
University of Technology, Sydney

Doctoral Thesis

Ensemble Rapid Centroid Estimation: A
Semi-Stochastic Consensus Particle Swarm

Approach for Large Scale Cluster Optimization

Author:

Mitchell Yuwono

Supervisors:

A/Prof. Steven W. Su

Dr. Bruce D. Moulton

Prof. Hung T. Nguyen

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

in the

Centre for Health Technologies

School of Electrical, Mechanical and Mechatronic Systems

Faculty of Engineering and Information Technology

February 2015

Declaration of Authorship

I, Mitchell Yuwono, declare that this thesis titled, ’Ensemble Rapid Centroid Estimation: A

Semi-Stochastic Consensus Particle Swarm Approach for Large Scale Cluster Optimization’ and

the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other quali-

fication at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

“Start by doing what’s necessary; then do what’s possible; and suddenly

you are doing the impossible.”

St. Francis of Assisi

UNIVERSITY OF TECHNOLOGY, SYDNEY

Abstract
Faculty of Engineering and Information Technology

School of Electrical, Mechanical and Mechatronic Systems

Doctor of Philosophy

Ensemble Rapid Centroid Estimation: A Semi-Stochastic Consensus Particle Swarm

Approach for Large Scale Cluster Optimization

by Mitchell Yuwono

This thesis details rigorous theoretical and empirical analyses on the related works in the clustering

literature based on the Particle Swarm Optimization (PSO) principles. In particular, we detail the

discovery of disadvantages in Van Der Merwe - Engelbrecht’s PSO clustering, Cohen - de Castro

Particle Swarm Clustering (PSC), Szabo’s modified PSC (mPSC) and Szabo’s Fuzzy PSC (FPSC).

We validate, both theoretically and empirically, that Van Der Merwe - Engelbrecht’s PSO clustering

algorithm is not significantly better than the conventional k-means. We propose that under random

initialization, the performance of their proposed algorithm diminishes exponentially as the number

of classes or dimensions increase.

We unravel that the PSC, mPSC, and FPSC algorithms suffer from significant complexity issues

which do not translate into performance. Their cognitive and social parameters have negligible

effect to convergence and the algorithms generalize to the k-means, retaining all of its characteristics

including the most severe: the curse of initial position. Furthermore we observe that the three

algorithms, although proposed under varying names and time frames, behave similarly to the

original PSC.

This thesis analyzes, both theoretically and empirically, the strengths and limitations of our pro-

posed semi-stochastic particle swarm clustering algorithm, Rapid Centroid Estimation (RCE),

self-evolutionary Ensemble RCE (ERCE), and Consensus Engrams, which are developed mainly to

address the fundamental issues in PSO Clustering and the PSC families. The algorithms extend

the scalability, applicability, and reliability of earlier approaches to handle large-scale non-convex

cluster optimization in quasilinear complexity in both time and space. This thesis establishes the

fundamentals, much surpassing those outlined in our published manuscripts.

Acknowledgements
First and foremost I would like to express my gratitude to my supervisors, A/Prof. Steven Su,
Dr. Bruce D. Moulton, and Prof Hung T. Nguyen. Their vast knowledge, intelligence, expertise,
understanding, and patience greatly expanded my knowledge and skill in many areas in the course
of my PhD research. I really appreciate the considerable amount of efforts to help me with difficult
research projects, critical reviews of my writings, and ultimately my scholarship applications. They
are exceptional, inspirational, and excellent supervisors. Under their supervision, we publish high
quality papers in prestigious journals.

A very special thanks goes to Prof. Hung T. Nguyen, who has been a visionary since the beginning
of my Masters studies. Prof. Nguyen has inspired me to dive deeper into the world of biomedical
technologies. It was under his supervision that I developed a focus and became interested in
biomedical research and dared to explore the world of applied machine learning.

I would like to express my most sincere gratitude to my principal supervisor, A/Prof. Steven W.
Su, who has been with me since the start of my PhD and has been through my ups and downs in
my PhD life. He has seen through my struggles, supervised through numerous difficult research
projects, and ultimately mend me to be an efficient, independent and resilient researcher. A/Prof.
Steven is a kindhearted and understanding supervisor who is always supportive at all times.

I would also like to thank Dr. Bruce D. Moulton for being very critical on all aspects of my
research life, especially with regards to the correctness of experiments, reports, and journals. His
warm personality, deep knowledge and insights, and also attention to details are sincerely worth
admiring. The works that I have done under his supervision have always been brought to perfection.

I would also like to thank to Dr. Jaime Valls Miro that has supervised me through the course of my
Masters project in Advanced Robotics and supervised me during the summer research internship in
ARC Centre for Autonomous Systems in UTS. The depth of his knowledge and his warm character
have been a great inspiration throughout my life as a graduate student. Until today, Dr. Jaime
has always been a role model in my life as a researcher.

I would also like to thank Dr. Ying Guo, Dr. Glenn Platt, Dr. Josh Wall, and Mr. Sam West from
The Commonwealth Scientific and Industrial Research Organization (CSIRO) for the opportunity
to apply our research in a practical industrial setting.

The members of the Centre for Health Technologies (CHT) have contributed to my personal and
professional time at UTS. The group has been a source of friendships as well as good advice and
collaboration. I am especially grateful to Father Ardi Handojoseno, who has been a source of
inspiration, fun, moral and spiritual support during the course of my graduate studies, the up and
downs in my Masters and PhD. I also would like to thank Phyo Phyo San; Henry Chandra; Rifai
Chai; Andrew Zhang; Bao C. Q. Truong; Prof. Steve Ling; Ganesh Naik; Gibson Hu; Shuo Wang;
Lei Zhang; and all of my colleagues whose name has not been mentioned here.

v

I would like to thank mom and dad for being the greatest parents in the universe. There is no
words capable of conveying my feelings of gratitude towards the both of them. This thesis wouldn’t
exist if it is not because of their love. This thesis is my gift for them.

I would like to sincerely thank the love of my life. She has been there since the beginning of the
writing until the completion of this thesis. Her contribution is enormous, both in this thesis and
in my life as a whole.

Finally I would like to express my deepest gratitude to the sponsors for my scholarships including:
University of Technology Sydney for their financial supports through the International Research
Scholarship (IRS) and UTS President Scholarship (UTSP); The Commonwealth Scientific and
Industrial Research Organization (CSIRO) for the scholarship and additional projects. I recognize
that this research would not have been possible without their supports.

Mitchell Yuwono
University of Technology, Sydney
September 2014

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xv

Symbols xvii

List of Publications 1

1 Introduction 3
1.1 Overview . 4
1.2 Clustering in Biomedical Informatics . 5
1.3 Applications . 5
1.4 Challenges . 12
1.5 Contribution of This Thesis . 13

2 Literature Review 25
2.1 Challenges in Cluster Analysis . 25
2.2 Quantifying Dissimilarity . 28

2.2.1 Metric Family . 28
2.2.2 Correlation Family . 30
2.2.3 Bregman Divergences . 32
2.2.4 Distance Between Logical/Categorical Vectors 35
2.2.5 Mutual Information . 35

2.3 Divisive Clustering . 38
2.3.1 k-means . 39

2.3.1.1 Proof of Convergence . 40
2.3.2 k-means++ . 41
2.3.3 Fuzzy c-means . 42

vii

Contents viii

2.3.3.1 Proof of convergence . 43
2.3.4 Soft k-means . 46

2.3.4.1 Proof of Convergence . 47
2.3.5 Gaussian Mixture Models . 50

2.3.5.1 Proof of Convergence . 52
2.4 Cluster Validity Indices . 58

2.4.1 Internal Validity Indices . 58
2.4.2 External Validity Indices . 63

2.5 Graph Theoretic Clustering . 64
2.5.1 Graph Preliminaries . 65

2.5.1.1 Graph Theoretic Definitions . 65
2.5.1.2 Constructing Graphs . 66

2.5.2 Agglomerative Linkage Clustering . 67
2.5.3 Maximum Flow: Edmonds-Karp-Dinitz algorithm 69

2.5.3.1 Complexity Analysis . 73
2.5.4 Stoer-Wagner’s Deterministic Minimum Cut Algorithm 73

2.5.4.1 Complexity Analysis . 74
2.5.4.2 Proof of correctness . 75

2.5.5 Stochastic Flows . 76
2.5.5.1 Theoretical Framework . 77
2.5.5.2 Markov Clustering Algorithm . 79
2.5.5.3 Regularized Markov Clustering . 80

2.5.6 Spectral Clustering . 82
2.5.6.1 Ratio Cut . 83
2.5.6.2 Normalized Cut . 84

2.6 Consensus Clustering . 86
2.6.1 Definitions . 89
2.6.2 Monti’s Consensus Clustering . 89
2.6.3 Evidence Accumulation . 92
2.6.4 Weighted Evidence Accumulation . 94
2.6.5 Fuzzy Evidence Accumulation . 94
2.6.6 Co-Association Tree . 95

2.7 Summary . 95

3 Particle Swarm Optimization and Data Clustering 97
3.1 Particle Swarm Optimization . 98

3.1.1 Convergence Analysis . 100
3.1.2 Complexity and Performance Analysis . 105

3.2 Van Der Merwe - Engelbrecht’s PSO Clustering . 106
3.2.1 Performance Analysis . 107

3.3 Suboptimal Convergence in Higher Dimension . 107
3.3.1 Trajectory Analysis . 109
3.3.2 Analogy Using Game Theory . 111
3.3.3 Empirical Validation . 111

3.4 Summary . 113

4 The Particle Swarm Clustering 115
4.1 Definitions . 115
4.2 Algorithmic Framework . 118

4.2.1 Cohen - de Castro’s Particle Swarm Clustering 118

Contents ix

4.2.2 Szabo’s Modified PSC (mPSC) . 118
4.2.3 Szabo’s Fuzzy PSC (FPSC) . 120

4.3 Complexity Analysis . 120
4.3.1 Computational Complexity . 120

4.3.1.1 Computational Complexity of δ 122
4.3.1.2 Computational Complexity of κ 124

4.3.2 Memory Complexity . 126
4.4 Trajectory Analysis . 128

4.4.1 Stability and Convergence . 128
4.4.2 Particle Behavior . 133

4.5 Performance Analysis . 134
4.5.1 Fisher - Iris Dataset . 136

4.5.1.1 General Overview . 136
4.5.1.2 Choosing the Distance Quantifier 136
4.5.1.3 Cluster Validity Analysis . 137

4.5.2 Wine Dataset . 140
4.5.2.1 General Overview . 140
4.5.2.2 Choosing the Distance Quantifier 142
4.5.2.3 Cluster Validity Analysis . 142

4.5.3 Spam E-mail Dataset . 144
4.5.3.1 General Overview . 144
4.5.3.2 Choosing the Distance Quantifier 145
4.5.3.3 Cluster Validity Analysis . 146

4.6 Conclusion . 148

5 Rapid Centroid Estimation 151
5.1 The PSC and its Challenges . 151

5.1.1 Computational Complexity . 152
5.1.2 Memory Complexity . 153
5.1.3 Redundancies and Sensitivity to Initialization 154

5.2 Definitions and Redefinitions . 156
5.3 Algorithmic Fundamentals . 162
5.4 Complexity Analysis . 162

5.4.1 Computational Complexity . 162
5.4.2 Memory Complexity . 164
5.4.3 Empirical Experiment . 165

5.5 Trajectory Analysis . 167
5.5.1 Stability and Convergence . 167
5.5.2 Particle Behavior . 170

5.6 Coping with Local Optima . 170
5.6.1 Substitution . 172
5.6.2 Particle Reset . 172
5.6.3 Swarm RCE: The Multi-Swarm Paradigm 174

5.7 Experimental Results . 175
5.8 Conclusion . 178

6 Ensemble Rapid Centroid Estimation 185
6.1 Improving Swarm Diversity . 187

6.1.1 The Concept of “Charged Particles” . 187
6.1.2 Self-Evolution . 188

Contents x

6.2 Ensemble Aggregation . 189
6.2.1 Memory Complexity . 190
6.2.2 Computational Complexity . 192

6.3 Consensus Engrams . 193
6.3.1 Definitions . 193
6.3.2 Algorithmic Construct . 197
6.3.3 Complexity Analysis . 197

6.4 Applications . 200
6.4.1 Color Image Segmentation . 200
6.4.2 Vessel Extraction from Retinal Fundus Images 206

6.5 Conclusion . 217

7 Conclusion 219
7.1 Primary Findings . 219
7.2 Limitations of the research . 221
7.3 Recommendations for Future Work . 222

Bibliography 223

List of Figures

1.1 % publications indexed in PubMed from 1990 to 2013 on the specific keyword-
s/topics: Clustering, Data Mining, and Knowledge Discovery. 6

1.2 Clustering a Magnetic Resonance Image. 7
1.3 Reconstructing HS images using RCE and Artificial Centroid Injection. 8
1.4 Clustering various retinal fundus images using ERCE. 9
1.5 Estimating gait parameters using ERCE [17, 55] (cont.). 10
1.5 Estimating gait parameters using ERCE. 11
1.6 Trajectory of the swarm{6} RCEr+ 2014 particles (randomly seeded initial po-

sitions) recorded after 30 iterations on the five Gaussian dataset. 13
1.7 Clustering Non-convex dataset using ERCE. 14
1.8 The algorithmic flow of ERCE explained using an artificial dataset 15
1.9 Various Segmentation results using ERCE (Consensus Engrams). 16
1.10 Variability of K due to ξ in ERCE swarms on the Half Rings dataset. 19
1.11 Memory complexity for clustering 2-dimensional random noise (vol = 1 Byte

– 1 Megabytes, d = 2) using various algorithms. The global settings for all
algorithms are as follow: the number of representatives (K) = 30; the number
of trials/swarms (nm) = 30.) . 20

1.12 The CPU time and memory required of various algorithms with respect to the
number of pixels in an image. 21

1.13 The ROC curve of the proposed method vs other methods in the literature [80]. 22
1.14 Research contribution diagram. 23

2.1 Clusters differ in term of their shape, size, and density. 26
2.2 A possible taxonomy/interaction map of clustering algorithms 27
2.3 Pairwise Euclidean distance, Manhattan distance, and Chebyshev distance . . 29
2.4 Minkowski distance with various p. 30
2.5 Mahalanobis distance with various Σ. 30
2.6 Correlation distance between binary patterns and their fourier transforms. . . . 31
2.7 Mutual Information I(X; Y) between X and Y 36
2.8 Conceptual illustration of the normalized mutual information. 38
2.9 Suboptimal partitions returned by k-means due to poor initialization 41
2.10 Fuzzy c-means clustering result on the five Gaussians dataset (C=5) 44
2.11 The resemblance between fuzzy c-means and soft k-means. 48
2.12 GMM results on the Five Gaussians dataset. 53
2.13 Agglomerative clustering using single linkage criteria. 68
2.14 Illustration of agglomerative clustering using various linkage criteria 70
2.15 A simple illustration of the Edmonds-Karp-Dinitz algorithm for finding the max-

imum flow / minimum cut of a graph. 72
2.16 A simple illustration of Stoer-Wagner’s algorithm. 76
2.17 Illustration of MCL and R-MCL for clustering the Five Gaussians dataset . . . 82

xi

List of Figures xii

2.18 Illustration of spectral (normalized cut) clustering on the Five Gaussians dataset 87
2.19 Various clustering results on non-convex clusters 88
2.20 The consensus matrices and dendrogram of five Gaussians data and uniformly

distributed data . 90
2.21 Stability of the five Gaussians data under various K 92
2.22 The consensus distribution and CDF of five Gaussians data and uniformly dis-

tributed data . 93
2.23 Illustration of the K-lifetime criterion on the Half Rings dataset. 94
2.24 Illustration of the CA-tree. 96

3.1 Convergence of a particle on 1-dimensional optimization problem with various
stability criteria. 105

3.2 Initialization and Result: Van Der Merwe - Engelbrecht’s PSO Clustering on a
2-Dimensional Dataset. 108

3.3 Trajectory of the Van Der Merwe - Engelbrecht PSO clustering vs K-means.
�(v(t + 1), Δ) → π/2 as K, dim → ∞. 110

3.4 The Performance of PSO Clustering compared to k-means and RCEr+ 113
3.5 Trajectory of Van Der Merwe - Engelbrecht’s PSO Clustering on an 8-Dimensional

Dataset (4 times duplication of the two dimensions). Red square indicates swarm
global best. The swarm converges to a severely suboptimal position. 114

4.1 Time complexity of the distance computation δ. 124
4.2 Time complexity of position update κ of PSC, mPSC, and FPSC with varying K.126
4.3 Memory complexity of various algorithms when clustering double precision float-

ing point numbers. 127
4.4 Trajectory of the PSC/mPSC/FPSC particles on an artificial dataset 135
4.5 Trajectory of the PSC/mPSC/FPSC particles on the five Gaussian dataset with

numerous random seeding shows PSC’s sensitivity to initialization. 135
4.6 Fisher-Iris dataset. 137
4.7 A Succesful Clustering of the Fisher-Iris dataset (VP = 0.97, algorithm: RCEr+).138
4.8 Six features out of the 13 from the wine dataset. 140
4.9 A Succesful Clustering of the Wine dataset using Jensen-Shannon distance (VP =

0.97, algorithm: RCEr+). 143
4.10 A Succesful Clustering of the Spam dataset using Symmetrical Kulback-Leibler

Divergence (VP = 0.901, algorithm: RCEr+). Spam and non-spam characteris-
tics are expressed in terms of cumulative β-distribution. 147

5.1 Time complexity of the distance computation of PSC vs K-means. 153
5.2 Complexity and Purity of the Benchmarked Algorithms. 155
5.3 Memory complexity of various algorithms when clustering double precision float-

ing point numbers. 166
5.4 Benchmarking the iteration complexity and overall memory complexity of vari-

ous algorithm using a 3-classes 80-dimensional Gaussian dataset. 167
5.5 Trajectory of the RCE 2014 particles using various parameters 171
5.6 Trajectory of the RCE 2014 particles on the five Gaussian dataset with numerous

random seeding shows RCE’s sensitivity to initialization. 171
5.7 Trajectory of the RCEr+ 2014 particles on the five Gaussian dataset with nu-

merous random seeding using both substitution and particle reset strategy. . . 173
5.8 Trajectory of the swarm{6} RCEr+ 2014 particles on the five Gaussian dataset

with numerous random seeding using both substitution and particle reset strategy.175

List of Figures xiii

5.9 P-values to three decimal places based on the iteration times given in Table 5.5.
Grey boxes indicate p ≤ 0.05. 178

5.10 P-values to three decimal places based on the resulting CH indices on all bench-
mark datasets given in Table 5.5. Grey boxes indicate p ≤ 0.05. 180

5.11 Box-plots [164, 165] of purity values given in Table 5.5. 181
5.12 Box-plots [164, 165] of CH indices given in Table 5.5. 182
5.13 Box-plots [164, 165] of optimization times given in Table 5.5. 183

6.1 The algorithmic flow of ERCE explained using an artificial dataset 186
6.2 The typical growth curve of the swarm with varying entropy threshold. 189
6.3 Variability of K due to ξ in ERCE swarms on the Half Rings dataset. 189
6.4 Clustering Non-convex dataset using ERCE with charged particles. 191
6.5 Memory complexity for clustering 2-dimensional random noise (vol = 1 Byte

– 1 Megabytes, d = 2) using various algorithms. The global settings for all
algorithms are as follow: the number of representatives (K) = 30; the number
of trials/swarms (nm) = 30.) . 191

6.6 Comparison of the graphs produced by Gaussian Neighborhood, ERCE (CA-
tree+fWEAC), and ERCE (Consensus Engrams). 198

6.7 Finding the natural grouping in the BIRCH [167] datasets using ERCE with
consensus engrams. 199

6.8 Color Image Segmentation using ERCE (Consensus Engrams Scheme) on an
image from Lotus Hill Institute [79]. 201

6.9 The scatter plots of the two horses images in Figure 6.8 and its consensus en-
grams overlay. 202

6.10 Image segmentation results using ERCE and their consensus engrams overlay. . 203
6.11 Image segmentation results using ERCE and their consensus engrams overlay —

continued. 204
6.12 The CPU time and memory required of various algorithms with respect to the

number of pixels in an image. 205
6.13 Illustration of % contamination. 208
6.14 Feature extraction from a retinal fundus image. 210
6.15 Scatter plot of the extracted features with the Consensus Engrams overlay. . . 211
6.16 Fundus Images (1–20) from DRIVE [80] arranged left to right, top to bottom. 212
6.17 Fundus Images (21–40) from DRIVE [80] arranged left to right, top to bottom. 213
6.18 Fuzzy segmentation results (gray) + detection mask (black) (1–20), arranged

left to right, top to bottom. 214
6.19 Fuzzy segmentation results (gray) + detection mask (black) (21–40), arranged

left to right, top to bottom. 215
6.20 The ROC curve of the proposed method vs other methods in the literature [80]. 216

List of Tables

2.1 Agglomerative clustering: agglomeration criteria 68

3.1 Performance comparison between randomly seeded PSO clustering and k-means++112

4.1 Memory complexity of the PSC families vs other clustering algorithms 128
4.2 Iris Features: P-value Matrix for testing the hypothesis of no correlation against

the alternative that there is a non-zero correlation. 136
4.3 Performance of the PSC families relative to other clustering algorithms on Fisher-

Iris dataset (distance quantifier: Squared Mahalanobis Distance) 139
4.4 Wine Features: P-value Matrix for testing the hypothesis of no correlation

against the alternative that there is a non-zero correlation. 141
4.5 Performance of the PSC families relative to other clustering algorithms on Wine

dataset (distance quantifier: Jensen-Shannon distance) 144
4.6 Spam dataset feature overview, as reported in the original dataset 145
4.7 Performance of the benchmarked clustering algorithms on Spam E-mail dataset

(distance quantifier: Symmetrical Kullback-Leibler Divergence) 148

5.1 Comparison between time complexities (milliseconds) and median purities of
various algorithms on the experiments in the previous chapter 153

5.2 Comparison between memory complexities (bytes) and median purities of various
algorithms on the experiments in the previous chapter 154

5.3 Worst case computational complexity of the RCE families vs PSC 164
5.4 Memory complexity of the RCE, PSC, and other clustering algorithms 165
5.5 Performance against UCI Machine Learning datasets [84] as reported in [4]. . . 176
5.6 Percentage improvement in time taken per iteration relative to PSC 177

6.1 Pros and Cons of the Concept of Charged Particles 188
6.2 Fundus Image Clustering Results Against the Gold Standard (Observer 1) sum-

marized after 20 trials . 209
6.3 Fundus Image Clustering Results Summary on the DRIVE database, appended

with the results in [52, 57] . 216

xv

Symbols

Variables and Constants

a, b, c, n, v, w, x, y, z scalars, unless otherwise noted
K, C number of clusters
N, |Y| number of data
nm, |S| number of swarms
ni, |Θ| number of particles
i, j, k, l, m, n indices
d, dim dimension of a feature vector, used interchangeably
t time, iteration
T period
f function, frequency
p, g, v, x, y, z vectors
yj ∈ R

dim the coordinate of the jth observation vector
xi, zi ∈ R

dim the coordinate of the ith voronoi cell
v ∈ R

dim velocity vector
so, sc, co, mi ∈ R

dim self-organizing, social, cognitive, and local minimum vectors
P, G, V, X, Y, Z matrices
XM ,XM local minimum memory matrix
I identity matrix
S,C,V sets
∅ empty set
u, U, U ∈ {0, 1} fuzzy responsibility (membership) vector / matrix
u, U ∈ [0, 1] crisp responsibility (membership) vector / matrix

π 3.141592653589793. . ., unless otherwise noted
Π linear mapping kernel matrix
σ, std(X) standard deviation
σ2, var(X) variance
Σ, cov(X) covariance Matrix
ρ Pearson’s correlation

xvii

Symbols xviii

Λ, λ Lagrange multiplier, eigenvalues
λ(l) the constant for the lth term
ε, th threshold
α, β, γ, π, κ, δ, τ various parameters
θ multivariate Gaussian, particle
Θ multivariate Gaussian Mixtures, swarm, subswarm
V cluster validity index
C consensus matrix
ϕ random number, random vector
Ω search space
η% percentage
ω inertia weight / velocity memory
ψj(l) ∈ R

dim jth memory vector

Set Operations

sup(S) supremum (least upper bound) of a set
inf(S) infimum (greates lower bound) of a set
R set of real numbers
R

dim dim-dimensional vector of real numbers
x ∈ X x in X

x �∈ X x not in X

|A| cardinality of a set
A ∪ B union of sets A and B

A ∩ B intersection of sets A and B

∀x ∈ X for each vector x in X

∃x ∈ X there exists x in X

C = {C1, . . . ,CK} the clustered set C, consisting of K clusters {C1, . . . ,CK}
Cx a voronoi region with coordinate of the voronoi cell defined in x

y ∈ Cx the observation y, crisply associated to Cx.
A

c set complement
B\A relative complement of A in B such that B\A = {x ∈ B|x �∈ A}

Matrix Operations

XT matrix transpose
XY matrix multiplication
|X| matrix determinant
adj(X) matrix adjoint
tr(X), Tr(X) matrix trace
X−1 matrix inverse

Symbols xix

Xp matrix power
X ◦ X Hadamard product (elementwise multiplication)
UT ∗ U Pairwise fuzzy T-norm operator
diag(X) the diagonal components of X
diag(x) diagonal matrix which diagonal values are x

Probability Functions

p(x), q(x) probability distribution functions
p(x|z, θ) conditional probability of x given z and the model θ

p(x|z, Θ) conditional probability of x given z and the mixture model Θ
p(x, y) joint probability of x and y

E[X] expectation of X

E[X|Y] conditional expectation of X given Y

L(θ) likelihood function
H(X) Shannon’s entropy of X

H(X|Y) conditional entropy of X given Y

H(X, Y) joint entropy of X and Y

I(X; Y) mutual information between X and Y

NMI(X, Y) normalized mutual information between X and Y

KL(P ||Q), D(P ||Q) Kullback-Leibler Divergence between P and Q

DJSD(P ||Q) Jensen-Shannon Divergence between P and Q

P(x) empirical probability distribution

General Functions

μ ± σ average plus and minus standard deviation
x > y x greater than y

x ≥ y x greater than or equal to y

x < y x less than y

x ≤ y x less than or equal to y

x → ∞ x approaches infinity
x ← x + 2y assign x + 2y as a new value for x

〈x, y〉 inner product of x and y
∂f(x, y)/∂x partial derivative of f(x, y) with respect to x

|x| absolute value of x such that |x| = x if x ≥ 0 and |x| = −x if x < 0
∇zf(z) gradient of f(z)
log(x) natural logarithm of x, ln(x)
exp(x) exponent of x, ex∑
x∈X

f(x) sum of f(x) for all x in X

Symbols xx

1
|X|
∑
x∈X

f(x) average of f(x) for all x in X∑
i wif(xi)∑

i wi
weighted average of f(x), indexed with i∏

x∈X

f(x) product of f(x) for all x in X

φ(x) kernel function
O(N) complexity function
y = arg max

x
f(x) y is the x that maximizes f(x)

y = arg min
x

f(x) y is the x that minimizes f(x)

d(x, y), dxy distance between x and y
D(X, Y) pairwise distance between vectors in X and Y
Ψ(x) resultant vector function for the voronoi cell x

To Mom and Dad,

To Nina

xxi

List of Publications

1. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. An algorithm for

scalable clustering: Ensemble rapid centroid estimation. Conf Proc of the IEEE Congress on

Evolutionary Computation, pages 1–8, 2014.

2. Mitchell Yuwono, Steven W. Su, Ying Guo, Bruce D. Moulton, and Hung T. Nguyen. Unsu-

pervised nonparametric method for gait analysis using a waist-worn inertial sensor. Applied

Soft Computing, 14, Part A: 72 – 80, 2014. ISSN 1568-4946. Special issue on hybrid intelligent

methods for health technologies.

3. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Data clustering us-

ing variants of rapid centroid estimation. IEEE Transactions on Evolutionary Computation,

18: 3: 366–377, 2013.

4. Mitchell Yuwono, Steven W. Su, Ying Guo, Jiaming Li, Sam West and Josh Wall. Automatic

Feature Selection Using Multiobjective Cluster Optimization for Fault Detection in a Heating

Ventilation and Air Conditioning System. Conf Proc IEEE International Conference on

Artificial Intelligence, Modelling, and Simulation, 2013: 1–6, 2013.

5. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Unsupervised

segmentation of heel-strike IMU data using rapid cluster estimation of wavelet features. Conf

Proc IEEE Eng Med Biol Soc, 2013: 953–956, 2013.

6. Mitchell Yuwono, Steven W Su, and Bruce D. Moulton. An Approach to Fall Detection

using Gaussian Distribution of Clustered Knowledge. Bio-Informatic Systems, Processing

and Applications. River Publishers. 2013: 69 – 82, 2013.

7. Mitchell Yuwono, Bruce D. Moulton, Steven W. Su, Branko G. Celler, and Hung T. Nguyen.

Unsupervised machine-learning method for improving the performance of ambulatory fall-

detection systems. Biomedical Engineering Online, 11: 9, 2012.

1

List of Publications 2

8. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Gait episode

identification based on wavelet feature clustering of spectrogram images. Conf Proc IEEE

Eng Med Biol Soc, 2012: 2949–2952, 2012.

9. Mitchell Yuwono, Jonathan Sepulveda, and A. M. Ardi Handojoseno. Centroid extraction

from Hartmann-Shack images using swarm clustering approach. Conf Proc IEEE Eng Med

Biol Soc, 2012: 1446–1449, 2012.

10. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Gait cycle spec-

trogram analysis using a torso-attached inertial sensor. Conf Proc IEEE Eng Med Biol Soc,

2012: 6539–6542, 2012.

11. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Fast unsupervised

learning method for rapid estimation of cluster centroids. In Proc. of the 2012 IEEE Congress

on Evolutionary Computation, pages 889–896, June 10–15 2012.

12. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Optimization

strategies for rapid centroid estimation. In Proc. of the 34rd Annual International Conference

of the IEEE EMBS, pages 6212–6215, San Diego, Aug. 28–sept. 1 2012.

13. Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, and Hung T. Nguyen. Method for

increasing the computation speed of an unsupervised learning approach for data clustering.

In Proc. of the 2012 IEEE Congress on Evolutionary Computation, pages 2957–2964, June

10–15 2012.

14. Mitchell Yuwono, A. M. Handojoseno, and Hung T. Nguyen. Optimization of head movement

recognition using Augmented Radial Basis Function Neural Network. Conf Proc IEEE Eng

Med Biol Soc, 2011: 2776–2779, 2011.

15. Mitchell Yuwono. Unwrapping hartmann-shack images of off-axis aberration using artificial

centroid injection method. In IEEE Conference in Biomedical Engineering and Informatics

(BMEI), pages 560–564, 2011.

16. Mitchell Yuwono, Steven W. Su, and Bruce D. Moulton. Fall detection using a Gaussian

distribution of clustered knowledge, augmented radial basis neural-network, and multilayer

perceptron. Conf Proc 6th International Conference on Broadband and Biomedical Commu-

nications (IB2Com), 2011: 145–150, 21-24 Nov. 2011. doi: 10.1109/IB2Com.2011.6217909

Chapter 1

Introduction

Cluster analysis studies how systems can learn the representation of particular input

patterns in a way that reflects the statistical structure of the overall collection [1]. It

is exploratory in nature and often manifests in methods such as unsupervised learning,

knowledge discovery, data mining, and pattern mining. Its objective is to discover valid, novel

and potentially useful and ultimately understandable patterns in data [1–3]. Unlike classification,

clustering algorithms assume no explicit target outputs, labeled responses, nor known evaluations

[2, 4]. The decisions made are solely based on the structure of the input data based on a measure of

similarity. Clustering methods are used in many practical applications in bioinformatics for exam-

ple: Data mining for sequence analysis and genetic clustering [5–13]; Biomedical signal processing

[14–23]; in medical imaging for image segmentation [24–35]; And object recognition [36–42].

This thesis is devoted for delivering the theoretical bases of our proposed Clustering Method,

Ensemble Rapid Centroid Estimation (ERCE), alongside with its practical applications in various

scenarios. This chapter gives an introductory remark on some of the key ingredients required to

justify the contribution of our research. A brief overview on cluster analysis including various

paradigms in Artificial Intelligence is covered in Section 1.1. A summary on the increasing trend

for clustering methods in bioinformatics is presented in Section 1.2. A cursory view on a number

of possible applications of clustering using our proposed algorithm is summarized in Section 1.3.

A brief overview on the current challenges in clustering methodologies is presented in Section 1.4.

Finally a brief highlight on the contribution of our method is summarized in Section 1.5.

3

Chapter 1. Introduction 4

1.1 Overview

Cluster analysis divides a data into groups (clusters) that are meaningful and possibly useful. Its

main utility comes from its ability to extract and summarize the underlying statistical structure

of the data. It has played important roles in solving many practical problems in a wide variety

of fields. Among many others, bioinformatics is one of the fields that exploits the advancement of

cluster analysis.

As a whole, clustering resides as a subgroup of Artificial Intelligence (AI). AI is generally defined as

an area of computer science that deals with giving machines the ability to seem like they have human

intelligence [43]. Merriam-Webster Online Dictionary defines “Learning” as the activity or process

of gaining knowledge or skill by studying, practicing, being taught, or experiencing something [43].

In the context of Artificial Intelligence, the process of Learning describes how the behavior of an

unseen test dataset can be predicted given a known training dataset.

Learning paradigms can be subdivided into three types [2]:

Definition 1.1.1 (Supervised Learning/Classification). In supervised learning (classification), a

model is trained using data with known category labels. These labels are provided by the field

experts [2]. An assumption made in this paradigm is that the provided label are true and valid.

Optimal function approximation including training an Artificial Neural Networks (ANN) or decision

trees is an NP-hard problem [44]. However, in supervised learning, the availability of a teacher

greatly alleviate the overall ambiguity in decision making.

Definition 1.1.2 (Unsupervised Learning/Clustering). Contrast to Definition 1.1.1, the model in

unsupervised learning (clustering) is trained using data with unknown category labels. The model

is inferred solely based on the organization of the data itself. Because of this unsupervised nature,

clustering is inherently harder than classification [2]. In general, clustering decision problem is NP-

complete and the clustering optimization problem is NP-hard, except in some simple cases (e.g.

constant number of clusters/clustering a 1-dimensional Euclidean problem) [45]. A solution which

satisfies a given cluster optimality criterion does not necessarily guarantee an appropriate solution

to the problem at hand. In higher dimensional datasets, where space between points become

overwhelmingly sparse, clustering solutions can be arbitrarily far from optimal in the worst case

[46].

Definition 1.1.3 (Semi-supervised Learning/Semi-supervised clustering). Semi supervised cluster-

ing incorporates the concept in Definition 1.1.1 into Definition 1.1.2. In semi- supervised clustering,

instead of specifying the class labels, pair-wise constraints (e.g. must-link: Two objects must reside

in the same clusters; or cannot-link: Two objects must reside in different clusters;) are specified.

Chapter 1. Introduction 5

These constraint provides a weak encoding of knowledge that can be beneficial for data cluster-

ing, where precise definitions of underlying clusters are absent [2]. Even though semi-supervised

clustering is likewise an NP-hard problem, the presence of these constraints alleviate some of the

inherent difficulty in clustering.

1.2 Clustering in Biomedical Informatics

The amount of stored information, particularly in the field of Biomedical Engineering and Bioinfor-

matics, has been growing exponentially. For example, in genome sequence studies alone, Berman

et al. estimated that the human’s genome DNA would contain around a Gigabyte of information.

In order to process the 100,000 translated proteins and 32,000,000 amino acids, Berman et al.

approximates a total memory requirement of up to the order of 200 Gigabytes [47]. Medicine and

biomedical sciences have also become increasingly data-intensive. Emerging medical technologies

require sophisticated mathematics, signal processing, artificial intelligence, data analysis and in-

ference systems. Such higher level of sophistication requires abundant information from various

natural and electrical sources. The current era, for all these reasons, can be considered as a golden

age for Biomedical Informatics [48].

The number of publications indexed in PubMed under the topic of ‘Clustering’ alone has grown from

1021 (0.44% of total indexed publications) in 1990 to 11289 (13.20% of total indexed publications)

in 2013 [49]. Publications under the topic of ’Data Mining’ has grown from 35 (0.02% of total

indexed publications) in 1990 to 1703 (1.99% of total indexed publications) in 2013. Publications

under the topic of ’Knowledge Discovery’ grown from 46 (0.02% of total indexed publications)

to 1021 (1.19% of total indexed publications) in 2013. The stacked bar graph showing the total

publications under the three topics is shown in Figure 1.1.

1.3 Applications

Clustering has become the basic and crucial component of the day-to-day activities of researchers,

scientists, clinicians, nurses and decision-makers [48]. To date clustering has been used mainly for

three main purposes [2]:

1. Discover underlying structure: to gain insight into data, generate hypotheses, detect anoma-

lies, and identify salient features.

Chapter 1. Introduction 6

Figure 1.1: % publications indexed in PubMed from 1990 to 2013 on the specific keywords/-
topics: Clustering, Data Mining, and Knowledge Discovery [49].

2. Natural classification: to identify the degree of similarity among forms or organisms (phylo-

genetic relationship).

3. Compression: as a method for organizing the data and summarizing it through cluster pro-

totypes.

Concrete examples are seen in biomedical image processing [24–35]. Clustering techniques are

useful for applications such as Magnetic Resonance Image (MRI) segmentation [29, 50], adaptive

texture segmentation for tissue and cell recognition [27, 28, 31, 51], image analysis of Hartmann-

Shack Wavefront sensor [24, 25], gait signal and spectrogram segmentation [16, 22], and retinal

fundus image segmentation [52–54].

Robust segmentation of skeleton and brain segment — including white and grey matter — can

be done using Rapid Centroid Estimation (RCE) [55]. A sample segmentation can be seen in

Figure 1.2.

Figure 1.3 shows the usage of clustering for wavefront reconstruction in Hartmann-Shack (HS)

Aberrometry. Wavefront aberrometry has revolutionized the measurement of lower order and

higher order aberrations, including astigmatism, defocus, spherical, coma, trefoil, pentafoil, hex-

afoil, and tetrafoil to name a few. In two of our published manuscript, we use cluster analysis

to automate the unwrapping process of noise-ridden HS images and “injecting” artificial foci to

compensate for missing and occluded ones [24, 25].

Clustering can also be applied to retinal photography. Retinal photography is useful for the early

detection of diabetic changes, hypertensive retinopathy, macular degeneration, optic nerve disease,

and retinal holes or thinning [56]. We applied our proposed algorithm to perform segmentation of

Chapter 1. Introduction 7

Brain MRI

Bone

Brain

White Matter

Gray Matter

(a) Cluster Hierarchy

(b) Brain MRI (c) Bone (d) Brain (e) White Matter (f) Grey Matter

Figure 1.2: Clustering a Magnetic Resonance Image. The clustering algorithm uses Rapid
Centroid Estimation (RCE) [4].

the optic disc, macula, and blood vessels from retinal fundus images. On this particular application,

we used an ensemble variant of our proposed clustering algorithm: Ensemble Rapid Centroid

Estimation (ERCE) together with morphological filtering techniques including line detector [57]

and geodesic morphology operations [53]. Some of the results can be seen in Figure 1.4.

Clustering has also been used in various biomedical signal processing applications including gait

analysis [16, 17, 22]. Poor gait quality is highly correlated with the increase in frequency of falling

among older adults [58]. The important gait parameters for calculating the measures includes: the

bilateral step length; the precision timing of the bilateral heel-strike events; and the precision timing

of the bilateral toe-off events [17, 58]. Figure 1.5 shows the overall result of the proposed method.

The first three principal components of the accelerometric and gyroscopic wavelet coefficients can

be seen in Figure 1.5b. This example shows a 3 seconds data snippet from a 6.7 minutes normal

gait data (24229 observations). A total of 690 heel strike and toe-off events or approximately

345 strides were detected. Detailed results on gait analysis and fall detection can be seen in our

published papers [14, 16, 17, 22, 23, 59].

