INVESTIGATION TO DIRECT ETHANOL INJECTION IN SPARK IGNITION GASOLINE ENGINES

By
Yuan ZHUANG

Thesis submitted as a requirement for the degree of
Doctor of Philosophy

School of Electrical, Mechanical and Mechatronic Systems
Faculty of Engineering and Information Technology

University of Technology, Sydney (UTS)
July, 2014
I, Yuan ZHUANG, certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed:

Date:
Acknowledgements

I would like to take this opportunity to express my gratitude to all of the people who have offered me help and support during the past four years of my candidature. First and foremost, I would like to give my sincere thanks to my supervisor A/Prof. Guang Hong for providing the project and for her guidance, inspiration, numerous hours of discussion, and revision of the papers. From her I acquired not only knowledge but also high order research methodology skills which will benefit me throughout my career.

I wish to acknowledge my co-supervisor Dr. Jianguo Wang and visiting scholar Dr. Zhipeng Li who respectively helped me to solve the software problems of our engine control unit. I benefited greatly from their support, and I sincerely appreciated their contribution to the project.

I wish to acknowledge the strong support that I received from staff in Mechanical engineering Laboratories and FEIT workshop at UTS, including Len D’Arcy, Chris Chapman, Holger Roser, Jack Liang, Laurence Stonard, John Funnell, and Ron Smith. Without their excellent technical assistance, the building up, calibration and maintenance of the testing rig system would not have been possible.

Many thanks to the capstone students, Gim Lim Ong, Tin Shea, Kelvin Tran, Fabio Perri, Michael Milledge and Kiel D’Arcy who assisted with the experimental work. I also want to thank Dr. Ding Fei, A/Prof. Bin Zhou, Dr. Cliff Wang and Mr. Yuhan Huang who gave me great assistance in both my studies and daily life.

My deep thanks go to my parents and friends, who have always been proud of my achievements and who have consistently supported and cared for me throughout the years.

I extend my gratitude to the China Scholarship Council who provided the scholarship for my four years of study. I also would like to express my great appreciation for the financial support from the Faculty of Engineering & IT, including my top-up scholarship for four years and the funding for setting up the engine rig. Manildra Group, the supplier of the ethanol fuel is also gratefully acknowledged.

Finally, I would like to thank Shale Preston for proofreading my thesis.
Publications

Journal Papers:

Conference Papers:

Papers Submitted for Publications:
Abstract

Ethanol is a promising alternative fuel in terms of addressing future energy and environmental problems. The existing method of using ethanol fuel by blending gasoline and ethanol fuel does not fully exploit ethanol’s advantages. The dual-fuel injection strategy, ethanol direct injection plus gasoline port injection (EDI+GPI), offers a potentially new way to make use of ethanol fuel more effectively and efficiently. The effect of EDI+GPI on engine performance has been experimentally investigated on a 249cc, 4 stroke, air cooled single cylinder engine which was modified by adding an ethanol fuel direct injection system. The research purpose was focused on efficiency improvement (leveraging effect) and emissions reduction. Engine performance at original engine spark timing setting (15 CAD BTDC), knock margin and lean conditions was carried out to assess EDI+GPI’s effectiveness. The impacts of EDI+GPI on engine control parameters, such as start of injection (SOI) timing and spark timing, were also evaluated in order to best match this new fuelling system to conventional SI engines.

When the engine was operating at the original engine spark timing setting (15 CAD BTDC), less energy input was required in a SI engine equipped with EDI+GPI to achieve comparable engine power output. Thus, the total fuel consumption could be reduced by leveraging the use of ethanol fuel. At engine speed of 3500rpm, when the ethanol energy ratio (EER) was less than 42.4% at light load and 36.3% at medium load, the EDI+GPI showed a positive impact in relation to combustion with reduced combustion duration and advanced central combustion phasing. However, with further increase of EER, the combustion duration prolonged and central combustion phasing retarded. This may be caused by over cooling due to increased ethanol fuel directly injected.

