

one can observe that for the various hidden nodes, the geometric mean increases to 

the maximum value at 16 hidden nodes and then decreases gradually. Thus, the 

optimal neural network architecture using PSO algorithm is found to have a structure 
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9-16-1. That means there are 9 neurons in the input layers indicating 9 ECG input 

parameters, 16 neurons in the hidden layer and 1 neuron in the output layer. With this 

structure, the PSO-NN has achieved the best performance for hyperglycaemia 

detection.  

Cohen’s Kappa statistical analysis was also carried out with PSO-NN and 

PCA-LM-NN, the method has been used in the previous chapter. This analysis aims 

to assess the agreement of two classifiers with decisions made by chance and the 

reliability of their predicted date and their validity. As the disagreement increases, 

the point of kappa will decline more quickly than a proportion of agreement will, 

because of the penalty for chance agreement. With Kappa values over 0.4, both PSO-

NN and PCA-LM-NN are in the moderate range between our classifiers and random 

choice. However, the PSO-NN model gave higher point of Kappa than PCA-LM-NN 

which means PSO-NN is the more reliable one.    

From the figures and tables, it is clear that the PSO algorithm is more 

accurate when compared to the other algorithms. The inclusion of PSO algorithm in 

ANN contributes to a high improved outcome and is thus a most suitable algorithm 

for hyperglycaemia detection. This can be seen by comparing the results of PSO-NN 

with LM-NN (chapter 3) and PCA-LM-NN (chapter 4). PSO algorithm provides 

good sensitivity (82.35%) and a significantly higher specificity than the other two 

methods (73.08% vs. 58.62% and 65.38%). As a result, PSO-NN obtains much 

higher geometric mean than LM-NN and PCA-LM-NN (77.58% vs. 70.88% and 

67.94%), which means PSO-NN performs far better than the others.  

In this study, the parameters of the PSO-NN are decided by manually varying 

the values of maximum velocity and acceleration constants. However, an effort can 

be made in the future to optimise PSO parameters for neural network training by 

using PSO. Furthermore, the PSO can also be incorporated into a hybrid PSO and 

Levenberg-Marquardt algorithm to improve the global convergence rate. In this 

study, PSO-NN is employed to detect hyperglycaemic episodes of 10 T1DM patients. 

In the future, it could be applied to more complex and large data sets and can be 

extended for multi-stated classification as well.    
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PSO algorithm employed in a multilayer feed-forward neural network (PSO-

NN) has been developed and tested for hyperglycaemia detection. The adaptation of 

PSO in learning neural network aims to further enhance the performance of 

hyperglycaemia detection. PSO is a more advanced algorithm compared to the pure 

LM and combination of PCA and LM which developed in Chapters 3 and 4. In PSO-

NN, PCA has also been used as stage 1 to find the optimal ECG parameters before 

feeding them into the input of neural network. PSO algorithm is then used in stage 2 

to train the network and update the weights until optimal weights are obtained. The 

optimisation of the weights in the network resulted in the improvement of 

classification performance. The PSO approach outperformed the classical LM and 

PCA-LM algorithms. It gave significantly higher geometric means than the two 

others in terms of mean values over 20 runs and best testing results. Cohen’s Kappa 

statistical analysis has also been done to compare three methods which prove PSO-

NN as a very effective model. Results of the investigation in this study reveal that the 

proposed method is prominent and useful for the classification of hyperglycaemia.   
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CHAPTER 6  .                                                           
DISCUSSION, CONCLUSIONS AND FUTURE                

DIRECTIONS 

 

6.1 DISCUSSION 

6.1.1 Hyperglycaemia and abnormalities in ECG signals 

In this thesis, the association between hyperglycaemia and ECG signals has 

been investigated. It was revealed that hyperglycaemia can result in the shortening of 

ventricular repolarisation intervals such as QT, RT, and TPTE; increased PR intervals 

and reduced heart rate variability. The aim of this thesis does not involve clarifying 

the mechanisms of abnormalities of ECG features found in hyperglycaemic episodes, 

although some suggestions are still proposed for the clinical manifestation of 

hyperglycaemia in regards to the effect of this complication on the electrical activity 

of the heart. 

Interestingly, earlier studies have shown that hypoglycaemia also affects 

cardiac repolarisation but in the opposite way, particularly on the prolongation of QT 

interval (Robinson et al., 2004). Basically, the mechanism of QT changes under 

hypoglycaemia is now clear. Two main mechanisms can account for the prolongation 

of the QT interval in hypoglycaemia. One is the sympatho-adrenergic system 

activated by hypoglycaemia that releases adrenaline and non-adrenaline into the 

circulation. The other is the decreasing potassium level caused by the increased 



 
 

123 
 

insulin and adrenalin levels (Lee et al., 2003). In hypoglycaemia, repolarisation is 

prolonged by the inhibition of a rapid component of the delayed rectifier potassium 

current which plays an important role in repolarisation (Zhang et al., 2003), thus QT 

interval will be prolonged due to the increased repolarisation time.  

In contrast, the mechanism of the abnormal alterations of QT interval in 

hyperglycaemia is poorly understood. There is still controversy in reaching a final 

confirmation as to whether QT comprehensively appears to shorten or lengthen under 

hyperglycaemia conditions. A report had suggested that hyperglycaemic glucose 

clamp induces QTC interval prolongation in diabetic patients and in healthy control 

subjects (Gordin et al., 2008). Marfella proposed that hyperglycaemia may produce 

ventricular instability by increased sympathetic activity, increased cytosolic calcium 

content in myocytes or both (Marfella et al., 2001). Inversely, in a recent study (Suys 

et al., 2006) where simultaneously recorded QTC values and glucose levels were 

analysed in patients with Type 1 Diabetes, QTC prolongation was associated only 

with hypoglycaemia, not with hyperglycaemia. In this thesis, the subjects for clinical 

study were selected to encounter only hyperglycaemic and normoglycemic events, 

without the interference of hypoglycaemic events which may weaken the evaluation 

of the influence of hyperglycaemia in changes of cardiac ventricular intervals. A 

significant decrease in QTC interval has been seen among all ten patients in the study, 

which is in agreement with Suys’s finding. Results from clinical studies are less 

consistent because of the different background of studies, and then in order to 

establish the clinical relevance of any findings, further studies are needed.   

Clearly, the diagnosis of short cardiac ventricular repolarisation intervals can 

be challenging to establish. Shortened QT interval may be the result of a number of 

reasons, such as genetic channelopathies, hypercalcaemia, hyperkalaemia, acidosis, 

increased vagal tone, after ventricular fibrillation, digitalis use, and androgen use 

(Maluli et al., 2013). Within this study context, one of the causes of short QT interval 

is suggested to relate to the elevated serum potassium level in hyperglycaemia of 

diabetes mellitus with long-term dialysis. Serum potassium concentration may be 

elevated because of an extracellular shift of potassium caused by insulin deficiency 

(ADA, 2004). That insulin deficiency is a major determinant of hyperkalemia in 
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hyperglycaemia has been concluded from recent studies of different hyperglycaemic 

states (Tzamaloukas et al., 1987; Tzamaloukas et al., 2011). Severe hyperkalemia 

will produce changes on the ECG signal, such as a prolonged PR interval and a 

shortened QT interval (Astle, 2005), which are seen in this research.     