Chapter 1. Introduction 8

(a) Raw HS image. (b) Pupil and foci recognition.
50

100

150

200

250

300

350

400

(c) Unwrapped wavefront
2.84 mm 2.84 mm

2.84 mm

2.84 mm

ey
e

de
fo

rm
at

io
n

(m
ic

ro
ns

)

2

0

2

4

6

8

10

12

14

(d) Wavefront Reconstruction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

0.5

0

0.5

1

zernike term (single index)

ρ

(e) Estimated Zernike terms (single index).

Figure 1.3: Reconstructing Hartmann Shack Centroids using RCE and Artificial Centroid
Injection [24, 25].

Chapter 1. Introduction 9

Figure 1.4: Clustering retinal fundus images using ERCE [55]. Left to right: {raw retinal
fundus image}; {segmented optical disc, macula, and fovea}; {segmented retinal blood vessels};

and {classified detection mask}.

Chapter 1. Introduction 10

12 12.5 13 13.5 14 14.5 15
1.5

1
0.5

0
0.5

1
1.5

t(s)

A
ng

ul
ar

 V
el

oc
ity

 (ω
(r

ad
/s

))

HSL HSLTOL TOL TOLHSR HSR HSRTOR TOR

12 12.5 13 13.5 14 14.5 15
0.5

0

0.5

1

1.5

t(s)

A
cc

el
er

at
io

n
(g

)

HSL HSLTOL TOL TOLHSR HSR HSRTOR TOR

12 12.5 13 13.5 14 14.5 15

right

support

left

t(s)

ωT
ωC
ωS

aV
aAP
aML

stance
swing
double
single

(a) ERCE clustering result on the gyroscopic and accelerometric wavelet features. The important gait
parameters including the bilateral step length; the precision timing of the bilateral heel-strike events; the
precision timing of the bilateral toe-off events; and the overall gait phase can be extracted. With this
approach medical practitioners and kinesiologists can objectively examine the evidence for assessing fall

risk in an individual.

Figure 1.5: Estimating gait parameters using ERCE [17, 55] (cont.).

Chapter 1. Introduction 11

(b) The first three principal components of the accelerometric and gyroscopic wavelet coefficients obtained
after Principal Component Analysis. The cyclical character of the human gait is clearly pronounced in
the Eigenspace. Scatter points with hot (light yellow – dark red) color mask indicate higher likelihood of

positive Heel-Strike detections.

Figure 1.5: Estimating gait parameters using ERCE [17, 55].

Chapter 1. Introduction 12

1.4 Challenges

While the application of clustering may be straightforward, the underlying process behind clus-

tering is very challenging [2]. Clustering is inherently an ill-posed problem where the goal is to

partition the data into some unknown number of clusters based on intrinsic information alone

[2]. This data-driven nature makes it very difficult to design an algorithm that can correctly and

efficiently discover the natural clusters in the given data.

Divisive clustering such as the k-means algorithm is frequently used for large scale data clustering

because of its low time and memory complexity (O(N)). However its formulation limits k-means

to solving only globular/gaussian clusters. The number of k has to be pre-specified, it also does

not impose any hierarchical tree which makes its result harder to interpret than hierarchical ag-

glomerative clustering. Further, specifying different k values greatly affects its result. The k-means

is also sensitive to outliers and different initialization values.

The hierarchical agglomerative clustering [60], in the other hand, does not have any k-means limi-

tations because it does not assume the number to be known beforehand. By specifying the linkage

criterion, agglomerative algorithms can readily accommodate any cluster shape. The hierarchical

tree makes the results of agglomerative clustering easier to interpret. However, due to its quadratic

time and memory complexity (O(N2)), agglomerative clustering algorithms do not scale well to

larger dataset. Other clustering algorithms that uses proximity matrix such as spectral cluster-

ing [61], Multi-Objective Clustering with Automatic K-determination (MOCK) [62], Density-based

spatial clustering of applications with noise (DBSCAN) [63], and Evidence Accumulation clustering

ensembles [64–66], also encounter similar scalability issue.

A good clustering algorithm needs to satisfy a number of requirements such as: scalability; flexi-

bility; capability to discover clusters with arbitrary shapes; adaptiveness; robustness to noise and

outliers; insensitivity to the order of input records; and simplicity of interpretation. The currently

available clustering techniques do not address all the requirements adequately and concurrently.

Several attempts proposed in the previous literature to alleviate these problems of k-means cluster-

ing include cluster validation schemes [67], entropy weighting [68], information theoretic measures[69],

stochastic methods [4, 70–75] and ensemble schemes [64, 76]. Ensemble algorithms are powerful

alternatives to clustering because they combine the strength of both divisive and agglomerative

paradigms. The clusters created with ensemble algorithms tend to be highly intuitive. However,

ensemble algorithms suffer from scalability issue on larger datasets.

Chapter 1. Introduction 13

1.5 Contribution of This Thesis

The major contributions of this thesis can be summarized as follows.

• Proposition of Rapid Centroid Estimation

Rapid Centroid Estimation (RCE) [4] is a light-weight semi-stochastic clustering algorithm

which is inspired by Eberhart and Kennedy’s Particle Swarm Optimization (PSO) [77] and

Cohen and de Castro Particle Swarm Clustering (PSC) [75]. We introduced the algorithm

in 2012 [71, 73] as a lightweight simplification to the PSC algorithm [75]. Further strategies

to improve its optimization capability are proposed in our subsequent publications [4, 72].

RCE shares similarly to its deterministic predecessor (k-means algorithm) that it clusters

data using the voronoi cells principle. Due to its semi-stochastic nature, the RCE is almost

guaranteed to discover the natural local optimum solution given the correct number of clus-

ters, parameters, and sufficient number iterations are supplied. The particle trajectory of

RCE can be seen in Figure 1.6.

Figure 1.6: Trajectory of the swarm{6} RCEr+ 2014 particles (randomly seeded initial po-
sitions) recorded after 30 iterations on the five Gaussian dataset using both substitution and
particle reset strategies shows Swarm{6} RCEr+ robustness and insensitivity to initialization.

• Proposition of Ensemble Rapid Centroid Estimation (ERCE)

Ensemble RCE (ERCE) [55] was proposed in 2014 as an ensemble extension to RCE, im-

proving RCE in terms of memory and computational efficiency, capability to automatically

determine the number of clusters, and gracefully handle non-convex datasets in quasilinear

complexity. Using the self-evolving cooperative semi-stochastic swarm ERCE constructs the

Chapter 1. Introduction 14

essential building blocks required for large scale consensus clustering using minimal memory

and computational resources. Benefiting from the robustness of swarm intelligence, the ver-

satility of voronoi tessellation and the flexibility of graph algorithms, the ERCE is designed to

discover natural groupings in both convex and non-convex data. Some results on non-convex

data can be seen in Figure 1.7. The visual abstract, giving the brief visual overview of the

ERCE, can be seen in Figure 1.8.

1
2

1
2
3

1
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 1.7: Clustering Non-convex dataset using ERCE. + and - signs denotes positive and
negatively charged particles, respectively.

• Consensus Engrams

Inspired by Hebb’s theories on cell assembly [78], we arrange the particles in the swarm in

a fully connected construction called the consensus engrams. This approach substantially

increases the scalability of the swarm to handle data whose total size exceeds the physical

random access memory (RAM) limit of the machine. The method is specifically designed to

extract statistical structure from incomplete data of large volume and noise content. It is

insensitive to neither the volume nor the order of data and the engrams only need to “see”

C
hapter

1.
Introduction

15

(a) Various fuzzy representations of the data obtained using ERCE. Each swarm in ERCE produces non-identical voronoi tessellations on the data. The degree
of fuzziness for each cluster is then optimized using the tradeoff between cluster entropy and the degree of fuzzified dissimilarity [55].

(b) The compressed co-association matrix obtained
using the CA-tree [66] and fuzzy WEAC [65, 76]

Hybrid [55].

1...137

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

l2

(c) The optimum cut for the corresponding CA-tree
using the highest lifetime criterion [64].

(d) Natural grouping is recovered by performing
inverse mapping on the CA-tree [55, 66].

Figure 1.8: The algorithmic flow of ERCE explained using an artificial dataset [55].

Chapter 1. Introduction 16

just enough representative data to learn the overall statistical structure. A sample run of the

algorithm on a high resolution image segmentation problem is shown in Figure 1.9.

(a) A color image segmentation result and the
Consensus engrams overlay. Image source: Lo-

tus Hill Institute [79].

(b) Scatter plot of the color image (HSV) feature
space and the consensus engrams encoding. x:

saturation; y: value.

(c) Blood vessel extraction from retinal fundus
images. Image source: DRIVE [80].

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Zana’s Geodesic Features

In
ve

rte
d

G
re

en
 C

ha
nn

el

(d) Scatter plot of the retinal fundus feature
space and the consensus engrams encoding.

Figure 1.9: Various Segmentation results using ERCE (Consensus Engrams). Further details
can be seen in Chapter 6.

• Stability conditions of Particle Swarm Optimization (PSO)

In Lemma 3.1.1 (Convergence of PSO), we revisit the convergence and stability conditions of

Particle Swarm Optimization (PSO) from control theory point of view. Lemma 3.1.1 reveals

that the particle swarm optimization can be generally modeled as a second order linear

system. Particularly, we discover that Jiang et al.’s stability boundary [81] is incorrectly

derived. The final value at convergence agrees with the earlier research [81, 82].

• Suboptimal Convergence of Van Der Merwe - Engelbrecht’s PSO Clustering [83]

Chapter 1. Introduction 17

In Section 3.3 (PSO trajectory suboptimality), we discover a significant issue in Van Der

Merwe - Engelbrecht’s proposition [83]. We reveal that unless at least one of the particles is

pre-initialized near to the optimum, the probability of the swarm to converge to the maximum

likelihood coordinates degrades exponentially as the number of classes or dimensions of the

clustering problem increase.

• Complexity Issues in Cohen and de Castro’s PSC [75]

In Section 4.3 (PSC — Complexity Analysis), we analyze the theoretical and empirical com-

putational and memory complexity of PSC. This chapter details important efficiency issues

of the algorithm which restricts its applicability to only smaller datasets. For example, with

a 400x1000 data matrix, on each iteration the PSC already suffers from a significant 2000%

slow-down compared to k-means. In order to cluster 1000 observations of 1000 dimensional

double precision data into 256 clusters, the algorithm variants require as much as 2GB mem-

ory; whereas k-means, fuzzy c-means, and RCE require memory allocation of lower than

15MB. Ironically, empirical results on benchmark data from [84] presented in Table 4.3, Ta-

ble 4.5, and Table 4.7 show that these high complexities do not generally translate into any

increase in cluster quality.

• Stability of Cohen and de Castro’s PSC [75] and sensitivity to initialization

In Theorem 4.1 (PSC’s resemblance to k-means), we derive the stability criteria of the PSC

algorithm and a detailed proof of convergence. The proof reveals a problematic cyclical trajec-

tory of the particles using parameter selection outlined in the standard PSO (Lemma 3.1.1).

Interestingly this crucial character is discussed neither in the initial manuscript [75] nor its

follow ups [70, 74, 85].

When the convergence bounds described in Equation 4.37 are properly satisfied, an even

more interesting phenomenon is observed. PSC guarantees convergence as long as the self-

organizing constant is nonzero. Furthermore, both social and cognitive parameters have

negligible effect to the swarm’s convergence, which implies that these parameters are redun-

dant. The ultimate implication of this theorem is that the PSC generalizes to the k-means,

retaining all of its performance aspects including the most severe: the curse of initial position.

In 2010, Szabo et al. [85] observed this particular convergence phenomenon in their empirical

experiment [85]. They suggested that “there were no much gain obtained with the PSC

when compared with a standard self-organizing clustering methods” [85]. However, the reason

behind the phenomenon were not further explained. Theorem 4.1 therefore provides the

theoretical proof necessary to complete their analysis.

• Particle behavior of the PSC Families

Chapter 1. Introduction 18

In the empirical testing following the theoretical proof of Theorem 4.1 (PSC’s resemblance

to k-means), we discover that all PSC families, including the original Cohen - de Castro’s

PSC [75], Szabo’s Modified memoryless Particle Swarm Clustering (mPSC) [74], and Sz-

abo’s Fuzzy Particle Swarm Clustering (FPSC) [70], share the exact particle behavior. The

three algorithms, although proposed under varying names and time frames, are conceptual

duplicates of the original PSC.

• RCE and simplification of the PSC

In Definition 5.2.10 (Resultant Vector) we propose a simplified update rule for PSC de-

rived based on the proof in Theorem 4.1. By calculating only the resultant vector, the time

complexity for each position update can be reduced up to as low as that of the k-means.

Concurrently, this new redefinitions reveals two problems associated with the PSC original

formulation: The first problem is concerned with computational complexity of random num-

ber generation; The second is concerned with the dilution of randomness as a consequence

of Kolmogorov’s strong law of large number. This discovery leads to the proposition of Defi-

nition 5.2.11 (Simplified Resultant Vector) — the latter is used in RCE — which addresses

these issues.

• RCE Strategies: Substitution, Particle Reset, and Multi-Swarm

In Theorem 5.1 (RCE’s resemblance to k-means) we prove that the RCE in its fundamental

form inherits the consequence of Theorem 4.1 (PSC’s resemblance to k-means) including the

curse of initial position. Conceding this fact, we propose strategies including substitution,

particle reset, and multi-swarm in order to alleviate the severity of the curse. Especially

when the RCE is operated as a multi-swarm, each of the RCE subswarm can be assigned

partial random sampled data which greatly reduces computational burden and increases

swarm diversity. These characteristics are particularly desirable when the swarm are to be

aggregated using consensus/ensemble clustering.

• ERCE: Charged Particles

The presence of redundant partitions in ensemble clustering aggregation may produce an

undesireable bias to the final solution [86]. In order to diversify the particles, we endow them

with either positive or negative charge. As a result, a constant chaotic turbulence between

particles is created in the search space such that the probability of creating a duplicate

partition is minimized. The approach is outlined in Section 6.1.1.

• ERCE: Self-evolution

The self-evolving swarm RCE equips each subswarm with the ability to summon additional

particles until the average cluster entropy criterion ξ [87] is minimized. According to Bezdek,

Chapter 1. Introduction 19

minimizing the cluster entropy is equivalent to maximizing the information content in each

cluster [87]. The resulting ensemble partitions using the self-evolution scheme can be seen in

Figure 1.10.

(a) ξΘ = 0.14. (b) ξΘ = 0.17. (c) ξΘ = 0.19. (d) ξΘ = 0.21.

(e) ξΘ = 0.23. (f) ξΘ = 0.26. (g) ξΘ = 0.28. (h) ξΘ = 0.3.

Figure 1.10: Variability of K due to ξ in ERCE swarms on the Half Rings dataset.

• ERCE: Calculating Consensus Clustering in Quasilinear Time and Space

The ERCE ensemble aggregation method uses the CA-tree which allows it to compress re-

dundant label vectors and calculate the consensus matrix in quasilinear complexity. Using

the compression map obtained from the CA-tree, the fuzzy consensus can be obtained from

the compressed fuzzy membership matrices. ERCE achieves the lowest memory consumption

compared to other conventional consensus techniques as shown in Figure 1.11.

• ERCE + Consensus Engrams: Theoretical Foundations and Preliminary Empir-

ical Results on Color Image Segmentation and Blood Vessel Segmentation from

Retinal Fundus Images.

In neuropsychology, engrams are means by which memory traces are stored as biophysical or

biochemical changes in the brain (and other neural tissues) in response to various external

stimuli which leave a lasting trace in the brain [78]. Inspired by Hebb’s theorem, we engrave

the essential fundamentals required to encode a statistical structure inside the ERCE swarm

as detailed in Section 6.3. The definitions are mainly derived based on information theory

according to Kullback and Leibler [88], and Shannon [89].

Based on the empirical results on color image segmentation problems (Figure 1.12), we ob-

serve that the proposed method achieved linear complexity in both time and space compared

to Shi-Malik’s normalized cuts [90] and conventional consensus clustering [91].

Chapter 1. Introduction 20

Figure 1.11: Memory complexity for clustering 2-dimensional random noise (vol = 1 Byte – 1
Megabytes, d = 2) using various algorithms. The global settings for all algorithms are as follow:

the number of representatives (K) = 30; the number of trials/swarms (nm) = 30.)

The consensus engrams approach is also applied on the blood vessel segmentation from retinal

fundus images, using the benchmark dataset from Digital Retinal Images for Vessel Extrac-

tion (DRIVE) [80]. The experimental results in Table 6.3 shows that the proposed method is

superior in all performance aspects compared to the other methods in the literature, outper-

forming even Staal’s [80] supervised approach to vessel segmentation (ERCE + Consensus

Engrams (Unsupervised): 95.58% ± 0.51%; Staal (Supervised): 94.42% ± 0.65%). The ROC

curve of the proposed method and other methods in the literature is shown in Figure 1.13.

Further information can be seen in Section 6.4.2.

These contributions are summarized in the thesis chapters as shown in the Figure 1.14.

Chapter 1. Introduction 21

(a) Time Complexity.

(b) Memory Complexity.

Figure 1.12: The CPU time and memory required of various algorithms with respect to the
number of pixels in an image.

Chapter 1. Introduction 22

Figure 1.13: The ROC curve of the proposed method vs other methods in the literature [80].

Chapter 1. Introduction 23

Figure 1.14: Research contribution diagram.

Chapter 2

Literature Review

Merriam-Webster defines cluster analysis as “a statistical classification technique for

discovering whether the individuals of a population fall into different groups by making

quantitative comparisons of multiple characteristics.” A Cluster is “a group of things or

people that are close together” [43]. The goal of cluster analysis can be summarized as “to discover

the natural grouping(s) of a set of patterns, points, or objects according to measured or perceived

intrinsic characteristics or similarity” [2]. This chapter is devoted to summarize in great detail the

important concepts in clustering algorithms including: Metrics and distance quantization methods

(Section 2.2); Divisive clustering algorithms (Section 2.3); Cluster validity indices (Section 2.4);

Graph clustering algorithms (Section 2.5); and Consensus clustering paradigms (Section 2.6).

2.1 Challenges in Cluster Analysis

Cluster analysis is exceptionally difficult because of the absence of the definitive ground-truth.

Clusters are identified based on a subjective assumption of how similar or how different data

points are. Clusters can differ in terms of their shape, size, and density. An illustration on

how clusters are defined can be seen in Figure 2.1. In an ideal case, a cluster can be defined as

a set of points that is compact and isolated, however this situation is usually not true in real life

scenario where the boundary between clusters are often fuzzy/uncertain. Real data contains noises

and outliers that pose significant challenge to many clustering algorithms.

A cluster is a subjective entity that is in the eye of the beholder and whose significance and

interpretation are dependant on the domain knowledge or predefined expectation [2]. Humans are

25

Chapter 2. Literature Review 26

adept at conceptual clustering of items and scenarios that are ambiguous or fuzzy. To date there

has not been any single clustering algorithm that can outperform humans in visual clustering, scene

matching/identification, memory clustering, and sound clustering [2]. However, for things whose

information are not sensory perceivable, e.g. gene clustering, we require an extra “tool” that is

smart enough to automatically simplify the data to something that is meaningful and perceivable.

A desirable clustering algorithm should be able to intuitively cluster objects quickly and effectively

subject to our predefined criteria.

Figure 2.1: Clusters differ in term of their shape, size, and density.

Traditional heuristic clustering can be subdivided into two subgroups: agglomerative (bottom-

up) clustering and divisive (top-down/prototype based) clustering. Each method offers their own

strength and weaknesses. The attempt to increase the efficacy of existing heuristics leads to a

new stream of clustering methodology called Consensus/Ensemble Clustering algorithms [64–66,

91, 92]. The ensemble algorithm attempts to combine both divisive and agglomerative approaches

to create stable and reliable clustering. The method attempts to recover natural grouping of

the cluster based on numerous monte-carlo clustering results from divisive algorithms such as k-

means/fuzzy c-means. A number of approaches to cluster optimization have also been proposed by

the computational intelligence community including Adaptive Resonance Theory (ART) [93, 94],

Self Organizing Map (SOM) [95], Particle Swarm Clustering (PSC) [70, 74, 75], [Ensemble] Rapid

Centroid Estimation ([E]RCE) [4, 55, 71–73], and Multi-Objective Clustering with Automatic

K-determination (MOCK) [62]. A possible taxonomy of clustering algorithms can be seen in

Figure 2.2.

Agglomerative clustering offers an intuitive representation on the relation of one data instance

to another in a tree diagram called the dendrogram. The drawback of agglomerative clustering

is its memory and time complexity which are both quadratic with respect to the volume of the

Chapter 2. Literature Review 27

Clustering

Algorithms

Connected

Graph
Graph
Parti-
tioning

Spectral
Clustering

Minimum
Spanning

Tree

Affinity
Propagation

Agglom-
erative
Linkage
Methods

Single Link

Average
Link

Ensemble

Monte-
Carlo

Ensemble
Methods

K-means
EAC

Fuzzy EAC

Multi-EAC
PEACE

Co-
Association

tree

Evolu-
tionary
Ensemble
Methods

Multi-
Objective
Clustering
(MOCK)

Ensemble
Rapid

Centroid
Estimation

Divisive
Prototype-

Based

K-Means

Fuzzy
C-Means

Soft k-means

Gaussian
Mixtures
Models

(GMM-EM)

Compu-

tational

Intel-

ligence

Particle
Swarm
Opti-

mization

Rapid
Centroid
Estimation

Particle
Swarm

Clustering

Artificial
Neural

Networks

Deep Neural
Networks

Self Or-
ganizing

Map (SOM)

Adaptive
Resonance
Theory
(ART)

Genetic
Algo-
rithms

Multi-
Objective
Clustering
(MOCK)

Density

Waveclust

Mode
Seeking

Mean Shift

Quick Shift

Connec-
tivity

DBSCAN

CHAME-
LEON

Figure 2.2: A possible taxonomy/interaction map of clustering algorithms

dataset O(N2). This quality restricts the application of agglomerative clustering to smaller datasets

[3, 55, 66]).

Divisive/Prototype-based clustering algorithms (e.g. k-means, fuzzy c-means) generally have linear

complexity O(kNt) where k and t denote the number of centroids and iterations, respectively

[55, 66]. Although the algorithm is non-deterministic, divisive clustering algorithms are attractive

because it offers reasonably compact solutions with relatively low computational and memory

complexity. However, divisive algorithms do not always reliably cluster the data into its natural

clusters because the partitions returned by divisive clusterings varies with multiple initializations

Chapter 2. Literature Review 28

and parameter specifications [3, 64].

Ensemble methods [2, 55, 66, 76] make use of both graph/agglomerative and monte-carlo runs

of divisive clusterings. The reports presented in the papers argued that ensemble algorithms are

capable for attaining robust solution. The methods allow the estimation of natural grouping and

the number of clusters in both convex and non-convex data.

As there are easily hundreds of clustering algorithms available in the literature, for the scope of

this thesis, we will focus our discussions only on three niches of unsupervised clustering problems:

Graph clustering: including agglomerative hierarchical linkage, graph partitioning, and spectral

clustering; Prototype based clustering; and Consensus / Ensemble clustering.

2.2 Quantifying Dissimilarity

Specifying the context on how various data should differ or agree with each other is of critical

importance for ensuring optimal clustering. In clustering, the degree of dissimilarity between two

observation can be described as the distance between them. Given a pair of observation vectors x

and y, x, y ∈ R
dim, the pairwise distance d(x, y) can be quantified using various measures.

2.2.1 Metric Family

Definition 2.2.1 (Euclidean Distance). Euclidean distance computes the root of square differences

between coordinates of a pair of observations.

d(x, y) =
√

(x − y)T (x − y). (2.1)

Definition 2.2.2 (Manhattan distance). The Manhattan distance [96] defines d(x, y) as the sum

of the absolute differences of their Cartesian coordinates:

d(x, y) =
dim∑
j=1

|xj − yj |, (2.2)

where j denotes the index of dimension, and | · | denotes absolute operator. The Manhattan

distance is also known as rectilinear distance, Minkowski’s L1 distance, taxi cab metric, or cityblock

distance. Manhattan distance is often used in applications that requires dimension specific distance

quantification such as in integrated circuits. The Hamming distance can be considered a Manhattan

distance between bit vectors.

Chapter 2. Literature Review 29

Definition 2.2.3 (Chebyshev distance). Chebyshev distance is also called Maximum value distance.

The distance between two vectors is the greatest difference along any coordinate dimension:

d(x, y) = max
j∈{1,...,dim}

|xj − yj |, (2.3)

where j denotes the index of dimension. The Chebyshev distance is also known as maximum

distance, chessboard distance, or Minkowski’s L∞ distance. A comparison between Chebyshev,

Manhattan and Euclidean distances can be seen in Figure 2.3.

Y (y1, y2, y3)

Z(z1, z2, z3)

X(x1, x2, x3)

Figure 2.3: Pairwise Euclidean distance (red, solid lines), Manhattan distance (black, dot-
dashed lines), and Chebyshev distance (green, solid lines).

Definition 2.2.4 (Minkowski distance). Minkowski distance is is the generalized metric distance:

d(x, y) =

⎛
⎝dim∑

j=1

|xj − yj |p
⎞
⎠1/p

, (2.4)

j denotes the index of dimension, and | · | denotes absolute operator. The Minkowski distance

resembles the normal Euclidean distance formula, except that the pth power and pth root is supplied

instead. In fact Minkowski distance is the Euclidean distance when p = 2. It is the Manhattan

distance when p = 1, minimum distance when p → −∞, and maximum (Chebyshev) distance when

p → +∞. Figure 2.4 shows the effect of varying p parameter on the Minkowski distance.

Chapter 2. Literature Review 30

p = -10.0 p = -1.0 p = 0.001 p = 0.5 p = 1.0

p = 1.5 p = 2.0 p = 3.0 p = 4.0 p = 8.0

Figure 2.4: Minkowski distance with various p.

Definition 2.2.5 (Mahalanobis distance). The Mahalanobis distance is a generalization of the

normalized Euclidean distance. It measures the normalized distance between the two points in

R
dim given the covariance of the cluster. The Mahalanobis distance can be written as follows,

d(x, y) =
√(

x − y
)T Σ−1

(
x − y

)
, (2.5)

which generalizes to Euclidean distance if Σ is an identity matrix, and Normalized Euclidean

distance if Σ is diagonal. Mahalanobis distance can also be defined as a dissimilarity measure

between x and y of the same distribution with the covariance matrix Σ.

Σ =

(
1 0

0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
2 0

0 1

)
Σ =

(
1 −0.5

−0.5 1

)

Figure 2.5: Mahalanobis distance with various Σ.

2.2.2 Correlation Family

Definition 2.2.6 (Correlation distance). The correlation distance is derived from the correlation

coefficient (ρ(x, y)). The correlation distance (d(x, y)) measures the similarity in shape between

Chapter 2. Literature Review 31

the two profiles:

d(x, y) = 1 − ρ(x, y), (2.6)

ρpearson(x, y) =
σxy

σxσy
. (2.7)

ρspearman(x, y) = 1 − 6
∑

i(ri(x) − ri(y))2

n(n2 − 1)
, (2.8)

where ri(·) denotes the rank of the ith dimension.

Correlation measures similarity rather than distance or dissimilarity: It ranges from +1 to -1 where

+1 correlation indicates that the two points perfectly match and -1 correlation indicates that the

two points perfectly mirror each other. In the context of distance this value is converted to 0 to

2: where 0 indicates +1 correlation, and 2 indicates -1 correlation. Its example usage in binary

pattern classification is shown in Figure 2.6.

xa xw xs xe xā

ρ(xa, xa) = 1 ρ(xa, xw) = 0.25 ρ(xa, xs) = 0.59 ρ(xa, xe) = 0.64 ρ(xa, xā) = −1
d(xa, xa) = 0 d(xa, xw) = 0.75 d(xa, xs) = 0.41 d(xa, xe) = 0.36 d(xa, xā) = 2

xA = fft(xa) xW = fft(xW) xS = fft(xs) xE = fft(xe) xĀ = fft(xā)
ρ(xA, xA) = 1 ρ(xA, xW) = 0.60 ρ(xA, xS) = 0.76 ρ(xA, xE) = 0.79 ρ(xA, xĀ) = 0
d(xA, xA) = 0 d(xA, xW) = 0.4 d(xA, xS) = 0.24 d(xA, xE) = 0.21 d(xA, xĀ) = 1

Figure 2.6: Correlation distance between binary patterns and their fourier transforms.

Definition 2.2.7 (Squared Correlation distance). The squared correlation distance is derived sim-

ilarly from correlation (ρ(x, y)). Contrast to the correlation distance, in the squared correlation

distance, both correlated and anti-correlated patterns have the same distance. The greatest sepa-

ration is achieved when x and y are perfectly uncorrelated.

d(x, y) = 1 − ρ2(x, y), (2.9)

Recall the binary image correlation in Figure 2.6. Contrast to correlation distance, the squared

correlation distance will designate both a and its perfect negation in the binary space with the

distance of 0.

Chapter 2. Literature Review 32

Definition 2.2.8 (Cosine angle distance). The cosine angle between the vectors x and y is calcu-

lated as follows,

cos(x, y) =
〈x, y〉
|x||y| , (2.10)

where 〈·, ·〉 denotes inner product, while | · | denotes euclidean norm. The cosine value of 1 indicates

that the vector pair is perfectly aligned (0 degrees away from one another), while -1 indicates that

the vector pair is 180 degrees away from one another. The quality of cosine similarity thus resembles

that of the Pearson correlation. As a distance metric, the cosine angle is converted similarly to

correlation as follows

d(x, y) = 1 − cos(x, y). (2.11)

2.2.3 Bregman Divergences

Definition 2.2.9 (Squared Euclidean Distance). Squared Euclidean distance computes the squared

differences between coordinates of a pair of observations:

d(x, y) = (x − y)T (x − y). (2.12)

The squared Euclidean distance puts progressively greater weight on objects that are farther apart.

Squared Euclidean distance is a Bregman divergence generated by the convex function f(x) = ||x||2.

It does not satisfy triangle equality. Its progressive weighting quality is particularly useful for

clustering Gaussian type clusters [4, 55, 97]. Squared Euclidean distance is specified as the default

metric for the clustering algorithms in MATLAB 2014 [97] and R [98].

Definition 2.2.10 (Squared Mahalanobis distance). The Squared Mahalanobis distance is defined

as

d(x, y) =
(
x − y

)T Σ−1(x − y
)
. (2.13)

Squared Mahalanobis distance is a Bregman Divergence generated by the function f(x) =
1
2

xT Qx,

with Q = Σ−1. It generalizes to Squared Euclidean distance if Σ is an identity matrix, and

Normalized Squared Euclidean distance if Σ is diagonal. Squared Mahalanobis distance can also

be defined as a squared dissimilarity measure between x and y of the same distribution with the

covariance matrix Σ. The Squared Mahalanobis distance does not satisfy triangle equality.

Definition 2.2.11 (Kullback-Leibler Divergence). Kullback-Leibler divergence – often abbreviated

as KL-divergence – measures the relative entropy between two distributions [88]. Specifically, given

two probability distributions P = p(x) and Q = q(x), p(x) ≤ 1, q(x) ≤ 1, KL-divergence KL(P ||Q)

Chapter 2. Literature Review 33

measures the amount of information lost when Q is used to approximate P . The formulation is as

follows,

KL(P ||Q) =

H(P,Q)︷ ︸︸ ︷
−
∑

x

p(x) log q(x) +

−H(P)︷ ︸︸ ︷∑
x

p(x) log p(x), (2.14)

=
∑

x

p(x) log
p(x)
q(x)

, (2.15)

where H(P, Q) denotes the cross entropy between P and Q and H(P) denotes the information

entropy of P . KL-divergence is a family of Bregman divergence and it is not appropriately

a “distance metric” on the space of probability distributions as it is not symmetric – that is,

KL(P ||Q) �= KL(Q||P), – nor does it satisfy the triangle inequality.

The symmetrical version of the KL-divergence was proposed in Kullback’s manuscript [88] as

follows,
DKL(s)(P ||Q) = KL(P ||Q) + KL(Q||P),

=
∑

x

p(x) log
p(x)
q(x)

+ q(x) log
q(x)
p(x)

,

=
∑

x

p(x) log
p(x)
q(x)

− q(x) log
p(x)
q(x)

,

(2.16)

Symmetrical KL-divergence is often used in clustering and classification due to its nice symmetry.

Lemma 2.2.1 (KL-Divergence between multivariate Gaussian distributions). For continuous d-

dimensional multivariate Gaussian distributions P (x) = N (x; μ1, Σ1) and Q(x) = N (x; μ2, Σ2),

the KL-divergence between the two is

KL(P ||Q) =
1
2

[
log

|Σ2|
|Σ1| − d + tr(Σ−1

2 Σ1) + (μ2 − μ1)T Σ−1
2 (μ2 − μ1)

]
. (2.17)

Proof: A d-dimensional multivariate Gaussian distribution N (x; μ, Σ) is defined as follows,

N (x; μ, Σ) =
1√

(2π)d|Σ| exp
(

− (x − μ)T Σ−1(x − μ)
2

)
, (2.18)

where μ and Σ denote its corresponding mean and covariance matrix, respectively.

Chapter 2. Literature Review 34

The KL-divergence between P (x) = N (x; μ1, Σ1) and Q(x) = N (x; μ2, Σ2) can be derived [99],

KL(P ||Q) =
∫

P (x)
[

log P (x) − log Q(x)
]
dx

= EP

[
log P (x) − log Q(x)

]
= EP

[
log

(
1√

(2π)d|Σ1| exp
(

− (x − μ1)T Σ−1
1 (x − μ1)

2

))
− . . .

log

(
1√

(2π)d|Σ2| exp
(

− (x − μ2)T Σ−1
2 (x − μ2)

2

))]

=
1
2

EP

[
− log(2π)d − log |Σ1| − (x − μ1)T Σ−1

1 (x − μ1) + . . .

log(2π)d + log |Σ2| + (x − μ2)T Σ−1
2 (x − μ2)

]

=
1
2

EP

[
log

|Σ2|
|Σ1| − (x − μ1)T Σ−1

1 (x − μ1) + (x − μ2)T Σ−1
2 (x − μ2)

]

=
1
2

[
log

|Σ2|
|Σ1| + EP

[−tr
(
Σ−1

1 (x − μ1)(x − μ1)T
)

+ tr
(
Σ−1

2 (x − μ2)(x − μ2)T
)]]

=
1
2

[
log

|Σ2|
|Σ1| + EP

[−tr
(
Σ−1

1 Σ1
)]

+ EP

[
tr
(
Σ−1

2 (xxT − 2xμT
2 + μ2μT

2)
)]]

=
1
2

[
log

|Σ2|
|Σ1| − d + tr

(
Σ−1

2 (Σ1 + μ1μT
1 − 2μ1μT

2 + μ2μT
2)
)]

=
1
2

[
log

|Σ2|
|Σ1| − d + tr

(
Σ−1

2 Σ1
)− tr(Σ−1

2 (μ2 − μ1)(μ2 − μ1)T)
]

=
1
2

[
log

|Σ2|
|Σ1| − d + tr

(
Σ−1

2 Σ1
)− (μ2 − μ1)T Σ−1

2 (μ2 − μ1)
]

�
(2.19)

Definition 2.2.12 (Jensen-Shannon Divergence). Jensen–Shannon divergence (JS-divergence),

also known as information radius [100] or total divergence to the average [101], is a Bregman

divergence based on the symmetrical Kullback–Leibler divergence with an additional smoothing

parameter [102].

The Jensen–Shannon divergence is bounded by 1, given that one uses the base 2 logarithm. The

square root of the Jensen–Shannon divergence is a metric often referred to as Jensen-Shannon

distance. The formulation is as follows,

DJSD(P ||Q) =
KL(P ||M) + KL(Q||M)

2
, (2.20)

where M denotes a mixture distribution of Q and P ,

M =
1
2

(P + Q). (2.21)

Chapter 2. Literature Review 35

2.2.4 Distance Between Logical/Categorical Vectors

Definition 2.2.13 (Hamming Distance). The Hamming distance [103] between two binary vectors

x and y is the number of bits/categories that differs,

dhamming(x, y) = |x �= y|. (2.22)

Definition 2.2.14 (Normalized Hamming Distance). The normalized Hamming distance [103]

divides dhamming(x, y) with the number of bits/categories such that it is normalized between [0, 1]

where 0 indicates perfect synchrony. The formulation is as follows,

dnorm hamming(x, y) =
|x �= y|

|x| . (2.23)

Definition 2.2.15 (Jaccard Distance). The Jaccard index or the Jaccard similarity index/coeffi-

cient measures similarity between finite sample sets, and is defined as the size of the intersection

(non-zero categories that are equal) divided by the size of the union of the sample sets (number

of non-zero categories). The Jaccard distance is calculated simply as 1 - Jaccard similarity. The

formulation is as follows,

J(x, y) =
|x⋂y|
|x⋃y| (2.24)

dJaccard = 1 − J(x, y). (2.25)

Definition 2.2.16 (Sørensen-Dice Distance). The Sørensen-Dice index [104, 105] closely resembles

the Jaccard similarity index/coefficient. The Sørensen-Dice distance is calculated simply as 1 -

Sørensen-Dice similarity. The formulation is as follows,

s(x, y) =
2|x⋂y|
|x| + |y| (2.26)

dSørensen-Dice = 1 − s(x, y). (2.27)

2.2.5 Mutual Information

Definition 2.2.17 (Mutual Information). Mutual information between two discrete probability

distribution I(X; Y) decodes the statistical information shared between two data vectors: x gener-

ated by the distribution X; and y generated by the distribution Y [106]. This measure is a useful

Chapter 2. Literature Review 36

indication of coherence between the two distributions that generates the vectors. The mutual in-

formation is often used to compare clustering results in a cluster ensemble setting [107–109]. An

informative explanatory illustration can be seen in Figure 2.7.

H(X) H(Y)

I(X;Y)

H(X,Y)

H(X|Y) H(Y |X)

Figure 2.7: Mutual Information I(X; Y) between X and Y .

As described by Shannon, the information entropy of a random variable is a function which char-

acterizes the “unpredictability” of the probability distribution [89],

H(X) =
∑
x∈X

p(x) log p(x). (2.28)

The cross entropy is computed similarly using the joint probability distribution,

H(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.29)

Mutual information applies Shannon’s information entropy for examining the dependence between

X and Y . In Figure 2.7 maximizing mutual information is equal to minimizing the KL-divergence

between the cross-entropy H(X, Y) and the marginal entropies: H(X) and H(Y) where p(x) =∑
y∈Y

p(x, y) and p(y) =
∑
x∈X

p(x, y), obtained from marginalization of the joint probability. The

Chapter 2. Literature Review 37

formulation is as follows,

I(X; Y) = H(X) − H(X|Y),

= H(Y) − H(Y |X),

= H(X) + H(Y) − H(X, Y),

= H(X, Y) − H(X|Y) − H(Y |X),

=

H(X)︷ ︸︸ ︷
−
∑
x∈X

p(x) log p(x)

H(Y)︷ ︸︸ ︷
−
∑
y∈Y

p(y) log p(y) +

−H(X,Y)︷ ︸︸ ︷∑
x∈X

∑
y∈Y

p(x, y) log p(x, y),

= −
∑
x∈X

∑
y∈Y

p(x, y)

︸ ︷︷ ︸
p(x)

log p(x) −
∑
y∈Y

∑
x∈X

p(x, y)

︸ ︷︷ ︸
p(y)

log p(y) +
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y),

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
,

= KL(p(x, y)||p(x)p(y)).
(2.30)

Definition 2.2.18 (Normalized Mutual Information). The normalized mutual information [107]

attempts to scale the mutual information such that 0 indicates independence and 1 indicates

perfect dependence. There are varying formulations for normalized mutual information [107–110]

as follows,

NMIStrehl-Ghosh(X, Y) =
I(X; Y)√

H(X)H(Y)
(2.31)

NMIKvalseth 1(X, Y) =
2I(X; Y)

H(X) + H(Y)
, (2.32)

NMIKvalseth 2(X, Y) =
I(X; Y)

min(H(X), H(Y))
, (2.33)

NMIKvalseth 3(X, Y) =
I(X; Y)

max(H(X), H(Y))
, (2.34)

NMIYao(X, Y) =
I(X; Y)
H(X, Y)

, (2.35)

which obviously resides inside the bounds 0 ≤ NMI ≤ 1. Figure 2.8 illustrates how the normalized

mutual information values the mutual information between the sets.