EDI+GPI effectively mitigated engine knock and permitted more advanced spark timing and higher inlet air pressure. At three tested engine loads of indicated mean effective pressure (IMEP), 7.2 Bar, 7.8 Bar and 8.5 Bar, every 2% or 3% increment of EER permitted about 2 CAD advance of knock limited spark advance (KLSA) when the EER was in the range from 15% to 35%. The highest load achieved in this investigation was 10.5 Bar IMEP at inlet (compressed) air pressure of 1.4 Bar. The EER level at this condition was 36.9%.

Early ethanol direct injection (EEDI) was more suitable to the EDI+GPI engine since the IMEP in EEDI conditions was greater than that in later ethanol direct injection (LEDI) conditions due to improved volumetric efficiency and combustion. LEDI was less effective on increasing IMEP
because its major combustion duration was longer than that in the EEDI condition. In lean burn, EEDI was more effective on extending the lean burn limit than LEDI. The maximum lean burn limit (λ) achieved by EEDI was 1.29. LEDI only slightly increased the lean burn limit which was just over the stoichiometric air-fuel ratio (AFR).

When the EER varied, spark timing required corresponding changes to achieve the best efficiency. At IMEP of around 4.0 Bar, spark timing of 25 CAD BTDC resulted in the highest indicated thermal efficiency when the EER was less than 29%, whilst when the EER was greater than 39%, the maximum indicated thermal efficiency was at spark timing of 30 CAD BTDC.
Contents

1. **Chapter One**
 1. Introduction ... 1
 1.1 Properties of Ethanol Fuel ... 2
 1.2 Application of ethanol fuel to CI engines ... 3
 1.2.1 Assisted-ignition CI engine ... 4
 1.2.2 Diesel/ethanol (Diesohol) fuel blends ... 5
 1.2.3 Ethanol-diesel dual-fuel injection ... 7
 1.3 Application of ethanol fuel to SI engines .. 10
 1.3.1 Pure ethanol engine and gasoline/ethanol dual port injection 10
 1.3.2 Ethanol/gasoline blends .. 11
 1.3.3 Existing problem of using ethanol fuel in SI engine ... 13

2. **Chapter Two**
 2. Review of direct injection plus port injection SI engines 17
 2.1 Introduction ... 17
 2.2 Potential impact of EDI+GPI on engine performance .. 18
 2.2.1 Inlet air flow and mixture quality .. 18
 2.2.2 In-cylinder temperature and knock tendency .. 20
 2.2.3 Mixture preparation .. 22
 2.2.4 Combustion process ... 24
 2.2.5 Lean burn .. 24
 2.2.6 Pollutant emissions .. 27
 2.3 Research up to date ... 28
 2.4 Existing problems and research objectives ... 31
 2.5 Outlines ... 33

3. **Chapter Three**
 3. Experimental setup and test facilities .. 35
 3.1 General description ... 35
 3.2 Research engine system .. 37
 3.2.1 Research engine .. 37
 3.2.2 High pressure ethanol fuel supply system .. 39
 3.2.3 Control unit ... 40
 3.2.4 Engine control strategy .. 41
 3.2.5 Dynamometer ... 42
 3.3 Instruments and measurements ... 42
 3.3.1 In-cylinder pressure measurement ... 42
 3.3.2 Data acquisition system ... 43
3.3.3 Exhaust gas emission measurement ... 44
3.3.4 Fuel mass flow, air mass flow and other measurements 45
3.4 Data processing and analysis .. 46
3.4.1 Indicated mean effect pressure ... 46
3.4.2 Heat release rate .. 47
3.4.3 Coefficient of variation .. 48
3.4.4 Fuel efficiency ... 48
3.4.5 Knock detection .. 49
3.4.6 Mass burnt fraction .. 51
3.4.7 Calculation of lambda .. 53
3.4.8 Combustion efficiency ... 54
3.5 Tested fuels ... 54

4. Chapter Four
4.1 Influence of EER .. 56
4.1.1 Engine performance .. 56
4.1.2 Possible reasons for the increased IMEP ... 59
4.1.3 Combustion characteristics .. 68
4.1.4 Exhaust gas emissions .. 75
4.2 Comparison of EDI+GPI and GDI+GPI .. 77
4.2.1 Engine performance .. 77
4.2.2 Combustion characteristics .. 80
4.2.3 Emissions ... 83
4.3 Summary ... 86