Recent studies have identified a possible link between reduced heart rate 

variability (HRV) and diabetes, particularly among patients with Type 1 diabetic 

mellitus (Singh et al., 2000; Jaiswal et al., 2013). The main driver for this 

abnormality appears to be high blood glucose concentration. The autonomic nervous 

system (ANS) regulates heart rate (HR) through sympathetic and parasympathetic 

(vagal) branches. HRV is reduced in diabetes mellitus (DM) patients, suggesting 

dysfunction of cardiac autonomic regulation which has been associated with 

increased risk for cardiac events (Tarvainen et al., 2013). The mechanism of this 

phenomenon is due to the association of the autonomic nervous system and glucose 

tolerance. In healthy individuals, when blood glucose levels fall the sympathetic 

branch is activated, stimulating  glucose production in the liver and kidney and 

reducing muscle use of glucose by way of adrenaline release. Meanwhile, 

parasympathetic (vagal) stimulation has the opposite effect: insulin release from the 

pancreas, which stimulates glucose uptake by cells; reduction in glucose release from 

tissues and increased glycogen formation by the liver. Hypoglycaemia, or low blood 

sugar, leads to sympathetic activation increasing blood glucose levels, while 

hyperglycaemia, high blood sugar, results in parasympathetic activation to reduce 

blood glucose levels. These two systems work in unison to maintain healthy blood 

glucose levels. Therefore, impaired parasympathetic regulation (decreased HRV) 

increases risk for chronic hyperglycaemia and hyperinsulinaemia (raised insulin 

levels, also known as insulin resistance), which is a pre-cursor for diabetes mellitus. 

This finding is consistent with known increased risk among diabetics for autonomic 

neuropathies, which can lead to loss of sensation in the peripheries and in extreme 

cases, infected wounds resulting in limb loss (often known as diabetic foot) (Wensley, 

2013).  

While there is a vast amount of literature on disorders of glucose tolerance 

and HRV, there are still many gaps in our understanding of this relationship. It 
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remains unclear, for example, whether elevated levels of insulin or glucose reduce 

HRV or whether impaired vagal function is a causal risk factor for the development 

of diabetes. Studies of HRV in healthy individuals followed up for many years or 

genetic studies may help to clarify this correlation. 

6.1.2 Comparison of experimental results 

Experimental results of the applications on hyperglycaemia detection are 

presented in Table 6.1. Three proposed methods, LM-NN, PCA-LM-NN, and PSO-

NN are compared and analysed.   

Method  Sensitivity (%) Specificity (%) gm (%) 

LM-NN 

Training 89.47 83.87 86.63 

Validation 80 77.41 78.69 

Testing 70.59 65.38 67.94 

PCA-LM-NN 

Training 88.89 71.88 79.63 

Validation 66.67 57.69 62.02 

Testing 85.71 58.62 70.88 

PSO-NN 

Training 85 70 77.13 

Validation 77.37 61.29 68.86 

Testing 82.35 73.08 77.58 

 

Table 6.1:    Best performances of Training, Validation and Testing sets of three proposed 
methods 

 

The performance of PCA-LM-NN is better than LM-NN (70.88% vs. 67.94%) 

in terms of geometric mean. Although PCA-LM-NN and LM-NN employ the same 

learning algorithm (Levenberg-Marquardt), PCA-LM-NN applies feature reduction 

using principal component analysis (PCA) to get a smaller-size group of ECG 

variables as input of the network, whereas the LM-NN uses a total of sixteen original 

ones. The new subgroup of ECG variables found by PCA has significant ECG 
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parameters which are mostly correlated with high blood glucose levels. The 

multicollinearity among original ECG variables lowers the results of LM-NN. Thus, 

better performance of PCA-LM-NN is the consequence of efficiently choosing 

optimal inputs before feeding them into the network. It can be seen that the 

sensitivity of PCA-LM-NN is much higher than that of LM-NN (85.71% vs. 70.59%). 

It is because the PCA-LM-NN handles only optimal inputs which are significantly 

responsible for the variation of high blood glucose. This may lead to an increased 

likelihood of correct identification of hyperglycaemic events. Therefore, optimal 

ECG variables are still utilised in the next proposed method (the PSO-NN) to secure 

high classification performance.   

Comparing the PSO-NN and PCA-LM-NN, the performance of PSO-NN 

outperforms the PCA-LM-NN (77.58% vs. 70.88%, in terms of geometric mean). 

The PSO-NN employs ANN structure and uses a particle swarm optimisation (PSO) 

to optimise the training of the weights of network, whereas PCA-LM-NN does not. 

The better performance of PSO-NN could be as a result of the swarm optimisation 

effectively optimising the ANN weights by particles. Local best PSO algorithm is 

used to train the network instead of global best PSO. The global version is faster but 

might converge to local optimum for some problems, whereas the local version is a 

little bit slower but not easily trapped into local optimum.   

Tuning PSO parameters in order to minimise MSE value in the 

implementation of the PSO-NN also affects its better results. The concerned PSO 

parameters are velocity clamping percentage (vmax-perc) and acceleration constants (c1 

= c2). In a PSO, velocity clamping controls the global exploration of the particle. It 

reduces the size of the step velocity, so that the particles remain in the search area, 

but does not change the search direction of the particle. Considering the term, the 

vmax-perc value is a trade-off between the margin space and error. If the value is too 

high, the particles will search far beyond the best solution. If the value is too small, 

the particles cannot perform enough searches and soon get trapped in the local 

minimum. The acceleration constants, c1 and c2, represent the weighting of the 

stochastic acceleration terms, that pull each particle toward positions pbesti (best 

previous position) and gbesti (global best position). Thus, adjustment of this factor 
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changes the amount of ‘tension’ in the system. Low values allow particles from far 

target regions to explore the search space before being tugged back, while high 

values result in abrupt movement toward the target (Eberhart et al., 1995).  Therefore, 

it is important to finalize the appropriate values of velocity clamping and 

acceleration constants, so that the particles will soon effectively converge in the local 

area and give the best fitness value.  

 PSO-NN PCA-LM-NN LM-NN 

ANN structure [9  16  1] [9  6  1] [16   9   1] 

Learning algorithm PSO LM LM 

Stopping epochs 35 12 9 

Sensitivity and specificity 
requirements Satisfactory Satisfactory Satisfactory 

Overall performance Best Good Acceptable 

 

Table 6.2:    Comparisons of three proposed methodologies 
 

Comparisons among three proposed methodologies in terms of ANN 

structure, learning algorithm, number of epochs at stopping, satisfactory sensitivity 

and specificity requirements, and overall performance are rated in Table 6.2.  It can 

be seen that the structure of LM-NN is heavier than the other two due to the input 

features which have not been reduced yet. Three models seek for the proper number 

of hidden nodes, which is varied from 3 to 20. It does not matter which one has the 

smaller number until they achieve the best results. However, the more hidden nodes 

the longer the training process may take, which has been proved in higher epochs at 

stopping the PSO-NN. That means the PSO-NN may need a longer convergence time 

as it takes the local best PSO algorithm to avoid trapping in local minima. LM 

algorithm has the major advantage of faster convergence speed, but without any 

optimisation in network parameters in PCA-LM-NN and LM-NN, it could not help 

to improve their performances. In terms of sensitivity and specificity requirements 

(sensitivity ≥ 70%; specificity ≥ 50%), all three methods are satisfactory, which 

meets the requirements for biomedical applications.  
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In conclusion, the overall performance of three proposed methodologies 

surpasses the conventional methods such as LDA, KNN and classifiers employing 

other back propagation algorithms in terms of sensitivity, specificity and geometric 

mean. Handling with smaller-size and more effective data helps PSO-NN and PCA-

LM-NN get better results than LM-NN. The optimisation of ANN weights in the 

PSO-NN assists to enhance its performance and is the best among three proposed 

methods. PSO-NN might be a potential solution for hyperglycaemia detection and 

has good prospects for further improvement.   