Definition 2.2.19 (Variation of Information). Variation of information (VoI) [108, 109] converts

the mutual information into a metric, satisfying triangle equality, non-negativity, indiscernibility

and symmetry. Variation of information is suitable when a cluster is defined by the coherence

between the probability distributions. The (unnormalized) variation of information dV oI(u) is

Chapter 2. Literature Review 38

defined as follows,
dV oI(u)(X, Y) = H(X, Y) − I(X; Y),

= H(X) + H(Y) − 2I(X; Y),

= H(X|Y) + H(Y |X).

(2.36)

Realizing dV oI ≤ H(X, Y), the normalized formulation can be formulated as follows,

dV oI(X, Y) = 1 − I(X; Y)
H(X, Y)

, (2.37)

= 1 − NMI(X, Y), (2.38)

which bounds dV oI from 0 to 1.

(a) NMI = 0;
dV oI = 1

(b) NMI = 0.15;
dV oI = 0.85

(c) NMI = 0.4;
dV oI = 0.6

(d) NMI = 0.75;
dV oI = 0.25

(e) NMI = 0.95;
dV oI = 0.05

(f) NMI = 1;
dV oI = 0

Figure 2.8: Conceptual illustration of the normalized mutual information.

2.3 Divisive Clustering

Divisive clustering starts by assuming the whole dataset as one monolithic cluster, which is then

divided into pieces/partitions. In each of these partitions, an encoding prototype is assigned.

Collectively, the prototypes impose voronoi tessellation on the data, were each voronoi cell encodes

the contained objects inside the corresponding voronoi region, compressing the information in the

particular region using a compact representative called a centroid.

Definition 2.3.1 (Voronoi Regions). The representatives C induces a voronoi partition of Rdim,

which is a decomposition of Rdim into k convex cells [111]. Each Cz is governed by the corresponding

center z ∈ C and contains the region of space whose nearest representative is z.

Chapter 2. Literature Review 39

C induces optimal clustering on the dataset, S =
⋃
z∈C

Cz, where

Cz = {x ∈ S : the closest representative of x is z}. (2.39)

The objective function of a divisive algorithm can then be quantified as a function of distance from

each x ∈ Cz to its corresponding cell center z,

f(C) =
∑
z∈C

∑
x∈Cz

d(x, z), (2.40)

For K partitions of S the objective function is for example,

f(C, K) = f(C1, . . . ,Cz; z1, . . . , zK) =
K∑

j=1

∑
x∈Cj

d(x, zj), (2.41)

which would be minimized when,

∀j : zj = mean(Cj) =
∑

x∈Cj

x
|Cj | . (2.42)

2.3.1 k-means

k-means [112] is arguably the simplest of all divisive prototype-based clustering algorithm. The

main idea is to partition the data into voronoi regions using K centroids, one for each cell. k-means

aims at minimizing the within-cluster sum of squares,

f(C, K) =
K∑

j=1

N∑
i=1

uij ||xi − zj ||2,

=
K∑

j=1

N∑
i=1

uijdij uij ∈ [0, 1],

(2.43)

where zj : ∀j ∈ {1, . . . , K} denotes the cluster centers, xi : ∀i ∈ {1, . . . , N} denotes the observa-

tions, dij denotes the distance between xi and zj , where, in case of squared Euclidean distance,

can be written as ||xi − zj ||2. The matrix uij ∈ [0, 1] is a K × N binary membership matrix where

uij = 1 denotes that xi ∈ Cj , whereas uij = 0 denotes the otherwise, xi �∈ Cj . In k-means, each

voronoi region is crisply partitioned, which means each observation can only belong to a cell with

the nearest center such that the condition
K∑

j=1

uij = 1 : ∀i holds at all times. In the case where

equidistant points exist (e.g. given i and j,
∣∣∣{∀k : dik = dij

}∣∣∣ > 1), selection can be made on

Chapter 2. Literature Review 40

any point because such state is equivalent to don’t care (×) in logic circuits, e.g. uij ← ×. In

practice, the assignment would depend on the programmatical implementation. However, it needs

to be noted that the effect of this dilemma to the final output is trivial.

The k-means algorithm can be considered as a family of the expectation maximization algorithm.

The first step, called the assignment (expectation) step, updates the U matrix by assigning each

x to the nearest z; The following step, called the update (maximization) step, reassigns each

centroids to the mean of the corresponding cluster. The process is repeated until local optimum

is reached, or when ∂f(C, K)/∂t = 0. The pseudocode of the k-means algorithm can be seen in

Algorithm 2.1.

Algorithm 2.1 k-means pseudocode
Input: Data matrix X
Output: Centroid matrix Z and membership matrix U.

1: Initialize centers Z ∈ R
dim at random within the search space,

2: repeat
3: Given D(X,Z), update U such that ∀j : Cj ← {x ∈ S whose closest center is zj}
4: ∀j : zj ← mean(Cj)
5: until ∂f(C, K)/∂t = 0

In general case, k-means returns a locally optimum partition C = {C1, . . . ,CK} which satisfies

Equation 2.42 but might not necessarily be the desired encoding for S.

2.3.1.1 Proof of Convergence

The proof below summarizes [113].

Lemma 2.3.1 (Convergence of k-means). Given an initial position z1,...,K , the k-means algorithm

is guaranteed to converge to

zj =

N∑
i=1

uijxi

N∑
i=1

uij

= mean(Cj), (2.44)

which minimizes the average distortion within the voronoi region.

Proof: The convergence of k-means can be shown by proving that the distortion f(C, K) mono-

tonically decreases with each iteration. k-means convergence is guaranteed if ∃Z :
∂f(C, K)

∂Z
= 0

Chapter 2. Literature Review 41

for each update and reassignment. The proof of this lemma is as follows,

f(C, K) =
K∑

j=1

N∑
i=1

uij ||xi − zj ||2, (2.45)

∂f(C, K)
∂Z

=
K∑

j=1

N∑
i=1

2uij(xi − zj) = 0, (2.46)

zj =

N∑
i=1

uijxi

N∑
i=1

uij

= mean(Cj), (2.47)

which shows that the k-means update step will always converge to the local minima. At the

reassignment step, each x is assigned to the nearest z which will also decrease f(C, K). Since there

is only a finite set of possible clusterings, f(C, K) monotonically decreases until eventually arrive

at a local minimum. �

2.3.2 k-means++

k-means algorithm is very sensitive to its initialization parameters [114]. There are scenarios where

the k-means algorithm failed to converge to the optimal cluster as can be seen in Figure 2.9.

(a) Desired (b) Suboptimal-1 (c) Suboptimal-2 (d) Suboptimal-3

Figure 2.9: Suboptimal partitions returned by k-means due to poor initialization

Arthur and Vassilvitskii proposed the k-means++ initialization method [114] which can be ex-

plained as follows: Pick the K centers one at a time, afterwards choose each point at random, with

probability proportional to its squared distance from the already chosen centers. Arthur and Vas-

silvitskii reported that using this seeding technique, significant improvements can be made to the

original algorithm [114]. The complete pseudocode of the algorithm can be seen in Algorithm 2.2.

Chapter 2. Literature Review 42

Algorithm 2.2 k-means++ pseudocode
Input: X, # prototypes K
Output: Centroid matrix Z and membership matrix U.

1: pick a point x ∈ S uniformly at random and set Cz ← {x} // k-means++ initialization
2: while |C| < k
3: pick another x ∈ S at random, with probability proportional to f(C; {x}) = min

z∈C

||x− z||2.

4: C ← C ∪ {x}
5: end while // regular k-means routine
6: repeat
7: Given D(X,Z), update U such that ∀j : Cj ← {x ∈ S whose closest center is zj}
8: ∀j : zj ← mean(Cj)
9: until ∂f(C, K)/∂t = 0

2.3.3 Fuzzy c-means

Fuzzy c-means is the fuzzy counterpart of the k-means algorithm [115]. While in k-means an

observation can only belong to one distinct voronoi region, in fuzzy c-means it can belong to

multiple voronoi regions with a specific degree of membership that is inversely proportional to its

relative distance to the centroid vectors.

The general formulation of the fuzzy c-means clustering is as follows,

f(C, C, m) =
C∑

j=1

N∑
i=1

um
ij ||xi − zj ||2 uij ∈ {0, 1}, (2.48)

uij =
d

− 1
m−1

ij

C∑
k=1

d
− 1

m−1
ik

, (2.49)

zj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

. (2.50)

where zj : ∀j ∈ {1, . . . , C} denotes the cluster centers, xi : ∀i ∈ {1, . . . , N} denotes the observa-

tions, dij denotes the distance between xi and zj , where, in case of squared Euclidean distance, can

be written as ||xi − zj ||2. m is a constant which controls the degree of fuzziness, higher m would

result in fuzzier partitions. The matrix U is a C × N membership matrix, uij ∈ {0, 1}, uij ∈ R,

where each element uij denotes the degree of membership of the point xi relative to the cluster

Cj . In fuzzy c-means, an observation can belong to multiple cells, each with a specific degree

of membership, where uij → 1 denotes the highest degree of membership and uij → 0 the lowest

degree of membership. The constraints uij ∈ {0, 1} and ∀i :
C∑

j=1

uij = 1 must hold at all times.

Chapter 2. Literature Review 43

Optimizing Equation 2.48 can be done similarly to k-means using Expectation Maximization

(EM) based on Equation 2.49 and Equation 2.50 until the error gradient is lower than a given

threshold ε, such that −∂f(C, C, m)/∂t < ε. The pseudocode for the fuzzy c-means can be seen in

Algorithm 2.3. Fuzzy c-means clustering results with varying m on the five Gaussians dataset is

shown in Figure 2.10.

Algorithm 2.3 Fuzzy c-means pseudocode
Input: X, # prototypes C, fuzzifier constant m, max. iteration tmax, and gradient threshold ε.
Output: Centroid matrix Z and membership matrix U .

1: Initialize centers Z ∈ R
dim at random within the search space,

2: repeat

3: Given D = D(X,Z), update U such that ∀i, j : uij ← d
− 1

m−1
ij∑C

k=1 d
− 1

m−1
ik

,

4: ∀j : zj ←

N∑
i=1

um
ijxi

N∑
i=1

um
ij

.

5: until (−∂f(C, C, m)/∂t < ε) ∨ (t > tmax)

2.3.3.1 Proof of convergence

Fuzzy c-means convergence is guaranteed when ∃{U, Z} that minimizes Equation 2.48 on each

Expectation and Maximization step.

Derivations in this subsection are personally done by the author using the method outlined in

Bishop’s Pattern Recognition and Machine Learning [116]. The book was used as an important

reference [116]. The proofs are as follows.

Expectation Step

Lemma 2.3.2 (Optimality of the Expectation Step). Given a fix D(X, Z), f(U, D(X, Z), m) is

optimized when ∀i, j; uij =
d

− 1
m−1

ij

C∑
k=1

d
− 1

m−1
ik

.

Chapter 2. Literature Review 44

0.4

0.4

0.5
0.

5

0.50.5

0.5

0.
5

0.
5

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7

0.7

0.
7

0.7

0.7

0.
7

0.7

0.7
0.

7

0.7

0.7

0.7

0.7

0.7

0.
8

0.8

0.8

0.
8

0.8

0.8

0.
8

0.8

0.8
0.8

0.8

0.8

0.8

0.8

0.8

0.
9

0.9

0.9

0.
9

0.9

0.9

0.
9

0.9
0.9

0.9

0.9

0.9

0.9

0.9

0.9

1

1
1

1

1

(a) m = 1.1

0.
3 0.
3

0.
4

0.4

0.4

0.
4

0.4

0.
4

0.4

0.
4

0.40.
4

0.40.4

0.4

0.4

0.5
0.5

0.
5

0.
5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.
50.5

0.
6

0.6

0.6
0.6

0.6

0.6

0.6

0.
6

0.6

0.
6

0.6

0.6
0.6

0.6

0.7

0.
7

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.
9

0.9
0.9

(b) m = 1.5

0.
3

0.
3

0.30.3

0.3

0.3

0.3

0.3

0.
3

0.3

0.
3

0.
3

0.
4

0.4

0.4

0.4

0.4
0.4

0.4

0.
4

0.4

0.
4

0.4

0.4

0.4

0.4

0.
5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.
6 0.7

0.7

0.
7

0.7

0.
7

0.8

0.
8

0.
8

0.8

0.
8

0.
9

(c) m = 2

0
25

0.25

0.
25

0.25

0.25

0.
25

0.
25

0.25

0.25 0.25

0.25

0.
25

0.25

0.25

0.25

0.3

0.3

0.3

0.3

0.3

0.3

0.
3

0.3

0.3

0.35

0.
35

0.
35

0.35

0.
35

0.4

0.
4

0.
4

0.4

0.
4

(d) m = 4

Figure 2.10: Fuzzy c-means result on the five Gaussians dataset (C=5)

Proof: Given D(X, Z), we express Equation 2.48 as a constrained optimization problem,

minimize
U

f(U, D(X, Z), m) =
C∑

j=1

N∑
i=1

um
ij dij ,

s.t. uij ∈ {0, 1},

s.t.
C∑

j=1

uij = 1,

(2.51)

Chapter 2. Literature Review 45

which can be simplified by introducing the Lagrange multiplier Λ = {λ1, . . . , λN },

L(U, D(X, Z), m, Λ) =
C∑

j=1

N∑
i=1

um
ij dij +

N∑
i=1

λi

⎛
⎝1 −

C∑
j=1

uij

⎞
⎠ , (2.52)

where the Karush-Kuhn-Tucker (KKT) necessary condition for the minimum is that the partial

derivative of the Lagrange function L(U, D(X, Z), m, Λ) (Equation 2.52) w.r.t uij vanishes at ulk

such that,
∂

∂uij
L(U, D(X, Z), m, Λ) = mum−1

lk dlk − λl =̇ 0. (2.53)

It then follows that

ulk =
(

λl

mdlk

) 1
m−1

. (2.54)

Imposing the constraint ∀i :
C∑

j=1

uij = 1 to Equation 2.54 gives

C∑
k=1

(
λl

mdlk

) 1
m−1

= 1,

λl =

(
C∑

k=1

(mdlk)
1

m−1

)m−1

.

(2.55)

Finally, given that l = i, substituting λl, l ∈ {1, . . . , N} to Equation 2.54 proves Lemma 2.3.2,

uij =

⎛
⎜⎜⎜⎜⎜⎝

(
C∑

k=1

(mdik)
1

m−1

)m−1

mdij

⎞
⎟⎟⎟⎟⎟⎠

1
m−1

=
d

− 1
m−1

ij

C∑
k=1

d
− 1

m−1
ik

. � (2.56)

Maximization Step

Lemma 2.3.3 (Optimality of the Maximization Step). Given a fixed U , f(U, D(X, Z), m) is opti-

mized when is optimized when zj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

.

Proof:

Chapter 2. Literature Review 46

Given U , Equation 2.48 is minimized when the gradient w.r.t zj : j ∈ {1, . . . , C} vanish,

∇zj f(U, D(X, Z), m) = ∇zj

C∑
j=1

N∑
i=1

um
ij dij ,

= ∇zj

C∑
j=1

N∑
i=1

um
ij (xi − zj)T (xi − zj),

= −2
C∑

j=1

N∑
i=1

um
ij (xi − zj),

= −2
C∑

j=1

(
N∑

i=1

um
ij xi −

N∑
i=1

um
ij zj

)
=̇ 0.

(2.57)

It then follows that solving zj : j ∈ {1, . . . , C} proves Lemma 2.3.3,

zj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

. � (2.58)

2.3.4 Soft k-means

Soft k-means closely resembles fuzzy c-means. In fact, the only difference between soft k-means

and Fuzzy c-means is that soft k-means expresses fuzziness using exponential family [117]. The

general formulation for soft k-means is as follows,

f(C, K, β) =
C∑

j=1

N∑
i=1

uij ||xi − zj ||2 u ∈ {0, 1}, (2.59)

uij =
exp (−βdij)

K∑
k=1

exp (−βdik)

, (2.60)

zj =

N∑
i=1

uijxi

N∑
i=1

uij

, (2.61)

where X, Z are observation and centroid matrix. β is the stiffness parameter. U = {∪∀i,juij ∈
{0, 1}} is a responsibility matrix. In soft k-means, distance pairs are modeled using a univariate

Chapter 2. Literature Review 47

Gaussian with equal variance, such that ∀j, β = 1/(2σ2
j),

p(xi|zj , σj) =
1√

2πσ2
j

exp

(
−||xi − zj ||2

2σ2
j

)
,

=
1√
π/β

exp (−βdij) β =
1

2σ2
j

.

(2.62)

This univariate distribution represents a hypersphere ∈ R
dim, where it is assumed that the rep-

resentatives are equally distributed in all dimensions. This formula is analogue to a multivariate

Gaussian distribution with zero covariances and equal variances,

p(xi|zj , Σj) =
1

dim
√

2π|Σj | exp

(
− (xi − zj)T Σ−1

j (xi − zj)
2

)
. (2.63)

The result of fuzzy c-means and soft k-means on five Gaussians dataset can be seen in Figure 2.11.

The soft k-means pseudocode can be seen in Algorithm 2.4.

Algorithm 2.4 Soft k-means pseudocode
Input: X, # prototypes K, fuzzifier constant β, max. iteration tmax, and gradient threshold ε.
Output: Centroid matrix Z and responsibility matrix R.

1: Initialize centers Z ∈ R
dim at random within the search space,

2: repeat
3: Given D = D(X,Z), update U such that ∀i, j : uij ← exp (−βdij)∑K

k=1 exp (−βdik)
,

4: ∀j : zj ←
∑N

i=1 uijxi∑N

i=1 uij

.

5: until (−∂f(C, K, β)/∂t < ε) ∨ (t > tmax)

2.3.4.1 Proof of Convergence

Derivations in this subsection are personally done by the author using the method outlined in

Bishop’s Pattern Recognition and Machine Learning [116].

The Likelihood Function and Distortion

Lemma 2.3.4. Maximizing log likelihood also minimizes the weighted sum of squares

Chapter 2. Literature Review 48

5

5

5

5

5

5

5

5

5

5

5

5
5

5

0

0
0

0

0

5

5
5

5

5

(a) Fuzzy c-means, m = 1.3,

z axis = ln(d
− 1

m−1
ij)

0.4

0.4

0.4

0.40.4

0.4

0.4

0.5

0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6
0.7

0.7

0.7
0.7

0.7

0.7

0.
7

0.7

0.7

0.
7

0.7

0.7

0.
7

0.7

0.8

0.8

0.8

0.8

0.
8

0.8

0.
8

0.8

0.8

0.
8

0.8

0.8

0.
80.8

0.
9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

(b) Fuzzy c-means, m = 1.3,
z axis = ∀i,

Cmax
j=1

(U)

0.1
0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.
2

0.2

0.2

0.2

0.
2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3
0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.
5

0.
5

0.
5

0.5

0.
5 0.

6

0.
6

0.
6

0.6

0.
6

0.7

0.
7

0.
7

0.7

0.
7

0.8

0.
8

0.
8

0.8

0.
8

(c) Soft k-means, β = 0.4,
z axis = exp (−βdij)

0.4

0.4

0.
4

0.4

0.4

0.
5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6
0.6

0.6

0.6

0.6

0.
6

0.6

0.
7

0.7

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.
7

0.7

0.7

0.
7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.
8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

(d) Soft k-means, β = 0.4,
z axis = ∀i,

Kmax
j=1

(R)

Figure 2.11: The resemblance between fuzzy c-means and soft k-means.

Proof: For any random vector x, we can write soft k-means as a superposition of K one-

dimensional Gaussian distributions with equal variances and mixing proportions,

p(x|Z, β) =
1
K

K∑
i=1

p(x|zj , β), where (2.64)

p(x|zj , β) =
1√
π/β

exp
(−β||x − zj ||2) , (2.65)

Chapter 2. Literature Review 49

With the above definition, we then observe the log likelihood for an individual Gaussian,

log L(θj) = log
N∏

i=1

p(xi|zj , β), (2.66)

=
N∑

i=1

log p(xi|zj , β), (2.67)

= −
[constant︷ ︸︸ ︷

N∑
i=1

1
2

(
log π − log β

)
+β

weighted sum of squares︷ ︸︸ ︷
N∑

i=1

||xi − zj ||2
]

. (2.68)

It is therefore obvious that maximizing log L(θj) is equivalent to minimizing the weighted sum of

squares. �

Expectation Step

Lemma 2.3.5 (Optimality of the Expectation Step). Given D(X, Z), f(U, D(X, Z), β) is optimized

when

uij =
exp (−βdij)

K∑
k=1

exp (−βdik)

=
exp
(−β||xi − zj ||2)

K∑
k=1

exp
(−β||xi − zk||2)

. (2.69)

Proof: We can compute the responsibility of the jth Gaussian for describing an observation xi

using the conditional probability of zj = 1 given xi and β. Using Bayes rule we obtain,

uij = p(zj = 1|xi, β) =

1
K

p(xi|zj , β)
K∑

k=1

1
K

p(xi|zk, β)

=
exp
(−β||xi − zj ||2)

K∑
k=1

exp
(−β||xi − zk||2)

. �

(2.70)

Maximization Step

Lemma 2.3.6 (Optimality of the Maximization Step). Given U , f(U, D(X, Z), β) is minimized

when zj =

N∑
i=1

uijxi

N∑
i=1

uij

Chapter 2. Literature Review 50

Proof: f(U, D(X, Z), β) is minimized when the gradient w.r.t zj : j ∈ {1, . . . , K} vanish,

∇zj f(U, D(X, Z), β) = ∇zj

K∑
j=1

N∑
i=1

uijdij ,

= ∇zj

K∑
j=1

N∑
i=1

uij(xi − zj)T (xi − zj),

= −2
K∑

j=1

N∑
i=1

uij(xi − zj),

= −2
K∑

j=1

(
N∑

i=1

uijxi −
N∑

i=1

uijzj

)
=̇ 0.

(2.71)

It then follows that solving zj : j ∈ {1, . . . , K} proves Lemma 2.3.6,

zj =

N∑
i=1

uijxi

N∑
i=1

uij

. � (2.72)

2.3.5 Gaussian Mixture Models

Gaussian Mixture Models (GMM) [116] can be seen as a probabilistically complete formulation for

the soft k-means. The K fuzzy partitions in GMM can be probabilistically described as a mixture

of K multivariate Gaussians such that for a random vector x ∈ R
dim we have,

p(x|Θ) =
K∑

j=1

αjp(x|zj , θj), Θ = {α1, . . . , αK , θ1, . . . , θK}, (2.73)

p(x|θj) = p(x|zj , Σj) (2.74)

=
1√

(2π)dim|Σj | exp

(
− (x − zj)T Σ−1

j (x − zj)
2

)
. (2.75)

where |Σj | denotes the determinant of Σj , for each j : j ∈ {1, . . . , K}, p(xi|zj , θj) are mixture

components, each are multivariate Gaussian probability density function defined by a dim × 1

centroid vector and a dim × dim covariance matrix, such that θj = {zj , Σj}. αj denotes the mixing

proportion where αj = p(zj),
K∑

j=1

αj = 1. αj represents the probability that x was generated by

the jth mixture. All these parameters are stored in the set of parameters Θ.

The parameters Θ are optimized using the EM method, as follows:

Chapter 2. Literature Review 51

Expectation: The responsibility that a jth Gaussian density takes for describing an observation

vector xi can be derived simply as the conditional probability of the cluster zij given an observation

xi and a set of parameters Θ. Using Bayes rule, we can derive uij as follows,

uij = p(zj |xi, Θ),

=
αjp(xi|θj)

K∑
k=1

αkp(xi|θk)

. (2.76)

It must then follow that ∀i,
K∑

j=1

uij = 1.

Maximization: Given the membership matrix U , for each j : j ∈ {1, . . . , K}, αj , zj , and Σj , can

be updated as follows,

1. Calculate the updated mixing proportions α̂{j,...,K},

α̂j =
1
N

N∑
i=1

uij , (2.77)

2. Given α̂{j,...,K}, update the centroid vectors z{j,...,K} using the weighted average ∀j, x ∈ Czj
,

ẑj =

N∑
i=1

uijxi

N∑
i=1

uij

, (2.78)

3. Given ẑ{j,...,K} and α̂{j,...,K}, update the covariance matrices using the weighted average

∀j, Σj ∈ Czj ,

Σ̂k =

N∑
i=1

uij(xi − ẑj)(xi − ẑj)T

N∑
i=1

uij

. (2.79)

EM algorithm is a Maximum Likelihood Estimator (MLE). It maximizes the log likelihood of the

model parameters given the data, L(Θ|X), as follows,

Θ̂MLE = arg max
Θ

{
log L(Θ|X)

}
, (2.80)

Chapter 2. Literature Review 52

where in the context of GMM, the likelihood function is as follows,

log L(Θ|X) = log
N∏

i=1

p(xi|Θ) =
N∑

i=1

log p(xi|Θ),

=
N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj).

(2.81)

Convergence of the EM algorithm can be detected when the improvement of log L(Θ|X) is minimal.

The set of initial parameters for the EM algorithm can be chosen at random or via heuristic method

(e.g. k-means/fuzzy c-means/soft k-means).

The result on five Gaussians dataset can be seen in Figure 2.12. The pseudocode for the GMM-EM

algorithm can be seen in Algorithm 2.5

Algorithm 2.5 GMM pseudocode
Input: X, # mixtures K, max iteration tmax, and gradient threshold ε.
Output: Gaussian mixtures p(x|Θ) and fuzzy membership matrix U .

1: Initialize Θ using { random/k-means/fuzzy c-means/soft k-means },
2: repeat
3: Expectation:
4: ∀i, j : uij ← αjp(xi|θj)

K∑
k=1

αkp(xi|θk)

,

5: Maximization:

6: ∀j, αj ←

N∑
i=1

uij

N
,

7: ∀j, zj ←

N∑
i=1

uijxi

N∑
i=1

uij

,

8: ∀j, Σk ←

N∑
i=1

uij(xi − zj)(xi − zj)T

N∑
i=1

uij

,

9: until −∂ log L(Θ|X)/∂t < ε ∨ (t > tmax)

2.3.5.1 Proof of Convergence

The EM algorithm generally aims to maximize the likelihood function of the data given the model

[118]. As a general definition, GMM sought to model the overall distribution of the data as a sum

Chapter 2. Literature Review 53

(a) p(x|Θ)
(b) ∀i,

Cmax
j=1

(U)

Figure 2.12: GMM results on the Five Gaussians dataset.

of Gaussians (refer to Equation 2.73). The likelihood function is described as follows,

l(Θ) = log L(Θ|X) = log
N∏

i=1

p(xi|Θ) =
N∑

i=1

log p(xi|Θ),

=
N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj),

= l(A, Z, Σ|X),

(2.82)

which can be maximized by solving Θ given X and K are known. However, the optimal value for

Θ cannot be found analytically and must be estimated using the EM algorithm [118–120]. Note

that the parameters to be optimized Θ consists of:

1. mixing proportions A,

2. centroid vectors Z, and

3. covariance matrices Σ.

Hence in order to prove the convergence of the EM algorithm for GMM, we need to show that

optimizing each component guarantees the improvement of L(Θ).

Derivations in this subsection are personally done by the author based on the work of Xu and

Jordan [120]. Bishop’s Pattern Recognition and Machine Learning is also used as an important

reference pertaining the concepts and methods [116].

Chapter 2. Literature Review 54

Updating the Mixing Coefficients

Lemma 2.3.7 (Convergence of EM algorithm for GMM (1)). For each iteration of the EM algo-

rithm, l(Θ̂) > l(Θ) when α̂j =
1
N

N∑
i=1

uij

Proof: The updated mixing coefficients Â maximizes l(Θ) when the partial derivative of ∂l(Θ)/∂A =

0 subject to the constraint
K∑

j=1

αj . We can then express this lemma as a constrained optimization

problem,

maximize
α

l(A, Z, Σ|X) =
N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj),

s.t. αj ∈ {0, 1},

s.t.
K∑

j=1

αj = 1,

(2.83)

which can be simplified by introducing the Lagrange multiplier λ as follows,

l(A, Z, Σ, λ|X) =

⎛
⎝ N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj)

⎞
⎠+ λ

⎛
⎝1 −

K∑
j=1

αj

⎞
⎠ . (2.84)

Setting the partial derivative with respect to A to 0 we have

∂l(A, Z, Σ, λ|X)
∂A =

N∑
i=1

p(xi|zj , Σj)∑K
k=1 αkp(xi|zk, Σk)

− λ = 0,

λ =
N∑

i=1

p(xi|zj , Σj)∑K
k=1 αkp(xi|zk, Σk)

.

(2.85)

Multiplying both sides of Equation 2.85 with αj gives

αj =
1
λ

N∑
i=1

αjp(xi|zj , Σj)∑K
k=1 αkp(xi|zk, Σk)

=
1
λ

N∑
i=1

uij , (2.86)

Imposing the constraint
K∑

j=1

αj = 1 to Equation 2.86 we get,

1
λ

N∑
i=1

K∑
j=1

uij = 1

λ = N.

(2.87)

Chapter 2. Literature Review 55

It then follows that substituting Equation 2.87 to Equation 2.86 gives the first proof,

α̂j =
1
N

N∑
i=1

uij . � (2.88)

Updating the Cluster Centres

Lemma 2.3.8 (Convergence of EM algorithm for GMM (2)). For each iteration of the EM algo-

rithm, l(Θ̂) > l(Θ) when ẑj =

N∑
i=1

uijxi

N∑
i=1

uij

Proof: The updated centroid vectors Ẑ maximizes l(Θ) when the partial derivative of ∂l(Θ)/∂Z =

0,

l(A, Z, Σ|X) =
N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj),

∂l(A, Z, Σ|X)
∂Z

=
N∑

i=1

1∑K
k=1 αkp(xi|zk, Σk)

∂
(∑K

j=1 αjp(xi|zj , Σj)
)

∂Z
,

= −
N∑

i=1

K∑
j=1

αjp(xi|zj , Σj)∑K
k=1 αkp(xi|zk, Σk)

Σ−1
j (xi − ẑj) = 0,

= −
N∑

i=1

K∑
j=1

uijΣ−1
j (xi − ẑj) = 0,

(2.89)

which consequently implies that
∂l(A, Z, Σ|X)

∂Z
= 0 when each Gaussian mixture is optimized. As

covariance matrices are positive definite, it then follows that multiplying both sides with Σj and

rearranging gives the second proof,

−
N∑

i=1

uijΣ−1
j (xi − ẑj) = 0,

N∑
i=1

uij ẑj =
N∑

i=1

uijxi,

ẑj =
∑N

i=1 uijxi∑N
i=1 uij

. �

(2.90)

Updating the Covariance Matrices

Lemma 2.3.9 (Convergence of EM algorithm for GMM (3)). For each iteration of the EM algo-

rithm, l(Θ̂) > l(Θ) when Σ̂k =
∑N

i=1 uij(xi − ẑj)(xi − ẑj)T∑N
i=1 uij

Chapter 2. Literature Review 56

Proof: For each multivariate Gaussian mixture, the updated covariance matrix ∀j, Σ̂j maximizes

l(Θ) when the partial derivative with respect to ∀j, Σj vanishes,

l(X|A, Z, Σ) =
N∑

i=1

log
K∑

j=1

αjp(xi|zj , Σj),

∂l(X|A, Z, Σ)
∂Σ

=
N∑

i=1

1∑K
k=1 αkp(xi|zk, Σk)

∂
(∑K

j=1 αjp(xi|zj , Σj)
)

∂Σ
,

=
N∑

i=1

K∑
j=1

αj∑K
k=1 αkp(xi|zk, Σk)

∂ (p(xi|zj , Σj))
∂Σj

= 0,

=
K∑

j=1

∂l(X|αj , zj , Σj)
∂Σj

= 0, where

∂l(X|αj , zj , Σj)
∂Σj

=
N∑

i=1

αj∑K
k=1 αkp(xi|zk, Σk)

∂ (p(xi|zj , Σj))
∂Σj

= 0.

(2.91)

As ∀j, Σj is a positive definite matrix, as to matrix algebra [121] we have by definition,

∂|Σj |
∂Σj

= |Σj |(Σ−1
j)T = |Σj |(Σ−1

j), and (2.92)

∂(xi − zj)T Σ−1
j (xi − zj)

∂Σj
= −
(

Σ−1
j (xi − zj)(xi − zj)T Σ−1

j

)T

= −Σ−1
j NijΣ−1

j , (2.93)

where Nij = (xi − zj)(xi − zj)T as noted in Equation 2.93.

Based on Equation 2.92 and Equation 2.93 We can then rewrite

∂ (p(xi|zj , Σj))
∂Σj

= (2π)−dim/2

[
− 1

2
|Σj |−3/2|Σj |Σ−1

j exp

(
− (x − zj)T Σ−1

j (x − zj)
2

)

+
1
2

|Σj |−1/2 exp

(
− (x − zj)T Σ−1

j (x − zj)
2

)
Σ−1

j NijΣ−1
j

]
,

= −1
2

(2π)−dim/2|Σj |−1/2 exp

(
− (x − zj)T Σ−1

j (x − zj)
2

)[
Σ−1

j − Σ−1
j NijΣ−1

j

]
,

= −1
2

p(xi|zjΣj)

(
Σ−1

j

[
1 − NijΣ−1

j

])
.

(2.94)

Chapter 2. Literature Review 57

Substituting Equation 2.94 back to Equation 2.91 we obtain for all j,

−1
2

N∑
i=1

αjp(xi|zjΣj)∑K
k=1 αkp(xi|zk, Σk)

(
Σ̂−1

j

[
1 − NijΣ̂−1

j

])
= 0,

N∑
i=1

uij

(
Σ̂−1

j

[
1 − NijΣ̂−1

j

])
= 0,

N∑
i=1

uij −
N∑

i=1

uijNijΣ̂−1
j = 0,

N∑
i=1

uij =
N∑

i=1

uijNijΣ̂−1
j ,

Σ̂j =

N∑
i=1

uijNij

N∑
i=1

uij

,

Σ̂j =

N∑
i=1

uij(xi − zj)(xi − zj)T

N∑
i=1

uij

. �

(2.95)

EM Algorithm and Gaussian Mixtures: The Corollary

Corollary 2.3.1 (Convergence of EM algorithm for GMM). We have proven for Lemma 2.3.7,

Lemma 2.3.8, and Lemma 2.3.9 that L(Θ̂) > L(Θ) when

α̂j =
1
N

N∑
i=1

uij ,

ẑj =

N∑
i=1

uijxi

N∑
i=1

uij

, and

Σ̂k =

N∑
i=1

uij(xi − ẑj)(xi − ẑj)T

N∑
i=1

uij

.

By alternating between the Expectation and Maximization steps, we can then guarantee that EM

will converge to the local optimum given any initial set of parameters.

Chapter 2. Literature Review 58

2.4 Cluster Validity Indices

“The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to

those true believers who have experience and great courage.”

Jain and Dubes [122].

Validation of a clustering result refers to the problem on how to validate the goodness of the

resulting partition given the data [123]. As clustering is inherently a non-deterministic process,

there are chances where the results can be absolutely counter-intuitive when assumptions made

prior to clustering are incorrect. At times incomplete deduction can be made simply because of

suboptimal results. Mistakes may arise from various reasons including:

• incorrect specifications e.g. number of clusters/β/m, inappropriate distance measure, or

simply bad initializations;

• incorrect features/feature representations which may result in counter-intuitive partitions,

even after numerous trials;

• the shapes of clusters in the feature space may be non-convex/non-gaussian by nature.

The limitations of divisive clustering have been made clear in the previous section. Acknowledging

this, cluster validity indices are designed under an assumption that if a population can be rep-

resented by Gaussian mixtures, an optimum compromise solution should exist given the correct

number of clusters (K or C) is specified. Various validity measures have been proposed in the

literature, each based on differing assumptions and definitions on how a sufficiently good cluster-

ing should look like. However, as to clustering algorithms, validity index is not a “panacea” to

clustering problems. For example, there is no way to objectively validate non-convex clusters with

prototype-based measures that assumes convexity. Validating the goodness of a cluster is, and

always will be, an illusive process [122]. This chapter will be devoted to briefly review a number

of widely used internal and external cluster validity indices available in the literature.

2.4.1 Internal Validity Indices

Internal validity indices measure the quality of a clustering result based on the intrinsic information

available in the data itself. The methods described in this section covers only a small portion of

the available methods in the literature.

Chapter 2. Literature Review 59

Definition 2.4.1 (Partition Coefficient). Partition coefficient measures the amount of overlapping

between clusters [124],

VP C =
1
N

K∑
j=1

N∑
i=1

u2
ij , (2.96)

where uij is the membership of data point i in cluster j. A major criticism on VP C is that it

lacks direct connection to the geometrical property of the data [125, 126]. The optimal number of

clusters is indicated when VP C is maximized.

Definition 2.4.2 (Cluster Entropy). The cluster entropy was introduced by Bezdek in 1975 [87].

Silva et al. have shown the direct correlation between the decrease in Shannon Entropy and the

improvement of a fuzzy model [127]. Shannon entropy is maximized at p(x) = 0.5; and minimized

at p(x) = 1.0 and p(x) → 0+ [89]. The formulation is given as follows,

H(p(x)) = −p(x) log p(x), (2.97)

which, in the context of cluster validity [87], can be expressed as the conditional probability of the

cluster given the data, normalized to the number of data such that

VH =
1
N

H(p(Θ|X)), (2.98)

= − 1
N

K∑
j=1

N∑
i=1

p(xi|θj) log p(xi|θj), (2.99)

= − 1
N

K∑
j=1

N∑
i=1

uij log uij . (2.100)

Similarly to VP C , VCE receives similar criticism due to its solely probabilistic nature.

Definition 2.4.3 (Partition Index). Bensaid et al. proposes the Partition Index VSC which takes

into account both the fuzzy memberships and the structure of the data [128]. VSC defines a good

clustering as compact and well separated [128]. Compactness πj and separation sj of a cluster Cj

can be computed as follows,

πj =

N∑
i=1

um
ij (xi − zj)T Σ−1(xi − zj)

N∑
i=1

uij

, (2.101)

sj =
K∑

k=1

(zj − zk)Σ−1(zj − zk), (2.102)

Chapter 2. Literature Review 60

where Σ is a positive definite matrix which denotes the covariance of the distance measure and

m ∈ [1, ∞) is a constant which determines the fuzziness of the partitions. The validity index is

simply the ratio over all clusters,

VSC =
K∑

j=1

πj

sj
=

K∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

N∑
i=1

um
ij (xi − zj)T Σ−1(xi − zj)

(
N∑

i=1

uij

)(
K∑

k=1

(zj − zk)Σ−1(zj − zk)

)
⎤
⎥⎥⎥⎥⎥⎦ , (2.103)

where lower VSC indicates a better partition.

Definition 2.4.4 (Silhouette Width Criterion). The Silhouette takes into account geometrical

considerations about compactness and separation of clusters [129]. The silhouette of a point can

be described as the compromise between the average dissimilarity between an object xi with all

other objects its own cluster (a(i)) and its closest neighboring cluster (b(i)). The Silhouette width

criterion VSW C can be calculated simply by taking the average silhouette value over all points.