5. Chapter Five
5.1 Effect of spark timing on EDI+GPI engine ... 88
5.1.1 Effect of spark timing on combustion at different EERs 89
5.1.2 Effect of spark timing on emissions and efficiency at different EERs 99
5.2 Leveraging effect enhanced by spark advance and inlet air pressure increment ... 103
5.2.1 Leveraging effect enhanced by spark advance ... 105
5.2.2 Leveraging effect enhanced by inlet air pressure increment 116
5.3 Summary ... 124

6. Chapter Six
6. Influence of SOI timing and injection pressure on EDI+GPI engine performance... 127
6.1 Effect of SOI timing and injection pressure on engine performance 127
6.1.1 Engine performance .. 128
6.1.2 Combustion characteristics .. 134
6.1.3 Engine exhaust gas emissions ... 139
6.2 Effect of SOI timing on knock mitigation .. 143
6.2.1 Engine performance .. 144
6.2.2 Combustion characteristics .. 147
6.2.3 Emissions .. 149
6.3 Effect of SOI timing on lean burn ... 151
6.3.1 Engine performance .. 151
6.3.2 Combustion ... 157
6.3.3 Emissions .. 159
6.4 Summary .. 161

7. Chapter Seven
7. Conclusions and future work ... 164
7.1 Conclusions .. 164
7.2 Future work .. 168
List of Tables

Table 1. 1 Properties of Diesel/Ethanol/Gasoline .. 2
Table 3. 1 Specifications of Yamaha YBR250 engine... 37
Table 3. 2 Resolution of the gas analyser... 45
Table 3. 3 Test fuel properties... 55
Table 4. 1 Experimental conditions for Section 4.1 ... 56
Table 4. 2 Experimental conditions for Section 4.2 ... 78
Table 5. 1 Experimental conditions for Section 5.1 ... 89
Table 5. 2 Experimental conditions for Section 5.2.1.. 104
Table 5. 3 Experimental conditions for Section 5.2.2 .. 105
Table 6. 1 Experimental conditions for Section 6.1 ... 128
Table 6. 2 Experimental conditions for Section 6.2 ... 144
Table 6. 3 Experimental conditions for Section 6.3 ... 153
List of Figures