6.2 CONCLUSIONS 

6.2.1 Summary and conclusions 

The objectives of this thesis were to develop an appropriate methodology for 
the classification of hyperglycaemic and normoglycaemic states using 
electrocardiographic signals. 

To achieve this goal, firstly, an extensive literature review was conducted in 
chapter 2, including the major background of hyperglycaemia, the reported effect of 
hyperglycaemia on the electrical activities of the heart and related work in the 
detection of hyperglycaemia. The blood glucose threshold of identifying the 
hyperglycaemic state was set at 8.33 mmol/l (or 150 mg/dl). It was revealed that 
hyperglycaemia results on ECG signals differ from hypoglycaemia. For example, 
hyperglycaemia may cause significantly shorter ventricular repolarisation intervals 
such as QT, and reduced heart rate variability. Hence, these abnormal changes in 
ECG signals due only to hyperglycaemia, not hypoglycaemia or normoglycemia, can 
become crucial markers for hyperglycaemia detection in diabetic patients. However, 
it was a surprise that as far as we are concerned, there has been no research using 
ECG parameters for the detection of hyperglycaemia. The hyperglycaemia classifiers 
were reported in a number of studies but they were not adequately investigated. 

Chapter 3 was dedicated to explain the experimental environment involving a 
clinical study, which has been utilised as data samples generated for hyperglycaemia 
detection throughout the thesis. A number of hyperglycaemic and normoglycaemic 
datasets were generated from ten selected type 1 diabetic patients, who had 
participated in an overnight hypoglycaemia and hyperglycaemia study at the Princess 
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Margaret Hospital for Children in Perth, Australia. Sixteen ECG parameters were 
chosen to identify hyperglycaemia and normoglycaemia regarding the effect of 
hyperglycaemia on ECG intervals and heart rate variability parameters. A LabView 
program was developed to acquire ECG signals and extract certain ECG intervals.  
The Kubios HRV analysis tool has also been used to produce essential HRV 
parameters. The total of sixteen ECG parameters obtained from the study has gone 
through statistical analysis to confirm the significant changes in ECG parameters 
under hyperglycaemic conditions compared to normoglycaemic conditions and 
clearly emphasised. The significant abnormalities observed are the considerable 
shortening of RTC, QTC, TpTeC intervals, and a major increase of PR intervals and 
reduced certain HRV parameters. These are very important findings as they are 
considered to be the unique input factor for the strategy of non-invasive 
hyperglycaemia detection, and totally different from the conventional methods of 
blood glucose monitoring for determination of hyperglycaemia.   

Chapter 3 also involved the approach of the artificial neural network classifier 
for detecting hyperglycaemia using those ECG parameters as input for the network, 
while two commonly used k-nearest neighbours (KNN) and linear discriminant 
analysis (LDA) classifiers were also implemented for comparison purposes. The 
results show that hyperglycaemic events can be detected non-invasively and 
effectively by sixteen chosen ECG parameters and ANN approach. Compared to the 
performance of the ANN model using Levenberg-Marquardt for hyperglycaemia 
detection, LDA and KNN still experienced worse results with lower sensitivities and 
their sensitivity values were much less than their specificities in all three sets of 
training, validation and testing. This confirmed the advantage of ANN over other 
traditional classifiers for the classification of hyperglycaemia. 

The integration of a feature reduction technique based on principal 
component analysis (PCA) with ANN classifier was proposed as a means to select 
optimal ECG parameters and improve the performance of hyperglycaemia detection. 
This new two-stage classifier was discussed in chapter 4 for accurate and robust ECG 
classification based on a subgroup of nine variables reduced by using PCA. PCA is 
usually useful for dimensionality reduction to diminish the computational 
requirement and to overcome the problem of multicollinearity. Exploration of the 
relationships among the independent variables can be used to filter the data so that 
only the significant independent ECG variables responsible for the high blood 
glucose levels can be determined. Rather, rearrangement of the input ranked by 
principal component scores of the data is also utilised to improve the performance of 
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feed forward multi-layer neural network employed in the second stage. PCA has 
been used in cardiac pattern classification studies to support various machine 
learning algorithms to achieve better results. Five different training methods were 
also applied to the neural network model to compare their performances and find the 
appropriate one. Cross correlation (Pearson correlation) between 16 original ECG 
variables was also examined in this study and confirmed strong associations between 
ECG variables. There have existed high correlations between each component among 
cardiac intervals and HRV measures. It proved that there was a significant amount of 
multicollinearity among ECG parameters, which may lead to high standard errors of 
the parameters’ estimation in neural networks later. PCA is one of the approaches to 
avoid this problem. Based on these PCA results, the final set with nine features 
(namely, VLF, TotalPw, LF, SDNN, RTC, QTC, pNN50, TpTeC and TINN) are 
selected as inputs of classification. The results of hyperglycaemia detection using 
LM algorithm achieved the highest performance with the testing set leading to 85.71% 
sensitivity and 58.62% specificity. The best testing geometric mean of 70.88% was 
also gained with these sensitivity and specificity results. It has been shown clearly 
that the obtained testing LM result outperforms other algorithms such as SCG, GDX, 
RP and CGF. To evaluate the results of using PCA to reduce features dimensionality, 
hyperglycaemia detections utilizing neural network which did not use PCA in the 
first stage, are also performed. As expected, multicollinearity problem in the data set 
led to a worse performance, which means PCA shows significant contributions to the 
performance of hyperglycaemia detection. 

In order to enhance the performance of hyperglycaemia detection gained 
from chapter 4, chapter 5 was pursuing another advanced technique, which has the 
potential to increase classification accuracy. It is the implementation of particle 
swarm optimisation (PSO) into an ANN as training algorithm (as known as PSO-
NN). Investigations have been carried out based on the structure of the two-stage 
classifier, which has been explored in the previous chapter, and PSO is used to train 
the network. It was revealed that PSO-NN approach produced noticeable 
improvements in classification performance compared to the results of any individual 
classifiers, which have been introduced before. The PSO-NN clearly outperformed 
other approaches in the same data set and gave the highest geometric mean of 
77.58%. With any biomedical applications, the outcome of sensitivity and specificity 
are expected to meet the requirements (see section 3.3.2.1). The best testing 
performance of PSO-NN, which is 82.35% and 73.08% in terms of sensitivity and 
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specificity, respectively, is much more than required. This confirmed the value and 
effectiveness of the proposed method for the classification of hyperglycaemia.      

6.2.2 Main findings 

The first important finding in this work is the exploration of the effect of 

hyperglycaemia on the ECG parameters. There has not been much information in the 

literature about ECG signs of hyperglycaemia. Several studies have reported about 

the correlations between ventricular repolarisation parameters, such as QT interval, 

RT interval and TPTE interval, however it is still not figured out properly. This 

research carried out a new clinical study of a group of ten adolescent T1DM patients 

who only suffer from hyperglycaemia and normoglycemic to evaluate the effect of 

hyperglycaemia to the abnormalities of ventricular repolarisation variables. Reduced 

heart rate variability and increased PR interval have also been seen among 

hyperglycaemia patients. It extends to further observations by going across the 

spectrum of hyperglycaemic and normoglycaemic events. Consistent with previous 

studies, this work reveals that high blood glucose levels correlate with lower HRV in 

diabetic patients. It must be emphasised that this study does not intend to explore the 

clinical reasons why hyperglycaemic conditions can result in changes of ECG 

parameters. Nevertheless, the study has given suggestions about the clinical 

manifestations of hyperglycaemia and hypoglycaemia. 

Secondly, those ECG parameters have been used as input for exploiting the 

benefits of ANN approach for hyperglycaemia detection. The ANN classifier using 

Levenberg-Marquardt (LM) as a training algorithm produces good classification 

results, which are better than traditional classifiers such as LDA and KNN.    