The formulation is as follows,

a(i) =
1

|Cz|
∑

xi,y∈Cz

d(xi, y) (2.104)

b(i) = min
t∈{1,...,K}

s�=t

⎧⎨
⎩ 1

|Ct|
∑

xi∈Cs,y∈Ct

d(xi, y)

⎫⎬
⎭ (2.105)

si =
b(i) − a(i)

max{a(i), b(i)} , (2.106)

VSW C =
1
N

N∑
i=1

si. (2.107)

where the denominator is simply a normalizer such that sj ,VSW C ∈ {−1, 1}.

Definition 2.4.5 (Simplified Silhouette Width Criterion). The scalability issue in the Silhouette

width criterion is apparent due to the requirement of the pairwise distance computation in both

a(i) and b(i). To simplify the computation of si to linear complexity, Vendramin et al. proposes

Chapter 2. Literature Review 61

the following modification,

p(i) = d(xi, zj)xi∈Cj , (2.108)

q(i) = min
t∈{1,...,K}

t�=j

{d(xi, zt)}xi /∈Ct
, (2.109)

ssi =
p(i) − q(i)

max{p(i), q(i)} , (2.110)

VSSW C =
1
N

N∑
i=1

ssi. (2.111)

hence reducing the Silhouette complexity to linear time/space. VSSW C close to 1 indicates better

clustering.

Definition 2.4.6 (Dunn Index). The Dunn Index [115] is proposed as follows,

VDN = min
t∈{1,...,K}
s∈{1,...,K}

s�=t

⎧⎨
⎩ δ (Cs,Ct)

max
r∈{1,...,K}

{Δ(Cr)}

⎫⎬
⎭ , (2.112)

where δ(Cs,Ct) denotes the (minimum) set distance between Cs and Ct, while Δ(Cr) denotes the

(maximum) diameter of Cr, as follows,

δ(Cs,Ct) = min
x∈Cs
y∈Ct

d(x, y) = δSL(Cs,Ct), (2.113)

Δ(Cr) = max
x,y∈Cr

d(x, y). (2.114)

Note the way δ is formulated resembles the single linkage distance function, while Δ resembles the

maximum intracluster distance.

Definition 2.4.7 (Generalized Dunn Index). Bezdek and Pal proposed that both δ and Δ makes

Dunn index overly sensitive to noises and subtle changes in the data geometry [130]. Bezdek and

Pal proposed to use other linkage functions, one of them resembles the centroid linkage metric

(ZL) as follows,

δZL (Cs,Ct) =
1

|Cs| + |Ct|

⎡
⎣∑

y∈Cs

d(y, zt) +
∑

y∈Ct

d(y, zs)

⎤
⎦ , (2.115)

ΔZL(Cr) =
2

|Cr|
∑

y∈Cr

d(y, zr), (2.116)

where δZL(Cs,Ct) denotes the average pairwise distances between elements and centroids in clus-

tered sets Cs and Ct. ΔZL(C)r denotes the average diameter of the clustered set Cr. From this

Chapter 2. Literature Review 62

point on, we will refer the generalized Dunn Index as VDN(ZL) as follows,

VDN(ZL) = min
t∈{1,...,K}
s∈{1,...,K}

s�=t

⎧⎨
⎩ δZL (Cs,Ct)

max
r∈{1,...,K}

{ΔZL(Cr)}

⎫⎬
⎭ . (2.117)

Definition 2.4.8 (Adjusted Rand Index). The adjusted rand index [131] measures the agreement

between elements in clustered set C and elements in target set T [132]. The Adjusted Rand Index

is calculated as follows:

VAdj.Rand =
(

nj

2

)
(a + d) − ((a + b)(a + c) + (c + d)(b + d))(
nj

2

)2 − ((a + b)(a + c) + (c + d)(b + d))
, (2.118)

where:

• a: number of element pairs belong to the same set in both C and T,

• b: number of element pairs that belong to the same set in C but different sets in T,

• c: number of element pairs that belong to different sets in C but the same set in T, and

• d: number of element pairs that belong to different sets in both C and T.

An adjusted rand index of one indicates a perfect agreement, zero suggests agreement due to

chance, while negative indicates agreement less than chance [132].

Definition 2.4.9 (Calinski-Harabasz Index). The Calinski-Harabasz (CH) index [133] measures

clustering quality based on the traces of between-cluster and within-cluster distance scatter matri-

ces. CH index is formulated as follows:

m =

nj∑
j=1

yj

nj
,

Tr(SB) =
nc∑

i=1

nid(xi, m),

Tr(SW) =
nc∑

i=1

ni∑
j=1

d(yj , xi),

VCH =
Tr(SB)/(nc − 1)

Tr(SW)/(nj − nc)
,

(2.119)

A large value of CH suggests a clustering result with good quality [132].

Chapter 2. Literature Review 63

2.4.2 External Validity Indices

External validity indices measure the quality of a clustering result based on an available external

label information based on the domain/previous knowledge. They are powerful tools to investigate

the coherence of a clustering when a valid reference is readily available. However, the practicality

of external validation indices are limited, due to the fact that prior information of the dataset in

question is either not available or under continuous investigation in many practical cases.

Definition 2.4.10 (Classification Entropy). Classification Entropy tests the cluster homogeneity

against a reference class label vector. Lower classification entropy indicates that objects in the

database are homogeneous. Homogeneous clusters are less likely to be misclassified. Smaller

classification entropy indicates homogeneity, and therefore better clustering.

For each cluster j we compute prj , the probability of the member of the cluster j belongs to the

class r as follows,

prj =
nrj

nj
, (2.120)

where nj is the number of elements in the cluster j, and nrj is the number of class r in the cluster

j. The entropy of the jth cluster can be calculated,

Hj = −
C∑

r=1

prj log prj , (2.121)

where C denotes the number of classes provided in the reference label vector. The total entropy

can be calculated simply as the weighted sum of the entropy of each cluster Hj normalized by the

number of data vectors in the problem set,

VE =
1
N

K∑
j=1

njHj , (2.122)

where nj denotes the number of elements in the cluster j, N denotes the total number of elements

in the problem set, K denotes the number of clusters.

Definition 2.4.11 (Purity). Purity tests the quality of the clustering result against the reference

class label vector. It is used to give an indication of the purity of the cluster by taking the ratio of

the dominant class of the group in relation to the total number of objects inside the group. High

purity is desirable for a good cluster.

For each cluster j we compute prj , the probability of the member of the cluster j belongs to the

class r as follows,

prj =
nrj

nj
, (2.123)

Chapter 2. Literature Review 64

where nj is the number of elements in the cluster j, and nrj is the number of class r in the cluster

j. The purity of the jth cluster is calculated simply as,

purityj = max prj . (2.124)

The total purity can be calculated simply as the weighted sum of the purity of each cluster purityj

normalized by the number of data vectors in the problem set,

VP =
1
N

K∑
j=1

njpurityj , (2.125)

where nj denotes the number of elements in the cluster j, N denotes the total number of elements

in the problem set, K denotes the number of clusters.

Definition 2.4.12 (Percent Misclassified). The percent misclassified is the ratio of false positive

classifications to the number of objects,

VP m =
1
N

K∑
j=1

nj(1 − purityj), (2.126)

= 1 − VP . (2.127)

Definition 2.4.13 (Normalized Mutual Information). Investigating the Normalized Mutual infor-

mation between the cluster labels U and reference class labels R can be a useful indication of the

coherence between the clustering result against a provided reference. The formulation is as follows,

VNMI = NMI(U, R)

=
I(U; R)√
H(U, R)

(2.128)

2.5 Graph Theoretic Clustering

Graph theoretic clustering has been one of the major prerequisites in modern data analysis. Exten-

sive practical usage of graph clustering is apparent in the analysis online socil networks [134–136]

including Facebook, MySpace, LiveJournal, Youtube; Search engines [137] including Google PageR-

ank [138], Bing and Yahoo [139]; Natural language processing; Financial networks and market

analysis [140]; Complex biological networks [141]; and Image segmentation [90]. Graph clustering

is an appropriate tool when the relationship between entities are either directly available or can be

obtained without significant computation issue.

Chapter 2. Literature Review 65

2.5.1 Graph Preliminaries

2.5.1.1 Graph Theoretic Definitions

Definition 2.5.1 (Graph). A graph is an entity which consists of interconnected vertices V and

edges E, where — in the graph theoretic notation — can be written as G = {V,E}. V[N×N] is

the vertex matrix which stores each vertex coordinate vector v ∈ V in R
dim; E[N×N] is the edge

matrix which stores the edge affinity information between each pair of vertices, E ∈ E in R≥0.

Edge affinity matrix is inversely related to the pairwise proximity matrix (e.g. high affinity between

patterns denotes higher similarity and vice versa). Many literatures refers edge affinity as the weight

such that wvw = Evw, where 0 indicates no connection.

Another type of graph is the unweighted graph where edge connectivity is assigned as a boolean

value wvw = [0, 1] where 1 indicates connection while 0 indicates the otherwise.

Graphs can be either directed or undirected. In directed graphs, for (v, w) ∈ V, the edge v → w is

the reversal of w → v and vice versa. In undirected graph direction does not matter, hence edge

matrix is always symmetrical positive definite.

Definition 2.5.2 (Subgraph). G can be partitioned into disjoint subgraphs C{1,...,K} where
K⋃

k=1

Ck =

G and
K⋂

k=1

Ck = ∅.

Definition 2.5.3 (Degree of a vertex). For each vertex V ∈ V, the degree of a vertex is the total

affinity of its edges,

Di =
N∑

j=1

wij , (2.129)

Definition 2.5.4 (Association between vertices). Given A,B ⊂ G, the relative association are

calculated as follows,

A(A,B) =
∑
i∈A

∑
j∈B

wij , (2.130)

which measures the total association between two subgraphs.

Chapter 2. Literature Review 66

Definition 2.5.5 (Volume). Volume / size of a subgraph A ⊆ G can be defined as follows,

vol(A) =
∑
i∈A

di. (2.131)

= A(A,A). (2.132)

Definition 2.5.6 (Volume (alternate definition)). Volume / size of a subgraph A ⊆ G can also be

alternately defined as the number of vertices as follows,

vol(A) = |A|. (2.133)

Definition 2.5.7 (Cut). G can be partitioned into two disjoint subgraphs A and B where A∪B = G

and A ∩ B = ∅, B = G\A simply by removing connecting edges between them. The degree of

dissimilarity between two subgraphs can be computed as total association of the edges that have

been removed,

cut(A,B) = A(A,B). (2.134)

Definition 2.5.8 (Minimum Cut). A graph G can be cut such that the degree of affinity between

A and B is minimized,

mincut(A,B) = minimize cut(A,B), (2.135)

Definition 2.5.9 (Ratio Cut [142]). A graph G can be partitioned such that the degree of affinity

between A and the other subgraphs G\A normalized with the number of vertices in each subgraph

is minimized,

ratiocut(G, K) = minimize
K∑
i

cut(Ai,G\Ai)
|Ai| . (2.136)

Definition 2.5.10 (Normalized Cut [90]). A graph G can be partitioned such that the degree

of affinity between A and the other subgraphs G\A normalized with the weight of edges in each

subgraph is minimized,

normalizedcut(G, K) = minimize
K∑
i

cut(Ai,G\Ai)
vol(Ai)

. (2.137)

2.5.1.2 Constructing Graphs

Several constructions that are often used to transform a given data points into a graph represen-

tation includes the ε-neighborhood, k-nearest neighbor, and Gaussian neighborhood [143].

Chapter 2. Literature Review 67

Definition 2.5.11 (ε-neighborhood graph). Connect all vertices whose pairwise distance is less

than ε such that,

wij =

⎧⎪⎨
⎪⎩

1 if ||vi − vj ||2 < ε

0 otherwise

. (2.138)

Definition 2.5.12 (k-nearest neighbor graph). Connect and assign the appropriate weight to the

vertices vi and vj if either vertices are among the k-nearest neighbor of either vi or vj ,

wij =

⎧⎪⎨
⎪⎩

aij if vi ∈ knn(vj) or vj ∈ knn(vi)

0 otherwise

. (2.139)

Definition 2.5.13 (mutual k-nearest neighbor graph). Connect and assign the appropriate weight

to the vertices vi and vj if both vertices are among the k-nearest neighbor of vi and vj ,

wij =

⎧⎪⎨
⎪⎩

wij if vi ∈ knn(vj) and vj ∈ knn(vi)

0 otherwise

. (2.140)

Definition 2.5.14 (Gaussian neighborhood graph). Local similarity is indicated by a pre-specified

gaussian kernel such that,

aij = φ(vi|vj , σ) =
1√

2πσ2
exp
(

−||vi − vj ||2
2σ2

)
. (2.141)

2.5.2 Agglomerative Linkage Clustering

Agglomerative linkage, or simply agglomerative clustering algorithms treat each object/vertex as a

singleton cluster. Each cluster is recursively merged in pairs, until all clusters have been merged into

a single cluster that contains all vertices. An illustration describing the process of agglomerative

clustering can be seen in Figure 2.13.

The updated proximity matrix can be calculated recursively using Lance-Williams [60] formula:

d(i + j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k) − d(j, k)|, (2.142)

where d(·, ·) denotes the distance between two clusters, i, j, k denote the cluster indices. The Lance-

Williams formula expresses the distance between a cluster k and a merged cluster i+ j. The values

of variables αi, αj , β, and γ are determined by the agglomeration criterion as outlined in Table 2.1.

Chapter 2. Literature Review 68

1

2

3

4 5

6

7

1

1

2

3

4 5

6

7

2

1

2

3

4 5

6

7

3

1

2

3

4 5

6

7

4

1

2

3

4 5

6

7

5

1

2

3

4 5

6

7

6

(a) Recursive formation of clusters in agglomerative linkage clustering.

5 7 2 3 4 1 6

0.1

0.2

0.3

0.4

0.5

E
uc

lid
ea

n
di

st
an

ce

(b) Cluster dendrogram.

Figure 2.13: Agglomerative clustering using single linkage criteria.

Table 2.1: Agglomerative clustering: agglomeration criteria

Agglomeration Criterion αi αj β γ

Single Linkage 0.5 0.5 0 -0.5

Complete Linkage 0.5 0.5 0 0.5

Centroid Linkage
ni

ni + nj

nj

ni + nj

ninj

(ni + nj)2 0

Average Linkage
ni

ni + nj

nj

ni + nj
0 0

Median Linkage 0.5 0.5 -0.25 0

Ward Linkage
ni + nk

ni + nj + nk

nj + nk

ni + nj + nk
− nk

ni + nj + nk
0

ni, nj , and nk denote the cardinality of the set i, j and k, respectively.

Chapter 2. Literature Review 69

From Table 2.1, it is easy to see that agglomeration using single linkage favors connected clusters

while the others favors globular clusters. In fact, the single linkage algorithm closely resembles the

minimum spanning tree (MST) algorithm [144]. The pseudocode can be seen in Algorithm 2.6.

Algorithm 2.6 Agglomerative clustering pseudocode
Input: N × N proximity matrix between each object / clusters.
Output: Cluster dendrogram.

1: while number of clusters > 1
2: Calculate αi, αj , β, and γ for each candidate (refer to Equation 2.142),
3: Merge two clusters with smallest linkage distance (d(i + j, k)),
4: Update the proximity matrix, reduce its order by 1.
5: end while

The agglomerative linkage is attractive and widely used due to its simplicity and capability of

producing a tree-like cluster construction called dendrogram which can be useful in many fields

including computational biology, document clustering, semantics, and genomic. Agglomerative

linkage complexity is at least O(N2).

2.5.3 Maximum Flow: Edmonds-Karp-Dinitz algorithm

This subsection is devoted to a polynomial time maximum-flow algorithm by Edmonds-Karp-Dinitz

(1970-1972) [145, 146] which is based on Ford and Fulkerson’s algorithm [147].

Definition 2.5.15 (Maximum Flow). Suppose we have a non-negative weighted directed graph

G = {V,E} where there exists a source node s and a sink node t, (s, t) ∈ V. The admissible flow

through an edge e ∈ E is constrained by its capacity c(e). Every vertex v ∈ V\{s, t}, has to obey

the flow conservation constraint such that the inflow E+(v) equals the outflow E−(v).

We wish to find the maximum flow |f |(s → t) such that,

Maximize |f | =
∑

e∈E−(s)

f(e), (2.143)

s.t.
∑

e∈E−(v)

f(e) −
∑

e∈E+(v)

f(e) = 0, ∀v ∈ V\{s, t}, (2.144)

0 ≤ f(e) ≤ c(e), e ∈ E. (2.145)

Definition 2.5.16 (s − t cut). An s − t cut is a graph partition (S,V\S) into two disjoint subsets

by removing edges e ∈ C such that s ∈ S and t ∈ V\S. The capacity of S the cut is

c(S,V\S) =
∑
e∈C

c(e). (2.146)

Chapter 2. Literature Review 70

1 2

34
5

6

7

8 9

10

11

12

13

14

15
16

17

18

19

20
21

22
23

24

25

26

27

28

29

30
31 32

33

34

35

36

(a) single linkage.

12
34 5

6

7

8 9

10

11
12

13
14

15
16

17
18

19
20212223

24
25

26

27
28

29
30 31 32 33

34
35

36

(b) complete linkage.

1 2

34
5

6

7

8 9

10

11

12

13

14

15
16

17

18

19

20
21

22
23

24

25

26

27

28

29

30
31 32

33

34

35

36

(c) average linkage.

12
34

5

6

7

8 9

10

11
12

13
14

15
16

17

18
19

202122
23

24
25

26

27

28
29

30 31 32
33

34
35

36

(d) ward linkage.

Figure 2.14: Illustration of agglomerative clustering using various linkage criteria

Definition 2.5.17 (Flow Conservation Constraint). The net flow out of any vertex v is equal to

the net flow, ∑
e∈E−(v)

f(e) −
∑

e∈E+(v)

f(e) = 0 ∀v ∈ V \{s, t}. (2.147)

Definition 2.5.18 (Capacity Constraint). ∀e ∈ E, the maximum permissable flow is constrained

by its capacity,

0 ≤ f(e) ≤ c(e), e ∈ E. (2.148)

Chapter 2. Literature Review 71

Theorem 2.1 (Size of flow). The size of flow |f | is the net outflow of the source vertex,

|f | =
∑

e∈E−(s)

f(e). (2.149)

Proof: As there is no inflow to the source node, by flow conservation constraint we have

|f | =
∑

e∈E−(s)

f(e) −
=0︷ ︸︸ ︷∑

e∈E+(s)

f(e) . � (2.150)

It follows that the net outflow of s is equal to the net inflow of t, hence |f | may be interpreted as

the amount of flow that is sent from s to t.

Definition 2.5.19 (Residual capacity). Given an edge e ∈ E, its residual capacity fr(e) is its

remaining capacity such that,

fr(e) = c(e) − f(e). (2.151)

Definition 2.5.20 (Shortest augmenting path). The shortest augmenting path xp ∈ P is the short-

est traversable path from s to t. Such path can be found in O(|E|) time due to Dinitz [145] using

a breadth-first search (BFS) algorithm on the residual capacity graph.

Definition 2.5.21 (Bottleneck capacity). Given a set of bottleneck edges Eb ⊂ E, a bottleneck

capacity cb = c(e), (e ∈ Eb) limits the maximum permissable s → t flow as constrained by its

residual capacity.

Theorem 2.2 (Maximum-Flow/Minimum Cut Theorem). Let |f |max be a flow of maximum value

and let cut(S,T) be the cut with minimum capacity, the minimum cut is achieved by removing edges

with maximum capacity cut(S,T) = |f |max.

Proof: Let Eb ⊂ E be the set of bottleneck edges and P be the shortest augmenting paths traversed

to maximize |f |. Since the |f | is maximal, the algorithm terminates as s is not anymore reachable

from t due to the saturation of all bottleneck edges (∀e ∈ Eb), fr(e) = c(e) − f(e) = 0. For

each xp ∈ P, the outflow from s is constrained by its bottleneck capacity by definition. As we

have exhausted all such path, the total outflow from s is then equal to the sum of all bottleneck

capacities such that |f | =
∑
e∈Eb

c(e) = c(S,T) = cut(S,T). �

Theorem 2.3 (Menger’s Theorem). Let G = {V,E}, a directed graph, and let (s, t) ∈ V, the

vertices in G. The maximum weight among all flows from s to t in D equals the minimum capacity

among all sets of edges E whose deletion destroys all directed paths from s to t [148].

Proof: The proof follows directly from the Maximum-Flow/Minimum Cut theorem. �

Chapter 2. Literature Review 72

The EKD maximum flow algorithm pseudocode is provided in Algorithm 2.7.

Algorithm 2.7 Edmonds-Karp-Dinitz maximum flow pseudocode
Input: Graph G = V,E, s, t ∈ V.
Output: The maximum s → t flows F.

1: f(e) ∀e∈E←−−− 0.
2: c(e) ∀e∈E←−−− w(e).
3: Let the residual network Gr = {V,Er}, where (∀e ∈ E), fr(e) = f(e) − c(e)
4: while There exists a permissable augmenting path s → t in Gr

5: Let xp be such path with the least number of edges.
6: Let cb = arg min

e∈xp

fr(e), the bottleneck capacity of the path.

7: f(e)
∀e∈xp←−−−− f(e) + cb.

8: Recalculate Gr.
9: end while

10: return (∀e ∈ E), f(e).

Intuitively the algorithm terminates when t is not anymore reachable from s. The minimum cut

are then indicated by the bottleneck edges which flows are at its maximum capacity. A simple

illustration of the algorithm is shown in Figure 2.15. Edges in a this illustration is represented as

flow/capacity (f/c) for clarity.

s t

a

b c

d

0/10

0/12

0/9

0/10

0/1

0/5
0/11

0/8

0/10

s t

a

b c

d

10/10

1/12

0/9

10/10

1/1

0/5
0/11

1/8

10/10
1010

2
1

Graph to be partitioned |f |(s → a → d → t) = 10

|f |(s → b → c → t) = 1

|f | = 11

s t

a

b c

d

10/10

(1 + 5)/12

0/9

10/10

1/1

5/5
5/11

(1 + 5)/8

10/10

/55

((

s t

a

b c

d

10/10

6/12

0/9

10/10

1/1

5/5
5/11

6/8

10/10

5/

|f |(s → b → d → c → t) = 5 Maximum Flow = Minimum cut

|f | = 11 + 5 = 16

Figure 2.15: A simple illustration of the Edmonds-Karp-Dinitz algorithm for finding the max-
imum flow / minimum cut of a graph. Bottleneck edges are noted in red in the equations.

Chapter 2. Literature Review 73

2.5.3.1 Complexity Analysis

A drawback to the s − t cut is that it returns a minimum cut given s and t, which is a locally

minimum cut of G, by definition. Consequently, the globally minimum cut can be computed in

polynomial time by fixing s and varying t over all vertices, which implies |V| − 1 cut phases. The

overall computational complexity of the algorithm is therefore O(|E||V|2) due to the following.

Calculation of BFS requires O(|E|). As for each augmentation there is at least 1 edge saturated,

the maximum flow at a given t can therefore be calculated in at most O(|E||V|) time. Reiterating

over all possible t we have O(|E||V|2).

2.5.4 Stoer-Wagner’s Deterministic Minimum Cut Algorithm

Stoer-Wagner proposed a simple and elegant deterministic non-flow algorithm for calculating the

global minimum cut of a graph [149]. The algorithm is devised to operate on undirected weighted

graph G = {V,E} with nonnegative real weights (∀e ∈ E), w(e). Unlike flow algorithms, Stoer-

Wagner’s algorithm is insensitive to s and t initialization. To obtain the global optimum cut, one

simply elect a starting node a ∈ V, which can also be chosen randomly.

Theorem 2.4 (Stoer-Wagner’s Theorem [149]). Let s and t be two vertices of a graph G. Let

G/{s, t} be the graph obtained by merging s and t. A minimum cut of G can be obtained by taking

the smaller of a minimum s − t-cut of G and a minimum cut of G/{s, t}.

The theorem holds since either there is a minimum cut of G that separates s and t, then a minimum

s − t-cut of G is a minimum cut of G; or there is none, then a minimum cut lies elsewhere in the

merged graph G/{s, t}. This theorem implies that the globally minimum cut can be obtained by

recursively finding arbitrary minimum s − t-cut of a graph on each G/{s, t} [149].

Definition 2.5.22 (Contraction). The contraction of an undirected graph G = {V,E} by an edge

e(u, v) ∈ E, (u, v) ∈ V is a graph G
′ = {V′,E′} where V

′ = V − {u, v} ∪ {x}. Here x ∈ V is a

new vertex. The set of edges E
′ is formed from E by deleting the edge e(u, v) and, for each vertex

w ∈ V incident to u or v, deleting whichever of e(u, w) ∈ E and e(v, w) ∈ E, and connecting it with

the vertex x by adding the new edge e(x, w). The weight of the consolidated edges is the sum of

the two edges that now coincides, e.g. for the deletion of e(v, w) we have w{u,w},x = wu,x + ww,x.

The time complexity of contraction is O(|V|).

Definition 2.5.23 (Most tightly connected vertex). Let A ⊂ V be a subgraph. The most tightly

connected vertex z ∈ V is the vertex y ∈ V, y �∈ A incident to A which association A(A, y) is

Chapter 2. Literature Review 74

maximum,

z = arg max
y �∈A

A(A, y). (2.152)

Recall that the association between A to y refers to total weights of the connections from A to the

vertex y.

Stoer-Wagner’s algorithm is as follows. Two most tightly connected edges are recursively contracted

starting from an arbitrary vertex a ∈ V. The algorithm pseudocode is shown in Algorithm 2.8.

Algorithm 2.8 Stoer-Wagner minimum cut pseudocode
Input: Weighted graph G = {V,E}, edge weights (∀e ∈ E), w(e), and any starting vertex a ∈ V.
Output: The global minimum cut MC = {{S}, {V\S}}.

1: A ← {a}.
2: while |V| > 1
3: {CP,G} ← MinimumCutP hase(G, w, a)
4: if cut(CP) < cut(MC)
5: MC ← CP

6: end if
7: end while
8: return MC.
Input: Weighted graph G = {V,E}, any starting vertex a ∈ V.
Output: min-cut of the phase CP = {{A}, {V\A}}, contracted graph G

′ = {V′,E′}.
1: function MinimumCutP hase(G, w, a).
2: A ← {a}.
3: while A �= V

4: let z �∈ A be the most tightly connected vertex to A.
5: if |A| − |V| == 2
6: s ← z.
7: end if
8: if |A| − |V| == 1
9: t ← z.

10: CP ← {{A}, {V\A}}.
11: G

′ ← contract((s, t) ∈ G)
12: end if
13: A ← contract(A, z).
14: end while
15: return {CP,G′}.
16: end function

2.5.4.1 Complexity Analysis

Stoer and Wagner proposes that the overall complexity of the algorithm is O(|E||V | + |V |2 log |V |)
[149] due to the following. The complexity of the algorithm lies in the MinimumCutPhase function.

The computation for contract can be made efficient using priority queue and Fibonacci heaps.

During each phase we assign every vertices not in A in the priority queue. On each contraction, we

need to remove the most tightly connected vertex by removing it from the queue. For each deletion

Heap-ExtractMax (O(log |V|)) need to be called once. The weight for the consolidated edge can

Chapter 2. Literature Review 75

be calculated easily by calling Heap-IncreaseKey (O(1)). Hence MinimumCutPhase requires

overall |V| Heap-ExtractMax and |E| Heap-IncreaseKey operations, which accumulates to

O(|E| + |V| log |V|). The total complexity for investigating all vertices in V is therefore O(|E||V| +

|V|2 log |V|) [149]. An illustration of the execution of the Stoer-Wagner’s algorithm on a simple

graph can be seen in Figure 2.16.

2.5.4.2 Proof of correctness

Lemma 2.5.1 (Optimality of MinimumCutPhase). MinimumCutPhase would always return a min-

imum s − t cut for G.

Proof: The proof by induction below is quoted from Stoer-Wagner’s manuscript [149].

Let C = (S,V\S) be an arbitrary s − t cut and let CP be the cut of the phase. Let (u, v) ∈ V be

the two vertices added during an execution of MinimumCutPhase, where v is added to A before u.

We define two sets Au and Av as two sets of vertices where Au is a set of vertices added to A before

u and Av is similarly defined. Let Cu be the induced cut of the set Au ∪ u, and Cv be the induced

cut of the set Av ∪ v. Clearly when s ← u and t ← v, then Cv = CP.

We define w(Au, u) as the sum of weights in Au connected to u, and w(Cu) as the sum of weights

in Cu after inducing the cut. It is then obvious that ∀u, w(Au, u) ≤ w(Cu) by definition since the

edge connecting Au to u is the only edges that cross the cut at Cu.

The proof can be provided by induction,

w(Au, u) = w(Av, u) + w(Au\Av, u)

≤ w(Cv) + w(Au\Av, u)

≤ w(Cu).

(2.153)

Since t is always an active vertex due to the fact that it is merged last, we can conclude that:

w(At, t) ≤ w(Ct)

≤ w(C),
(2.154)

which states directly that the CP would be at most as heavy as C. �

Chapter 2. Literature Review 76

s t

a

b c

d

10

12

9

10

1

5
11

8

10

t

a

s,b c

d

19

10

1

5
11

8

10

t

s,b,a

c

d
15

1 11

8

10

t

c

s,b,a,d

12

8

10

t

s,b,a,d,c

18

Phase 1: cut(s, t) = 18

s

a

b c,t

d

10

12

19

10

1

5
21

a

s,b c,t

d

29

10

1

5
21

s,b,a

c,t

d
15

1 21

c,t

s,b,a,d

22

Phase 2: cut(s, t) = 22

s

a

b

d,c,t

10

12

19

10

6

a

s,b

d,c,t

29

10

6

s,b,a d,c,t
16

Phase 3: cut(s, t) = 16

s

a,d,c,t

b

10

12

25

s,b

a,d,c,t

35

Phase 4: cut(s, t) = 35

s

b,a,d,c,t

22

Phase 5: cut(s, t) = 22

Figure 2.16: A simple illustration of Stoer-Wagner’s algorithm. The minimum cut is obtained
at Phase 3 ({s,b,a}{d,c,t}).

2.5.5 Stochastic Flows

Stochastic flow simulates random walk through the connected vertices in the graph [150]. The

weight of each edge represents the strength of interaction between two vertices. Intuitively, the

more adjacent two vertices are, the stronger the interaction and therefore the more probable a

random walker would traverse through the edge. In other words, in stochastic flows, adjacency

matrix functions as the Markov probability transition matrix.

Chapter 2. Literature Review 77

2.5.5.1 Theoretical Framework

Definition 2.5.24 (Stochastic Matrix). Given an undirected weighted graph G = {V,E} with

nonnegative real weight (∀e ∈ E), w(e) stored in an adjacency matrix A[|V|×|V|]. We can calculate

M[|V|×|V|], a column-stochastic matrix, where (∀j),
|V |∑
i=1

mij = 1, such that the ith column of M

represents the probability of transitioning from vertex vi to vj , (vi, vj ∈ V) as follows,

M = AD−1, (2.155)

where D is the diagonal degree matrix with dii =
|V|∑

j=1

aij . The matrix M is also referred to as the

canonical transition matrix MG.

Theorem 2.5 (Stationary Distribution). A stationary probability vector πT is a row vector whose

values do not change under application of the transition matrix,

πT M = πT . (2.156)

Theorem 2.6 (Perron-Frobenius Theorem). A random walk corresponds to a homogenous Markov

chains with transition probability of M. This matrix is ergodic and will converge to its stationary

distribution π independent of any initial distribution i,

lim
r→∞(Mr)ij = πT

j , (2.157)

where πj is the jth row of the matrix π. According to Perron-Frobenius theorem on stochastic

matrix, the largest eigenvalue of such matrix is always equal to 1 (λ1 = 1). The mixing speed or

convergence rate will be determined by the conditions of the other eigenvectors where λ2 ≥ λ3 ≥
. . . λ|V|.

Proof: Let us define an eigensystem xT M = λx. Since M is a column-stochastic matrix, by

definition we have 0 ≤ mij ≤ 1 and
∑

i

mij = 1 which makes xT M a convex matrix multiplication

for any value < 1. In fact, the Perron-Frobenius eigenvector for this eigensystem is a vector of

ones 1. The eigenvalue of such vector is then to be expected: 1T M = 1. Since
=1︷︸︸︷
λ1 ≥ λ2 ≥

λ3 ≥ . . . λ|V|, with sufficiently large r the eigenvalues will vanish at a specific rate such that
=1︷︸︸︷
λr

1 ≥
<<1︷ ︸︸ ︷

λr
2 ≥ λr

3 ≥ . . . λr
|V| as r → ∞. This theorem is an extensively large subject in Markovian

literature [151] hence the proof presented here, although incomplete, is sufficient to show the

Chapter 2. Literature Review 78

correctness of the theorem. Readers are encouraged to refer to [151] for in-depth discussion and

proofs on mixing rate and uniqueness of such π. �

Theorem 2.7 (Markov Chain and its Spectral Connection). Given there is a clear separation

between clusters, for large r, cluster assignments are shown in the eigenvectors.

Proof: We can express our Markov chain as follows [152],

P(t) = AD−1P(t − 1)

P(t) = D1/2
[
D−1/2AD−1/2

]
D−1/2P(t − 1)

= D1/2
[
D−1/2AD−1/2

]
D−1/2D1/2

[
D−1/2AD−1/2

]
D−1/2P(t − 2)

= D1/2
[
D−1/2AD−1/2

]r
D−1/2P(t − r).

(2.158)

As of Equation 2.158, the ergodicity of the Markov Chains clearly expresses a rather interesting

spectral connection as follows,

Mr = D1/2
[
D−1/2AD−1/2

]r
D−1/2. (2.159)

The symmetric matrix
[
D−1/2AD−1/2

]
can be written in term of its eigendecomposition,

[
D−1/2AD−1/2

]r
= λr

1x1xT
1 + λr

2x2xT
2 + . . . + λT

|V|x|V|xT
|V|. (2.160)

The eigenvalues for this symmetric matrix are obviously the same as those of P, while the eigen-

vectors are premultiplied with D−1/2. Since the largest eigenvalue λ1 = 1, and λ{2,...,|V|} < 1, as

r → ∞ we have,

M∞ = D−1/2x1xT
1 D−1/2, (2.161)

if and only if λ2, λ3, . . . , λ|V| vanishes at m → ∞.

Consider now that a graph contains two subgraphs (A,B) ⊂ G,A = G\B. In such situation there

is a relatively small probability to transition from vertices in A to B and vice versa. With λ1 = 1,

λ2 < 1, at least the second eigenvector shall remain strong for sufficiently large r, hence we have,

Mr ≈ D−1/2 (x1xT
1 + λr

2x2xT
2
)

D−1/2. (2.162)

Looking at the transition matrix produced by the second eigenvector (x2xT
2)ij = x2ixT

2j we un-

derstand that these are the indicators for the subgraphs A and B since the resulting matrix would

have a strong transition between i and j when both have the same sign. It then follows easily that

for K clusters, there will be at least K nonzero eigenvalues. �

Chapter 2. Literature Review 79

We now have the sufficient theoretical framework to proceed with the formal clustering algorithm.

2.5.5.2 Markov Clustering Algorithm

Stochastic flow is also known as the Markov Clustering Algorithm (MCL), originally proposed by

van Dongen in 2000 [150]. In 2009, Satuluri and Parthasarathy proposed the Regularized MCL

(R-MCL), introducing a regularization parameter for preventing oversegmentation [153]. Satuluri

and Parthasarathy also appropriately addresses the scalability issue apparent in MCL. In the

manuscript a multiscale R-MCL using graph coarsening is proposed.

The MCL algorithm is an iterative process of applying two operators, namely expansion and

inflation, on an initial stochastic matrix M, in alternation, until convergence where M expresses a

single connection to the central node of each cluster (e.g. only 1 nonzero element in each column).

At convergence, eigendecomposition of M will reveal K eigenvectors with nonzero eigenvalues

where K is the number of cluster, in conjunction with Theorem 2.7.

Definition 2.5.25 (Expansion). Expansion can be understood as a random walk, starting from

an initial distribution M, hence strengthening the first eigenvector and weakening the rest. The

operation is as follows,

Mexpansion = Expand(M) = MM. (2.163)

Definition 2.5.26 (Inflation). Inflation can be understood as a graph thickening operation. This

operation strengthens stronger flows and weakens already weak flows. The operation is as follows,

Minflation = Inflate(M) = 〈M〉t D−1
〈M〉t , (2.164)

D〈M〉t = (
∑

j

〈M〉t), (2.165)

where 〈·〉t denotes tth Hadamard power (element-wise power) of a matrix. D−1
〈M〉t corresponds to

the inverse of the (diagonal) degree matrix of 〈M〉t, which normalizes each column such that it

sums to 1.

Definition 2.5.27 (Prune). In each column, values that are ‘small’ in relation to the other entries

are pruned to conserve memory. The heuristics utilized in the pruning operation employs a dynamic

threshold based on the mean and maximum value of a column as follows,

thj = α
1

|V|
∑

j

M2
j

⎛
⎝1 − β

⎡
⎣maxj(M2

j) − 1
|V|
∑

j

M2
j

⎤
⎦
⎞
⎠ , (2.166)

Chapter 2. Literature Review 80

where 0 < α ≤ 1 and β = {1, 8} ∈ R. The motivation of the heuristic depends on the fact that if

the maximum value of a column is close to its mean, then the probability distribution of the large

nonzero component in that column is rather uniformly distributed [150].

Another possible simpler heuristic is by only considering the mean as follows,

thj = α

⎛
⎝ 1

|V|
∑

j

M2
j

⎞
⎠β

, (2.167)

where 0 < α ≤ 1 ≤ β. Finally the prune operation is carried as follows,

Prune(M) = M (∀i,∀j)←−−−− mij =

⎧⎪⎨
⎪⎩

mij if mij > thj

0 otherwise

(2.168)

Definition 2.5.28 (Interpretation). At convergence, M will express a single connection to the

central node such that each column has only 1 nonzero element. These central nodes should be

interpreted as the cluster centroids which govern the surrounding data points. One can perform

an Eigendecomposition on M, which would reveal K eigenvectors with nonzero eigenvalues where

K is the number of clusters as a consequence of Theorem 2.7.

The pseudocode of MCL is shown in Algorithm 2.9.

Algorithm 2.9 Markov Clustering (MCL) algorithm pseudocode
Input: Adjacency matrix A, inflation constant t, pruning constant α, β.
Output: Crisp clustering U.

1: A← A+ I
2: M← AD−1

3: repeat
4: M← Expand(M)
5: M← Inflate(M, t)
6: M← P rune(M, α, β)
7: until M converges,
8: return U ← interpret(M)

2.5.5.3 Regularized Markov Clustering

With motivation to normalizes the edges in a graph with respect to their co-connectivity, Satuluri

and Parthasarathy [153] suggest normalizing A as follows,

A (∀i,∀j)←−−−− aij =
aij

dii
+

aij

djj
, (2.169)

where dii and djj are the degree of vertices i and j respectively.

Chapter 2. Literature Review 81

Lemma 2.5.2 (Expansion Regularization). Let qi be the current flow distribution of a vertex in a

graph and wi be the respective normalized weight,
∑

i

wi = 1. The distribution q∗ for each vertex

in qi minimizes its divergence with respect to its neighbors when

q∗(x) =
|V|∑
i=1

wiqi(x). (2.170)

Proof: We wish to find the distribution q∗ for each vertex such that its divergence with respect

to its neighbors is minimized. Formally, we can express this regularization requirement in terms of

minimizing the KL-divergence between each column [153],

minimize
q∗(x)

f(q∗(x), qi(x))
|V|∑
i=1

wiKL(qi(x)||q∗(x)),

s.t.
∑

x

q∗(x) = 1,

(2.171)

where we know that KL(qi(x)||q∗(x)) =
∑

x

(−qi(x) log q∗(x) + qi(x) log qi(x)). Using lagrange

multiplier λ for the constraint and taking the first derivative w.r.t q∗(x) equals to 0 we have,

L(q∗(x), qi(x)) =
|V|∑
i=1

wi

(∑
x

[−qi(x) log q∗(x) + qi(x) log qi(x)]

)
+ λ

(∑
x

q∗(x) − 1

)

=
|V|∑
i=1

∑
x

wi [−qi(x) log q∗(x) + qi(x) log qi(x)] + λ

(∑
x

q∗(x) − 1

)

∂L(q∗(x), qi(x))
∂q∗(x)

= −
|V|∑
i=1

wi
qi(x)
q∗(x)

+ λ = 0

q∗(x) =
|V|∑
i=1

wiqi(x)
λ

.