Figure 1.1–(a) Injecting the ethanol fuel into the inlet manifold; (b) Direct injecting ethanol fuel into combustion chamber... 7
Figure 2.1–Tumble intensity vs.flow coefficient... 20
Figure 2.2–Distillation characteristics of ethanol blends ... 22
Figure 2.3–Vaporization curve for ethanol, gasoline and Isooctane 23
Figure 3.1–Schematic description of the entire experimental setup............................ 36
Figure 3.2–Components and links of the control system ... 36
Figure 3.3–Relative position of direction injector on cylinder head (External View) 38
Figure 3.4–Relative position of direction injector on cylinder head (Internal View) 38
Figure 3.5–Images of injector in combustion chamber and external cylinder 39
Figure 3.6–Schematic diagram of high pressure ethanol fuel system 39
Figure 3.7–Nominal spray pattern of the injector ... 40
Figure 3.8–Function of ECU .. 41
Figure 3.9–Roadmap of control strategy .. 41
Figure 3.10–Schematic of Kistle 6115B pressure transducer 43
Figure 3.11–Photo of MEXA-584L Gas analyser .. 44
Figure 3.12–HC concentrations from NDIR and FID analysis 45
Figure 3.13–Gravimetric calibration of DI and PFI injectors 46
Figure 3.14–Original cylinder pressure trace and 3-20 kHz band pass filtered pressure for different engine body temperature conditions ... 51
Figure 3.15–Pressure-Volume diagram to show the pressure values in calculating MBF ... 52
Figure 4.1–Variation of IMEP with EER... 57
Figure 4.2–Variation of volumetric efficiency with EER ... 58
Figure 4.3–Variation of ISFC with EER ... 59
Figure 4.4–Variation of BSEC with EER... 59
Figure 4.5–Variation of heat of vaporization of stoichiometric mixture 61
Figure 4.6–Maximum thermodynamic charge cooling and volumetric efficiency increment for a Gasoline-Ethanol Blend vs. Volumetric Ethanol Content 62
Figure 4.7–In-cylinder temperature before combustion .. 62
Figure 4.8–Variation of LHV per unit mass of air and LHV of ethanol/gasoline air mixture ... 63
Figure 4.9–Variation of γ with temperature at stoichiometric air/fuel reactants and complete stoichiometric products... 65
Figure 4.10–Variation of γ with ethanol/gasoline ratio ... 66
Figure 4.11–Variation of mole multiplier with ethanol/gasoline ratio 67
Figure 4.12–In-cylinder pressure trace and maximum in-cylinder pressure at different EERs at 3500rpm ... 70
Figure 4.13–Heat release rate and CA50 at different EERs at 3500rpm 71
Figure 4.14–Variation of CA0-5% with EER .. 72
Figure 4.15–Variation of CA5-50% with EER ... 73
Figure 4.16–Variation of indicated CA5-90% with EER ... 73
Figure 4.17–Variation of COV_{IMEP} with EER ... 74
Figure 4.18–Variation of indicated thermal efficiency with EER 75
Figure 4.19–Variation of ISHC with EER ... 76
Figure 4.20–Variation of ISCO with EER ... 76
Figure 4.21–Variation of ISNO with EER ... 77
Figure 4.22–Variation of volumetric efficiency with DI/PFI energy ratio at 3500rpm 78
Figure 4.23–Variation of IMEP with DI/PFI energy ratio at 3500rpm 79
Figure 4.24–Variation of CA5-50% with DI/PFI energy ratio at 3500rpm 80
Figure 4.25–Variation of CA5-90% with DI/PFI energy ratio at 3500rpm 82
Figure 4.26–Variation of indicated thermal efficiency with DI/PFI energy ratio at 3500rpm ... 83
Figure 4.27–Variation of ISCO with DI/PFI energy ratio at 3500rpm 84
Figure 4.28–Variation of ISHC with DI/PFI energy ratio at 3500rpm 85
Figure 4.29–Variation of ISNO with DI/PFI energy ratio at 3500rpm 86
Figure 5.1–Variation of IMEP with spark timing (a) and EERs (b) 90
Figure 5.2–Variation of CA0-5% with spark timing (a) and EERs (b) 92
Figure 5.3–Variation of CA5-50% with spark timing (a) and EERs (b) 93
Figure 5.4–Variation of CA5-90% with spark timing (a) and EERs (b) 95
Figure 5.5–Variation of P_{max} with spark timing (a) and EERs (b) 96
Figure 5.6–Variation of COV_{IMEP} with spark timing (a) and EERs (b) 97
Figure 5.7–Variation of exhaust temperature with spark timing (a) and EERs (b) 98
Figure 5.8–Variation of ISNO with spark timing (a) and EERs (b) 99
Figure 5.9–Variation of ISCO with spark timing (a) and EERs (b) 100
Figure 5.10–Variation of ISHC with spark timing (a) and EERs (b) 101
Figure 5.11–Variation of indicated thermal efficiency with spark timing (a) and EERs (b) ... 102
Figure 5.12–Variation of KLSA with EER ... 106
Figure 5.13–Variation of ethanol volumetric flow rate with KLSA 107
Figure 5.14–Variation of P_{max} with KLSA ... 108
Figure 5.15–Variation of combustion efficiency with KLSA 109
Figure 5.16–Variation of CA50 with KLSA ... 111
Figure 5.17–Variation of CA5-90% with KLSA ... 112
Figure 5.18–Variation of indicated thermal efficiency at KLSA 113
Figure 5.19–Variation of ISHC with KLSA ... 114
Figure 5.20–Variation of ISCO with KLSA ... 115
Figure 5.21–Variation of ISNO with KLSA ... 116
Figure 5.22–Variation of IMEP and MBT spark timing with inlet air pressure 117
Figure 5.23 – Variation of EER and ethanol volumetric flow rate with inlet air pressure ... 118
Figure 5.24 – Variation of P_{max} with inlet air pressure ... 119
Figure 5.25 – Variation of CA5-90% with inlet air pressure ... 120
Figure 5.26 – Variation of indicated thermal efficiency with inlet air pressure............. 121
Figure 5.27 – Variation of ISCO with inlet air pressure ... 122
Figure 5.28 – Variation of ISNO with inlet air pressure ... 123
Figure 5.29 – Variation of ISHC with inlet air pressure ... 124
Figure 6.1 – Experimental engine SOI timing windows ... 128
Figure 6.2 – Variation of IMEP with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 129
Figure 6.3 – Variation of volumetric efficiency with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 131
Figure 6.4 – Variation of ISEC with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 133
Figure 6.5 – Variation of CA5-90% with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 134
Figure 6.6 – Variation of CA50 with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 136
Figure 6.7 – Variation of indicated thermal efficiency with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 138
Figure 6.8 – Variation of ISCO with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 139
Figure 6.9 – Variation of ISHC with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 141
Figure 6.10 – Variation of ISNO with SOI timing and pressure in EDI+GPI (a) and EDI+GPI (b) conditions ... 142
Figure 6.11 – Variation of KLSA with SOI timing ... 144
Figure 6.12 – Variation of IMEP with SOI timing at KLSA ... 145
Figure 6.13 – Variation of volumetric efficiency with SOI timing at KLSA ... 146
Figure 6.14 – Variation of CA0-5% with SOI timing at KLSA ... 147
Figure 6.15 – Variation of CA5-90% with SOI timing at KLSA ... 148
Figure 6.16 – Variation of indicated thermal efficiency with SOI timing at KLSA ... 149
Figure 6.17 – Variation of ISNO with SOI timing at KLSA ... 150
Figure 6.18 – Variation of ISHC with SOI timing at KLSA ... 151
Figure 6.19 – Variation of lean burn limit with SOI timing ... 154
Figure 6.20 – Variation of IMEP at lean burn limit ... 155
Figure 6.21 – Variation of indicated thermal efficiency at lean burn limit ... 156
Figure 6.22 – Variation of COV$_{\text{IMEP}}$ with SOI timing at lean burn limit ... 157
Figure 6.23 – Variation of CA0-10% at lean burn limit ... 158
Figure 6.24 – Variation of CA10-90% at lean burn limit ... 159
Figure 6.25 – Variation of ISNO at lean burn limit ... 160
Acronyms and Abbreviations