Another major finding is that this research has identified the most important 

ECG variables among sixteen cardiac intervals and HRV measures that are 

responsible for the variation of high blood glucose levels in subjects with diabetes. 

Multicollinearity has been seen to exist with high correlation among ECG variables, 

which could trigger incorrect hyperglycaemia classification. A new group of 

appropriate variables should be determined for better performance of hyperglycaemia 

detection. PCA has been employed to transform sixteen original ECG parameters 
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into a subgroup of nine variables to diminish the computational requirement and 

overcome the problem of multicollinearity. Exploration of the relationships among 

the independent variables can be used to filter the data so that only the significant 

independent ECG variables responsible for the high blood glucose levels can be 

determined.  

Fourthly, a newly developed method of integration of PCA for feature 

reduction and ANN classifier is an efficient method for hyperglycaemia detection. 

Such a hybrid approach ensures selection of the best ECG variables and is capable of 

improving the results. This method using LM algorithm outperforms both non-

feature extraction approach and non-LM ANN classifier. It shows great capability to 

avoid multicollinearity with very high obtained sensitivity and geometric mean. 

Last but not least, the integration of PSO based on ANN classifier (PSO-NN) 

is proposed for hyperglycaemia detection and has proved to be a very robust and 

effective method. This method can exploit advantages of both PSO and ANN 

techniques to improve the classification performance. It was found that this 

integrated approach earns the best classification results, and outperforms other 

introduced methods, with the sensitivity, specificity and geometric mean of 82.35%, 

73.08% and 77.58%, respectively. 

6.3 FUTURE DIRECTIONS 

Concerning the context of hyperglycaemia detection, instead of limiting only 

two states, hyperglycaemia and normoglycemia, the first and foremost future work 

should extend to three states in a row, hypoglycaemia, normoglycaemia and 

hyperglycaemia. That means the study will involve the interference of 

hypoglycaemia to the effect of hyperglycaemia on ECG parameters and conduct 

hyperglycaemia detection based on a database of three groups of blood glucose 

levels (BGLs). Two thresholds of blood glucose will be set to collect data sets 

according to each group, BGLs ≤ 3.33mmol/l for hypoglycaemic state; 3.33 mmol/l 

< BGLs < 8.33 mmol/l for normoglycaemic state; and BGLs ≥ 8.33 mmol/l for 
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hyperglycaemic group. This expanding will lead to a more complex classification 

system but offers closer to problems often occurring in real life of diabetic patients. 

In terms of the algorithms that are employed for hyperglycaemia detection, 

more advanced neural networks could be further designed and developed to improve 

the performance. The utilisation of PSO in ANN architecture has not been explored 

utterly. A hybrid of PSO with Levenberg-Marquardt (LM) neural network could be 

proposed to exploit the advantages of both algorithms. In particular, the LM 

algorithm can achieve faster convergent speed around the global optimum and the 

PSO can avoid being trapped in the local minimum. A hybrid algorithm with a 

transition from PSO search to LM training might be an effective way to train the 

neural network, which uses the PSO algorithm to do a global search in the beginning 

stage, and then uses the LM algorithm to do the local search around the global 

optimum. This hybrid learning algorithm can optimise the weights and threshold 

selections, improve the learning ability and overall performance of a feed forward 

neural network. Besides, other advanced modified PSO algorithms, such as Dynamic 

PSO and Chaos PSO (Huynh et al., 2012), may try to optimise ANN parameters. 

Constriction factor method (Li-ping et al., 2005) is another potential direction on 

determining optimal choice of PSO parameters rather than manually tuning. 

Moreover, with regards to the optimisation techniques, apart from PSO and GA, 

other evolutionary algorithm such as Differential Evolution (DE) may be applied for 

ANN training. While GA is more well-established because of its much earlier 

introduction, the more recent PSO and DE algorithms have started to attract more 

attention especially for continuous optimisation problems. Similar to PSO, DE was 

proposed for global optimisation over continuous search space. Its theoretical 

framework is simple and requires a relatively few control variables but performs well 

in convergence. Therefore, utilising DE could be a good idea to optimize the 

performance of hyperglycaemia detection. In addition, other computational 

intelligences, for example support vector machine and fuzzy reasoning system, 

which have been well applied to hypoglycaemia detection, might be well adapted to 

hyperglycaemia detection with promising outcome.      
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Regarding the mechanism of hyperglycaemia contributing to the alterations 

of ECG parameters, the phenomenon has not been clearly understood. Previous 

studies have not supported enough evidence to claim adequate explanation. This 

research involves ten T1DM patients only and although it has pointed out obviously 

the significant difference in the changes of electrocardiogram between 

hyperglycaemia and normoglycaemia, further work in a larger population is 

absolutely necessary to investigate and clarify those observations. Expanding the 

database to a broader range including hypoglycaemia, normoglycaemia and 

hyperglycaemia also gives a greater chance to confirm the findings in this thesis and 

may take a clear look at possible causes of inverse effects on ventricular 

repolarisation in diabetics between hypoglycaemic and hyperglycaemic states. 

   Moreover, the results of this study might require further validation using 

different ECG feature extraction methods to yield higher performance. Minimising 

error in ECG measurement and feature extraction might reduce misclassified events. 

Further validation and improvement of classification methods in this thesis could 

assist in the application of a real time device for hyperglycaemia detection.  
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APPENDIX A.  ARITIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are computational models inspired by the 

functioning of the human brain. They consist of simple but highly interconnected 

computing devices, each of which imitates the biological neurons. Research in the 

field of artificial neural networks has attracted increasing attention in recent years. A 

very important feature of artificial neural networks is their adaptive nature which 

makes such computational models very appealing in applications, especially where 

there is little or incomplete understanding of the problem to be solved but where 

training data is readily available. 

In all neural network models, a single neuron is the basic building block of 

the network. The operation of a neuron is modelled by mathematical equations and 

the individual neurons are connected together as a network. Each neural network has 

its learning laws according to which it is capable of adjusting parameters of the 

neurons. 

The neuron 

The neuron is a program that learns concepts, i.e. it can learn to respond with 

True (1) or False (0) for inputs we present to it, by repeatedly “studying” examples 

presented to it. The structure of a single neuron is very simple. There are two inputs, 

a bias and an output. A simple schematic diagram is shown in figure A.1. 

 

Figure A.1:   An artificial neuron with one input and bias 
 

The scalars inputs pi are transmitted through connections that multiply their 

strength by the scalar weight wi to form the product wipi, again a scalar. All the 
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weighted inputs wipi are added and to i i
w p we also add the scalar bias b. The 

result is the argument of the transfer function f, which produces the output a. The 

bias is much like a weight, except that is has a constant input of 1. Each of the inputs 

and the bias are connected to the main neuron by a weight. A weight is generally a 

real number between 0 and 1. When the input number is fed into the neuron, it is 

multiplied by the corresponding weight. After this, the weights are all summed up 

and fed through a hard-limiter. Basically, a hard-limiter is a function that defines the 

threshold values for ‘firing’ the neuron. For example, the limiter could be: 

0 0
( )

1 1
x

f x
x

                                                (A.1) 

Actually, both wiand biare adjustable scalar parameters of the neuron and such 

parameters can be adjusted so that the network exhibits some desired or interesting 

behaviours. The way a neuron learns to distinguish patterns is through modifying its 

weights, the concept of a learning rule must be introduced. In the neuron, the most 

common 

form of learning is by adjusting the weights by the difference between the desired 

output and the actual output. Mathematically, this can be written: 

∆wi = xiδ                                                     (A.2) 

where                            δ = (desired output) - (actual output) 

Transfer function 

There are different types of transfer functions. Many transfer functions have 

been included in Matlab neural network toolbox. The most commonly used functions 

are log-sigmoid, tan-sigmoid and linear transfer functions.  