(2.172)

Imposing the constraint
∑

x

q∗(x) = 1,

∑
x

q∗(x) =
∑

x

|V|∑
i=1

wiqi(x)
λ

= 1

λ =
|V|∑
i=1

wi

=1︷ ︸︸ ︷∑
x

qi(x) =

=1︷ ︸︸ ︷
|V|∑
i=1

wi = 1.

(2.173)

Finally, substituting λ into Equation 2.172 we have a minimum at q∗(x) =
|V|∑
i=1

wiqi(x). �

Chapter 2. Literature Review 82

A consequence of Lemma 2.5.2 is Satuluri and Parthasarathy’s redefinition of expansion [153] as

given in the following.

Corollary 2.5.1 (Regularized Expansion). Due to Lemma 2.5.2, it follows that the integrity of

the stochastic matrix M can be conserved by regularizing its expansion on its canonical distribu-

tion MG. Satuluri and Parthasarathy referred this proposition in their original manuscript as

‘regularize’ [153] which mechanism is as follows.

Mregularized = Regularize(M, MG) = MMG. (2.174)

The algorithmic proposition of R-MCL is thus shown in Algorithm 2.10. An illustration of the

final clustering output for both MCL and R-MCL is shown in Figure 2.17.

Algorithm 2.10 Regularized Markov Clustering (R-MCL) algorithm pseudocode
Input: Adjacency matrix A, inflation constant t, pruning constant α, β.
Output: Crisp clustering U.

1: A← A+ I,
2: M←MG ← AD−1.
3: repeat
4: M← Regularize(M,MG),
5: M← Inflate(M, t),
6: M← P rune(M, α, β),
7: until M converges,
8: return U ← interpret(M).

(a) MCL (b) R-MCL

Figure 2.17: Illustration of MCL and R-MCL for clustering the Five Gaussians dataset

2.5.6 Spectral Clustering

The spectral clustering emerges as a relatively novel paradigm to data partitioning based on the

spectral graph theory [61, 90]. It is relatively simple to implement and can be solved efficiently

Chapter 2. Literature Review 83

using standard linear algebra.

The minimum cut of a graph can be obtained using various algorithms from the Maximum Flow

family or Stoer-Wagner deterministic cut as has been covered in the previous subsections. Spectral

clustering, however, addresses graph partitioning from a different point of view. As a general

remark, the spectral clustering concerns more on the analysis of a graph in term of its spectral

characteristics in the eigenspace. Such paradigm allows spectral clustering to recover roughly the

automatic number of cluster based on its eigendecomposition. However a well known problem with

spectral clustering is its oversensitivity to noisy information.

2.5.6.1 Ratio Cut

Definition 2.5.29 ((Unnormalized) Graph Laplacian). Given an weighted undirected graph G =

{V,E} with the adjacency / weight between vertices stored in A. The unnormalized graph Lapla-

cian matrix is defined as

L = D − A, (2.175)

Theorem 2.8 (Unnormalized Graph Laplacian and Ratio Cut [142]). For every vector u ∈ R
|V|,

L satisfies the following property,

uT Lu =
1
2
∑

i

∑
j

aij(ui − uj)2, (2.176)

which minimization yields the ratio cut of G.

Proof: by definition of the degree of a vertex di =
∑

j

aij , dj =
∑

i

aij , and di = dj we have,

uT Lu = uT Du − uT Au,

=
∑

i

diu
2
i −
∑

i

∑
j

aijuiuj ,

=
1
2

⎛
⎝∑

i

∑
j

aiju2
i − 2

∑
i

∑
j

aijuiuj +
∑

i

∑
j

aiju2
j

⎞
⎠ ,

=
1
2
∑

i

∑
j

aij(ui − uj)2. �

(2.177)

Recall the objective function of ratio cut,

ratiocut(G, K) = minimize
K∑
i

cut(Ai,G\Ai)
|Ai| ,

Chapter 2. Literature Review 84

where Ai denotes the ith subgraph. If we define a cluster assignment matrix UN×K , which we

relax such that it contains real numbers with the constraint UT U = I, we can express the ratio

cut as a trace minimization problem,

ratiocut(G, K) = minimize
U

Tr
(
UT LU

)
.

minimize
U

1
2

K∑
k=1

|V|∑
i=1

|V|∑
j=1

aij(uik − ujk)2.

s.t. UT U = I.

(2.178)

Using Lagrange multiplier λ for the constraint, the solution to the minimization problem can be

obtained by taking the first partial derivative of the Lagrangian function with respect to U and

setting it to 0 as follows.
L(U) = UT LU − λ

(
UT U − I

)
,

∂L

∂U
= 2LU − 2λU,

= (L − λI) U = 0.

(2.179)

Equation 2.179 is readily recognizable as an eigensystem formulation for L. The first eigenvector

provides the minimum eigenvalue of 0 (λ1 = 0) however it does not carry the necessary information

since all entries in u1 are 1/
√

|V|. The ratio cut solution is obtained by observing the first K

eigenvectors starting from the second, u2, u3, . . . , uK , . . . where 0 = λ1 ≤ λ2 ≤ . . . λK ≤ . . . ≤ λ|V|

[142]. �

The ratio cut algorithm pseudocode can be seen in Algorithm 2.11.

Algorithm 2.11 Spectral clustering (ratio cut) algorithm pseudocode
Input: Adjacency matrix A,
Output: Crisp clustering U.

1: L← D−A,
2: [U1,...,K , λ] ← Lanczos eigensolver ((L− λI)U = 0)
3: K ← eigengap(λ)
4: return U ← k-means(U1,...,K , K).

2.5.6.2 Normalized Cut

Definition 2.5.30 (Symmetric (normalized) Graph Laplacian). Symmetric graph Laplacian ma-

trix [61] is defined as
Lsym = D−1/2LD−1/2,

= I − D−1/2AD−1/2.
(2.180)

Chapter 2. Literature Review 85

Definition 2.5.31 (Random Walk (normalized) Graph Laplacian). Random walk graph Laplacian

matrix [61] resembles the stochastic flows as was previously discussed.

Lrw = D−1L,

= I − D−1A.
(2.181)

Theorem 2.9 (Normalized Graph Laplacian and Normalized Cut [90]). For every vector u ∈ R
|V|,

both Lsym and Lrw satisfies the following property,

uT Lsymu =
1
2
∑

i

∑
j

aij

(
ui√
di

− uj√
dj

)2

, (2.182)

which minimization yields the normalized cut of G.

Proof: Solving uT Lsymu similarly to Theorem 2.8 we have

uT Lsymu = uT D−1/2DD−1/2u − uT D−1/2AD−1/2u,

=
∑

i

di

(
ui√
di

)2

−
∑

i

∑
j

aij
ui√
di

uj√
dj

,

=
1
2

⎛
⎝∑

i

∑
j

aij

(
ui√
di

)2

− 2
∑

i

∑
j

aij
ui√
di

uj√
dj

+
∑

i

∑
j

aij

(
uj√
dj

)2
⎞
⎠ ,

=
1
2
∑

i

∑
j

aij

(
ui√
di

− uj√
dj

)2

. �

(2.183)

Recall the objective function of normalized cut,

normalizedcut(G, K) = minimize
K∑
i

cut(Ai,G\Ai)
vol(Ai)

,

where Ai denotes the ith subgraph. In normalized cut, the constraint for U requires the weight of

each vertex to be taken into consideration such that UT DU = I. The minimization is therefore as

follows,

normalizedcut(G, K) = minimize
U

Tr
(
UT LsymU

)
.

minimize
U

1
2

K∑
k=1

|V|∑
i=1

|V|∑
j=1

aij

(
uik√

di

− ujk√
dj

)2

.

s.t. UT DU = I.

(2.184)

Chapter 2. Literature Review 86

Using Lagrange multiplier λ for the constraint, the solution to the minimization problem can be

obtained by taking the first partial derivative of the Lagrangian function with respect to U and

setting it to 0 as follows.

L(U) = UT LsymU − λ
(
UT DU − I

)
,

∂L

∂U
= 2LsymU − 2λDU = 0.

LsymU = λDU,

(2.185)

which is the generalized eigenproblem as in Shi and Malik’s proposition [90]. Let Z = D1/2U and

Lsym = D−1/2LD−1/2 we have the eigensystem of Lrw,

D−1/2LZ = λD1/2Z,

D−1LZ = λZ,

LrwZ = λZ.

(2.186)

Solutions to both Equation 2.185 and Equation 2.186 are obtained by solving the eigenproblems.

Similarly to ratio cut, observing the first K eigenvectors starting from the second returns the

relaxed solution to the normalized cut. �

One way to estimate the number of clusters is to observe the eigengap, which is the largest de-

viation between subsequent eigenvalues. Finally, executing k-means on the eigenspace projection

easily recover the desired clustering. The normalized cut algorithm pseudocode can be seen in

Algorithm 2.12. An illustration of spectral clustering can be seen in Figure 2.18.

Algorithm 2.12 Spectral clustering (normalized cut) algorithm pseudocode
Input: Adjacency matrix A,
Output: Crisp clustering U.

1: L← D−A,
2: [U1,...,K , λ] ← Lanczos eigensolver (LU = λDU)
3: K ← eigengap(λ)
4: return U ← k-means(U1,...,K , K).

2.6 Consensus Clustering

Following the discussion in the prior sections, we are well aware that divisive algorithms are limited

to discovering globular clusters and the capability of graph clustering to recover the information

about natural clusters. Even though the formulation of divisive algorithms enables them to assume

near to linear complexity, this same formulation also discards every information concerning the

Chapter 2. Literature Review 87

(a) (Sparse) Consensus graph. (b) The adjacency / consensus matrix.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

K

ei
ge

nv
al

ue

(c) 5 connected components are found
from eigengap analysis.

1

0.5

0

0.5

1

1

0.5

0

0.5

1
1

0.5

0

0.5

1

eigenvector 2eigenvector 3

ei
ge

nv
ec

to
r 4

(d) Projection of the graph Laplacian in
the eigenspace.

Figure 2.18: Illustration of spectral (normalized cut) clustering on the Five Gaussians dataset
using the graph obtained from consensus clustering.

inter/intracluster connectivity, which happens to be two important measures for quantifying density

[63]. Divisive algorithms also generally fail in discovering the correct cluster in non-convex datasets

[3]. Such scenario can be seen in Figure 2.19.

An additional shortcoming common to all the iterative, greedy search-based clustering methods

is their sensitivity to the parameter choices and initialization, making the results from divisive

clustering inconsistent, therefore harder to trust. Cluster validity measure as discussed in the

previous chapter helps to an extent to gain confidence in term of the significance of the divisive

clustering result, both in term of number of clusters and correctness of assignments. However,

since external objective criterion is generally unavailable in exploratory data analysis, any validity

measure, no matter how complete it might seem, would still remain an illusive measure.

Dealing with non-convexity, proximity graph based methods are often preferred over prototype

based methods. However, as the amount of data grow, the amount of space and computational

power requirement for these methods expands exponentially to a point where execution of the

Chapter 2. Literature Review 88

(a) k-means, k = 3. (b) Single linkage.

(c) Spectral Clustering. (d) Ensemble Clustering.

Figure 2.19: Various clustering results on non-convex clusters. Prototype based methods ex-
perience difficulty on non-convex clusters in general.

algorithm become practically impossible. When clustering data with large volume, analysts are

often forced to return to divisive algorithms due to feasibility reasons, even though it lacks the

intuitiveness and visual interpretability of Hierarchical clustering [92].

Consensus [92] also called Ensemble [91] Clustering is a relatively new concept in data clustering

[91, 92]. The method seeks to benefit from the strengths of both divisive and agglomerative

clustering algorithms. Consensus/Ensemble clustering uses numerous monte-carlo runs of divisive

clustering algorithms under perturbed data for obtaining the consensus matrix [64, 92]. It has been

argued that the natural, and arguably, optimum clusters can be validated with higher confidence

by analyzing the stability of this matrix [64, 92]. The consensus matrix provides a more objective

Chapter 2. Literature Review 89

measure of similarity from which the natural cluster can be recovered using the appropriate graph

theoretic method [64, 91, 107].

2.6.1 Definitions

Definition 2.6.1 (Consensus Matrix). Assuming that we have M clustering results from any

clustering algorithms, the consensus matrix C — also referred to as the Co-association matrix in

[55, 64, 66, 76, 91] — is an N × N matrix which describes the accumulated evidence regarding the

stability of an item in relation to the other items in the data. Figure 2.20 shows the consensus

matrices of five Gaussians and uniform data.

Definition 2.6.2 (Consensus adjacency matrix). A consensus matrix provides an information

regarding item adjacency that can be used in conjunction with an agglomerative hierarchical clus-

tering algorithm to construct a dendrogram. The conversion from consensus matrix C to consensus

adjacency matrix D is as follows,

D = 1 − C. (2.187)

An illustration of a dendrogram constructed from the consensus adjacency matrix of five Gaussians

dataset is shown in Figure 2.20.

2.6.2 Monti’s Consensus Clustering

Monti et al. proposes that robust clusters should be stable when subjected to sampling variability.

Monti’s consensus resampling method constitutes the Consensus matrix from numerous resampling

of the data as follows,

CMonti(s, t) =

M∑
i=1

vote(s, t|Cm)

M∑
i=1

indicator(s, t|Xm)

(2.188)

vote(s, t|Cm) =

⎧⎪⎨
⎪⎩

1 if both item s and t belong to the same cluster in Cm

0 otherwise

, (2.189)

indicator(s, t|Xm) =

⎧⎪⎨
⎪⎩

1 if both item s and t are present in the dataset Xm

0 otherwise

, (2.190)

Chapter 2. Literature Review 90

0

0.05

0.1

0.15

0.2

(a) Uniform data.

0

0.2

0.4

0.6

0.8

1

(b) Five Gaussians data.

Figure 2.20: The consensus matrices and dendrogram of five Gaussians and uniform data.

Chapter 2. Literature Review 91

where CMonti(s,t) denotes Monti’s consensus index, vote denotes the co-occurrence of an item,

indicator is a boolean matrix which denotes inclusion of a data pair in the random sample Xm,

Cm∈{1,...,M} denotes clustering results, and s, t ∈ {1, . . . , N} denotes item indices.

Definition 2.6.3 (Consensus Stability). Monti et al. proposes measures that can be used to quan-

tify the stability of each cluster, and to rank items within a given cluster [92]. For each cluster

Ck obtained after k-cuts of the graph constructed from the consensus matrix, the cluster and item

stabilities can be calculated as follows,

Scluster(Ck) =
1

|Ck|(|Ck| − 1)/2
∑

s,t∈Ck
s<t

C(s, t), (2.191)

Sitem(s|Ck) =
1

(|Ck| − 1)
∑
t∈Ck
t�=s

C(s, t). (2.192)

The cluster stability Scluster measures the average consensus index between all pairs of items

belonging to the same cluster. It operates on the strictly upper triangular of the consensus matrix.

The item stability Sitem measures the average consensus of an item s relative to all other items in

cluster Ck. Stability can be used to determine the appropriateness of a consensus result as shown

in Figure 2.21.

Definition 2.6.4 (Consensus Distribution). For a given a consensus matrix, the corresponding

histogram and empirical cumulative distribution function CDF can be calculated as follows,

hist(c) =
∑
s<t

(c − δ) < C(s, t) ≤ (c + δ), (2.193)

CDF (c) =

∑
s<t

C(s, t) ≤ c

N(N − 1)/2
. (2.194)

Observing the histogram and CDF of a consensus matrix gives an elegant view on the quality of a

consensus clustering. A good consensus matrix generally have high concentration of zeros, which

indicates good separation between clusters. An illustration is given in Figure 2.22. The area under

the curve for uniform data is much lower than Five Gaussians.

Chapter 2. Literature Review 92

2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

m
in

 {c
lu

st
er

 s
ta

bi
lit

y}

(a) min
k∈{1,...,K}

{Scluster(Ck)}

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

K
m

ax
 {i

te
m

 in
st

ab
ilit

y}

(b) max
k∈{1,...,K}
s∈{1,...,N}

s�∈Ck

{Sitem(s|Ck)}

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

K

ei
ge

nv
al

ue

(c) eigengap analysis

1
2

3
4

1
2

3
4

0

0.5

1

1 2 3 4 5
1

2
3

4
5

0

0.5

1

1 2 3 4 5 6
1 2 3 4 5 6

0

0.5

1

1 2 3 4 5 6 7
1 2 3 4 5 6 7

0

0.5

1

Forced K = 4 Forced K = 5 Forced K = 6 Forced K = 7

(d) Cluster stability matrices for various K. Unstable clusters begin to form at K > 5.

Figure 2.21: Stability of the five Gaussians data under various K. Item instability sharply increases
when K is increased from K=5 to K=6. Consensus stability analysis aligns with the results from eigengap
analysis. As instability needs to be minimized, number of clusters above K = 5 would not be desirable.

2.6.3 Evidence Accumulation

The Evidence Accumulation (EAC) uses multiple runs of k-means with various K followed by an

agglomerative linkage clustering [64, 91]. The consensus matrix is calculated as follows,

CEAC(s, t) =
1

M

M∑
m=1

vote(s, t|Cm) (2.195)

vote(s, t|Cm) =

⎧⎪⎨
⎪⎩

1 if item s and t belong to the same cluster in Cm

0 otherwise

, (2.196)

where Cm∈{1,...,M} denotes clustering results, and s, t ∈ {1, . . . , N} denotes item indices.

Chapter 2. Literature Review 93

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

(a) Consensus histogram of a Uni-
form data.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

(b) Consensus histogram of the Five
Gaussians data.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Consensus CDF of a Uniform
data. AUC = 0.55.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) Consensus CDF of the Five Gaus-
sians data. AUC = 0.89.

Figure 2.22: The consensus distribution and CDF of five Gaussians and uniform data.

EAC calculation can be conveniently expressed in term of matrix multiplication as follows,

CEAC =
1

M

M∑
m=1

Um
T Um. (2.197)

where Um is a dim × N matrix which denotes the crisp partitions obtained from the mth run of

k-means.

The final partition is then determined using an appropriate linkage clustering (e.g. single/average/-

complete/ward linkage). Clusters recovered using single linkage are biased towards connectivity

while clusters recovered using average, complete or ward linkage are biased towards tight intercon-

nectedness.

Definition 2.6.5 (K-lifetime and the highest lifetime criterion). Fred and Jain define K-cluster

lifetime as the range of threshold values on the dendrogram that lead to the identification of K

clusters. Applying lH to the corresponding dendrogram maximizes the average normalized mutual

information between partitions [64]. lH can be formulated as follows,

lH : H = arg max
k, k>1

{lk − lk−1}. (2.198)

Chapter 2. Literature Review 94

An illustration can be seen in Figure 2.23.

0

0.1

0.2

0.3

0.4
l1l2
l3

(a) Cutting the consensus adjacency dendrogram (single link) with the K-lifetime criterion.
Highest lifetime cut = l2.

(b) C. (c) l1. (d) l2. (e) l3.

Figure 2.23: Illustration of the K-lifetime criterion on the Half Rings dataset.

2.6.4 Weighted Evidence Accumulation

Weighted Evidence Accumulation (WEAC) was proposed to improve the voting mechanism with

the inclusion of internal and relative cluster validity indices to weigh multiple clustering results

based on its clustering quality [65]. Given a crisp binary membership matrix from the mth clus-

tering, Um ∈ [0 1], the co-association matrix is computed as follows,

CW EAC =
∑M

m=1 wmUT
mUm∑M

m=1 wm

, (2.199)

where wm is a scalar denoting the degree of importance (weight) of the mth clustering result.

2.6.5 Fuzzy Evidence Accumulation

Wang proposes the Fuzzy EAC (fEAC) as the extension of EAC for fuzzy clusters [76]. A fuzzy

clustering is represented by a fuzzy membership matrix U, where each element utj defines the

membership of the data yj in the tth cluster. The co-association matrix can be calculated as

follows,

CfEAC =
M∑

m=1

UT
m ∗ Um, (2.200)

Chapter 2. Literature Review 95

where m denotes the clustering solution index. The aggregation product uses the t-norm rule [76],

uti,m ∗ utj,m =
km∑
t=1

T [uti,m, utj,m], (2.201)

which is simply the joint probability of the pattern pair i and j over all cluster indices, t =

{1, . . . , km}. km denotes the number of clusters in the mth clustering result. Wang suggests that

t-norms other than minimum may also be employed [66].

2.6.6 Co-Association Tree

The CA-tree was proposed by Wang in 2011 [66] to create a compact representation of a consensus

matrix, extending ensemble algorithms to scale to larger datasets. The CA-tree applies compression

to C in a way that only important representative nodes are retained.

The CA-tree constructs a hierarchical structure similar to a dendrogram using the base cluster

label vectors. The CA-tree construction process uses an recursive top-down clustering followed by

an efficient bottom-up hamming distance calculation [66]. Pruning this tree at a specific hamming

threshold returns the representative nodes which compress the label matrix at a specific rate

such that the size of the Consensus matrix can be made smaller. Constructing CA-tree from

a label matrix requires very little memory and time complexity and roughly approximates the

results of EAC using single linkage [66]. An illustration showing a diagram describing the CA-tree

compression on a simple label matrix is shown in Figure 2.24. From this illustration, cutting the

tree at th = 0.6 effectively compresses the size of the consensus matrix from 9 × 9 to 3 × 3.

2.7 Summary

Clustering is a subjective process of grouping observations into an arbitrary number of meaningful

groups subject to further interpretation. In this chapter the general concepts on various paradigm

in clustering algorithms and data analysis have been thoroughly revisited. Five integral concepts

have been discussed including: Challenges in Clustering algorithms; Various concepts of “distance”;

Top-down divisive clustering algorithm; Internal and external cluster validation indices; Graph

theoretic algorithms, and; Consensus clustering algorithms.

Each clustering paradigm comes with its own advantage and disadvantage. Relative to graph

algorithms, divisive algorithms are generally more lightweight (O(N)) which make them easily

applicable to larger datasets. Drawbacks of divisive algorithms are: 1. They are limited to form

Chapter 2. Literature Review 96

1 2 3 4 5 6 7 8 9
C1 1 1 1 1 1 2 2 3 2
C2 1 1 2 2 2 3 2 2 3
C3 1 2 2 1 2 2 2 3 3
C4 4 4 4 4 2 2 3 1 3

(a) Label matrix & desired compression.

r1 r2 r3

C1 1 3 2
C2 2 2 3
C3 2 3 3
C4 4 1 3

(b) Representative nodes. th = 0.6.

1 2 3 4 5 6 7 8 9

1 2 3 4 5

1 2

1 2

3 4 5

3 4 5

4 5

6 7 8

6 7 8

7 8

9

(c) Depth tree obtained from top-down division
on the label matrix.

1 2 3 4 5 6 7 8 9

1 2 3 4 5

1 2

1 2

3 4 5

3

4 5

4 5

6 7 8

6

7 8

7 8 9

(d) Augmented depth tree after recursive
bottom-up distance calculation.

Figure 2.24: Illustration of the CA-tree.

clusters around prototypes; 2. The appropriate number of prototypes is subjective and has to be

inferred using the appropriate cluster validation index; 3. Solutions are subject to suboptimality

as they are dependent on the initial positions of the prototypes.

The first and second drawbacks in the divisive clustering are answered in graph algorithms. Con-

nected graph offers useful heuristics for determining the appropriate number of clusters at a sig-

nificantly more expensive price (O(N2) compared to O(N)). This complexity can make graph

algorithms difficult to afford, especially when they are executed using a machine with limited

processing power or memory.

Consensus clustering algorithms combine the paradigms of both divisive and graph theoretic.

It is argued that a relatively more robust clustering can be achieved using consensus clustering

paradigms. Having graph algorithm as part of the algorithmic constituent, the complexity of con-

sensus algorithm is lower bounded to O(N2) which makes them rather unsuitable to be used for

large data.

Chapter 3

Particle Swarm Optimization and

Data Clustering

Particle Swarm Optimization (PSO) is a parallel evolutionary computation technique

for general nonlinear function optimization first proposed by Kennedy and Eberhart in

1995 [154], which is based on a social behavior metaphor. The PSO algorithm is initial-

ized randomly with candidate solutions, conceptualized as particles. Each particle is assigned a

randomized velocity and is iteratively repositioned through the problem space. It is attracted by

the location of its personal best fitness and the swarm local/global best fitness. Since its proposi-

tion, the standard PSO algorithm has been through continuous improvement and analysis. It has

also inspired a plethora of other PSO variants customized for various purposes and applications,

including cluster optimization [4, 55, 70, 74, 75, 83].

This chapter is organized as follows: Section 3.1 introduces the basic terminologies, analysis of

convergence of PSO where a discourse against Jiang et al.’s stability conditions is provided, and

complexity of the PSO algorithm; Section 3.2 introduces Van Der Merwe and Engelbrecht’s PSO

clustering framework; Section 3.3 argues against the optimality of the PSO clustering algorithm,

where both theoretical and empirical proofs have been provided to support the argument; Finally

Section 3.4 provides the concluding remarks for the chapter.

97

Chapter 3. Particle Swarm Optimization and Data Clustering 98

3.1 Particle Swarm Optimization

Definition 3.1.1 (Objective function). An objective function is a mathematical equation that is

to be optimized (either minimized or maximized) given a certain constraints.

Definition 3.1.2 (Search Space). A search space Ω is a predefined constraints describing the

feasible boundary for the input of the objective function.

Definition 3.1.3 (Particle). A particle θ stores a position vector x, a velocity vector v, and a

personal best vector p,

θ = {x, v, p}. (3.1)

Definition 3.1.4 (Swarm). A swarm is a set of particles,

Θ = {θ1, . . . , θK}. (3.2)

Definition 3.1.5 (Position). The position of a particle x encodes a set of parameters which

represents a possible solution to the optimization problem which is updated as follows,

x(t + 1) = x(t) + v(t + 1), (3.3)

where v is the velocity vector which is updated according to the personal best and local/global

best positions.

Definition 3.1.6 (Personal Best). Each particle has a memory of its personal best position p,

which goodness is determined by how well it optimizes the objective function f(x). In the case

where f(x) needs to be minimized, the personal best is updated as follows,

p(t + 1) =

⎧⎪⎨
⎪⎩

x(t) if f(x(t)) < f(p(t))

p(t) otherwise

(3.4)

Definition 3.1.7 (Local Best). The local best l is the best position vector of the local particles,

which is shared locally among neighboring particles in the local neighborhood L. In the case where

f(x) needs to be minimized, and given a best position of the neighboring particle pn ∈ L, the local

best l of L is updated as follows,

l(t + 1) =

⎧⎪⎨
⎪⎩

pn(t) if f(pn(t)) < f(l(t))

l(t) otherwise

. (3.5)

Chapter 3. Particle Swarm Optimization and Data Clustering 99

A popular neighborhood topology for PSO is the ring topology. The local best PSO is particularly

useful for multiobjective optimization where one needs to discover as many local optima as possible

(e.g. niching strategy) [155].

Definition 3.1.8 (Global (swarm) Best). The global best g is a best position vector of the swarm,

which is shared globally among all particles in the swarm. In the case where f(x) needs to be

minimized, the global best is updated as follows,

g(t + 1) =

⎧⎪⎨
⎪⎩

p(t) if f(p(t)) < f(g(t))

g(t) otherwise

, (3.6)

Definition 3.1.9 (Velocity). The velocity of a particle v describes its movement trajectory. For

each particle θ = {x, v, p} in a swarm Θ = {θ1, . . . , θM ; g} (global best), and a local best l, the

update equation for PSO can be described as follows,

Global best PSO

v(t + 1) = ω(t)v(t) + cpϕp ◦ (p(t) − x(t)) + cgϕg ◦ (g(t) − x(t)), (3.7)

Local best PSO

v(t + 1) = ω(t)v(t) + cpϕp ◦ (p(t) − x(t)) + clϕl ◦ (l(t) − x(t)), (3.8)

where ω(t) is the momentum function, cp denotes the cognitive constant, cg denotes the social

constant, cl denotes the social (local) constant, ϕp,l,g ∈ {0, 1} ∈ R
dim denote uniform random

numbers, and ◦ denotes Hadamard product. High ω (e.g. {0.5 – 1}) encourages exploration, while

low ω (e.g. close to 0) encourages exploitation.

To avoid swarm explosion, the velocity is constricted at a predefined ratio η% of the search space

Ω as follows,

v(t) = max(min(v(t), vmax), −vmax), (3.9)

vmax = η% · Ω. (3.10)

Since both Equation 3.7 and Equation 3.8 are biased towards axis-parallel problems [156, 157],

Zambrano-Bigiarini et al. proposed the Standard PSO (SPSO) 2011 which takes into account

the geometrical attributes of cross-dimensional movements to make the swarm invariant to axis

Chapter 3. Particle Swarm Optimization and Data Clustering 100

rotations. The velocity update scheme for SPSO 2011 is as follows,

x−→xp(t) = x(t) + cpϕp ◦ (p(t) − x(t)) (3.11)

x−→
xl

(t) = x(t) + cpϕp ◦ (l(t) − x(t)) (3.12)

G(t) =
x(t) + x−→xp(t) + x−→

xl
(t)

3
(3.13)

v(t + 1) = ωv(t) + H(G(t), ||G(t) − x(t)||) − x(t), (3.14)

where H(G(t), ||G(t) − x(t)||) denotes a random vector drawn inside the hypersphere with radius

||G(t) − x(t)||, centered at G.

The generic PSO pseudocode is shown in Algorithm 3.13

Algorithm 3.13 Particle Swarm Optimization: generic pseudocode
Input: Objective function f(x), search space Ω = [xmin,xmax], number of swarms M , constants cp, cl, cg,

momentum function ω(t), velocity constriction [vmin,vmax], neighborhood L, maximum number of
iteration tmax.

Output: The swarm Θ.
1: for all θ = {x,v,p} ∈ Θ
2: x← rand(Ω)
3: v← {0}
4: end for
5: while t < tmax

6: for all θ = {x,v,p} ∈ Θ ∈ L

7: v← update(v)
8: x← x+ v
9: p = arg min

x
f(x)

10: l = arg min
pn

f(pn) (for global best, use star neighborhood)

11: end for
12: end while
13: return Θ

3.1.1 Convergence Analysis

In depth convergence analysis of PSO has been given by a number of authors including Jiang et al.

[81] and Clerc and Kennedy [82]. This section analyzes stability and convergence from control

theory point of view.

Chapter 3. Particle Swarm Optimization and Data Clustering 101

For simplicity, let us observe the trajectory of the PSO on specifically one of the dimensions. The

overall trajectory of a specific particle can be summarized as follows.

v(t + 1) = ωv(t) + cpϕp(p(t) − x(t)) + cgϕg(g(t) − x(t)),

= ωv(t) − (cpϕp + cgϕg)x(t) + cpϕpp(t) + cgϕgg(t),

x(t + 1) = x(t) + v(t + 1).

(3.15)

Let X(t) = [x(t), v(t)]T and U(t) = [p(t), g(t)]T , Equation 3.15 can expressed in an explicit discrete

time-variant state space format,

⎡
⎣ x(t + 1)

v(t + 1)

⎤
⎦ =

A(t)︷ ︸︸ ︷⎡
⎣ 1 − (cpϕp + cgϕg) ω

−(cpϕp + cgϕg) ω

⎤
⎦
⎡
⎣ x(t)

v(t)

⎤
⎦+

B(t)︷ ︸︸ ︷⎡
⎣ cpϕp cgϕg

cpϕp cgϕg

⎤
⎦
⎡
⎣ p(t)

g(t)

⎤
⎦ (3.16)

Y(t) =

C︷ ︸︸ ︷[
1 0

]⎡⎣ x(t)

v(t)

⎤
⎦ , (3.17)

Obviously, the PSO system is time variant due to the influence of the uniform random variables

ϕp ∈ {0, 1} and ϕg ∈ {0, 1}. A(t) and B(t) are equally likely to assume any of the matrix in the

infinite set,

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp, ϕg) → inf(ϕ) = 0 (ϕp, ϕg) → sup(ϕ) = 1←−−→
inf(A)︷ ︸︸ ︷⎡

⎣ 1 ω

0 ω

⎤
⎦, . . . ,

⎡
⎣ 1 − (cpϕp + cgϕg) ω

−(cpϕp + cgϕg) ω

⎤
⎦ , . . . ,

sup(A)︷ ︸︸ ︷⎡
⎣ 1 − (cp + cg) ω

−(cp + cg) ω

⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp, ϕg) → inf(ϕ) = 0 (ϕp, ϕg) → sup(ϕ) = 1←−−→
inf(B)︷ ︸︸ ︷⎡
⎣ 0 0

0 0

⎤
⎦, . . . ,

⎡
⎣ cpϕp cgϕg

cpϕp cgϕg

⎤
⎦ , . . . ,

sup(B)︷ ︸︸ ︷⎡
⎣ cp cg

cp cg

⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

Due to this randomness, giving a complete analysis on the PSO is difficult and still subject to much

research. For example Clerc and Kennedy elaborates in great detail regarding the occurrence of

swarm explosion due to this random weighting [82].

Chapter 3. Particle Swarm Optimization and Data Clustering 102

Lemma 3.1.1 (Parameter Selection, Swarm Stability and Convergence of PSO). PSO is guaran-

teed to converge to an equilibrium point when the stability criteria,

0 ≤ ω < 1, and 0 < cp + cg < 2 + 2ω, (3.20)

are satisfied.

Proof: By deriving the stability criterion, we can choose the parameters that ensure convergence.

The assumption in this analysis is that 0 < (ϕp, ϕg) ≤ 1 such that U(t) is always reachable in a

finite number of iterations. On this regard, we discover some limitations in the work of Jiang et al.

[81]. Jiang et al. mistakenly generalizes the system response using expected values, simplifying the

random numbers to E[ϕp] = E[ϕg] = 0.5 [81]. Under this assumption, the stability of the system

is guaranteed only when 0 < (ϕp, ϕg) ≤ 0.5 but not when 0.5 < (ϕp, ϕg) ≤ 1.

Therefore, we propose representing ϕ using the supremum of the set,

sup(ϕp) = sup(ϕg) = 1, (3.21)

at which the control energy is at the highest. This way the stability can be ensured for the range

0 < ϕ ≤ 1.

Representing the random numbers with their suprema we have,

⎡
⎣ x(t + 1)

v(t + 1)

⎤
⎦ =

sup(A)︷ ︸︸ ︷⎡
⎣ 1 − (cp + cg) ω

−(cp + cg) ω

⎤
⎦
⎡
⎣ x(t)

v(t)

⎤
⎦+

sup(B)︷ ︸︸ ︷⎡
⎣ cp cg

cp cg

⎤
⎦
⎡
⎣ p(t)

g(t)

⎤
⎦ (3.22)

The transfer function H(z) using the supremum is as follows [158],

H(z) =
Y(z)
U(z)

= C(zI − sup(A))−1sup(B)

=
C adj(zI − sup(A)) sup(B)

|zI − sup(A)| ,

(3.23)

which satisfies stability criterion when the poles are inside the unit circle, 0 < |z1,2| < 1. In other

words, the eigenvalues of sup{A} should be 0 < |λ1,2| < 1. Solving |zI − sup(A)| we have the

characteristic equation,

|zI − sup(A)| = z2 + (cp + cg − ω − 1) z + ω. (3.24)

Chapter 3. Particle Swarm Optimization and Data Clustering 103

The PSO transfer function is then,

H(z) =
1

z2 + (cp + cg − ω − 1) z + ω

[
cpz cgz

]
(3.25)

Using the quadratic equation property and imposing the stability constraint, the poles of the PSO

transfer function can be calculated,

|z1,2| =

∣∣∣∣∣∣
1 + ω − (cp + cg) ±

√
(cp + cg − ω − 1)2 − 4ω

2

∣∣∣∣∣∣ < 1. (3.26)

Consider two cases:

1. Poles contain complex numbers: When (cp + cg − ω − 1)2
< 4ω we have an upper bound,

cp + cg < 1 + ω ± 2
√

ω. (3.27)

Since both cp and cg are non-negative, nonzero real numbers, it must follow that ω > 0.

Constraining the diameter of Equation 3.26 to the unit circle we have another upper bound,

cp + cg < 1 + ω ± √
2 + 2ω. (3.28)

Synthesizing both constraints gives cp +cg < 1+ω±2
√

ω < 1+ω±√
2 + 2ω, which is feasible

when 0 < ω < 1. The least upper bound for cp + cg from case 1 is therefore 1 + ω ± 2
√

ω.

Thus, from the first case we get

0 < ω < 1 and 1 + ω − 2
√

ω < cp + cg < 1 + ω + 2
√

ω. (3.29)

2. Poles contain only real numbers: When (cp + cg − ω − 1)2 ≥ 4ω we have,

cp + cg ≤ 1 + ω − 2
√

ω or cp + cg ≥ 1 + ω + 2
√

ω (3.30)

Similarly as case 1., since both cp and cg are real numbers, it must follow that ω ≥ 0.

Constraining the diameter by 1 gives us two constraints on the poles,

z1 =
1
2

(
1 + ω − (cp + cg) +

√
(cp + cg − ω − 1)2 − 4ω

)
< 1, and (3.31)

z2 =
1
2

(
1 + ω − (cp + cg) −

√
(cp + cg − ω − 1)2 − 4ω

)
> −1. (3.32)

Chapter 3. Particle Swarm Optimization and Data Clustering 104

Solving z1 and imposing ω ≥ 0 gives

0 < cp + cg ≤ 1 + ω − 2
√

ω, which is always true when ω �= 1. (3.33)

Imposing the feasible region for ω for case 1., we then have 0 ≤ ω < 1.

Continuing, solving z2 gives,

cp + cg < 2 + 2ω, (3.34)

Synthesizing the constraints with Equation 3.30, the feasible boundary condition for ω and

cp + cg we obtain,

0 < cp + cg < 2 + 2ω. (3.35)

Synthesizing both cases we have the convergence boundary for the whole range of uniform random

numbers 0 ≤ ϕ ≤ 1 which is,

0 ≤ ω < 1, and 0 < cp + cg < 2 + 2ω. (3.36)

We observe that Equation 3.36 imposes a least upper bound for cp + cg that is twice lower than

Jiang et al.’s boundary (0 ≤ ω < 1, and 0 < cp + cg < 4 + 4ω.) [81]. This stricter bounds imposes

important characteristic that ensures stability when the values of both random weightings are

higher than their expected values.

Without loss of generality, the inputs to the system (personal best and global best positions) can

be represented as two step functions with gains of P and G. Applying final value theorem [158] to

the PSO transfer function completes the analysis.

lim
t→∞ x(t) = lim

z→1
{(z − 1)H(z)U(z)} ,

= lim
z→1

{
(cpP + cgG)z2

z2 + (cp + cg − ω − 1) z + ω

}
,

=
cpP + cgG

cp + cg
,

(3.37)

which is consistent with the earlier reports by both [82] and [81].

Empirical results comparing Jiang et al.’s [81] and our proposed stability bounds are shown in

Figure 3.1. We can observe that Jiang et al.’s stability criterion causes the particle to diverge

at ϕ > 0.5. The particle do not converge even under randomized ϕ using Jiang et al.’s marginal

stability criterion. Our proposed bounds generally permit the particle to converge.

Chapter 3. Particle Swarm Optimization and Data Clustering 105

Jiang et al. [81]

0 10 20 30 40 50 60 70 80 90 100
150

100

50

0

50

100

iteration (t)

x
co

or
di

na
te

(a) ω = 0.72; cp + cg = 4 + 4ω, the marginal stability
bound according to Jiang et al. [81]. ϕp = ϕg = 0.501
(fixed) slightly above E[ϕ] = 0.5, v0 = −0.8, x0 =

1, p = g = 0.