HE: Heating energy
HC: Hydrocarbon
ATDC: After top dead center
BTDC: Before top dead center
CI: Compression ignition
CO: Carbon monoxide
DI: Direct fuel injection
ECU: Electronic control unit
EDI: Ethanol fuel direct injection
EEDI: Early ethanol direct injection
EGDI: Early gasoline direct injection
ERR: Ethanol/gasoline energy ratio
FFV: Fuel flexible vehicle
GDI: Gasoline direct injection
GPI: Gasoline port injection
HC: Hydrocarbon
IMEP: Indicated mean effective pressure
ISCO: Indicated specific carbon monoxide
ISHC: Indicated specific hydrocarbon
ISNO: Indicated specific nitric oxide
KLSA: Knock limited spark advance
LEDI: Late ethanol direct injection
LGDI: Late gasoline direct injection
MBT: Maximum advanced for best torque
NOx: Nitric oxygen
PFI: Port fuel injection
SIDI: Spark ignition direct injection
SOI: Start of injection
ST: Spark timing
SI: Spark ignition
TDC: Top dead center
RPM: Revolutions per minute
Variables

CA0-5%: Combustion initiation duration (degree)
CA50: Crank angle position where the accumulated heat release reaches 50% of the total released heat (degree)
CA5-50%: Early combustion duration (degree)
CA5-90%: Major combustion duration (degree)
CAD: Crank angle degree (degree)
HE: Heating energy (kW)
Lambda (λ): Air/fuel equivalence ratio (dimensional)
MBF: Mass burnt fraction (dimensional)