- Log-sigmoid transfer function  
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Figure A.2:  Log-sigmoid transfer function 
 

                                           Math expression:   1
1

ey
e                                      (A.3)

 

- Tan-sigmoid transfer function 

                             

Figure A.3:   Tan-sigmoid transfer function 
 

                                          Math expression:     1
1

ey
e                                   (A.4)

 

- Linear (purelin) transfer function 

                            

Figure A.4:  Linear transfer function 
 

Math expression:    y = f(α) = α                                  (A.5) 

Multilayer networks often use log-sigmoid and tan-sigmoid transfer functions. 

The sigmoid transfer function squashes the input, which may have any value between 

plus and minus infinity into the range of 0 and 1. This transfer function is commonly 

used in back-propagation networks, in part because it is differentiable. 
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Single-layer feed-forward network 

A layered neural network is a network of neurons organised in the form of 

layers. Figure 3.13 shows the simplest form of a layered network, which has an input 

layer of source nodes that projects onto an output of neurons but not vice versa. A 

layer of a network includes the combination of the weights, the multiplication and 

summing operation (here realised as a vector product Wp), the bias b, and the transfer 

function f. The array of inputs, vector p, will not be included in or called a layer.  

 

Figure A.5:   Single-layer network of S logsig neurons 
 
 

The input vector elements enter the network through the weight matrix W. 

                                           (A.6) 

The row indices on the elements of matrix W indicate the destination neuron of the 

weight and the column indices indicate which source is the input for that weight. 

In other words, this network is strictly of a feed forward type. The designation 

“single-layer” refers to the output layer of computation nodes. The input layer of 

source nodes does not count, because no computation is performed there. 

A one-layer network with R input elements and S neurons are shown in figure 

A.5. In this network each element of the input vector p is connected to each neuron 
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input through the weight matrix Wp. The ith neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S-element net input vector n. The sum, n, is the argument of the 

transfer function f. 

                            (A.7) 

Finally, the neuron layer outputs form a column vector a. It is common for 

the number of inputs to a layer to be different from the number of neurons. A layer is 

not constrained to have the number of its inputs equal to the number of its neurons. 

Multi-layer feed-forward network 

Multi-layer network may distinguish itself by the presence of one or more 

hidden layers, whose computation nodes are correspondingly called hidden neurons 

or hidden units. The function of hidden neurons is to intervene between the external 

input and the network output. By adding one or more hidden layers, the network is 

enabled to extract higher-order statistics and is particularly valuable when the size of 

the input layer is large.  

Each neuron in the hidden layer is connected to a local set of source nodes 

that lie in its immediate neighbourhood. Likewise, each neuron in the output layer is 

connected to local set variations of the source signal. 

A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, output 

vectors and so on, for each of these layers, we will append the number of the layer to 

the names for each of these variables. For instance, the weight matrix and output 

vector for the first layer are denoted as W1 and A1, for the second layer these 

variables are designated as W2, A2 and so on. The network shown above has R1 

inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc. It is common 

for different layers to have different numbers of neurons. A constant input 1 is fed to 

the biases for each neuron. 



 
 

140 
 

 

Figure A.6:  Two-layer tansig/purelin network 
 

The outputs of each intermediate layer are the inputs to the following layer. Thus 

layer 2 can be analysed as a one-layer network with S1 inputs, S2 neurons, and an 

S1xS2 weight matrix W2. The inputs to layer 2 is a1, the output is a2. All the vectors 

and matrices of layer 2 can be treated as a single layer network on its own. This 

approach can be taken with any layer of the network. The layers of a multi-layer 

network play different roles. A layer that produces the network output is called an 

output layer. All other layers are called hidden layers (Demuth H., 2001). Multi-layer 

networks are quite powerful. For instance, a network of three layers is used 

extensively in back-propagation neural network. Normally, no more than three layers 

are required in neurons like feed-forward networks, because a three-layer network 

can generate complex decision regions. 

Backpropagation 

Backpropagation was created by generalising the Widrow-Hoff learning rule 

to multi-layer networks and nonlinear differentiable transfer function created 

backpropagation. Input vectors and the corresponding output vectors are used to train 

the network until it can approximate a function, associate input vectors with specific 

output vectors, or classify input vectors in an appropriate way as defined. Networks 

with biases, a sigmoid layer, and a linear output layer are capable of approximating 

any function with a finite number of discontinuities. 

Standard backpropagation is a gradient decent algorithm, as is the Widrow-

Hoff learning rule, in which the network weights are moved along the negative of the 

gradient of the performance function. The term backpropagation refers to the manner 
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in which the gradient is computed for nonlinear multi-layer networks. There are 

numbers of variations on the basic algorithm which are based on other standard 

optimisation techniques, such as conjugate gradient and Newton methods. 

The backpropagation neural network is a feed-forward network that usually 

has hidden layers. The activation function for this type of network is generally the 

sigmoid function. Since the activation function for these nodes is sigmoid function 

above, the output from each node is given by:  

( )k k
i iF a                                                    (A.8) 

where ia is the total input to node i, which is given by: 

1

n
k K
i ij j i

j
w a                                              (A.9) 

Weight ijw is the weight of the connection form node j to node i. Now, as for 

perception, we will minimise the error in the network by using the gradient descent 

algorithm to adjust the weights. So the change in the weight from node j to node i is 

given by: 

K

K ij
ij

EW
W

                                                (A.10) 

where KE is the mean square error for the Kth pattern. The error for a hidden node i is 

calculated from the errors of the nodes in the next layer to which node i is connected. 

This is how the error of the network is back propagated (Hasnain S.K.U, 2001).  

So, putting them all together, the change for the weight ijw , where node i is in a 

hidden layer, is given by: 

1

1

1

1

'

1

p

p
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                                 (A.11) 
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The changes in the weights of the network, which allow the network to learn, are 

now totally defined. This generalised delta rule for backpropagation neural networks 

defines how the weights between the outputs layer and the hidden layer change, and 

how the weights between other layers change also. This network is called 

backpropagation because the errors in the network are fed backward, or back 

propagated, through the network.  

Generalisation is perhaps the most useful feature of a backpropagation 

network. Since the network uses supervised training, a set of input patterns can be 

organised into groups and fed to the network. The network will “observe” the 

patterns in each group, and will learn to identify the characteristics that separate the 

groups. Often, these characteristics are such that a trained network will be able to 

identify the correct groups, even if the patterns are noisy. The network learns to 

ignore the irrelevant data in the input patterns.  
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APPENDIX B.   PARTICLE SWARM OPTIMIZATION 

Static inertia weight and constriction coefficient 

There was a weakness inherent in velocity update equations (5.2) and (5.3) 

that was fixed by the introduction of an inertia weight. For the following derivation, 

let k = 0 be the iteration at which particles have their positions and, optionally, their 

velocities randomly initialized. Then for any particle i, the velocity at iteration k = 1 

is 

   (B.1) 

Since a particle has only one position, , from which to choose in order 

to determine its personal best, , of necessity , and the 

middle term of equation (B.1) is zero, so the particle’s velocity at iteration k = 1 can 

more succinctly be expressed as 

                           (B.2) 

Using (5.2) again, the velocity of particle i at iteration k = 2 is 

   (B.3) 

Substituting the value found in (B.2) for , the velocity at the second iteration 

following initialisation becomes 

 

       (B.4) 

With the substituted values in bold for emphasis. By velocity update equation 

(5.2), the velocity of particle i at iteration k = 3 is  

   (B.5) 

Substituting for  the value found in (B.3), the velocity at the third iteration 

following initialisation becomes: 
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  (B.6) 

By mathematical induction, it can be seen that 

 

Because the personal bests and global best can only improve over time, 

 should rely more heavily upon recent bests than upon early values. Yet 

(B.7) shows that early information in  and  is given just 

as much opportunity to affect  as is the higher quality information of later 

iterations since the information of all iterations is summed without any weighting 

scheme by which to increase the relative importance of the higher quality 

information of later iterations. The problem is remedied by introducing either an 

inertia weight, . 