Proposed

0 10 20 30 40 50 60 70 80 90 100
2

1.5

1

0.5

0

0.5

1

1.5

iteration (t)

x
co

or
di

na
te

(b) ω = 0.72; cp + cg = 2 + 2ω, the proposed marginal
stability bound. ϕp = ϕg = 0.501 (fixed) slightly above

E[ϕ] = 0.5, v0 = −0.8, x0 = 1, p = g = 0.

0 10 20 30 40 50 60 70 80 90 100
1

0

1

2

3

4
x 1069

iteration (t)

x
co

or
di

na
te

(c) ω = 0.72; cp + cg = 0.99(4 + 4ω), 99% of the
marginal stability bound according to Jiang et al. [81].

ϕp = ϕg = 1 (fixed), v0 = −0.8, x0 = 1, p = g = 0.

0 10 20 30 40 50 60 70 80 90 100

6

4

2

0

2

4

6

8

iteration (t)

x
co

or
di

na
te

(d) ω = 0.72; cp + cg = 0.99(2 + 2ω), 99% of the pro-
posed marginal stability bound. ϕp = ϕg = 1 (fixed),

v0 = −0.8, x0 = 1, p = g = 0.

0 10 20 30 40 50 60 70 80 90 100
1

0.5

0

0.5

1

1.5
x 1018

iteration (t)

x
co

or
di

na
te

(e) ω = 0.72; cp + cg = 4 + 4ω, the marginal stability
bound according to Jiang et al. [81]. ϕp = ϕg = {0, 1}

(random), v0 = −0.8, x0 = 1, p = g = 0.

0 10 20 30 40 50 60 70 80 90 100
1

0.5

0

0.5

1

iteration (t)

x
co

or
di

na
te

(f) ω = 0.72; cp + cg = 2 + 2ω, the proposed marginal
stability bound. ϕp = ϕg = {0, 1} (random), v0 =

−0.8, x0 = 1, p = g = 0.

Figure 3.1: Convergence of a particle on 1-dimensional optimization problem with various
stability criteria. Plots are interpolated using spline interpolant for smoother visualization.

3.1.2 Complexity and Performance Analysis

PSO is generally a lightweight and simplistic algorithm, and hence makes it very attractive for

general stochastic nonlinear optimization. The update complexity of PSO is linear to the number

of dimensions and particles [77]. From the state space formula in Equation 3.16, we can easily

show that for each dimension, the update equation of PSO can be expressed a simple matrix

multiplication and addition. The main contributor to PSO complexity is therefore the cost for

evaluating the given objective function, which varies depending on the application.

Its performance were also shown to be comparable to that of the genetic algorithm (GA) [159].

PSO is claimed to converge to local optimum faster than GA on a number of low dimensional

problems [159].

Chapter 3. Particle Swarm Optimization and Data Clustering 106

3.2 Van Der Merwe - Engelbrecht’s PSO Clustering

The earliest proposition of PSO-based clustering algorithm was by Van Der Merwe and Engelbrecht

in 2003 [83].

Definition 3.2.1 (data vector). A data vector or observation y ∈ R
dim is represented as a dim-

dimensional column vector.

Definition 3.2.2 (position). The position vector of each particle in PSO clustering represents a

set of all K potential centroid vectors e.g. xi = {zi,1, . . . , zi,K} ∈ R
dim.

The swarm’s initial position can be either seeded with the centroid vectors obtained with k-means

or initialized at random. The goal of the swarm is then to improve the initial position vectors and

find a global best g that minimizes the average quantization error,

g = arg min
x

f(x), (3.38)

f(x) =
1
K

∑
z∈x

∑
y∈Cz

1
|Cz|d(y, z), (3.39)

where the cluster assignment for each data follows the framework of k-means wherein data are

crisply partitioned, obeying voronoi tessellation principles. The pseudocode is shown in Algo-

rithm 3.14.

Algorithm 3.14 Van Der Merwe - Engelbrecht’s PSO Clustering

Input: A set of data points Y = {y1, . . . ,yN } ∈ R
dim, Number of clusters K, search space Ω = [xmin =

	Y
,xmax = �Y�], constants cp, cg, velocity clamp [vmin,vmax], maximum iteration tmax.
Output: Global best centroid vector g.

1: for all θ = {x,v,p} ∈ Θ
2: x← k-means(Y, K) or x← rand(Ω)
3: v← {0}
4: end for
5: while t < tmax

6: for all θ = {x,v,p} ∈ Θ
7: v← update(v)
8: x← x+ v
9: Z ← reshape(x, [K, dim])

10: D ← D(Y,Z)
11: ∀j = {j : 1, . . . , N}, CI ← yj , where I = arg min

i

Dij

12: p = arg min
x

f(x)

13: g = arg min
p

f(p)

14: end for
15: end while
16: return g

Chapter 3. Particle Swarm Optimization and Data Clustering 107

The prototype trajectory: initialization and result for a simple 2 dimensional clustering case is

illustrated in Figure 3.2.

3.2.1 Performance Analysis

As the update complexity of the swarm is lightweight by nature, complexity of Van Der Merwe

- Engelbrecht’s PSO Clustering mainly arises from the distance matrix calculation O(KN) for

each particle on each iteration. Hence the overall complexity of the algorithm on each iteration is

O(MKN), where M denotes the number of particles in the swarm. The complexity of an execution

over T iterations is O(MKNT), which is linear to the number of data.

Despite its linear complexity, the algorithm requires a significantly larger amount of function evalua-

tion to achieve convergence compared to its deterministic counterpart (k-means) due to Section 3.3.

Van Der Merwe and Engelbrecht claims that the PSO clustering generally produces better outcome

than Stuart Lloyd’s k-means [83]. Even though the case is indeed statistically proven in problems

of lower dimensions, we propose that the claim does not hold in cases where the problems are of

higher dimension.

Despite the slow convergence, we have discovered that PSO clustering does not guarantee cluster

optimality in higher dimensional dataset. The algorithm suffers from suboptimal trajectory and

degrading performance in higher dimension as a consequence of Section 3.3 which will be covered

in detail in the following section.

3.3 Suboptimal Convergence in Higher Dimension

Finding the optimum in prototype-based clustering problem is a rather delicate process. As has

been proven back in the earlier chapter on divisive clustering, we know that the guaranteed opti-

mality criterion of Equation 3.38 is achieved when all z is positioned at the mean of each cluster

concurrently, such that (∀i), zi ← mean(Ci). We discover a significant challenge in Van Der Merwe

- Engelbrecht’s paradigm when dealing with problems of higher dimension.

In Van Der Merwe - Engelbrecht’s PSO Clustering, each update does not necessarily maximize the

likelihood function. Unless at least one of the particles is pre-initialized near to the optimum, the

probability of the swarm to converge to the maximum likelihood coordinates degrades exponentially

as the number of classes or dimensions of the clustering problem increase.

Chapter 3. Particle Swarm Optimization and Data Clustering 108

particle1 particle2

particle3 particle4

(a) # function evaluation = 300

particle1 particle2

particle3 particle4

(b) # function evaluation = 1800; Converged

Figure 3.2: Initialization and Result: Van Der Merwe - Engelbrecht’s PSO Clustering on a
2-Dimensional Dataset. Red square indicates swarm global best.

Chapter 3. Particle Swarm Optimization and Data Clustering 109

3.3.1 Trajectory Analysis

Consider an dim-dimensional K-classes clustering problem. For each particle, the objective function

is as follows.

f(x) =
1
K

∑
z∈x

∑
y∈Cz

1
|Cz|d(y, z), (3.40)

=
1
K

K∑
i=1

∑
y∈Ci

1
|Ci| ||y − zi||2, (3.41)

=
1
K

K∑
i=1

∑
y∈Ci

dim∑
j=1

(yj − zij)2

|Ci| . (3.42)

Taking the derivative of this equation with respect to z, we can guarantee that f(x∗) = arg min
x

f(x)

for the current cluster assignment when

z∗
i =
∑

y∈Ci
y

|Ci| , (3.43)

where x∗ = {z∗
1, . . . , z∗

K}. This formula is apparently the k-means update rule, (∀i), zi ← mean(Ci).

The likelihood function is maximized for each zi when each z goes to the mean of each cluster in

each dimension consecutively given the cluster assignment. However, the particles in PSO cluster-

ing are not aware of this information. Continuing, we can rewrite Equation 3.43 as follows,

z∗
i = zi +

δi︷ ︸︸ ︷(∑
y∈Ci

y
|Ci| − zi

)
, (3.44)

{z∗
1, . . . , z∗

K} = {z1 + δ1, . . . , zK + δK} (3.45)

x∗ = x(t) + Δ, (3.46)

where Δ = vectorize{δ1, . . . , δK}. Substituting to Equation 3.44 to Equation 3.42 we have,

f(x∗) =
1
K

K∑
i=1

∑
y∈Ci

dim∑
j=1

(yj − (zij + δij))2

|Ci| (3.47)

Meanwhile the position of a particle at t + 1 will be updated as follows,

x(t + 1) = x(t) + v(t + 1), (3.48)

{z1(t + 1), . . . , zK(t + 1)} = {z1 + v1, . . . , zK + vK} (3.49)

Chapter 3. Particle Swarm Optimization and Data Clustering 110

The similarity between the two vectors, v = vectorize{v1, . . . , vK} and Δ = vectorize{δ1, . . . , δK}
can be calculated,

cos(Δ, v) =
〈Δ, v〉
|Δ||v| . (3.50)

The above equation is a sign matching problem: As long as every element in both vectors have

the same sign, we can ensure that the angle between the two vectors is at most 90◦ such that

cos(Δ, v) > 0. Any particle whose trajectory satisfies this condition is guaranteed to minimize

f(x) and obtaining a better personal best.

The probability of any particle finding a better position along the vector of maximum likelihood

would then be equivalent to the probability of having an angle lower than 90◦, p(cos(Δ, v) > 0),

which can be satisfied when 〈Δ, v〉 > 0. For each particle, this probability can be calculated simply

as the joint probability of each pair of elements in Δ and v,

p(〈Δ, v〉 > 0) �
K∏

i=1

dim∏
j=1

<1︷ ︸︸ ︷
p(δijvij > 0), (3.51)

which approaches 0 at an exponential rate given large K or dim. Figure 3.3 gives an illustration

of this phenomenon.

Figure 3.3: Trajectory of the Van Der Merwe - Engelbrecht PSO clustering vs K-means. �(v(t+
1), Δ) → π/2 as K, dim → ∞. K = number of clusters, dim = dimension of the clustering

problem.

Chapter 3. Particle Swarm Optimization and Data Clustering 111

3.3.2 Analogy Using Game Theory

Let us assume an all-knowing oracle appears to the player at the current time t. The oracle ensures

the player that the velocity v∗ leads to the maximum likelihood estimate given the current cluster

assignment. The player disregards the oracle, and proceed with the velocity vector given by the

swarm. Such situation is illustrated as follows.

Oracle: Let z∗
i ← mean(Ci), then z∗

i = zi + v∗
i . The oracle gives the player v∗

i .

Player (particle): disregards the oracle and proceed with ẑi = zi + vi.

The cosine angle between vi and v∗
i is

cos(vi, v∗
i) =

〈viv∗
i 〉

|vi||v∗
i | . (3.52)

The probability of the vector given by the swarm to align with the vector given by the oracle with

at least 90 degree angle is then,

p(cos(vi, v∗
i) > 0) =

≈0 when dim→∞︷ ︸︸ ︷
dim∏
d=1

p(vidv∗
id > 0), (3.53)

which converges to 0 at an exponential rate as the dimensionality of the clustering problem ap-

proaches infinity given that p(vidv∗
id > 0) < 1.

Since a particle in the swarm assumes an oscillatory trajectory around its local best particle co-

ordinate, the vector of the swarm is independent of that given by the oracle. Such characteristic

would then give p(vidv∗
id > 0) < 1 by definition.

3.3.3 Empirical Validation

A comparison between a randomly seeded PSO clustering and its deterministic predecessor on
non-overlapping artificial gaussian datasets can be seen in Table 3.1. The dataset is generated

Chapter 3. Particle Swarm Optimization and Data Clustering 112

from five multivariate Gaussian with arbitrary dimensions as follows,

μ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
...

⎞
⎟⎟⎟⎟⎟⎟⎠ ,Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

5 0.1 5 0.1 . . .

0.1 5 0.1 5 . . .

5 0.1 5 0.1 . . .

0.1 5 0.1 5 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ , μ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

15

0

15
...

⎞
⎟⎟⎟⎟⎟⎟⎠ ,Σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

15.2 0.5 15.2 0.5 . . .

0.5 3.3 0.5 3.3 . . .

15.2 0.5 15.2 0.5 . . .

0.5 3.3 0.5 3.3 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

μ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

10

−3

10

−3
...

⎞
⎟⎟⎟⎟⎟⎟⎠ ,Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.6 0.5 1.6 0.5 . . .

0.5 2.8 0.5 2.8 . . .

1.6 0.5 1.6 0.5 . . .

0.5 2.8 0.5 2.8 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ , μ4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

6

5

6

5
...

⎞
⎟⎟⎟⎟⎟⎟⎠ ,Σ4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2.4 −0.5 2.4 −0.5 . . .

−0.5 2.7 −0.5 2.7 . . .

2.4 −0.5 2.4 −0.5 . . .

−0.5 2.7 −0.5 2.7 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

μ5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

16

5

16

5
...

⎞
⎟⎟⎟⎟⎟⎟⎠ ,Σ5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.4 −0.5 1.4 −0.5 . . .

−0.5 10.1 −0.5 10.1 . . .

1.4 −0.5 1.4 −0.5 . . .

−0.5 10.1 −0.5 10.1 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ .

(3.54)

The PSO was executed using the parameters described in Van Der Merwe and Engelbrecht’s paper

[83]. The number of particles is set to 30. Each algorithm were executed 100 times. One-tailed

paired t-test were utilized to provide comparison on the total distortion after optimization against

k-means. The distance was set to squared euclidean. The results can be seen in Table 3.1. A

scatter plot comparing the performance of the algorithm with k-means and RCEr+ can be seen in

Figure 3.4.

We can see that while PSO may exhibit comparable or better performance than k-means in cluster-

ing problems of lower dimensions / fewer clusters, it can be seen that the increase in the number of

clusters and dimensionality of the clustering problem significantly degrades its overall performance.

This result is to be expected, as has been theoretically proven in Section 3.3.

Table 3.1: Performance comparison between randomly seeded PSO clustering and k-means++

Dim K PSO clustering k-means++ p-value

func. eval total distortion # func. eval total distortion

2 4 12000 8.1 ± 5.2 2.4 ± 3.0 7.9 ± 5.1 0.465

7 3 12000 24.8 ± 17.8 1.9 ± 2.3 15.2 ± 9.3 0.021

15 8 12000 226.9 ± 12.2 5.3 ± 5.3 30.9 ± 10.8 <0.01

30 8 12000 408.4 ± 15.2 6 ± 4 43.9 ± 15.3 <0.01

Chapter 3. Particle Swarm Optimization and Data Clustering 113

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

dimension

to
ta

l d
is

to
rti

on

PSO Clustering
k means
RCEr+

Figure 3.4: The Performance of PSO Clustering compared to k-means and RCEr+. Distance:
Squared Euclidean. PSO parameters: # particles = 30, maximum # function evaluations =
12000. RCEr+ parameters: # particles = 5, maximum # function evaluations = 100, substitution

probability = 0.05, particle reset threshold = 15. dim = {2, . . . , 200}, k = 5.

Figure 3.5 shows the trajectory of the particles on an 8-dimensional problem. The trajectory of the

particles on the first two dimension are shown. This experiment validates both the theoretical and

empirical proof of trajectory suboptimality of Van Der Merwe - Engelbrecht’s PSO Clustering.

3.4 Summary

This chapter focuses on the general analysis on Particle Swarm Optimization (PSO) algorithm and

PSO clustering. Several contributions has been made summarized as follows.

Lemma 3.1.1 reveals that the particle swarm optimization can be generally modeled as a second

order linear system. Particularly, we discover that Jiang et al.’s stability boundary [81] is incorrectly

derived.

In Section 3.3, significant issue in Van Der Merwe - Engelbrecht’s proposition [83] is observed.

Both theoretical and empirical validation reveal that unless at least one of the particles is pre-

initialized near to the optimum, the probability of the swarm to converge to the maximum likelihood

coordinates degrades exponentially as the number of classes or dimensions of the clustering problem

increase.

Chapter 3. Particle Swarm Optimization and Data Clustering 114

particle1 particle2

particle3 particle4

(a) # function evaluation = 300

particle1 particle2

particle3 particle4

(b) # function evaluation = 1800; Converged

Figure 3.5: Trajectory of Van Der Merwe - Engelbrecht’s PSO Clustering on an 8-Dimensional
Dataset (4 times duplication of the two dimensions). Red square indicates swarm global best.

The swarm converges to a severely suboptimal position.

Chapter 4

The Particle Swarm Clustering

Cohen and de Castro proposes an alternate view to clustering using particle swarm

[75]. The proposal defines a rather unique perspective on the particle-data interaction

within a swarm compared to Van Der Merwe - Engelbrecht’s PSO Clustering. This

chapter is dedicated to give an in depth discourse on the proposition.

The chapter is organized as follows. Section 4.1 defines the terminologies used in the Particle

Swarm Clustering (PSC) family. Section 4.2 summarizes the algorithmic frameworks. Section 4.3

analyzes both computational and memory complexity of the PSC family. Section 4.4 provides an in

depth discourse on the PSC particle stability and behavior. Section 4.5 presents the comparative

empirical experiments against competing algorithms using a dataset openly available from the UCI

machine-learning repository [84]. Finally Section 4.6 summarizes the contribution of this chapter.

4.1 Definitions

Definition 4.1.1 (Swarm). A swarm Θ represents a candidate partition of a dataset Y ∈ R
dim.

The swarm consists of particles {θ1, . . . , θK} and social memory {g1, . . . , gN } ∈ R
dim as follows,

Θ = {θ1, . . . , θK ; g1, . . . , gN }. (4.1)

N = |Y| denotes the number of observations in Y. The number of particles, K = |C|, specifies the

number of desired voronoi regions C = {C1, . . . ,CK}.

115

Chapter 4. The Particle Swarm Clustering and its Families 116

Definition 4.1.2 (Particle). A particle θ consists of a position vector x ∈ R
dim, a velocity vector

v ∈ R
dim and cognitive memory {p1, . . . , pN } ∈ R

dim as follows,

θ = {x, v; p1, . . . , pN }. (4.2)

Each particle governs a voronoi region Cx, with voronoi cell x. Each data in Cx is crisply associated

with the closest corresponding cell in the Euclidean space.

Definition 4.1.3 (Position). The position of a particle x denotes its literal location in the Eu-

clidean space. x represents a potential prototype vector describing the location of a voronoi cell.

The position of each particle is updated similarly to the standard PSO rule as follows,

x(t + 1) = x(t) + v(t + 1), (4.3)

where v denotes the velocity vector of the corresponding particle.

Definition 4.1.4 (Cognitive Memory). Each particle θ stores a cognitive memory P = {p1, . . . , pN } ∈
R

dim. The cognitive memory stores the closest position of the corresponding particle in relation

to each data vector in the dataset Y = {y1, . . . , yN }. For each particle, the cognitive memory is

stored in a dim × N matrix. Notice that as each particle is required to store such matrix, the

P matrix of the swarm is a three-dimensional matrix with size of dim × N × K. The cognitive

memory update rule is as follows,

pj =

⎧⎪⎨
⎪⎩

x if d(x, yj) < d(pj , yj)

pj otherwise

, (4.4)

where j denotes the index of data vectors, d(·, ·) denotes the distance between two vectors according

to a pre-specified distance function.

Definition 4.1.5 (Social Memory). The swarm Θ stores the social memory G = {g1, . . . , gN }
which represents the position of the particle that has been closest to each data vector in the

dataset Y = {y1, . . . , yN }. The social memory can be expressed in a dim × N matrix format. The

social memory update rule is as follows,

gj =

⎧⎪⎨
⎪⎩

pij if d(pij , yj) < d(gj , yj)

gj otherwise

, (4.5)

where i denotes the index of particles, j denotes the index of data vectors.

Chapter 4. The Particle Swarm Clustering and its Families 117

Definition 4.1.6 (Winning Particle). A winning particle θwin is the particle which constituted

voronoi region contains the most data compared to that of the rest of the particles in the swarm,

θwin = arg max
θ

|Cθ|. (4.6)

Definition 4.1.7 (Velocity). The velocity vector v of a particle describes its movement trajectory

in the Euclidean space. The velocity vector in Cohen - De Castro’s PSC is updated based on the

interaction of the current particle θi with respect to the data vector yj as follows,

vij(t + 1) =

⎧⎪⎨
⎪⎩

ωvij(t) + αϕso ◦ soij(t) + βϕsc ◦ scij(t) + γϕco ◦ coij(t) if Ci �= ∅
ωvij(t) + ϕ ◦ (xwin − xi) otherwise

, (4.7)

where each ϕ© ∈ {0, 1} ∈ R
dim denotes a uniform random vector, ◦ denotes Hadamard product,

so ∈ R
dim denotes the self-organizing vector, sc ∈ R

dim denotes the social vector, co ∈ R
dim de-

notes the cognitive vector, and xwin denotes the position of the winning particle θwin. α, β, and , γ

are three user-specified constants which specifies the degree of magnitude of each term.

The velocity is upper and lower bounded by a maximum velocity bound, which is set to a percentage

η% of the search space Ω, similarly to the general PSO to avoid swarm explosion as follows,

v(t) = max(min(v(t), vmax), −vmax), (4.8)

vmax = η% · Ω. (4.9)

As described compactly in Equation 4.7, it can be observed that the method for updating the

velocity of a particle depends on two possible scenarios:

1. More than one data vector is closest to xi such that the voronoi region consituted by xi is

not empty (Ci �= ∅). In this scenario, the particle will experience a force of attraction due to

the data in Ci.

2. There are no data vector which associated to xi such that such that the voronoi region

consituted by xi is empty (Ci = ∅). In this scenario, the particle will experience a force of

attraction due to the winning particle θwin.

Chapter 4. The Particle Swarm Clustering and its Families 118

Definition 4.1.8 (Self-Organizing Vector). The self-organizing vector soij describes the attraction

vector imposed to a particle xi due to the data yj as follows,

soij =

⎧⎪⎨
⎪⎩

yj − xi if yj ∈ Ci

0 otherwise

. (4.10)

Definition 4.1.9 (Social Vector). The social vector scij describes the attraction vector imposed

to a particle xi due to the social memory gj associated with the data yj as follows,

scij =

⎧⎪⎨
⎪⎩

gj − xi if yj ∈ Ci

0 otherwise

. (4.11)

Definition 4.1.10 (Cognitive Vector). The self-organizing vector coij describes the attraction

vector imposed to a particle xi due to the cognitive memory pij of the corresponding particle xi

associated with the data yj as follows,

coij =

⎧⎪⎨
⎪⎩

pij − xi if yj ∈ Ci

0 otherwise

. (4.12)

4.2 Algorithmic Framework

4.2.1 Cohen - de Castro’s Particle Swarm Clustering

Cohen and de Castro’s original formulation is up to the extent described in Algorithm 4.15 [75]. The

PSC does not compute any specific objective function or any indicator of cluster validity. While on

one hand this formulation saves PSC a significant amount of computational burden associated to

investigating the correctness of a particle movement, on the other hand such formulation generalizes

the PSC to k-means when seen at a higher level.

4.2.2 Szabo’s Modified PSC (mPSC)

The modified Particle Swarm Clustering (mPSC) was proposed by Szabo et al. in 2010 [74] in

an attempt to reduce its computational complexity. The proposal suggests removing the inertia

weight and velocity bound, effectively redefines the update rule (Algorithm 4.15 line 14) of the

Chapter 4. The Particle Swarm Clustering and its Families 119

Algorithm 4.15 Cohen - de Castro’s Particle Swarm Clustering (PSC)

Input: A set of data points Y = {y1, . . . ,yN } ∈ R
dim, Number of clusters K, search space Ω = [xmin =

	Y
,xmax = �Y�], constants α, β, γ, velocity clamp [vmin,vmax].
Output: Centroid vectors X = {x1, . . . ,xK}.

1: for all θ = {x,v;p1, . . . ,pN }
2: x← rand(Ω)
3: v← {0}
4: end for
5: while t < tmax

6: for all y ∈ Y

7: I = arg min
x

d(y,x)

8: if d(xI ,y) < d(pI,y,y)
9: pI,y ← xI

10: if d(pI,y,y) < d(gy,y)
11: gy ← pI,y

12: end if
13: end if

14: vI(t + 1) ← ω(t)vI(t) +
self−organizing︷ ︸︸ ︷

αϕso ◦ (y− xI) +
social︷ ︸︸ ︷

βϕsc ◦ (gy − xI) +
cognitive︷ ︸︸ ︷

γϕco ◦ (pI,y − xI)
15: [vI(t + 1)] = max(min(vI(t + 1),vmax), −vmax)
16: xI(t + 1) ← xI(t) + [vI(t + 1)]
17: end for
18: for all Cθ = ∅
19: vθ(t + 1) ← ω(t)vθ(t) + ϕ ◦ (xwin − xθ)
20: [vθ(t + 1)] = max(min(vθ(t + 1),vmax), −vmax)
21: xθ(t + 1) ← xθ(t) + [vθ(t + 1)]
22: end for
23: end while
24: return X = {x1, . . . ,xK}

original PSC as follows,

Δxij(t + 1) =

⎧⎪⎨
⎪⎩

αϕso ◦ soij(t) + βϕsc ◦ scij(t) + γϕco ◦ coij(t) if Ci �= ∅
ϕ ◦ (xwin − x) otherwise

, (4.13)

xij(t + 1) = xij(t) + Δxij(t + 1). (4.14)

Similarly to PSC, the mPSC remains true to the core principle of PSC where it does not incorporate

any objective function to measure cluster quality. In fact the main difference of mPSC compared

to its predecessor is the fact that the inertia weight is zeroed for all iterations ω = 0, effectively

detaching the velocity integrator from the transfer function.

The mPSC also generalizes to k-means when seen at a higher level. The algorithmic pseudocode of

mPSC is shown in Algorithm 4.16. From the pseudocode, it is easily seen that overall complexity

of the algorithm resembles that of the PSC, however the mPSC is slightly leaner due to the removal

of a few min and max operand in Algorithm 4.15 lines 16 and 20.

Chapter 4. The Particle Swarm Clustering and its Families 120

Algorithm 4.16 Szabo’s Modified Particle Swarm Clustering (mPSC)

Input: A set of data points Y = {y1, . . . ,yN } ∈ R
dim, Number of clusters K, search space Ω = [xmin =

	Y
,xmax = �Y�], constants α, β, γ.
Output: Centroid vectors X = {x1, . . . ,xK}.

1: for all θ = {x,v;p1, . . . ,pN }
2: x← rand(Ω)
3: v← {0}
4: end for
5: while t < tmax

6: for all y ∈ Y

7: I = arg min
x

d(y,x)

8: if d(xI ,y) < d(pI,y,y)
9: pI,y ← xI

10: if d(pI,y,y) < d(gy,y)
11: gy ← pI,y

12: end if
13: end if

14: ΔxI(t + 1) ←
self−organizing︷ ︸︸ ︷

αϕso ◦ (y− xI) +
social︷ ︸︸ ︷

βϕsc ◦ (gy − xI) +
cognitive︷ ︸︸ ︷

γϕco ◦ (pI,y − xI)
15: xI(t + 1) ← xI(t) + ΔxI(t + 1)
16: end for
17: for all Cθ = ∅
18: Δxθ(t + 1) ← ϕ ◦ (xwin − xθ)
19: xθ(t + 1) ← xθ(t) + Δxθ(t + 1)
20: end for
21: end while
22: return X = {x1, . . . ,xK}

4.2.3 Szabo’s Fuzzy PSC (FPSC)

The Fuzzy PSC is simply a PSC with fuzzy membership instead of crisp membership. The fuzzi-

fication is done based on the distance between a data and its respective center using Dunn’s fuzzy

c-means principle as formulated in Equation 2.49. The rest of the concepts are similarly defined

as Cohen - de Castro’s PSC.

4.3 Complexity Analysis

4.3.1 Computational Complexity

The general computational complexity of the algorithms from the PSC family can be analyzed as

follows. On each iteration of PSC computes of the distance between each data vector relative to

each particle, and performing position updates for each data vector, imposing a total complexity

of O(δ + κ) on each iteration.

Chapter 4. The Particle Swarm Clustering and its Families 121

Algorithm 4.17 Szabo’s Fuzzy Particle Swarm Clustering (FPSC)

Input: A set of data points Y = {y1, . . . ,yN } ∈ R
dim, Number of clusters K, fuzzification parameter m,

search space Ω = [xmin = 	Y
,xmax = �Y�], constants α, β, γ, velocity clamp [vmin,vmax].
Output: Centroid vectors X = {x1, . . . ,xK}.

1: for all θ = {x,v;p1, . . . ,pN }
2: x← rand(Ω)
3: v← {0}
4: end for

5: (∀x,y), u(x,y) = d(x,y)− 1
m−1∑K

i=1 d(x,y)− 1
m−1

,

6: while t < tmax

7: for all y ∈ Y

8: I = arg max
x

u(x,y)

9: if u(xI ,y) > u(pI,y,y)
10: pI,y ← xI

11: if u(pI,y,y) > u(gy,y)
12: gy ← pI,y

13: end if
14: end if

15: vI(t + 1) ← ω(t)vI(t) +
self−organizing︷ ︸︸ ︷

αϕso ◦ (y− xI) +
social︷ ︸︸ ︷

βϕsc ◦ (gy − xI) +
cognitive︷ ︸︸ ︷

γϕco ◦ (pI,y − xI)
16: [vI(t + 1)] = max(min(vI(t + 1),vmax), −vmax)
17: xI(t + 1) ← xI(t) + [vI(t + 1)]

18: (∀x), u(x,y) = d(x,y)− 1
m−1∑K

i=1 d(x,y)− 1
m−1

,

19: end for
20: for all Cθ = ∅
21: vθ(t + 1) ← ω(t)vθ(t) + ϕ ◦ (xwin − xθ)
22: [vθ(t + 1)] = max(min(vθ(t + 1),vmax), −vmax)
23: xθ(t + 1) ← xθ(t) + [vθ(t + 1)]

24: (∀x), u(x,y) = d(x,y)− 1
m−1∑K

i=1 d(x,y)− 1
m−1

,

25: end for

26: if
K∑

i=1

N∑
j=1

um
ij ||yj − xi||2 does not improve

27: break;
28: end if
29: end while
30: return X = {x1, . . . ,xK}

δ denotes the total cost of calculating the distance function (including communication overhead)

and updating the cluster membership of each data vector relative to each particle position vector.

κ denotes the cost of updating the position of each particle (consisting of random number genera-

tion, position update, and memory matrices update). As a general overview, on each iteration the

PSC needs to generate 3 × N × dim random numbers, and also perform N position updates in the

dim-dimensional space.

Chapter 4. The Particle Swarm Clustering and its Families 122

The worst case complexity of the PSC algorithm variants for an iteration are,

δP SC = δmP SC = δF P SC =
pairwise distance calculation︷ ︸︸ ︷

O(NKdimD) , (4.15)

where D denotes the cost of calculating the distance between two vectors, and

κP SC = O(
position update︷ ︸︸ ︷

19Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim), (4.16)

κmP SC = O(
position update︷ ︸︸ ︷

16Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim), (4.17)

κF P SC = O(
position update︷ ︸︸ ︷

19Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim +
fuzzification︷ ︸︸ ︷

NKF), (4.18)

where F is the cost of calculating floating point powers and divisions for a fractional number. The

overall complexity of the algorithm is then

O(T (δ + κ)) = T ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

O(NKdimD) + O(log2 3Ndim) + · · ·⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(18Ndim + NK + 4N) if PSC

O(15Ndim + NK + 4N) if mPSC

O(18Ndim + NK + 4N + NKF) if FPSC

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.19)

where T denotes the number of iterations.

4.3.1.1 Computational Complexity of δ

The total cost of calling the distance and membership update function is specified by δ. Naïvely,

the theoretical worst case computational complexity for the delta calculation is

δP SC = δmP SC = δF P SC = O(NKdimD), (4.20)

where D denotes the cost of calculating the distance between two vectors. Optimizing δ for PSC

is difficult due to the serial dependency between position update and distance calculation. This

particular ‘for each data vector’ loop in the PSC formulation creates a significant bottleneck to the

overall performance of the algorithm that restricts its scalability.

Programmatically, minimizing the usage of this for loop can be done elegantly using batch matrix

operation for all observations and particles and making use of vectorization and parallel processing.

Chapter 4. The Particle Swarm Clustering and its Families 123

There exists algorithmic variants (e.g. Coppersmith – Winograd algorithm [160], Williams algo-

rithm [161]) for efficient calculation of matrix multiplication (e.g. two n×n matrices in O(n≈2.373)

time) [160, 161]. However implementing this approach in PSC would require major alteration in

its algorithmic architecture [4, 71, 73]. In its original formulation, each time a data vector is pre-

sented to the PSC swarm, one of the particle has to move as a consequence, and the pre-calculated

distance matrix has to be naïvely recalculated as it would be obsolete each time a movement is

made.

To empirically observe the effect of δ, we compare two scenarios as follows. The first scenario calls

the distance matrix calculation function using the PSC paradigm: naïve for loop over all data

vectors. The second scenario uses a pre-optimized batch matrix computation. For this particular

simulation, Matlab is proper framework due to the fact that it is a specifically optimized framework

for matrix operations. The simulations use a file distmat.m, a fully vectorized distance matrix

calculation function which takes three inputs: the first observation matrix; the centroid matrix; and

an index for specifying the distance function to be used (e.g. 2 = “squared Euclidean distance”).

Scenario I: Naïve For Loop. The first scenario calls distmat.m using the PSC paradigm: naïve

for loop over all data vectors. For each dimension and volume, the iteration is repeated 100 times

to extract the central tendency of the time complexity for the particular dimension/volume. The

Matlab code is as follows.

1 for j = 1:size(y,2) % loop over all data vectors

2 % invoke call to the squared euclidean distance function

3 distmat(y(:,j),x,2);

4 end

Scenario II: Matrix Operation. The second scenario executes the function distmat.m function

using pre-optimized batch matrix operations. For each dimension and volume, the iteration is

repeated 100 times to extract the central tendency for the particular dimension/volume. The

Matlab code is as follows.

1 % Calculate the pairwise distance between y and x

2 distmat(y,x,2);

The resulting mesh plot of the time matrices with increasing number of voronoi regions k =

{2, 4, 8, 16, 32, 64} can be seen in Figure 4.1. The machine used in this simulation is a laptop

computer with Intel Core i5 M520 @ 2.4 Ghz, 4 GB of RAM, running Windows 7.

Chapter 4. The Particle Swarm Clustering and its Families 124

(a) Time complexity of the distance computa-
tion using for loop.

(b) Time complexity of the distance computa-
tion optimized using matrix operation.

Figure 4.1: Time complexity of the distance computation δ.

As shown in Figure 4.1a, the inevitable usage of for loops poses a significant bottleneck that restricts

the PSC to scale to larger datasets, both in term of volume and dimension. It can be seen that

with K = 64, dim = 400, and N = 1000, a PSC iteration requires 0.26 seconds on average on the

simulation machine.

distmat.m has been designed to utilize proper usage of efficient matrix operations and vectoriza-

tion, hence minimizing the use of unnecessary for loops. It can be seen in Figure 4.1b that with

K = 64, dim = 400, and N = 1000, a batch matrix computation requires 0.011 seconds on average

using the machine, which is 23.6364 times quicker than an iteration of the PSC using the same

parameters (0.26 seconds).

4.3.1.2 Computational Complexity of κ

The computational complexity of particle update κ is the second contributor to the PSC complexity.

The main contributing factors can be summarized as follows:

1. The complexity of the random number generation which requires at most 3×(N +K−1)×dim

pseudorandom floats or O(log2(3(N + K − 1)dim)) each iteration using Mersenne Twister

pseudorandom number generator [162];

2. The complexity of velocity and position update which involves 7 × (N + K − 1) × dim

multiplications for PSC (or 6×(N +K −1)×dim for mPSC), 5×(N +K −1)×dim additions,

2 × (N + K − 1) × dim logical operations for velocity clamp, and 2 × (N + K − 1) × dim

assignments totaling up to O(16(N + K − 1)dim) (or O(13(N + K − 1)dim) for mPSC) each

iteration;

Chapter 4. The Particle Swarm Clustering and its Families 125

3. The complexity of choosing the winning particle O(NK) for each data and updating the

memory matrix which involves at most 2 × N logical operations and 2 × N + 2 × N × dim

assignments, yielding an overall complexity of (O(NK + 4N + 2Ndim)) each iteration, and;

4. Specifically for FPSC, fuzzification of the pairwise distances which poses an additional O((N+

K − 1)K) complexity per iteration.

For most clustering problems it is usually safe to assume the number of cluster K to be less than

the number of data N such that N + K − 1 ≈ N . Incorporating this simplification, the theoretical

worst case complexities of the algorithms of the PSC family can then be summarized as follows,

κP SC = O(
position update︷ ︸︸ ︷

16Ndim + log2 3Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim), (4.21)

κmP SC = O(
position update︷ ︸︸ ︷

13Ndim + log2 3Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim), (4.22)

κF P SC = O(
position update︷ ︸︸ ︷

16Ndim + log2 3Ndim +
memory matrix update︷ ︸︸ ︷

NK + 4N + 2Ndim +
fuzzification︷ ︸︸ ︷

NKF), (4.23)

where F is the cost of calculating floating point powers and divisions for a fractional number which

can be rather expensive.

In order to empirically validate the theoretical computational complexity we coded a simulation

testbench to investigate the time complexity of the PSC, mPSC and FPSC update mechanisms as

described in Algorithm 4.15, Algorithm 4.16, and Algorithm 4.17, respectively.

The machine used in this simulation is a laptop computer with Intel Core i5 M520 @ 2.4 Ghz, 4

GB of RAM, running Windows 7. The overall result of the simulation for k = {2, 4, 8, 16, 32, 64}
can be seen in Figure 4.2.

As can be seen particularly in Figure 4.2, the mPSC, shown in Figure 4.2b, is the leanest among

the PSC variants (0.24 seconds per iteration at N = 1000, dim = 400). FPSC exhibits the highest

computational complexity (0.33 seconds per iteration at N = 1000, dim = 400), shown in Fig-

ure 4.2c. The update complexity of PSC, shown in Figure 4.2a, sits in the middle of the two (0.28

seconds per iteration at N = 1000, dim = 400). Unlike δ, we see that κ is minimally affected by

the number of voronoi regions, K. This observation is consistent with the theoretical analysis in

Equation 4.21, Equation 4.22, and Equation 4.23.

Chapter 4. The Particle Swarm Clustering and its Families 126

(a) κP SC . (b) κmP SC .

(c) κF P SC .

Figure 4.2: Time complexity of position update κ of PSC, mPSC, and FPSC with varying K.

4.3.2 Memory Complexity

The breakdown of the memory complexity of the PSC algorithm families and other clustering

algorithms can be seen in Table 4.1. The estimated total memory complexity is computed by

summing all the applicable complexities for the particular algorithm. An experiment is carried

in Matlab to observe the memory requirement of each algorithm during runtime. The results are

presented in Figure 4.3.

As can be seen in Figure 4.3 and Table 4.1, the algorithms of the PSC families are considerably

expensive in terms of memory complexity. Our benchmark test revealed that in order to cluster

1000 observations of 1000 dimensional double precision data, the PSC families require as much

as 2GB memory; whereas k-means, fuzzy c-means, and RCEr+ 2014 require memory allocation of

lower than 15MB. This relatively high memory requirement is a significant scalability bottleneck

when dealing with larger, higher dimensional datasets.

