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Abstract 

 
Timber utility poles play a significant role in the infrastructure of Australia as well as 

many other countries. There are over 5 million timber utility poles currently used in 

Australian energy networks, which are more than 80% of total utility poles in the 

network. Due to the advanced age of Australia’s timber pole infrastructure, significant 

efforts are undertaken by state authorities on maintenance and asset management to 

prevent utility lines from failure. However, the lack of reliable information regarding 

their in-service condition, including the embedment length or the degree of deterioration 

or damage below ground level makes it extremely difficult for the asset managers to 

make decisions on the replacement/maintenance process with due consideration to 

economy, operational efficiency, risk/liability and public safety. For example, in order 

to avoid any failure and considering the public safety, each year approximately 300,000 

poles are replaced in the Eastern States of Australia with up to 80% of them still being 

in a very good serviceable condition, resulting in significant waste of natural resources 

and money.  

In order to address this problem, an R&D program commenced in 2011 at the 

University of Technology Sydney in collaboration with the Electricity Network 

Association of Australia. The aim of this study is to design and develop a Non-

Destructive Testing (NDT) method with acceptable accuracy, whilst being cost efficient 

for the condition assessment of the in-service timber utility poles. This research project 

contains three phases, which will be explained briefly in the following paragraphs. 

Several stress wave based NDT methods are currently available and have been used in 

field applications over the past decades as simple and cost-effective tools for identifying 

the condition and underground depth of embedded structures, such as poles or piles in 

service. In this regard, in the first phase of this research, the applicability and efficiency 

of the currently available NDT methods on the condition assessment of the timber 

utility poles is investigated through simulation and laboratory tests. Results of the first 

phase reveal that these surface NDT methods face significant challenges in the 

condition assessment of the timber utility poles. These challenges are due to presence of 

uncertainties such as complicated material properties and imperfect body (i.e. timber 
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pole natural cracks), environmental conditions, interaction of soil and structure, defects 

and deteriorations as well as an impact excitation type. It is necessary to mention that 

access to the top of the in-service timber utility poles is prohibitive due to the presence 

of the electrical or communication wires. In this regard, the hammer impact is applied to 

the timber pole on its side. 

In order to address these complicating factors, in the second phase of this research some 

advanced digital signal processing methodologies are selected, modified, and employed 

from different groups of methodologies that can most probably provide solutions. The 

efficiency of these methodologies is investigated through simulation, laboratory, and 

field tests. Results of the second phase of this research illustrate that the behaviour of 

the timber pole under the lateral hammer impact excitation is very complicated. In fact, 

if dealing with this high level of complexities is not impossible, it is a very difficult 

task. 

In this regard, in the third phase of this research a novel, fast, and accurate ultrasonic 

narrowband NDT method is proposed as an alternative proposition for the condition 

assessment of the timber structures. The efficacy of the proposed methodology is 

verified through the laboratory experiments. 
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