 

 

The same process that led to (B.7) beginning with velocity update equation 

(5.2) leads to (B.9) when beginning with velocity update equation (B.8) with inertia 

weight. 

 

                                                                                                                                 (B.9) 

(B.7) 

(B.8) 
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So long as the inertia weight has a magnitude less than one, (B.9) shows that 

past personal bests are expected to have less effect on a particle's velocity at iteration 

k+1 than more recent personal bests due to the effect of multiplication at each 

iteration by the inertia weight, . This makes sense conceptually since recent bests - 

both global and personal - are expected to be higher quality than past bests. However, 

past bests could still have more effect on a particle's overall velocity than recent bests 

for a while at the beginning of the search since , at least, is 

generally more significant in early iterations when the swarm is more spread out. 

Additionally, a particle's initial velocity, which is not derived from any 

information, but randomly initialised to lie between the upper and lower velocity 

clamping values, becomes less effective overtime. This too makes sense because its 

main benefit is in early iterations where it provides momentum by which to propel 

the best particle, but after some time it effectively becomes noise diluting actual 

information.  

Setting  = 1 would make velocity update equation (B.8) with inertia weight 

equivalent to velocity update equation (5.2) without inertia weight so that (B.8) can 

be accepted without a rigorous proof demonstrating its superiority to (5.2) since it 

simply provides more options. So long as , velocity update (B.8) helps 

particles forget their lower quality past positions in order to be more affected by the 

higher quality information of late, which seems to make more sense conceptually. 

 

Velocity clamping 

Eberhart and Kennedy introduced velocity clamping, which helps particles 

take reasonably sized steps in order to comb through the search space rather than 

bouncing  about excessively (Eberhart et al., 1995). Eberhart showed clamping to 

improve performance even when parameters are selected according to a simplified 

constriction model. Consequently, velocity clamping has become a standard feature 

of PSO. 

Velocity clamping is done by first calculating the range of the search space 

on each dimension, which is done by subtracting the lower bound from the upper 
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bound. For example, if each dimension of the search space is defined by lower and 

upper bounds [-100, 100], the range of the search space is 200 per dimension. 

Velocities are then clamped to a percentage of that range according to  

Ω  

 

where 

Ω  

for    and search space Ω 

Ω  

where  and  are, respectively, the lower and upper bounds of the search space 

along dimension j. 

The same maximum velocity should be applied in both the positive and negative 

directions in order to avoid biasing the search in either the positive or negative 

direction. The following pseudo code shows how velocities proposed by velocity 

update equation (B.8) are clamped prior to usage in position update equation (5.3). 

If   

 

                                          else if  

 

                                             end 

Figure B.1:  Velocity clamping pseudo code 

 

As noted by (Engelbrecht, 2007), clamping a particle’s velocity changes not 

only the step size, but usually also the particle's direction since changing any 

component of a vector changes that vector's direction unless each component should 

happen to be reduced by the same percentage. This should not be thought of as a 
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problem, however, since each dimension is to be optimised independently, and the 

particle still moves toward the global best on each dimension, though at a less intense 

speed. Since the maximum iterative movement toward global best on any dimension 

is clamped, particles may be thought of as combing the search space a bit more 

thoroughly than were their velocities unclamped. 

Though the same velocity clamping percentage of 50% is used in most papers 

for the sake of comparison, the value does not appear to have been optimised yet. 

The velocity clamping percentage, , is usually chosen within range 

. 

 

The lbest Model 

For the lbest model, a swarm is divided into overlapping neighbourhoods of 

particles. For each neighbourhood Ni, the best particle is determined, with position 

gbest. This particle is referred to as the neighbourhood best particle. Let the indices of 

the particles wrap around at s and the neighbourhood size is l. The update equations 

are: 

              

(B.10) 

     (B.11) 

 

 

                                               (B.13)                        

The position update equation is the same as given in equation (B.13). 

Neighbours represent the social factor in PSO. Neighbourhoods are usually 

determined using particle indices, however, topological neighbourhoods can also be 

used (Suganthan, 1999). It is clear that gbest algorithm is a special case of lbest algorithm with l = s; that is, the neighbourhood is the entire swarm. While the lbest 

approach results in a larger diversity, it is still slower than the gbest approach. 

(B.12)
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PSO Neighbourhood topologies 

Different neighbourhood topologies have been investigated (Kennedy, 1999; 

Kennedy et al., 2002). Two common neighbourhood topologies are the star (or 

wheel) and ring (or circle) topologies. For the star topology one particle is selected 

as a hub, which is connected to all other particles in the swarm. However, all the 

other particles are only connected to the hub. For the ring topology, particles are 

arranged in a ring. Each particle has some number of particles to its right and left as 

its neighbourhood. Recently, Kennedy and Mendes [2002] proposed a new PSO 

model using a Von Neumann topology. For the Von Neumann topology, particles are 

connected using a grid network (2-dimensional lattice) where each particle is 

connected to its four neighbour particles (above, below, right and left particles). 

Figure B.1 illustrates the different neighbourhood topologies.  

 

(a) Star Topology                  (b)   Ring Topology      (c) Von Neumann Topology 

Figure B.2:  A diagrammatic representation of neighborhood topologies 
 

The choice of neighbourhood topology has a profound effect on the 

propagation of the best solution found by the swarm. Using the gbest model the 

propagation is very fast (i.e. all the particles in the swarm will be affected by the best 

solution found in iteration t, immediately in iteration t 1). This fast propagation may 

result in the premature convergence problem. However, using the ring and Von 

Neumann topologies will slow down the convergence rate because the best solution 

found has to propagate through several neighbourhoods before affecting all particles 

in the swarm. This slow propagation will enable the particles to explore more areas 

in the search space and thus decreases the chance of premature convergence.
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APPENDIX C.   LABVIEW PROGRAM 

ECG_PQRT.vi 

Front panel 
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ECG_PQRT.vi 
 

Block diagram 
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APPENDIX D.   MATLAB CODE 

%--- Neural network---- 

close all, clear all , clc 

xx=importdata('16 variables_nml.txt'); 

t=importdata('9 variables_target_1opnode.txt'); 

[I N] = size(xx); 

[O N] =size(t); 

  

% Neural Net Model 

Neq = N*O; % No. of equations; 

%Nw = (I+1)*H+(H+1)*O No of unknown weights 

Hub = floor((N-1)*O/(I+O+1)); % =1 Maximun H for Neq >= Nw 

Ntrials = 50; 

  

% In case want to duplicate the run 

rng(1234,'twister'); 

 

for j = 1:10 %Validation set stopping allows H > Hub 

H = 8 

Nw = (I+1)*H+(H+1)*O; 

for i = 1:Ntrials 

net = newpr(xx,t,H); 

net.trainFcn='trainpso'; 

net.layers{1}.transferFcn = 'tansig'; %sigmoidal transer function for hidden 
layers 

net.layers{2}.transferFcn = 'purelin'; %linear transfer function for output 
layer  

net.trainParam.goal = 0.001; % equivalent to PSO true global minimum. 

net.trainParam.epochs = 1000; % equivalent to number of PSO iterations. 
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net.trainParam.max_fail = 10; % this is the maximum number of consecutive 
PSO iterations where no improved performance is found. 

