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Abstract

Most modern wireless communication systems are hierarchical complex systems which consist of
many levels of design elements and are subject to limited resources (e.g. power or bandwidth).
Thanks to numerous newly-introduced devices in different forms such as sensors and relays and
the integration of multiple antennas, spectral efficiency and reliability of wireless transmission
could be significantly improved. Nevertheless, it also becomes much more challenging to control
the devices and allocate the limited resources in an optimal fashion in order to approach capacity
gains.

This dissertation is concerned with mixed-binary or combinatorial optimization problems to
improve various service goals for a variety of interesting yet difficult wireless communication
applications. These problems are highly prized for academic significance but remained open
due to their mathematical challenges. We shall explore the hidden d.c. (difference of convex
(or concave) functions) structure of the objective functions as well as the binary constraints.
Further, we will prove such general d.c. programs can be equivalently converted into canonical
d.c. programs with d.c. objective functions that are subject to convex and/or affine constraints
only. Although global optimal algorithms are generally possible for such d.c. programs, they
are normally very computation-intensive. Instead, we propose tailored path-following local-
optimal d.c. algorithms with significantly reduced computational complexity. Through extensive
simulation results, the designed d.c. decompositions of the problems are proven effective. The
proposed algorithms are efficient and computationally affordable while locating outstanding
solutions in comparison with other existing algorithms. In those more sophisticated problem
scenarios, the d.c. algorithm appears to be the only suitable option thanks to the superior
flexibility.

In the first part of the thesis, we will consider a sensor network for spectrum sensing in the
context of cognitive radios. To improve sensing quality and prolong the battery life of sensors,
the least correlated subset of sensors needs to be selected. A new Bregman matrix deviation-
based framework is shown applicable to all the concerned correlation measure functions.

The second research investigates a relay-assisted multi-user wireless network. Besides the relay
beamforming variables, we add into consideration a set of binary link variables which represent
on/off operations of individual relays in relation to transmitter-receiver links. To achieve the
maximin SNR or SINR capacity, certain relays may be optimally deactivated. This leads to
reduced power consumption and complexity/ overhead of management. The relay assignment
and beamforming design is a joint mixed combinatorial nonlinear program which is non-convex
and non-smooth. Nonetheless, we show the it can be fit into a canonical d.c. optimization
framework. Simulation results demonstrate the benefits of relay selection and beamforming.

The last research stems from the study of conventional coordinated transmission design with re-
spect to transmit covariance and precoding matrix/vector variables. Inspired by the well-known
Han-Kobayashi message splitting method in 2-user SISO interference channels, we further extend
the idea of message splitting to the MIMO interference networks. An innovative non-smooth
rate formula is discovered which builds the foundation of the work. The design in common and
private covariance matrices or beamforming vectors, as well as the pairing variables, is formu-
lated as a joint combinatorial nonlinear program which is non-convex and non-smooth. Due to
the great difficulty, it is not imminently possible to jointly handle both variables. Therefore,
we first propose an intuitive heuristic pairing algorithm to find excellent pairing choices. Then,
the non-convex optimization problems in covariance matrices or beamforming vector variables
are dealt with in the d.c. optimization framework. Finally, simulation results reveal the great
potential of the novel message splitting scheme in approaching rate capacity.
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Notations

1. Matrices and vector are denoted by uppercase and lowercase characters, respectively.

Variables are denoted by boldface letters.

2. (X) =trace(X) for matrix X.

3. | X]|: the determinant of matrix X.

4. (X,Y)= trace(XHY) for matrices X,Y.

5. (z,y) = 2y for vectors z,y.

6. X >0 (X >0, resp.): X is a (Hermitian) positive definite (semi-definite, resp.) matrix.

7. Siv * denotes the cone of Hermitian symmetric positive semi-definite matrices of size Ny X Ng.
8.V is logical or operation, so a = 8V v means « is either g3 or ~.

9. log(.) is understood as base-2 logarithm, i.e., logy(.).

10. 1: N stands for 1,2,--- , N.

11. z ~CN(Z,Rg) means z is a vector of Gaussian random variables with.

means £ and covariance R,.
12, Apaz(X): the maximum eigenvalue of X.
13. X >0 and VX are entry-wise understood.
14. For X = 0, X'/2 is a symmetric matrix such that X/2X1/2 = X.
15. 1pn: the N-dimensional vector with unity components.
16. e; € RYN has zero components except i-th component equal 1.
17.  ©: the Hadamard product operator.
18.  (&): binomial coefficient.
19. Re(z): real-part function.

20. [z]p: rounded binary value from x € [0, 1].
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