C
hapter

4.
T

he
Particle

Swarm
C

lustering
and

its
Fam

ilies
127

(a) PSC. (b) mPSC. (c) FPSC.

(d) k-means. (e) Fuzzy c-means. (f) RCEr+ (2014).

Figure 4.3: Memory complexity of various algorithms when clustering double precision floating point numbers. The runtime test is carried using
Matlab. It can be easily observed that the PSC families are quite expensive in terms of its memory requirements.

Chapter 4. The Particle Swarm Clustering and its Families 128

Table 4.1: Memory complexity of the PSC families vs other clustering algorithms

Entity Complexity Fu
zz

y
c
-m

ea
ns

k
-m

ea
ns

P
SC

[7
5]

m
P

SC
[7

4]

F
P

SC
[7

0]

R
C

E
r
+

(2
01

2)
[4

]

R
C

E
r
+

(2
01

4)
[5

5]

Description

Y O(Ndim) � � � � � � � The data vectors: Y =
{y1, . . . , yN } ∈ R

dim

X O(Kdim) � � � � � � � The particle position vectors: X =
{x1, . . . , xK} ∈ R

dim

V O(Kdim) � � � � The particle velocity vectors: V =
{v1, . . . , vK} ∈ R

dim

vmax O(dim) � � � � The maximum velocity vector:
vmax ∈ R

dim

U O(N) � � � � � The crisp label vector or bi-
nary indicator matrix: U =
{u1, . . . , uN } ∈ R

1

U O(NK) � � � The fuzzy membership matrix:
U = {u1, . . . , uN } ∈ R

K

Xbest O(Kdim) � � The best position matrix: Xbest =
{x1, . . . , xK}best ∈ R

dim

f(CXbest, Y) O(1) � � The quality of the voronoi tessella-
tion imposed by Xbest

G O(Ndim) � � � � The swarm social memory vector
for each data: G = {g1, . . . , gN } ∈
R

dim

d(gj , yj){∀i,∀j} O(N) � � � � The distance between the vec-
tors in the social memory relative
to its corresponding data vector,
d(pi,j , yj) ∈ R

1

P{1,...,K} O(NKdim) � � � � The cognitive memory for each
particle, for each data: Pi =
{pi,1, . . . , pi,N } ∈ R

dim

d(pi,j , yj){∀i,∀j} O(NK) � � � � For each particle, the relative dis-
tance between the cognitive mem-
ory vector and its corresponding
data vector, d(pi,j , yj) ∈ R

1

4.4 Trajectory Analysis

4.4.1 Stability and Convergence

Theorem 4.1 (PSC’s resemblance to k-means). Under the condition where α, β, γ, and ω obeys

the stability constraints,

0 ≤ ω < 1, and 0 < α + β + γ <
2 + 2ω

|Cx| , (4.24)

Chapter 4. The Particle Swarm Clustering and its Families 129

each particle would converge to

x(t → ∞) =
1

|Cx|
∑

y∈Cx

αy + βpxy(t → ∞) + γgy(t → ∞)
α + β + γ

. (4.25)

As a result, a monotonic decrease in the distortion function is guaranteed if and only if α is non-zero

regardless of zero values in β and γ, effectively reducing the PSC to k-means,

x(t → ∞) =
1

|Cx|
∑

y∈Cx

y, (4.26)

which implies the sensitivity of PSC to initialization, similarly with that of k-means.

Proof: Seen from a specific dimension, the PSC velocity update rule for the particle θ due to the

data vector y ∈ Cx is as follows,

v(t + 1) = ω(t)v(t) + αϕso(y − x(t)) + βϕsc(g − x(t)) + γϕco(p − x(t)),

= ωv(t) − (αϕso + βϕsc + γϕco)x(t) + αϕsoy + βϕscg(t) + γϕcop(t).

x(t + 1) = x(t) + v(t + 1),

= ωv(t) +
(
1 − (αϕso + βϕsc + γϕco)

)
x(t) + αϕsoy + βϕscg(t) + γϕcop(t).

(4.27)

The uniform random variables ϕ© ∈ {0, 1} can be represented by its supremum sup(ϕ©) = 1.

Let X(t) = [x(t), v(t)]T and U(t) = [y, p(t), g(t)]T , the PSC can expressed in an explicit discrete

time-invariant state space format,

⎡
⎣ E[x(t + 1)]

E[v(t + 1)]

⎤
⎦ =

sup(A)︷ ︸︸ ︷⎡
⎣ 1 − (α + β + γ) ω

−(α + β + γ) ω

⎤
⎦
⎡
⎣ x(t)

v(t)

⎤
⎦+

sup(B)︷ ︸︸ ︷⎡
⎣ α β γ

α β γ

⎤
⎦
⎡
⎢⎢⎢⎣

y

p(t)

g(t)

⎤
⎥⎥⎥⎦ (4.28)

Y(t) =

C︷ ︸︸ ︷[
1 0

]⎡⎣ x(t)

v(t)

⎤
⎦ . (4.29)

The transfer function is consequently,

H(z) =
1

z2 + (α + β + γ − ω − 1) z + ω

[
αz βz γz

]
, (4.30)

Chapter 4. The Particle Swarm Clustering and its Families 130

Which is the same second order system in Lemma 3.1.1. Using the same approach we have a

guaranteed convergence due to the data y ∈ Cx when

0 ≤ ω < 1, and 0 < α + β + γ < 2 + 2ω. (4.31)

With the same spirit as Equation 3.37, without loss of generality, the inputs to the system (self-

organizing, cognitive and social positions) can be represented as three step functions with gains of

Y , P and G. Assuming stability, applying final value theorem to the PSC transfer function yields,

lim
t→∞ x(t) = lim

z→1
{(z − 1)H(z)U(z)},

=
αY + βP + γG

α + β + γ
,

(4.32)

which holds for all y ∈ Cx, such that,

lim
t→∞ xi1(t) =

αy1 + βpi1(t → ∞) + γg1(t → ∞)
α + β + γ

lim
t→∞ xi2(t) =

αy2 + βpi2(t → ∞) + γg2(t → ∞)
α + β + γ

...

lim
t→∞ xij(t) =

αyj + βpij(t → ∞) + γgj(t → ∞)
α + β + γ

(4.33)

where xij denotes the expected position of the ith particle due to the jth data vector. The resultant

vector is therefore

lim
t→∞ xi(t) = lim

t→∞

|Cxi
|∑

j=1

xij(t),

=
|Cx|∑
j=1

αyj + βpij(t → ∞) + γgj(t → ∞)
α + β + γ

.

(4.34)

This characteristic is problematic since it implies that (∀i), xi or can be described simply as x ∈ X

will continue to bounce towards each y ∈ Cx in a cyclical pattern unless the relative effect of each

term — self-organizing; social; and cognitive — is made sufficiently small such that the resultant

vector approximates the maximum likelihood estimate: the coordinate of the voronoi cell.

This constraint obtained from the resultant consequently imposes an important criterion to enable

each particle to converge. One way to achieve such condition is by scaling α, β and γ proportionally

to the cardinality of the corresponding voronoi region |Cx|: the number of data vectors in the

cluster.

Chapter 4. The Particle Swarm Clustering and its Families 131

This proposition makes intuitive sense when the outer loop (for all y ∈ Y) is treated as a function

of a continuous time system. Each of this loop constitutes an iteration where the velocity of a

particle x is updated |Cx| times: a proportion of the volume of the total data |Cx| = η%|Y|.
According to control theory, this discretization phenomenon can be treated as the system being

sampled with the sampling frequency fs = |Cx| as follows,

H(z) = THCx(z), T =
1
fs

, fs = |Cx|, (4.35)

=
1

|Cx|
1

z2 +
(

α̌ + β̌ + γ̌ − ω − 1
)

z + ω

[
α̌z β̌z γ̌z

]
. (4.36)

Consequently, the effect of the poles to the discrete transfer function HCx(z) is obviously magnified

linearly by a gain of |Cx|. Hence incorporating |Cx| to the feasible convergence bounds yields the

proper scaling as follows

0 ≤ ω < 1, and 0 < α̌ + β̌ + γ̌ <
2 + 2ω

|Cx| . (4.37)

The resultant using this updated bounds reflects convergence towards the center of Cx,

x(t → ∞) =
∑

y∈Cx

α̌y + β̌pxy(t → ∞) + γ̌gy(t → ∞)
α̌ + β̌ + γ̌

, (4.38)

=
1

|Cx|
∑

y∈Cx

αy + βpxy(t → ∞) + γgy(t → ∞)
α + β + γ

. � (4.39)

The convergence of this equation depends on whether the value of α is zero/nonzero.

Case 1: α > 0

Note that that (∀y), {pxy(0), gy(0)} are initialized as x(0) which is the very first particle that the

data sees as it assigns itself to Cx. Notice that on every iteration the value of the self-organizing

vector is

soy(t) =
α

|Cx|
∑

y∈Cx

(y − x(t)), (4.40)

which guarantees a consistent decrease in distortion with respect to the cluster center such that,

0 < d

⎛
⎝x(t + 1),

1
|Cx|

∑
y∈Cx

y

⎞
⎠ < d

⎛
⎝x(t),

1
|Cx|

∑
y∈Cx

y

⎞
⎠ < . . . < d

⎛
⎝x(0),

1
|Cx|

∑
y∈Cx

y

⎞
⎠ . (4.41)

Chapter 4. The Particle Swarm Clustering and its Families 132

Note that the swarm will store x(t) into the both memories when a decrease in distortion on an

observation y is detected. Consequently both memories will then closely follow x(t) such that

pxy(t) → x(t) and gy(t) → x(t). Under the stability bounds in Equation 4.39 it is easy to see that

both the memories for all y tend to converge to its corresponding cluster center,

(y ∈ Cx), pxy(t → ∞) = gy(t → ∞) → 1
|Cx|

∑
y∈Cx

y. (4.42)

Under this condition, Equation 4.39 converges to

x(t → ∞) =
1

|Cx|(α + β + γ)

⎛
⎝∑

y∈Cx

αy +
∑

y∈Cx

βy +
∑

y∈Cx

γy

⎞
⎠ . (4.43)

=
1

|Cx|
∑

y∈Cx

y, (4.44)

which is the k-means update formula. �

Based on this analysis, β and γ can be ignored as the values of coxy and scy converges to 0 on

each iteration. The PSC update equation can consequently be simplified to incorporate only the

self-organizing term. Notice that by keeping α and nullifying both β and γ, the PSC generalizes

to the k-means with momentum and stochastic learning rate,

v(t + 1) =
∑

y∈Cx̌(t)

ωv̌(t) + α̌ϕso(y − x̌(t)), (4.45)

=
∑

y∈Cx̌(t)

momentum︷ ︸︸ ︷
ωv(t)
|Cx̌(t)| +

learning rate︷ ︸︸ ︷
αϕso

|Cx̌(t)| (y − x̌(t)), (4.46)

x(t + 1) =
∑

y∈Cx̌(t)

x̌(t) + v̌(t + 1), (4.47)

=
initial position︷︸︸︷

x(t) +

resultant vector︷ ︸︸ ︷
1

|Cx(t)|
∑

y∈Cx(t)

ωv(t) + αϕso(y − x(t)) . � (4.48)

Case 1: α = 0

When α = 0, a problematic condition emerges. Without the self-organizing vector and zero initial

velocity (e.g. α = 0 and v(0) = 0), particles will only be attracted to its starting position and

assume zero velocity throughout. When α = 0 and v(0) �= 0, the trajectory of the particle is

Chapter 4. The Particle Swarm Clustering and its Families 133

determined by its momentum or residual velocity. This obvious case is seen as follows,

v(t + 1) = ω(t)v(t) +
=0︷︸︸︷
α ϕso

soy(t)︷ ︸︸ ︷
(y − x(t)) +βϕco

coxy(t)︷ ︸︸ ︷
(pxy(t) − x(t)) +γϕsc

scy(t)︷ ︸︸ ︷
(gy(t) − x(t))

= ω(t)v(t) + βϕco

coxy(t)︷ ︸︸ ︷
(pxy(t) − x(t)) +γϕsc

scy(t)︷ ︸︸ ︷
(gy(t) − x(t))

v(t = 1) =

must be > 0,
otherwise v(t > 0) = v(0) = 0︷ ︸︸ ︷

ω(0)v(0) +βϕco

coxy(0)=0︷ ︸︸ ︷
(x(0) − x(0)) +γϕsc

soy(0)=0︷ ︸︸ ︷
(x(0) − x(0)),

(4.49)

In case of v(0) �= 0 and α = 0, each particle is expected to oscillate around x(0) with exponentially

decreasing velocity, until it finally stagnates as the residual velocity depletes. The personal and

global best will be updated if and only if the angle between the velocity vector v(t) and pxy(t) − y

is less than 90 degrees. From this observation we show that the value for β and γ are ineffective if

α = 0.

The PSC guarantees convergence as long as α is nonzero and inside the convergence bounds as

described in Equation 4.37. The resultant vector of the PSC movement generalizes to a vector

of maximum likelihood estimate for each y ∈ Cx when seen at a higher level. An interesting

observation is that zero values in β and γ has negligible effect in term of convergence. Hence

Theorem 4.1 suggests:

1. β and γ are redundant, and

2. PSC as sensitive to initialization as k-means.

In 2010, Szabo et al. performed an empirical analysis with regards to the effect of α, β, and γ

to the trajectory of PSC particles where they observed this particular convergence phenomenon

[85]. Based on the experiments presented in their manuscript, Szabo et al. suggested that “there

were no much gain obtained with the PSC when compared with a standard self-organizing clustering

methods” — i.e. when α is held constant, β = γ = 0. However, the reason behind the phenomenon

were not explained. Theorem 4.1 therefore provide the theoretical proof necessary to complete

their analysis [85].

4.4.2 Particle Behavior

We generate a two dimensional artificial dataset using the equation of a circle: y1(θ) = r1 cos(θ)+c1

and y2(θ) = r2 sin(θ) + c2. Three non-overlapping circles are generated by varying r and c,

representing three clusters. The behavior of each particle on this dataset under various parameter

Chapter 4. The Particle Swarm Clustering and its Families 134

settings is shown in Figure 4.4. The consequence of Theorem 4.1 can be directly observed in this

figure. It can be observed that when α is zero, the values of β and γ have no effect. This is obvious

particularly in Figure 4.4c and Figure 4.4d where all particles stay stationary in its initial position.

Specifying α, β, and γ from the stability bound in Equation 4.31 results in a cyclical movement

as expected. Specifying α, β, and γ based on the stability bound specified in Equation 4.37, each

particle finally converges to the center of each cluster.

Another experiment were done using the five Gaussian dataset where the algorithm was executed

using parameters specified by the stability bounds in Figure 4.5, with α > 0 and a randomized β

and γ (inside the stability bounds). After numerous trials the trajectory of the particles on this

dataset were as shown in Figure 4.5 which clearly shows the PSC’s sensitivity to initialization.

All PSC families, including the original Cohen - de Castro’s PSC [75], Szabo’s mPSC [74], and

Szabo’s FPSC [70], share the behavior depicted in Figure 4.4 and Figure 4.5. Based on their this

observation, we propose that the three algorithms, although proposed under varying names and

time frames, are conceptual duplicates of the original PSC.

4.5 Performance Analysis

The performance of the algorithms of the PSC families were evaluated against Fisher’s Iris dataset

[163], Wine dataset, and Spam Emails dataset, all of which are openly available from the UCI

machine-learning repository [84]. The machine used in this simulation is a laptop computer with

Intel Core i5 M520 @ 2.4 Ghz, 4 GB of RAM, running Windows 7. All simulations were done in

MATLAB 7.10.0 (R2010a).

The performance were investigated using two internal cluster validation indices: the Generalized

Dunn Index VGDN and Simplified Silhouette Criterion VSSW C ; and two external cluster validation

indices: Purity VP and Normalized Mutual Information VNMI . A detailed explanation on the

cluster validation indices are provided in Section 2.4.

The competing algorithms were the k-means++, Fuzzy c-means, and RCEr+ (2014) [55]. All

algorithms were fairly selected as they are all based on the voronoi tessellation principles. The

parameters for the PSC families were set as follows: α = β = γ = K/|Y|, itermax = 200. Each

experiment was repeated 300 times.

Chapter 4. The Particle Swarm Clustering and its Families 135

(a) α = 1, β = 0, γ = 0, ω =
0.5, Cyclical trajectory, does not con-

verge.

(b) α = 1, β = 0.5, γ = 0.5, ω =
0.5, Cyclical trajectory, does not con-

verge.

(c) α = 0, β = 1, γ = 1, ω = 0.5,
stationary, does not converge.

(d) α = 0, β = 0, γ = 1, ω = 0.5,
v(0) = 0 oscillates around initial po-

sition, does not converge.

(e) α = 0.01, β = γ = 0, ω = 0.5,

{α, β, γ} <
2 + 2ω

|Cx| , converges ac-

cording to the maximum likelihood
(k-means) trajectory. Sensitive to

initial position.

(f) α = 0.01, β = γ = 0.005, ω =

0.5, {α, β, γ} <
2 + 2ω

|Cx| , converges

according to the maximum likelihood
(k-means) trajectory. Sensitive to

initial position.

Figure 4.4: Trajectory of the PSC/mPSC/FPSC particles on an artificial dataset.

(a) Optimal (desired) (b) Suboptimal 1 (c) Suboptimal 2

(d) Suboptimal 3 (e) Suboptimal 4 (f) Suboptimal 5

Figure 4.5: Trajectory of the PSC/mPSC/FPSC particles on the five Gaussian dataset with
numerous random seeding shows PSC’s sensitivity to initialization.

Chapter 4. The Particle Swarm Clustering and its Families 136

4.5.1 Fisher - Iris Dataset

4.5.1.1 General Overview

The Fisher-Iris dataset [163] contains 150 instances of iris flowers collected in Hawaii. The dataset

consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).

Four features were measured including sepal length, sepal width, petal length, and petal width.

The p-value matrix for testing the hypothesis of no correlation between features/classes can be seen

in Table 4.2. The distribution of the features can be seen in the plot matrix in Figure 4.6. It can be

seen from these information that even though the features are highly correlated with one another,

each feature encodes additional information that would assist with the species identification task.

For example, at least one of the petal information (either length or width) needs to be retained to

enable reliable segmentation of Iris virginica and Iris versicolor.

Table 4.2: Iris Features: P-value Matrix for testing the hypothesis of no correlation against the
alternative that there is a non-zero correlation.

Se
pa

l
L

en
gt

h

Se
pa

l
W

id
th

P
et

al
L

en
gt

h

P
et

al
W

id
th

Se
to

sa

V
ir

gi
ni

ca

V
er

si
co

lo
r

Sepal Length 0.18 <0.01 <0.01 <0.01 0.33 <0.01

Sepal Width <0.01 <0.01 <0.01 <0.01 0.11

Petal Length <0.01 <0.01 0.01 <0.01

Petal Width <0.01 0.15 <0.01

4.5.1.2 Choosing the Distance Quantifier

Botanists characterize the species of iris flowers by looking at the morphological characteristics of

their sepals and petals [163]. The intraspecies variability with regards to the size of the petals and

sepals are linearly proportionate to the flower’s overall size. This variability is captured accord-

ingly in Fisher’s Iris dataset [163], where the flowers in each species can be seen probabilistically

distributed in an elongated multivariate Gaussian mixture.

In the scatter plot matrix in Figure 4.6, it can be observed that Iris Setosa is linearly separable

to the two others in the euclidean space; while the remaining two slightly overlaps. What makes

the Iris dataset problematic is the fact that the data are distributed in rotated hyper-ellipsoids.

Globular metrics (e.g. Euclidean, Chebyshev, Manhattan, etc.) are therefore unsuitable for this

data. As the intracluster correlation is considerably high, the dataset can be clustered easily

using Pearson’s correlation. However, correlation distances only specifies the relationship between

Chapter 4. The Particle Swarm Clustering and its Families 137

0 1 2

petal width

2 4 62 3 45 6 7 8
0

1

2

petal length

2

4

6

sepal width

2

3

4

5

6

7

8

sepal length

setosa
versicolor
virginica

Figure 4.6: Fisher-Iris dataset. Measures are in cm.

features but not the extent to which they scale. As it is important to note that the size of a flower

has to be normally distributed for each species of Iris, using Pearson’s correlation as the clustering

metric would lead to a somewhat flawed assumption (e.g. sepals and petals of an iris flower do not

grow to ∞ centimeters, neither would their lengths be negative).

Mahalanobis distance allows a clustering algorithm to cluster and consecutively learn the sample

within-cluster covariance matrix. As the intraspecies relationship between sepals and petals fol-

lows the multivariate normal distribution, the Mahalanobis distance family may be chosen as the

appropriate metric for this particular clustering problem. We utilized the Squared Mahalanobis

Distance for this experiment due to its convenient quadratic loss property.

4.5.1.3 Cluster Validity Analysis

A successful clustering scenario using the Mahalanobis distance can be seen in Figure 4.7.

The result of various clustering algorithms on this particular dataset using the distance quantifier

is shown in Table 4.3. The significance of each algorithm is benchmarked against k-means using

Wilcoxon rank sum test for testing equal median. For this dataset, the fuzzification parameter is

set to 1.4 for both FCM and FPSC.

C
ha

pt
er

4.
T

he
Pa

rt
ic

le
Sw

ar
m

C
lu

st
er

in
g

an
d

its
Fa

m
ili

es
13

8

1 2 3 4 5 6 7
4

4.5

5

5.5

6

6.5

7

7.5

8

0.
4

0.
4

0.4

0.
4

0.4

0.4

0.4

0.4

0.4

0.5

0.
5

0.
5

0.5

0.5

0.
5

0.
5

0.5

0.
5

0.5

0.
5

0.
6

0.
6

0.
6

0.
6

0.6

0.
6

0.6

0.
60.

6

0.
7

0.
7

0.7

0.
7

0.
7

0.7

0.8

0.8

0.8

0.8

0.8
0.9

0.9

0.9

0.9

petal length

se
pa

l l
en

gt
h

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

0.4

0.4
0.4

0.4

0.
4

0.4

0.
4

0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.5

0.5

0.
6

0.
6

0.
6

0.6

0.6

0.
7

0.
7

0.7

0.7

0.7

0.8

0.
8

0.8
0.8

0.8

0.9

0.9

sepal length

se
pa

l w
id

th

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

0.4

0.4

0.
4

0.5

0.
5

0.5

0.
5

0.
5

0.5

0.5

0.
5

0.
5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.70.7

0.7

0.8

0.8

0.8

0.8

0.8

0.
9

0.9
0.9

0.
9

sepal width

pe
ta

l w
id

th

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

0.
4

0.4

0.
4

0.4

0.4

0.4

0.
5

0.
5

0.5
0.5

0.5

0.5

0.
50.
5

0.
6

0.
6

0.6

0.6

0.
6

0.6

0.
60.6

0.
7

0.
7

0.7

0.7

0.7

0.8

0.8
0.8

0.8

0.8

0.
9

0.9

0.9

0.9

petal length

pe
ta

l w
id

th

Figure 4.7: A Succesful Clustering of the Fisher-Iris dataset (VP = 0.97, algorithm: RCEr+). Fuzzification parameter m = 2.

Chapter 4. The Particle Swarm Clustering and its Families 139

Table 4.3: Performance of the PSC families relative to other clustering algorithms on Fisher-
Iris dataset (distance quantifier: Squared Mahalanobis Distance). Bold font denotes statistically

significant results: black font indicates higher median; red font indicates lower median.

VSSW C VGDN

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.46 0.47 0.46 0.53 0.57 0.52 0.36 0.72

fuzzy c-means 0.48 0.49 0.36 0.63 0.57 0.59 0.57 0.24 0.81 0.84

PSC 0.74 0.75 0.74 0.75 <0.01 0.43 0.44 0.42 0.50 <0.01
mPSC 0.75 0.75 0.74 0.76 <0.01 0.52 0.51 0.46 0.60 0.59

FPSC 0.74 0.75 0.73 0.75 <0.01 0.44 0.44 0.42 0.47 <0.01
RCEr+ 0.78 0.79 0.77 0.80 <0.01 1.74 1.81 1.57 1.98 <0.01

VP urity VNMI

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.85 0.87 0.85 0.89 0.72 0.72 0.69 0.74

fuzzy c-means 0.81 0.87 0.80 0.89 0.20 0.72 0.74 0.70 0.75 0.45

PSC 0.64 0.62 0.61 0.67 <0.01 0.62 0.62 0.61 0.63 <0.01
mPSC 0.67 0.64 0.59 0.72 <0.01 0.64 0.63 0.62 0.65 <0.01
FPSC 0.62 0.62 0.59 0.66 <0.01 0.62 0.62 0.61 0.63 <0.01

RCEr+ 0.95 0.96 0.95 0.96 <0.01 0.84 0.85 0.83 0.87 <0.01

Time (ms) Memory

μ σ (Bytes)

k-means++ 5 3.7 12942

fuzzy c-means 6 4.8 12554

PSC 1883 651 38073

mPSC 1739 691 37913

FPSC 1857 767 38097

RCEr+ 361 63 14753

The results from Table 4.3 shows that on the Fisher-Iris dataset, only RCEr+ achieved higher me-

dian in all performance aspects when compared with k-means. PSC, mPSC, and FPSC performed

poorly on this dataset, further investigation revealed that the algorithm frequently assigned the

two overlapping classes as a single cluster. Although this grouping is somewhat acceptable in clus-

tering point of view (denoted by the higher Vsswc), in terms of the external validity measures this

phenomenon were considered as a degradation in performance. The highest median was achieved

by RCEr+ with 0.96 purity. Further insights on the RCEr+ will be covered in the next chapter.

In terms of time and memory complexity, the PSC families were considerably more expensive in

comparison to k-means, fuzzy c-means and RCEr+. The PSC families required around 1800ms and

38 Kilobytes of memory on average on this dataset. RCEr+ required 361ms and 14.7 Kilobytes of

memory. The lowest complexity was achieved by both k-means and fuzzy c-means with 5ms and

13 Kilobytes of memory.

Chapter 4. The Particle Swarm Clustering and its Families 140

4.5.2 Wine Dataset

4.5.2.1 General Overview

The wine dataset summarizes the results of a chemical analysis of wines grown in the same re-

gion in Italy, derived from three different cultivars. The analysis determined the quantities of

13 constituents found in each of the three types of wines. This dataset is convex, relatively well

behaved and linearly separable, which makes it suitable for testing the repeatability of a clustering

algorithm. This dataset and its description can be downloaded from [84].

The wine dataset contains 178 wines with 13 features as listed in Table 4.4. Table 4.4 presents the

P-value Matrix for testing the hypothesis of no correlation. From this table it is easy to observe

that many of the features are redundant. The scatter plot matrix showing only 6 of the 13 features

can be seen in Figure 4.8.

500 1000 1500

Proline

2 4 6 8 10121 2 3 4 58010012014016010 20 3012 14

500

1000

1500

Color Intensity

2
4
6
8

10
12

Flavanoids

1
2
3
4
5

Magnesium

80
100
120
140
160

Alcalinity of Ash

10

20

30

12

14
Alcohol

1
2
3

Figure 4.8: Six features out of the 13 from the wine dataset.

Figure 4.8 shows that the wines from the first, second, and third cultivars can be clustered using

only 6 of the available features. Even though the best practice would be to select only the features

that are not redundant, for this experiment we used all 13 features to investigate the robustness

of each clustering algorithm when dealing with redundant information.

C
hapter

4.
T

he
Particle

Swarm
C

lustering
and

its
Fam

ilies
141

Table 4.4: Wine Features: P-value Matrix for testing the hypothesis of no correlation against the alternative that there is a non-zero correlation.
A

lc
oh

ol

M
al

ic
A

ci
d

A
sh

A
lc

al
in

it
y

of
A

sh

M
ag

ne
si

um

T
ot

al
P

he
no

ls

F
la

va
no

id
s

N
on

fla
va

no
id

ph
en

ol
s

P
ro

an
th

oc
ya

ni
ns

C
ol

or
in

te
ns

it
y

H
ue

O
D

28
0/

O
D

31
5

P
ro

lin
e

C
ul

ti
va

r
A

C
ul

ti
va

r
B

C
ul

ti
va

r
C

1. Alcohol 0.21 <0.01 <0.01 <0.01 <0.01 <0.01 0.04 0.07 <0.01 0.34 0.34 <0.01 <0.01 <0.01 0.13

2. Malic Acid 0.03 <0.01 0.47 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01

3. Ash <0.01 <0.01 0.09 0.13 0.01 0.90 <0.01 0.32 0.96 <0.01 <0.01 <0.01 0.04

4. Alcalinity of Ash 0.27 <0.01 <0.01 <0.01 <0.01 0.80 <0.01 <0.01 <0.01 <0.01 0.02 <0.01

5. Magnesium <0.01 <0.01 <0.01 <0.01 <0.01 0.46 0.38 <0.01 <0.01 <0.01 0.81

6. Total Phenols <0.01 <0.01 <0.01 0.46 <0.01 <0.01 <0.01 <0.01 0.53 <0.01

7. Flavanoids <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.58 <0.01

8. Nonflavanoid phenols <0.01 0.06 <0.01 <0.01 <0.01 <0.01 0.88 <0.01

9. Proanthocyanins 0.74 <0.01 <0.01 <0.01 <0.01 0.46 <0.01

10. Color intensity <0.01 <0.01 <0.01 0.06 <0.01 <0.01

11. Hue <0.01 <0.01 <0.01 <0.01 <0.01

12. OD280/OD315 <0.01 <0.01 <0.01 <0.01

13. Proline <0.01 <0.01 <0.01

Chapter 4. The Particle Swarm Clustering and its Families 142

4.5.2.2 Choosing the Distance Quantifier

The scatter plot matrix in Figure 4.8 shows that, due to the correlated features, the wines are dis-

tributed in a combination between globular and rotated multivariate Gaussians. This phenomenon

can be observed in scatter plot between proline and color intensity; alcohol and flavanoids; fla-

vanoids and proline.

We selected the Jensen-Shannon (JS) distance (square root of the Jensen-Shannon Divergence)

as the distance quantifier to cope with these redundancies. The features are first converted into

cumulative probability distribution by fitting the beta distribution on each normalized feature.

The cumulative distribution calculates the area under the beta curve which is particularly useful

for this dataset because it directly quantifies the cumulative probability p(xi < xij |θβ) — i denotes

the feature index and j denotes the observation index. In terms of magnesium content, for example,

it can be conveniently translated as the probability of getting a type of wine with lower magnesium

concentration than the wine at hand, given that we know the distribution of magnesium over all

wines in the dataset.

4.5.2.3 Cluster Validity Analysis

A successful clustering scenario using the JS distance can be seen in Figure 4.9.

The result of various clustering algorithms on this particular dataset using the distance quantifier

is shown in Table 4.5. The significance of each algorithm is benchmarked against k-means using

Wilcoxon rank sum test for testing equal median. For this dataset, the fuzzification parameter is

set to 1.4 for both FCM and FPSC.

The results from Table 4.5 shows that on the Wine dataset, only RCEr+ achieved a statistically

significant higher median on both internal cluster validity indices (VSSW C and VGDN) compared

to k-means. All other algorithms, including Fuzzy c-means, PSC, mPSC, and FPSC, achieved lower

VSSW C on this dataset. With regards to VP Although there is no significant difference in terms of

median between RCEr+ and k-means, the purity average (μ(VP)) of RCEr+ is closer to the median

compared to that of k-means, which implies that k-means has a slightly skewed distribution due

to its heavier left tail. Nevertheless, all algorithms achieved a satisfactory median purity up to as

high as 0.97 on this dataset through a completely unsupervised process. The result shows that

the appropriateness of use of the cumulative probability and β-distribution fitting scheme together

with the Jensen-Shannon distance.

C
hapter

4.
T

he
Particle

Swarm
C

lustering
and

its
Fam

ilies
143

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0 5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6
0.6

0.
6

0.
6

0.6

0.6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.
8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

P(flavanoids)

P
(p

ro
lin

e)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
4

0.4

0.4
0.4

0.4

0.4

0.4

0.4

0.
5

0.5

0.5

0.5

0.5

0.5 0.5

0.
5

0.5

0.5

0.
6

0.6
0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6 0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.
8

0.8

0.8

0.9

0.9

0.9

P(Alcalinity of Ash)

P
(C

ol
or

 In
te

ns
ity

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.4

0.4

0.4
0.4

0.4

0.4

0.
4

0.
40.
5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5 0.5

0.5

0.60.6

0.6
0.6

0.6

0.
6

0.
6

0.
6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.
9

P(Malic Acid)

P
(M

ag
ne

si
um

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.4

0.
4

0.4

0.
5 0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6
0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.70.7

0.7

0.
7

0.7

0.
7

0.
7

0.8

0.8

0.8 0.8

0.9

0.9

0.9

P(Alcohol)

P
(A

lc
al

in
ity

 o
f A

sh
)

Figure 4.9: A Succesful Clustering of the Wine dataset using Jensen-Shannon distance (VP = 0.97, algorithm: RCEr+). Values are expressed in
terms of cumulative probability. Fuzzification parameter m = 2.

Chapter 4. The Particle Swarm Clustering and its Families 144

Table 4.5: Performance of the PSC families relative to other clustering algorithms on Wine
dataset (distance quantifier: Jensen-Shannon distance). Bold font denotes statistically significant

results: black font indicates higher median; red font indicates lower median.

VSSW C VGDN

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.454 0.457 0.457 0.46 0.705 0.716 0.716 0.72

fuzzy c-means 0.339 0.363 0.363 0.36 <0.01 0.579 0.607 0.607 0.61 <0.01
PSC 0.446 0.448 0.440 0.46 <0.01 0.709 0.713 0.697 0.74 0.24

mPSC 0.425 0.439 0.429 0.46 <0.01 0.672 0.709 0.681 0.74 0.06

FPSC 0.442 0.446 0.437 0.45 <0.01 0.694 0.709 0.690 0.72 0.03

RCEr+ 0.459 0.458 0.457 0.46 <0.01 0.722 0.719 0.717 0.72 <0.01

VP urity VNMI

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.955 0.972 0.972 0.972 0.882 0.897 0.897 0.897

fuzzy c-means 0.949 0.972 0.972 0.972 0.02 0.866 0.897 0.897 0.897 0.02

PSC 0.958 0.966 0.961 0.972 <0.01 0.870 0.878 0.859 0.897 <0.01
mPSC 0.908 0.961 0.949 0.966 <0.01 0.822 0.862 0.836 0.880 <0.01
FPSC 0.956 0.972 0.966 0.972 <0.01 0.872 0.893 0.878 0.897 <0.01

RCEr+ 0.971 0.972 0.972 0.972 0.73 0.896 0.897 0.897 0.897 0.73

Time (ms) Memory

μ σ (Bytes)

k-means++ 15.68 6.00 19559

fuzzy c-means 147.14 85.80 24649

PSC 5733.61 1360.47 102619

mPSC 5174.45 1356.52 103031

FPSC 3767.97 1380.34 100986

RCEr+ 556.88 103.91 33832

In terms of time and memory complexity, the PSC families were considerably more expensive in

comparison to k-means, fuzzy c-means and RCEr+. The PSC families required up to 5700 ms and

103 Kilobytes of memory on average on this dataset. RCEr+ required 556.88 ms and 33.8 Kilobytes

of memory. The lowest complexity was achieved by both k-means and fuzzy c-means with 15ms

and 19.5 Kilobytes of memory.

4.5.3 Spam E-mail Dataset

4.5.3.1 General Overview

The spam email dataset is originally donored by George Forman from Hewlett-Packard for the

development of a reliable spam filtering. The dataset is available online from the UCI machine

learning dataset [84]. The dataset contains 57 features which are extracted from 4601 emails (2788

spam emails, and 1813 non-spam emails). The features can be summarized in Table 4.6. The task

Chapter 4. The Particle Swarm Clustering and its Families 145

in this dataset is straightforward, which is to classify spam and non-spam emails based on the

available features.

Table 4.6: Spam dataset feature overview, as reported in the original dataset

Feature type Description

48 continuous real [0,100] attributes of type
word_freq_WORD

percentage of words in the e-mail that match
WORD, i.e. 100 * (number of times the WORD
appears in the e-mail) / total number of words in e-
mail. A "word" in this case is any string of alphanu-
meric characters bounded by non-alphanumeric
characters or end-of-string.

6 continuous real [0,100] attributes of type
char_freq_CHAR

percentage of characters in the e-mail that match
CHAR, i.e. 100 * (number of CHAR occurences) /
total characters in e-mail

1 continuous real [1,...] attribute of type capi-
tal_run_length_average

average length of uninterrupted sequences of capital
letters

1 continuous integer [1,...] attribute of type capi-
tal_run_length_longest

length of longest uninterrupted sequence of capital
letters

1 continuous integer [1,...] attribute of type capi-
tal_run_length_total

sum of length of uninterrupted sequences of capital
letters

It is important to understand that this dataset is normally used for supervised learning. In this

experiment we are interested on whether this classification problem can be solved using an unsu-

pervised process. The performance will therefore depend on the landscape or distribution of the

data, the appropriateness of the distance measure and the efficiency of the clustering algorithm.

This dataset is relatively bigger than iris and wine dataset, with an approximate size of 2 megabytes.

From the performance of PSC families on the past datasets, it is to be expected that the PSC

families would perform very slowly on this dataset due to their high complexities.

4.5.3.2 Choosing the Distance Quantifier

In a situation where one is required to filter meaningful emails from spams, it is natural to see

“frequency of a word” as a probabilistic measure instead of a number because one does not simply

count how many spam keywords are there in an email and compare their repetitions against any

predefined threshold. The natural way is rather to investigate whether certain “keywords” appear

or even dominate the content of the email. The emails whose observable patterns share similar

characteristics to those marked as spam are then more likely to be assigned in the spam group.

Based on this analysis we believe that the Symmetrical Kullback Leibler (KL) divergence with

the column-normalized feature (e.g. each column sums to 1) may be an appropriate distance

quantifier for this dataset. The column-normalization is essential to convert the feature vector into

a probability mass function (PMF) where pX(x) : X → [0, 1, 2, . . . , 57].

Chapter 4. The Particle Swarm Clustering and its Families 146

Similarly to the wine-dataset, the features in the spam dataset needs to be converted into cumu-

lative distribution function (CDF) by fitting the beta distribution on each feature. However, the

data needs to be preprocessed prior to the conversion. The details are as follows.

The features in this dataset are excessively leptokurtic, which is to be expected because contextually

the probability of “absence of a word” has to be higher than “repetition of a word” due to the

following. Consider two specific words, say “meeting” and “3d”, where “meeting” has been used in

an example email conversation. Let us further assume that the word “3d” is out of context. On one

hand, the word “meeting” will naturally repeat during the course of the conversation to preserve

contextual coherence. On the other hand, the word “3d” is nonexistent, simply because it is out

of the context of the conversation. Based on this analysis we apply logarithmic transformation

(e.g. log(1 + x)) to each feature such that higher frequency repetitions are assigned fairer weights

compared to absence. These log-transformed features are then scaled from 0 to 1 and fitted with

the beta distribution.

4.5.3.3 Cluster Validity Analysis

A successful clustering scenario using the Symmetrical KL-divergence can be seen in Figure 4.10.

The result of various clustering algorithms on this particular dataset using the distance quantifier

is shown in Table 4.5. The significance of each algorithm is benchmarked against k-means using

Wilcoxon rank sum test for testing equal median. For this dataset, the fuzzification parameter is

set to 1.4 for both FCM and FPSC.

The results from Table 4.5 shows that on the this dataset, only RCEr+ achieved higher median in all

cluster validity indices compared to k-means. Nevertheless, all algorithms achieved a satisfactory

purity up to as high as 0.88 on this dataset through a completely unsupervised process which shows

that the task can be elegantly tackled with the appropriate use of cluster analysis.