  

  

% Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 35/100; 

net.divideParam.valRatio = 35/100; 

net.divideParam.testRatio = 30/100; 

  

% Train the Network 

[net tr Y E] = train(net,xx,t); 

  

layer_weights=net.lw{2,1} 

bias2=net.b{2}; 

Nepochs(i) = tr.epoch(end); 

MSE = tr.perf(end); 

R2(i,j) = 1-MSE; 

Nerr = numel(find(round(Y)~=t)); 

PctErr(i,j) = 100*Nerr/N; 

  

e=t-Y; 

mse_1=mse(e); 

rmse=sqrt(mse_1); 

mae_1=mae(e); 

   

 %Confusion matrices 

trainX=xx(:,tr.trainInd); 

trainT=t(:,tr.trainInd); 

trainY=sim(net,trainX); 

trainIndices=vec2ind(trainY); 

[cTrain,cmTrain]=confusion(trainT,trainY); 
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senTrain=cmTrain(1,1)/(cmTrain(1,1)+cmTrain(1,2)); 

specTrain=cmTrain(2,2)/(cmTrain(2,1)+cmTrain(2,2)); 

  

valX=xx(:,tr.valInd); 

valT=t(:,tr.valInd); 

valY=sim(net,valX); 

valIndices=vec2ind(valY); 

[cVal,cmVal]=confusion(valT,valY); 

senVal=cmVal(1,1)/(cmVal(1,1)+cmVal(1,2)); 

specVal=cmVal(2,2)/(cmVal(2,1)+cmVal(2,2)); 

  

testX=xx(:,tr.testInd); 

testT=t(:,tr.testInd); 

testY=sim(net,testX); 

testIndices=vec2ind(testY); 

[cTest,cmTest]=confusion(testT,testY); 

senTest=cmTest(1,1)/(cmTest(1,1)+cmTest(1,2)); 

specTest=cmTest(2,2)/(cmTest(2,1)+cmTest(2,2)); 

 

%Kappa coefficient 

observed_agreement=(cmTest(1,1)+cmTest(2,2))/(cmTest(1,1)+cmTest(1,2)+
cmTest(2,1)+cmTest(2,2)); 

actualPos=(cmTest(1,1)+cmTest(1,2))/(cmTest(1,1)+cmTest(1,2)+cmTest(2,
1)+cmTest(2,2)); 

actualNeg=(cmTest(2,1)+cmTest(2,2))/(cmTest(1,1)+cmTest(1,2)+cmTest(2,
1)+cmTest(2,2)); 

predictedPos=(cmTest(1,1)+cmTest(2,1))/(cmTest(1,1)+cmTest(1,2)+cmTest
(2,1)+cmTest(2,2)); 

predictedNeg=(cmTest(1,2)+cmTest(2,2))/(cmTest(1,1)+cmTest(1,2)+cmTes
t(2,1)+cmTest(2,2)); 

chance_agreement=actualPos*predictedPos+actualNeg*predictedNeg; 

kappa=(observed_agreement-chance_agreement)/(1-chance_agreement); 
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   if senTrain >= .5 && specTrain >= .5 && senTest >= .5 && specTest >= .5 && 
kappa >= .5 

fprintf(1, 'ith= %3.0f \n',i) 

fprintf(1, 'senTrain= %3.4f \n',senTrain) 

fprintf(1, 'specTrain= %3.4f \n',specTrain) 

fprintf(1, 'cmTrain= %3.4f \n',cmTrain) 

fprintf(1, 'senVal= %3.4f \n',senVal) 

fprintf(1, 'specVal= %3.4f \n',specVal) 

fprintf(1, 'cmVal= %3.4f \n',cmVal) 

fprintf(1, 'senTest= %3.4f \n',senTest) 

fprintf(1, 'specTest= %3.4f \n',specTest) 

fprintf(1, 'cmTest= %3.4f \n',cmTest) 

fprintf(1, 'mae= %3.4f \n',mae_1) 

fprintf(1, 'mse= %3.4f \n',mse_1) 

fprintf(1, 'rmse= %3.4f \n',rmse) 

fprintf(1, 'kappa= %3.4f \n',kappa) 

disp(' '); 

end 

  

   %ROC 

[tpr,fpr,thresholds]=roc(trainT,trainY); 

tpr 

fpr 

auc=trapz(fpr,tpr) 

[tpr,fpr,thresholds] = roc(testT,testY) 

combTrValT=[trainT,valT]; 

combTrValY=[trainY,valY]; 

figure(i) 

plotroc(t,Y) 



 
 

155 
 

xlabel('Sensitivity'); 

ylabel('1 - Specificity'); 

title('ROC plot'); 

end 

end 

 

Tabulations 

format short 

Nepochs = Nepochs 

R2 = R2 

format bank 

PctErr = PctErr 

 

 

%---Particle swarm optimisation--- 

%Control_Panel.m 

%   Neural Network training using PSO settings based on Tricia Rambharose’s  %   
modification of existing neural network training algorithms, 

%   provided in Matlab's Neural Network toolbox, using ideas from Brian 

% Birge's PSO toolbox @ 

 

OnOff_Tricias_NN_training = logical(1);  

if ~OnOff_Tricias_NN_training     

    clc  

    close all  

    clear all  

    OnOff_Tricias_NN_training = logical(0);  

end 

  

%BASIC SWITCHES & PSO ALGORITHM SELECTION : ON (1), OFF (0)% 

OnOff_Autosave_Workspace_Per_Grouping = logical(1);  
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OnOff_Autodelete_Grouping_Data = logical(1);  

OnOff_Autosave_Workspace_Per_Trial = logical(1);  

OnOff_Autodelete_Trial_Data = logical(1);  

OnOff_Autosave_Workspace_Per_Column = logical(1);  

OnOff_Autosave_Workspace_Per_Table = logical(1);  

    %TERMINATION CRITERIA FOR REGPSO & PSO ALGORITHMS% 

     

OnOff_NormR_stag_det = logical(0);  

 

OnOff_func_evals = logical(0);  

    %REGPSO & PSO SUCCESS MEASURES% 

    OnOff_SuccessfulUnsuccessful = logical(1); % 

if OnOff_SuccessfulUnsuccessful 

    OnOff_iter_success = logical(1); 

    OnOff_Terminate_Upon_Success = logical(0); % 

end 

    %PSO ALGORITHM SELECTION% 

     

OnOff_lbest = logical(1);  

if OnOff_lbest 

    lbest_neighb_size = 2; 

end 

OnOff_w_linear = logical(1);  

OnOff_v_clamp = logical(1);  

OnOff_v_reset = logical(0);  

OnOff_position_clamping = logical(0);  

OnOff_RegPSO = logical(0);  

 

if OnOff_RegPSO 

    Reg_Method = 1; 

else 



 
 

157 
 

    Reg_Method = 0; 

end 

OnOff_GCPSO = logical(0); 

if OnOff_GCPSO  

   GCPSO_threshold_num_successes = 15;  

   GCPSO_threshold_num_failures = 5;  

end 

OnOff_MPSO = logical(0);  

if OnOff_MPSO 

    OnOff_MPSO_zhist = logical(1); 

    MPSO_max_starts = 2;  

    if OnOff_func_evals 

        MPSO_max_FEs = 2000000; 

    else 

        MPSO_max_iters = 100000; 

    end 

end 

OnOff_OPSO = logical(0);  

if OnOff_OPSO 

    p0 = 0.5;  

end 

OnOff_Cauchy_mutation_of_global_best = logical(0);  

 

    %MISCELLANEOUS FEATURES% 

OnOff_user_input_validation_required = logical(0); 

