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This thesis details rigorous theoretical and empirical analyses on the related works in the clustering
literature based on the Particle Swarm Optimization (PSO) principles. In particular, we detail the
discovery of disadvantages in Van Der Merwe - Engelbrecht’s PSO clustering, Cohen - de Castro
Particle Swarm Clustering (PSC), Szabo’s modified PSC (mPSC) and Szabo’s Fuzzy PSC (FPSC).

We validate, both theoretically and empirically, that Van Der Merwe - Engelbrecht’s PSO clustering
algorithm is not significantly better than the conventional k-means. We propose that under random
initialization, the performance of their proposed algorithm diminishes exponentially as the number

of classes or dimensions increase.

We unravel that the PSC, mPSC, and FPSC algorithms suffer from significant complexity issues
which do not translate into performance. Their cognitive and social parameters have negligible
effect to convergence and the algorithms generalize to the k-means, retaining all of its characteristics
including the most severe: the curse of initial position. Furthermore we observe that the three
algorithms, although proposed under varying names and time frames, behave similarly to the

original PSC.

This thesis analyzes, both theoretically and empirically, the strengths and limitations of our pro-
posed semi-stochastic particle swarm clustering algorithm, Rapid Centroid Estimation (RCE),
self-evolutionary Ensemble RCE (ERCE), and Consensus Engrams, which are developed mainly to
address the fundamental issues in PSO Clustering and the PSC families. The algorithms extend
the scalability, applicability, and reliability of earlier approaches to handle large-scale non-convex
cluster optimization in quasilinear complexity in both time and space. This thesis establishes the

fundamentals, much surpassing those outlined in our published manuscripts.
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