OnOff_progress_meter = logical(1);  

OnOff_asymmetric_initialization = logical(0); 

     

    %PSO HISTORIES TO BE MAINTAINED%         

OnOff_fghist = logical(0);  

OnOff_ghist = logical(1);  
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if OnOff_lbest  

    OnOff_lhist = logical(1);  

end 

OnOff_fphist = logical(0);  

OnOff_phist = logical(1);  

OnOff_fhist = logical(1);  

OnOff_xhist = logical(0);  

OnOff_vhist = logical(1);  

OnOff_v_cog_hist = logical(0);  

OnOff_v_soc_hist = logical(0);  

     

%PARTICLE SWARM ALGORITHM SETTINGS% 

if OnOff_Tricias_NN_training 

    num_trials = 1;  

else      

num_trials = 1;  

end 

vmax_perc = .2;  

global dim  

if OnOff_Tricias_NN_training 

    dim = length(NN_wb);   

else  

    dim = 2;  

end 

np = 30;  

c1 = 2; 

c2 = 2; 

w = 0.72984; 

if OnOff_func_evals 

    max_FEs_per_grouping = 200; % 

    if OnOff_w_linear  
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        max_iter_per_grouping = max_FEs_per_grouping/np; 

    end 

else  

    max_iter_per_grouping =  35;  

end 

format short e; 

  

%PSO GRAPHING SWITCHES AND SETTINGS% 

OnOff_graphs = logical(1);  

if OnOff_graphs  

    OnOff_graph_fg_mean = logical(1);  

    OnOff_swarm_trajectory = logical(0);  

    OnOff_graph_ObjFun_f_vs_2D = logical(1);  

    OnOff_phase_plot = logical(1);  

    OnOff_graph_fg = logical(0); 

    OnOff_graph_g = logical(1); %Graph History of the Global Best 

    OnOff_graph_p = logical(0);  

    OnOff_graph_f = logical(0);     

    OnOff_graph_x = logical(1);  

    OnOff_graph_v = logical(0);  

    OnOff_title = logical(1); 

    OnOff_semilogy = logical(0);  

    OnOff_reuse_figures = logical(0);  

    OnOff_autosave_figs = logical(1);  

    OnOff_autosave_figures_to_another_format = logical(1);         

    if OnOff_autosave_figures_to_another_format 

        GraphParams_autosave_format = 'png'; 

    end 

    OnOff_Close_All_Graphs = logical(0);  

 

    Figure_Position = [1 76 1920 1058]; 
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    GraphParams_labeltitle_font_size = 40;  

    GraphParams_axes_font_size = 35;  

    GraphParams_marker_size = 40;  

    GraphParams_text_font_size = 30;  

    if OnOff_swarm_trajectory || OnOff_graph_ObjFun_f_vs_2D || OnOff_phase_plot 

        GraphParams_meshgrid_quality = 450;  

        if OnOff_swarm_trajectory 

            OnOff_contourf = logical(1);  

            OnOff_zoom_on_final_graph = logical(1); 

            GraphParams_snapshot_per_how_many_iterations = 10;  

            GraphParams_line_width = 2;  

            OnOff_plot_indices = logical(1); %Plot particles' index numbers. 

            OnOff_plot_box_4_new_search_space = logical(1); 

            if OnOff_plot_box_4_new_search_space 

                GraphParams_fraction_of_line_width = 0.0543; 

            end  

            OnOff_mark_personal_bests = logical(1);  

            OnOff_mark_global_best_always = logical(1);  

            OnOff_mark_global_best_on_zoomed_graph = logical(1);  

            GraphParams_swarm_traj_snapshot_mode = 4; 

            if GraphParams_swarm_traj_snapshot_mode == 4 

                GraphParams_SwarmTrajMode4Factor = 1.6; 

            end %suggested values: 1.6 - 1.8 

        end 

    end 

end 

 

%trainpso.m 

function [net, tr] = trainpso(net, tr, trainV, valV, testV, varargin) 
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global first_pso 

  

first_pso = true ; 

if strcmp(net,'info') 

  info.function = mfilename; 

  info.title = 'Particle Swarm Optimization NN training'; 

  info.type = 'Training'; 

  info.version = 6; 

  info.training_mode = 'Supervised'; 

  info.gradient_mode = 'No Gradient'; 

  info.uses_validation = false; 

  info.param_defaults.show = 1000; 

  info.param_defaults.epochs = 10; 

  info.param_defaults.time = inf; 

  info.param_defaults.goal = 0.3;  

  info.param_defaults.max_fail = 6;  

  info.param_defaults.max_perf_inc = 1.04; 

  info.param_defaults.showCommandLine = true; 

  info.param_defaults.showWindow = false; 

  info.param_defaults.plotPSO = true; 

  net = info; 

  return 

end 

  

if ischar(net) 

  switch (net) 

    case 'name', info = feval(mfilename,'info'); net = info.title; 

    case 'pnames', info = feval(mfilename,'info'); net = 
fieldnames(info.param_defaults); 

    case 'pdefaults', info = feval(mfilename,'info'); net = info.param_defaults; 

    case 'gdefaults', if (tr==0), net='calcgrad'; else net='calcgbtt'; end 
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    otherwise, error('NNET:Arguments','Unrecognised code.') 

  end 

  return 

end 

  

epochs = net.trainParam.epochs;  

goal = net.trainParam.goal; 

max_fail = net.trainParam.max_fail;  

max_perf_inc = net.trainParam.max_perf_inc; 

show = net.trainParam.show; 

time = net.trainParam.time; 

  

if (~isa(epochs,'double')) || (~isreal(epochs)) || (any(size(epochs)) ~= 1) || ... 

  (epochs < 1) || (round(epochs) ~= epochs) 

  error('NNET:Arguments','Epochs is not a positive integer.') 

end 

if (~isa(goal,'double')) || (~isreal(goal)) || (any(size(goal)) ~= 1) || ... 

  (goal < 0) 

  error('NNET:Arguments','Goal is not zero or a positive real value.') 

end 

if (~isa(max_fail,'double')) || (~isreal(max_fail)) || (any(size(max_fail)) ~= 1) || ... 

  (max_fail < 1) || (round(max_fail) ~= max_fail) 

  error('NNET:Arguments','Max_fail is not a positive integer.') 

end 

if (~isa(max_perf_inc,'double')) || (~isreal(max_perf_inc)) || (any(size(max_perf_inc)) 
~= 1) || ... 

  (max_perf_inc < 1) 

  error('NNET:Arguments','Max_perf_inc is not a positive real value greater or equal 
to 1.0.') 

end 

if (~isa(show,'double')) || (~isreal(show)) || (any(size(show)) ~= 1) || ... 



 
 

163 
 

  (isfinite(show) && ((show < 1) || (round(show) ~= show))) 

  error('NNET:Arguments','Show is not ''NaN'' or a positive integer.') 

end 

if (~isa(time,'double')) || (~isreal(time)) || (any(size(time)) ~= 1) || ... 

  (time < 0) 

  error('NNET:Arguments','Time is not zero or a positive real value.') 

end 

  

Q = trainV.Q;  

TS = trainV.TS;  

startTime = clock; 

NN_wb = getx(net);  

original_net = net; 

  

tr.states = {'epoch','time','perf'};  

if net.trainParam.plotPSO  

    fig = figure; 

end 

  

Control_Panel;  

   

NN_wb = g(1, :);  

net = setx(net, NN_wb); 

[perf,El,trainV.Y,Ac,N,Zb,Zi,Zl] = 
calcperf2(net,NN_wb,trainV.Pd,trainV.Tl,trainV.Ai,Q,TS);   

tr = tr_clip(tr);  

end 
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