In terms of time and memory complexity, RCEr+ were slightly more expensive than fuzzy c-means

(8 seconds, 2.3 MB memory compared to 6.6 seconds 2.2 MB memory). The lowest complexity was

achieved by k-means with 381ms and 2.1 Megabytes of memory. The PSC families were consider-

ably more expensive, inefficient, yet yield poorer results in comparison to the other algorithms on

this dataset. The PSC families required up to 200 seconds at the worst case with as high as 8.5

Megabytes of memory (about 4.25 times the size of the dataset itself).

Chapter 4. The Particle Swarm Clustering and its Families 147

(a) Clustered non-spam emails: Individual samples and the learned Probability Mass Function
(PMF).

(b) Clustered spam emails: Individual samples and the learned PMF.

Figure 4.10: A Succesful Clustering of the Spam dataset using Symmetrical Kulback-Leibler
Divergence (VP = 0.901, algorithm: RCEr+), thick line in each graph denotes the learned PMF,
which is the probabilistic barycenter of the 57-dimensional KL Voronoi region inferred from the

data using RCEr+. Values are expressed in terms of column-normalized β-CDF.

Chapter 4. The Particle Swarm Clustering and its Families 148

Table 4.7: Performance of the benchmarked clustering algorithms on Spam E-mail dataset
(distance quantifier: Symmetrical Kullback-Leibler Divergence). Bold font denotes statistically

significant results: black font indicates higher median; red font indicates lower median.

VSSW C VGDN

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.417 0.396 0.394 0.40 0.584 0.609 0.559 0.61

fuzzy c-means 0.229 0.226 0.226 0.23 <0.01 0.516 0.514 0.514 0.51 <0.01
PSC 0.329 0.315 0.290 0.36 <0.01 0.614 0.615 0.586 0.65 <0.01

mPSC 0.332 0.329 0.287 0.37 <0.01 0.607 0.607 0.586 0.62 0.10

FPSC 0.297 0.293 0.225 0.34 <0.01 0.578 0.575 0.558 0.60 <0.01
RCEr+ 0.400 0.400 0.399 0.40 <0.01 0.662 0.662 0.661 0.66 <0.01

VP urity VNMI

μ median Q1 Q3 p μ median Q1 Q3 p

k-means++ 0.783 0.885 0.524 0.887 0.389 0.484 0.167 0.488

fuzzy c-means 0.858 0.858 0.858 0.858 <0.01 0.401 0.399 0.399 0.399 <0.01
PSC 0.836 0.845 0.814 0.881 <0.01 0.386 0.385 0.338 0.466 <0.01

mPSC 0.833 0.862 0.796 0.879 <0.01 0.392 0.418 0.311 0.471 <0.01
FPSC 0.857 0.866 0.830 0.882 <0.01 0.421 0.444 0.365 0.468 <0.01

RCEr+ 0.900 0.900 0.900 0.901 <0.01 0.520 0.522 0.520 0.523 <0.01

Time (ms) Memory

μ σ (Bytes)

k-means++ 780.11 381.31 2109149

fuzzy c-means 6586.65 3818.63 2219739

PSC 160528.87 1299.87 8543234

mPSC 155403.11 2103.55 8541410

FPSC 176858.25 27389.62 8543250

RCEr+ 8096.43 216.52 2302100

4.6 Conclusion

This chapter focuses on the analysis of Particle Swarm Clustering variants including PSC, modified

PSC (mPSC), and Fuzzy PSC (FPSC). Thorough theoretical investigation and empirical validation

has been conducted. Our contributions are summarized as follows.

We have analyzed the theoretical and empirical computational and memory complexity of PSC in

Section 4.3 where we unravel a number of important efficiency issues which restricts the algorithm

applicability to only smaller datasets. For example, with a 400x1000 data matrix, on each iteration

the PSC already suffers from a significant 2000% slow-down compared to k-means. In order to

cluster 1000 observations of 1000 dimensional double precision data into 256 clusters, the algorithm

variants require as much as 2GB memory; whereas k-means, fuzzy c-means, and Rapid Centroid

Estimation (RCE, [55]) require memory allocation of lower than 15MB. Ironically, empirical results

on benchmark data from [84] presented in Table 4.3, Table 4.5, and Table 4.7 show that these high

complexities do not generally translate into any increase in cluster quality.

Chapter 4. The Particle Swarm Clustering and its Families 149

We derived the stability criteria and provided a detailed proof of convergence for the PSC algorithm

in Theorem 4.1. The proof reveals a problematic cyclical trajectory of the particles using parameter

selection outlined in the standard PSO (Lemma 3.1.1). Interestingly this crucial character is

discussed neither in the initial manuscript [75] nor its follow ups [70, 74, 85].

When the convergence bounds described in Equation 4.37 are properly satisfied, an even more

interesting phenomenon is observed. PSC guarantees convergence as long as the self-organizing

constant is nonzero. Furthermore, both social and cognitive parameters have negligible effect to the

swarm’s convergence, which implies that these parameters are redundant. The ultimate implication

of this theorem is that the PSC generalizes to the k-means, retaining all of its performance aspects

including the most severe: the curse of initial position. Szabo et al. [85] observed this particular

convergence phenomenon in their empirical experiment [85] and suggested that “there were no much

gain obtained with the PSC when compared with a standard self-organizing clustering methods” [85].

However, the reason behind the phenomenon were not further explained. Theorem 4.1 provides

the theoretical proof necessary to complete their analysis.

Finally, empirical testing suggests that all PSC families, including the original PSC [75], Szabo’s

mPSC [74], and Szabo’s FPSC [70], share the exact particle behavior. The three algorithms,

although proposed under varying names and time frames, are conceptual duplicates of the original

PSC.

Chapter 5

Rapid Centroid Estimation

Rapid Centroid Estimation (RCE) is a semi-stochastic clustering algorithm that we

proposed to address the complexity bottleneck of Cohen - de Castro’s Particle Swarm

Clustering (PSC). The RCE was originally proposed as a lightweight simplification of the

PSC algorithm [4, 71–73]. RCE retains the quality of PSC with greatly reduced computational

complexity and increased stability. This chapter explains the conceptual journey of the RCE since

its prior proposal in 2012 [71, 73], the formulation of the paradigms to address its sensitivity to

initialization in 2013 [4, 72], and its further simplification in the 2014 proposition [55].

This chapter is organized as follows. Section 5.1 provides a brief recap on the challenges of the

PSC discussed previously in Chapter 2. Section 5.2 defines the basic building blocks. Section 5.3

provides the algorithmic fundamentals. Section 5.4 analyzes the complexity of the RCE algorithm

both theoretically and empirically. Section 5.5 analyzes the trajectory and behavior of the RCE

particle. Section 5.6 proposes some strategies applicable to reduce the likelihood of the RCE

particles converging to suboptimum solution. Section 5.7 summarizes the comparative results of

the algorithm on some of the datasets available in UCI machine learning dataset repository [84] as

reported in our 2012 publication [4]. Finally, Section 5.8 concludes the chapter.

5.1 The PSC and its Challenges

Despite its excruciatingly expensive computational and memory cost, the PSC suffers the exact

same limitations of a standard k-means. As has been analyzed in the previous section, these

challenges mainly arise due to the inefficient algorithmic construct and lack of theoretical analysis

151

Chapter 5. Rapid Centroid Estimation 152

on the algorithm. This section reviews the major findings and analysis that we have done in the

previous chapter which realization leads to the formulation of the RCE [71, 73].

5.1.1 Computational Complexity

The PSC computational complexity arise mainly due to the external loop for each data. The

following comparative summary between a simplified pseudocode of PSC (Algorithm 5.18) vs a

simplified pseudocode for k-means (Algorithm 5.19) should explain the reason behind the PSC

computational complexity.

Algorithm 5.18 Cohen - de Castro’s Particle Swarm Clustering (PSC) - simplified

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K, PSC swarm parameters.

Output: Centroid vectors X = {x1, . . . ,xK} ∈ R
dim.

1: Initialize the swarm
2: repeat
3: for all y ∈ Y

4: Calculate the pairwise distance between X and y.
5: Update the Social and Cognitive matrices,
6: Generate random vectors ϕso, ϕsc, and ϕco,
7: update particle velocity and position.
8: end for
9: Redirect particles with no member towards the winning particle

10: until Convergence or maximum iteration reached
11: return X = {x1, . . . ,xK} ∈ R

dim

Algorithm 5.19 K-means - simplified

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K

Output: Centroid vectors X = {x1, . . . ,xK} ∈ R
dim.

1: Initialize position
2: repeat
3: Calculate the pairwise distance matrix between X and Y.
4: Calculate the crisp membership matrix U
5: Update X.
6: until Convergence
7: return X = {x1, . . . ,xK} ∈ R

dim

It can be easily observed that the bottleneck in the PSC algorithm compared to k-means resides

at line 3: forall y ∈ Y. From the empirical experiments in the previous chapter, we notice that

the complexity of line 3 is significant as shown in Figure 5.1. With a 400x1000 data matrix, on

each iteration the PSC already suffers from a significant 2000% slow-down compared to k-means.

This time complexity bottleneck inevitably translates to the slow convergence of PSC families

in general clustering problems. As the iteration continues the cumulative inefficiency of PSC

significantly stretches the overall time required for the algorithm to converge. The experiment

Chapter 5. Rapid Centroid Estimation 153

regarding this phenomenon has been done in the previous chapter, which results are summarized

as follows.

(a) Time complexity of PSC distance computa-
tion.

(b) Time complexity of k-means distance com-
putation.

Figure 5.1: Time complexity of the distance computation of PSC vs k-means: Original Figure
can be seen in Figure 4.1.

Table 5.1: Comparison between time complexities (milliseconds) and median purities of various
algorithms on the experiments in the previous chapter. The high time complexities of the PSC

families do not generally translate into higher quality result.

Iris Wine Spam Email

Time (ms) Med VP Time (ms) Med VP Time (ms) Med VP

k-means++ 5 0.873 16 0.972 780 0.885

fuzzy c-means 5 0.873 147 0.972 6587 0.858

PSC 1883 0.623 5734 0.966 160529 0.845

mPSC 1739 0.643 5174 0.961 155403 0.862

FPSC 1857 0.617 3768 0.972 176858 0.866

RCEr+ 361 0.957 557 0.972 8096 0.886

5.1.2 Memory Complexity

The algorithms of the PSC families are considerably expensive in terms of memory complexity.

Our benchmark test revealed that in order to cluster 1000 observations of 1000 dimensional double

precision data, the PSC families require as much as 2GB memory; whereas k-means, fuzzy c-means,

and RCEr+ require memory allocation of lower than 15MB. More information can be seen in the

experiment in the previous chapter, in particular Figure 4.3 and Table 4.1.

This relatively high memory requirement poses a significant scalability bottleneck when dealing

with larger, higher dimensional datasets. We summarize the memory requirement of the PSC

Chapter 5. Rapid Centroid Estimation 154

families vs k-means fuzzy c-means and RCEr+ on the Iris, Wine, and Spam email datasets obtained

in the previous chapter.

Table 5.2: Comparison between memory complexities (bytes) and median purities of various
algorithms on the experiments in the previous chapter. Similarly to the high time complexity,
the high memory complexities of the PSC families do not generally translate into higher quality

result.

Iris Wine Spam Email

Memory Med VP Memory Med VP Memory Med VP

k-means++ 12942 0.873 19559 0.972 2109149 0.885

fuzzy c-means 12554 0.873 24650 0.972 2219739 0.858

PSC 38073 0.623 102619 0.966 8543234 0.845

mPSC 37913 0.643 103031 0.961 8541410 0.862

FPSC 38097 0.617 100986 0.972 8543250 0.866

RCEr+ 14753 0.957 33832 0.972 2302100 0.886

Particularly in the spam email dataset, the PSC families requires 8.5 Megabytes memory compared

to k-means which requires 2.1 Megabytes of memory. The algorithm also performs significantly

slower than the other three. We present a complexity map of the benchmarked algorithms on

the benchmarked datasets in Figure 5.2. Among the PSC variants, FPSC shows to be the most

inefficient. In this Figure we can observe that, despite the complexity, the expensive costs of all

the PSC algorithm variants do not generally translates into performance.

5.1.3 Redundancies and Sensitivity to Initialization

In Theorem 4.1 we have proven the convergence of PSC which validates Cohen - de Castro’s

proposition on the self-organizing property of the PSC particles [75]. The proof, however, comes

with rather intriguing implications.

The PSC monotonically minimizes the average distortion between each particle and data in its

voronoi region — similarly to Stuart Lloyd’s k-means — by following the path of maximum like-

lihood which resembles the Expectation Maximization (EM) algorithm. The EM is very sensitive

to initialization, however it guarantees convergence to a local minimum.

Theorem 4.1 proposes that the PSC generalizes to the EM algorithm (more specifically, the k-

means) when the stability constraint in Equation 4.37 is satisfied. Consequently, PSC suffers from

the limitations of k-means, including the most severe: initialization and suboptimal partitions.

The PSC strongly resembles stochastic k-means which learning rate depends solely on the self-

organizing term. Furthermore, both social and cognitive terms can be omitted as their values are

Chapter 5. Rapid Centroid Estimation 155

0 1000 2000 3000 4000
0.5

1

1.5

2

2.5

3

3.5

4
x 104

Time (ms)

M
em

or
y

(B
yt

es
)

k means
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(a) Iris dataset (Squared Mahalanobis distance):
complexity map.

123456

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8

1

purity

algorithm

pr
ob

ab
ilit

y

k means++
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(b) Iris dataset (Squared Mahalanobis distance):
purity histogram.

0 2000 4000 6000
0

2

4

6

8

10

12
x 104

Time (ms)

M
em

or
y

(B
yt

es
)

k means
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(c) Wine dataset (Jensen-Shannon distance): com-
plexity map.

123456

0.88

0.9

0.92

0.94

0.96

0.98

0

0.2

0.4

0.6

0.8

1

purity

algorithm

pr
ob

ab
ilit

y

k means++
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(d) Wine dataset (Jensen-Shannon distance): pu-
rity histogram.

0 5 10 15
x 104

2

3

4

5

6

7

8

9
x 106

Time (ms)

M
em

or
y

(B
yt

es
)

k means
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(e) Spam email dataset (Symmetrical Kullback-
Leibler divergence): complexity map.

123456

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8

1

purity

algorithm

pr
ob

ab
ilit

y

k means++
fuzzy c means
PSC
mPSC
FPSC
RCEr+

(f) Spam email dataset (Symmetrical Kullback-
Leibler divergence): purity histogram.

Figure 5.2: Complexity and Purity of the Benchmarked Algorithms.

Chapter 5. Rapid Centroid Estimation 156

only effective if and only if the self-organizing term is non-zero. Hence contrast to the claim by

Cohen and de Castro [75], we propose that the convergence, and therefore, the performance of

PSC is affected only by the self-organizing term, but neither the social nor the cognitive terms.

This theoretical proof is in line with the empirical evidence observed by Szabo et al. [85], where

they stated that “there were no much gain obtained with the PSC when compared with a standard

self-organizing clustering methods” [85]. We encourage readers to refer to Theorem 4.1 for an in

depth discussion with regards to this matter.

5.2 Definitions and Redefinitions

As can be seen previously in Algorithm 5.18, the PSC computational complexity arise mainly due

to the external loop for each data. In RCE 2012 [71, 73], we propose that the PSC algorithm can

be further simplified and even improved while still maintaining its algorithmic integrity. In this

new construct, the external loop is made compact as a batch matrix operations as in k-means.

The movement is updated by summing the resultant vector of each term. Although the memory

complexity remains the same, the time complexity of each iteration can be significantly reduced

[71]. In 2014, the discovery of Theorem 4.1 has unlocked the real potential of RCE, allowing

it to process megabyte datasets and engage in consensus swarm clustering setting in quasilinear

complexity [55].

In order to properly define the RCE, we first need to equip the abstract construct with the appro-

priate definitions. One might notice that some of the definitions are redefined from the ones used in

PSC, and that the difference may seem very subtle. We would like to emphasize that these subtle

differences are important for the proper interpretation of our proposed algorithm. The summary

of the (re)definitions includes,

1. A new conceptual interpretation of “swarm” and “particles”, and how they interact with one

another;

2. A new “modular” perspective on the swarm memory;

3. A computationally efficient movement update scheme which utilizes the resultant vector for

each particles instead of individual vectors for each data;

4. A proposition for synthesizing cluster validity index to the PSC as an objective function for

quantifying the quality of a voronoi tessellation, and;

5. A local minimum memory which stores the positions of particles that optimizes the given

objective function.

Chapter 5. Rapid Centroid Estimation 157

The new definitions are explained in detail as follows.

Definition 5.2.1 (Swarm). A swarm Θ represents a candidate partition of a dataset Y ∈ R
dim.

The swarm consists of particle tuples p = {θ1, . . . , θK} and term memory matrices Tl = {ψ1 (l), . . . , ψn(l)} ∈
R

dim as follows,

Θ = {{θ1, . . . , θK}, {ψ1 (1), . . . , ψn (1)}, . . . , {ψ1 (1), . . . , ψn (L)}} (5.1)

= {p,T1, . . . ,TL} (5.2)

n(l) denotes the number of vectors in the memory matrix. The cardinality of each term memory

matrix is determined by the number of vectors it stores. For example, the social memory matrix

stores |Tsc| = |YΘ| vectors; the cognitive memory matrix stores |Tco| = K × |YΘ| vectors; the self-

organizing memory matrix stores the data vectors |Tso| = |YΘ|; while the local minimum matrix

stores |Tmi| = K particle position vectors.

The number of particles, K = |C|, specifies the number of desired voronoi regions C = {C1, . . . ,CK}.

Note that with this new “modular” definition of the swarm, we can easily add or remove memories

as if they were modules by specifying the set of terms L. For example, a conservative configuration

would be to use all four terms [4, 71, 73]:

LP SC,RCE2012 = {self organizing, social, cognitive, minimum} (5.3)

If one wish to incorporate the proof from Theorem 4.1, we can obtain an approach as follows,

LRCE2014 = {self organizing, minimum}, (5.4)

which has been utilized to our proposal of the Ensemble RCE (ERCE) in [55].

Definition 5.2.2 (Particle). The particle matrix p is a 2-tuple matrix storing the position and

velocity vector of each particle tuple θi = {xi, vi}; (x, v) ∈ R
dim such that,

p = {{x1, v1}, . . . , {xK , vK}}, (5.5)

= {θ1, . . . , θK}, (5.6)

= {X,V}, (5.7)

where each particle θi governs a voronoi region Ci, with voronoi cell xi. Each data in Ci is

crisply associated with the closest corresponding cell in the Euclidean space defined by the distance

function.

Chapter 5. Rapid Centroid Estimation 158

Notice that there is a contrast to the original scheme where the cognitive memory is replaced with

an external matrix indexed by the swarm. Representing the particles as a 2-tuple allows additional

flexibility in adding / removing memories or even parallelizing the swarm [4, 55].

Definition 5.2.3 (Position). The position of a particle x ∈ R
dim is similarly defined as in PSC

where x denotes its literal location in the dim-dimensional Euclidean space. x represents a potential

prototype vector of the voronoi cell. The position of each particle is updated similarly to the

standard PSC rule as follows,

x(t + 1) = x(t) + v(t + 1), (5.8)

where v denotes the velocity vector of the corresponding particle.

Definition 5.2.4 (Self-Organizing Memory). The self organizing memory of a swarm is simply a

set of observations which are included for the cluster optimization,

Tso = YΘ. (5.9)

This definition allows the swarm to operate on subsampled/perturbed data. This property is im-

portant, especially when the RCE is deployed as parallel cooperative swarm or consensus/ensemble

swarm [55].

Definition 5.2.5 (Cognitive Memory). Each particle pi is assigned by the swarm a dim × N

cognitive memory Pi = {pi 1, . . . , pi |YΘ|} ∈ R
dim, where each vector in Pi denotes the closest

position of the ith particle in relation to the jth data vector in the self organizing memory YΘ.

Notice that as each particle is assigned such matrix, the cognitive memory matrix of the swarm

Tco can therefore be defined as

Tco = {P1, . . . ,PK}, (5.10)

where Pi a dim × N matrix storing the cognitive memory of the ith particle as accordingly defined.

The cardinality of the cognitive memory is therefore |Tco| = K × N .

The cognitive memory is updated as follows,

pj =

⎧⎪⎨
⎪⎩

x if d(x, yj) < d(pj , yj)

pj otherwise

, (5.11)

where j denotes the index of data vectors, d(·, ·) denotes the distance between two vectors according

to a pre-specified distance function.

Definition 5.2.6 (Social Memory). The swarm Θ stores the social memory G = {g1, . . . , g|YΘ|} ∈
R

dim where each vector in G denotes the position of the particle that has been closest to the

Chapter 5. Rapid Centroid Estimation 159

corresponding data vector in the self organizing memory YΘ. The social memory matrix of the

swarm Tsc is defined as

Tsc = {G}. (5.12)

The social memory is updated when a position with closer distance is discovered as follows,

gj =

⎧⎪⎨
⎪⎩

pij if d(pij , yj) < d(gj , yj)

gj otherwise

, (5.13)

where i denotes the index of particles, j denotes the index of data vectors.

Definition 5.2.7 (Objective Function). The RCE minimizes a user defined objective function,

f(X,C). Any internal or external cluster validity index, or any linear/product combination of

multiple objective functions can be used as a possible function.

For the sake of simplicity, a generic objective function can be defined as, but not restricted to, the

average distortion which is implemented as follows,

faverage distortion(X,C) =
1
K

K∑
j=1

N∑
i=1

uijd(yj , xi). (5.14)

Definition 5.2.8 (Local Minimum). RCE stores the local minimum coordinates which is a

matrix of positions of non-empty particles that minimize f(X,C).

The minimum matrix returned by RCE is simply,

∀t,XM = arg min
X

f(X, ∀CX(t) �∈ ∅), (5.15)

which is a set of all non-empty particles in X that minimizes the objective function over all itera-

tions.

Definition 5.2.9 (Winning Particle). A winning particle θwin is the particle which constituted

voronoi region contains the most data compared to that of the rest of the particles in the swarm,

θwin = arg max
θ

|Cθ|. (5.16)

Definition 5.2.10 (Resultant Vector). In the simplified PSC and RCE 2012 [4], the resultant

vector Ψ(xi) ∈ R
dim describes the trajectory vector experienced by the ith particle due to the jth

attractor as specified by the lth term ψj (l) in the voronoi region due to xi. The formulation is as

Chapter 5. Rapid Centroid Estimation 160

follows,

ΨP SC(xi) =
∑

l

λ(l)

⎛
⎜⎜⎜⎜⎜⎝

N∑
j=1

uij (l) ϕj (l) ◦ (ψj (l) − xi)

N∑
j=1

uij (l)

⎞
⎟⎟⎟⎟⎟⎠ ,

=
∑

l

λ(l)E
[
ϕ(l)|X = xi

] ◦ (E [ψ(l)|X = xi

]− xi

)
,

(5.17)

where N denotes the number of observations, l denotes the set of term functions e.g l = {so, sc, co, . . .},

ϕ ∈ {0, 1} denotes a uniform random vector in R
dim, uij (l) ∈ [0, 1] denotes the crisp membership

of the jth attractor to xi due to the lth term, while λ(l) denotes the corresponding coefficient for

the lth term.

The resultant vector is therefore the sum of the average attraction vectors imposed by each term

in the corresponding voronoi region.

Analysis: There are two problems associated with Equation 5.17: The first problem is concerned

with computational complexity; The second is concerned with the consequence of Kolmogorov’s

strong law of large number (SLLN).

The first problem is apparent from the fact that generating a pseudo-random number using algo-

rithms such as Mersenne Twister [162] — O(p2) — requires a fragment of time proportional to the

number of periods p = log2(N dim), where N and dim denote the volume and dimension of the

dataset, respectively. Moreover this formulation would require an additional memory allocation at

least as large as YΘ to store the matrix of uniform random numbers. Obviously as the dimension-

ality and volume grow, generating pseudo-random numbers for Equation 5.17 would easily become

a computational and memory bottleneck.

Lemma 5.2.1 (Implications of Kolmogorov’s SLLN on ΨP SC). Given a sufficiently large dataset

with N → ∞, Equation 5.17 converges to

lim
N→∞

ΨP SC(xi) →
∑

l

0.5λ(l)
(
E
[
ψ(l)|X = xi

]− xi

)
. (5.18)

Proof: As a consequence of Kolmogorov’s SLLN, the uniform random number ϕ ∈ {0, 1} con-

verges almost surely to its expected value E[ϕ] = 0.5,

lim
N→∞

∑N
j=1 ϕj

N
→ E[ϕ] = 0.5. (5.19)

Chapter 5. Rapid Centroid Estimation 161

Consequently, as N → ∞,

E
[
ϕ(l)|X = xi

]
= E
[
ϕ(l)
]

over N→∞ trials → 0.5. (5.20)

Consequently Equation 5.17 converges to

lim
N→∞

ΨP SC(xi) →
∑

l

0.5λ(l)
(
E
[
ψ(l)|X = xi

]− xi

)
. � (5.21)

Definition 5.2.11 (Simplified Resultant Vector). The implication of Lemma 5.2.1 is severe due to

the dilution of ϕ in larger clustering problems. Hence in order to conserve the stochastic character

of Equation 5.17, we propose the following reformulation to the resultant vector computation for

RCE,
ΨRCE(xi) =

∑
l

λ(l)ϕ(l) ◦ (E [ψ(l)|X = xi

]− xi

)
, or even simpler,

= ϕ ◦
[∑

l

λ(l)
(
E
[
ψ(l)|X = xi

]− xi

)]
,

(5.22)

which notations are similarly defined as Equation 5.17. The update equation is now made leaner

and insensitive to |YΘ|.

Definition 5.2.12 (Velocity). The velocity vector v of a particle describes its movement trajectory

in the Euclidean space. The velocity vector in the simplified version of PSC is updated based on

the interaction of the current particle θi with respect to the resultant vector ΨP SC or RCE(xi(t))

determined by the voronoi tessellation induced by X as follows,

vi(t + 1) =

⎧⎪⎨
⎪⎩

ωvi(t) + ΨP SC or RCE(xi(t)) if Ci �= ∅
ωvi(t) + ϕ ◦ (xwin − xi) otherwise

, (5.23)

where xwin denotes the position of the winning particle θwin. The velocity is upper and lower

bounded by a maximum velocity bound, which is set to a percentage η% of the search space Ω,

v(t) = max(min(v(t), vmax), −vmax), (5.24)

vmax = η% · Ω. (5.25)

Definition 5.2.13 (Self-Organizing Vector). The self-organizing vector soij describes the attrac-

tion imposed to a particle xi due to the data yj as follows,

soij =

⎧⎪⎨
⎪⎩

yj − xi if yj ∈ Ci

0 otherwise

. (5.26)

Chapter 5. Rapid Centroid Estimation 162

Definition 5.2.14 (Social Vector). The social vector scij describes the attraction imposed to a

particle xi due to the social memory gj associated with the data yj as follows,

scij =

⎧⎪⎨
⎪⎩

gj − xi if yj ∈ Ci

0 otherwise

. (5.27)

Definition 5.2.15 (Cognitive Vector). The self-organizing vector coij describes the attraction

imposed to a particle xi due to the cognitive memory pij of the corresponding particle xi associated

with the data yj as follows,

coij =

⎧⎪⎨
⎪⎩

pij − xi if yj ∈ Ci

0 otherwise

. (5.28)

Definition 5.2.16 (Minimum Vector). The minimum vector describes the attraction imposed on

X due to X
M as follows,

miij =

⎧⎪⎨
⎪⎩

xM
j − xi if xi ∈ xM

j

0 otherwise,

(5.29)

where xM
j denotes the local minimum vector which is closest to xi.

5.3 Algorithmic Fundamentals

Using the new definitions we can represent the PSC using batch matrix operation as seen in

Algorithm 5.20. This new construct allows the compacting of the outer for all y ∈ Y loop by

operating on the memory matrix using Equation 5.17. The RCE proposition in 2012–2013 uses the

similar construct with the addition of the local minimum term as can be seen in Algorithm 5.21.

Equation 5.22 was proposed to address Lemma 5.2.1 in RCE 2014. The social and cognitive terms

were omitted in accordance to Theorem 4.1, significantly lowering the overall cost of the algorithm.

The pseudocode can be seen in Algorithm 5.22.

5.4 Complexity Analysis

5.4.1 Computational Complexity

The general computational complexity of the RCE family can be summarized in Table 5.3.

Chapter 5. Rapid Centroid Estimation 163

Algorithm 5.20 Representing PSC using batch matrix operation

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K, λ(so), λ(co), λ(sc), λ(mi).

Output: Centroid vectors X = {x1, . . . ,xK} ∈ R
dim.

1: Initialize the swarm.
2: repeat
3: Calculate the pairwise distance between X and Y,
4: Update the Social and Cognitive matrices,
5: Generate dim × N random matrices: Φso [dim×N], Φsc [dim×N], and Φco [dim×N],
6: V← V+ ΨP SC(x1,...,K); L = {so, sc, co},
7: X← X+V,
8: Redirect particles with no member towards the winning particle.
9: until Convergence or maximum iteration reached

10: return X = {x1, . . . ,xK} ∈ R
dim.

Algorithm 5.21 Proposed RCE 2012 basic algorithmic construct

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K, λ(so), λ(co), λ(sc), λ(mi).

Output: Locally optimum centroid vectors X
M = {x1, . . . ,xK} ∈ R

dim.
1: Initialize the swarm.
2: repeat
3: Calculate the pairwise distance between X and Y,
4: Update the Social and Cognitive matrices,
5: Store the minimum matrix X

M which minimizes f(X,Y) (Cluster Validity),
6: Generate random vectors ϕso, ϕsc, ϕco, and ϕmi ∈ R

dim,
7: V← V+ ΨP SC(x1,...,K); L = {so, sc, co, mi},
8: X← X+V,
9: Redirect particles with no member towards the winning particle.

10: until Convergence or maximum iteration reached
11: return X

M = {x1, . . . ,xK} ∈ R
dim.

Algorithm 5.22 Proposed RCE 2014 basic algorithmic construct

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K, λ(so), λ(mi).

Output: Locally optimum centroid vectors X
M = {x1, . . . ,xK} ∈ R

dim.
1: Initialize the swarm.
2: YΘ = randsample(Y, η%).
3: repeat
4: Calculate the pairwise distance between X and YΘ,
5: Store the minimum matrix X

M which minimizes f(X,YΘ) (Cluster Validity),
6: Generate random vectors ϕso, and ϕmi ∈ R

dim,
7: V← V+ ΨRCE(x1,...,K); L = {so, mi},
8: X← X+V,
9: Redirect particles with no member towards the winning particle.

10: until Convergence or maximum iteration reached
11: return X

M = {x1, . . . ,xK} ∈ R
dim.

Chapter 5. Rapid Centroid Estimation 164

Table 5.3: Worst case computational complexity of the RCE families vs PSC

Task PSC RCE 2012 RCE2014

Pairwise distance O(NKdim)for loop O(NKdim + K2dim)matrix

comments On each iteration, the PSC
uses a serial for loop to cal-
culate d(y,X), ∀y ∈ Y.

On each iteration, the RCE utilizes fully vectorized ma-
trix computation to calculate the K×N distance matrix
D(Y,X) and the K × K distance matrix D(XM ,X)

Φ or ϕ generation O(log2(3(N + K)dim)) O(log2((3N + K2 + K)dim)) O(log2 2Kdim)

comments Each iteration the PSC needs
to generate a 3×N ×dim ma-
trix of random numbers for
{so,sc,co}, and an additional
K × dim matrix considering
the worst case scenario where
there are K −1 ≈ K particles
with empty voronoi regions.

Each iteration RCE 2012
needs to generate at most
three matrices of random
numbers: a 3 × N × dim ma-
trix for {so,sc,co}; a K ×
K × dim matrix for {mi},
and; a K × dim matrix for
K − 1 ≈ K particles with
empty voronoi regions.

Each iteration RCE 2014
needs to generate at most
two dim-dimensional
vectors of random num-
bers for each particles:
two vectors for {so, mi}
if its voronoi region is
nonempty; and one vector
only if its voronoi region
is empty.

V and X update O(16(N + K)dim) O(3Ndim + Kdim) O(Ndim + Kdim)

comments The PSC needs to update the
position of each particle on
each encounter with a data
point and when the voronoi
region is empty. The update
is done serially inside a for
loop. The cost of a posi-
tion update is approximately
O(16dim) based on the num-
ber of floating point opera-
tions.

The RCE 2012 update
scheme requires at most
3 × N × dim floating point
operations for calculating
the resultant vector for
{so,sc,co}, and; K × dim
floating point operations to
calculate the resultant vector
for {mi}.

The RCE 2014 update
scheme requires at most
N × dim floating point op-
erations for calculating the
resultant vector for {so},
and; K × dim floating
point operations to calcu-
late the resultant vector
for {mi}.

memory update O(NK + 4N + 2Ndim) O(NK + 4N + 2Ndim + K +
Kdim)

O(K + Kdim)

comments On each iteration, the com-
putational complexity for up-
dating the memory matrices
G and P

On each iteration, the com-
putational complexity for up-
dating the memory matrices
G, P, and X

M

On each iteration, the
computational complexity
for updating the local min-
imum matrix X

M .

5.4.2 Memory Complexity

The memory complexity of the PSC and RCE depends on the term that it uses. The complete

breakdown of the memory complexities has been listed in Table 4.1 in the previous chapter. An

empirical observation of the memory allocation of each algorithm during runtime has been pre-

viously presented in Figure 4.3. The aforementioned Table and Figure are again reproduced in

Table 5.4 and Figure 5.3 for the sake of clarity.

As can be seen in Figure 5.3 and Table 5.4, the algorithms of the PSC families are considerably

expensive in terms of memory complexity. Our benchmark test revealed that in order to cluster 1000

observations of 1000 dimensional double precision data, the PSC families and RCE 2012 require

as much as 2GB memory; whereas k-means, fuzzy c-means, and RCEr+ 2014 require memory

allocation of lower than 15MB. This relatively high memory requirement can be a significant

scalability bottleneck when dealing with larger, higher dimensional datasets.

Chapter 5. Rapid Centroid Estimation 165

Table 5.4: Memory complexity of the RCE, PSC, and other clustering algorithms

Entity Complexity Fu
zz

y
c
-m

ea
ns

k
-m

ea
ns

P
SC

[7
5]

m
P

SC
[7

4]

F
P

SC
[7

0]

R
C

E
r
+

(2
01

2)
[4

]

R
C

E
r
+

(2
01

4)
[5

5]

Description

Y O(Ndim) � � � � � � � The data vectors: Y =
{y1, . . . , yN } ∈ R

dim

X O(Kdim) � � � � � � � The particle position vectors:
X = {x1, . . . , xK} ∈ R

dim

V O(Kdim) � � � � The particle velocity vectors:
V = {v1, . . . , vK} ∈ R

dim

vmax O(dim) � � � � The maximum velocity vec-
tor: vmax ∈ R

dim

U O(N) � � � � � The crisp label vector or bi-
nary indicator matrix: U =
{u1, . . . , uN } ∈ R

1

U O(NK) � � � The fuzzy membership ma-
trix: U = {u1, . . . , uN } ∈
R

K

Xbest O(Kdim) � � The best position matrix:
Xbest = {x1, . . . , xK}best ∈
R

dim

f(CXbest, Y) O(1) � � The quality of the voronoi
tessellation imposed by
Xbest

G O(Ndim) � � � � The swarm social memory
vector for each data: G =
{g1, . . . , gN } ∈ R

dim

d(gj , yj){∀i,∀j} O(N) � � � � The distance between the
vectors in the social memory
relative to its corresponding
data vector, d(pi,j , yj) ∈ R

1

P{1,...,K} O(NKdim) � � � � The cognitive memory for
each particle, for each data:
Pi = {pi,1, . . . , pi,N } ∈
R

dim

d(pi,j , yj){∀i,∀j} O(NK) � � � � For each particle, the rel-
ative distance between the
cognitive memory vector and
its corresponding data vec-
tor, d(pi,j , yj) ∈ R

1

5.4.3 Empirical Experiment

A three classes 80-dimensional Gaussian distributed data of equal variance and varying volumes

were generated in order to benchmark the memory and computational cost of each algorithm. The

algorithmic complexities are presented as bar graphs in Figure 5.4 for ease of interpretation.

The experimental results confirms the theoretical complexity analyses done in the previous subsec-

tions. As expected, the simplification scheme for the PSC leads to increased time efficiency at the

expense of memory complexity. We validated that RCE 2014 achieved the lowest complexity in

Chapter 5. Rapid Centroid Estimation 166

(a) PSC. (b) RCE 2012.

(c) RCEr+ (2014). (d) k-means.

Figure 5.3: Memory complexity of various algorithms when clustering double precision floating
point numbers. The runtime test is carried using Matlab.

both time and space where its overall memory and computational complexity sit closely to those

of k-means and fuzzy c-means. Contrary to the belief where higher cost tends to reflect higher

quality, the relatively low cost of RCE 2014 translates to an increase in repeatability and clustering

quality as shown previously in Figure 5.2.

Chapter 5. Rapid Centroid Estimation 167

(a) The scatter plot of the 80 dimensional, 3-classes dataset used for the
benchmarking process.

k means
fuzzy c means

RCE 2014
RCE 2012

Simplified PSC
mPSC

PSC
FPSC

100 700 1300190025003100370043004900

0

200

400

600

800

1000

1200

volumealgorithm

tim
e

pe
r i

te
ra

tio
n

(m
s)

(b) Computational complexity, low to high.

k means
fuzzy c means

RCE 2014
mPSC

PSC
FPSC

Simplified PSC
RCE 2012

100 700 1300190025003100370043004900

0

0.5

1

1.5

2
x 107

volumealgorithm

M
em

or
y

(b
yt

es
)

(c) Memory complexity, low to high.

Figure 5.4: Benchmarking the iteration complexity and overall memory complexity of various
algorithm using a 3-classes 80-dimensional Gaussian dataset.

5.5 Trajectory Analysis

5.5.1 Stability and Convergence

Theorem 5.1 (RCE’s resemblance to k-means). Under the condition where
∑

l

λ(l) obeys the

stability constraints,

0 ≤ ω < 1, and 0 <
∑

l

λ(l) < 2 + 2ω, (5.30)

each particle would converge to

E[x(t → ∞)] =
∑

l λ(l)E
[
ψ(l)|X = x(t → ∞)

]∑
l λ(l)

. (5.31)

A monotonic decrease in the distortion function is guaranteed when the self organizing term is

enabled. The RCE generalizes to k-means or fuzzy c-means when the algorithm uses only the self

organizing term.

Chapter 5. Rapid Centroid Estimation 168

Proof: The overall position update equation of RCE, seen from a specific particle and dimension,

can be summarized as follows,

v(t + 1) = ωv(t) + Ψ(x(t)) (5.32)

= ωv(t) + ϕ
∑

l

λ(l)
(
E
[
ψ(l)|X = x(t)

]− x(t)
)

, (5.33)

= −ϕ
∑

l

λ(l)x(t) + ωv(t) + ϕ
∑

l

λ(l)E
[
ψ(l)|X = x(t)

]
, (5.34)

x(t + 1) = x(t) + v(t + 1), (5.35)

=

(
1 − ϕ

∑
l

λ(l)

)
x(t) + ωv(t) + ϕ

∑
l

λ(l)E
[
ψ(l)|X = x(t)

]
. (5.36)

Based on the analysis in Lemma 3.1.1 we represent ϕ using the supremum of the set such that

sup(ϕ) = 1. Let X = [x(t), v(t)]T and U(t) =
[
E
[
ψ(1)|X = x(t)

]
, E
[
ψ(2)|X = x(t)

]
, . . .
]T , using

the supremum we can express the above equation in an explicit time-invariant state space format,

⎡
⎣ x(t + 1)

v(t + 1)

⎤
⎦ =

sup(A)︷ ︸︸ ︷⎡
⎢⎢⎣

1 −
∑

l

λ(l) ω

−
∑

l

λ(l) ω

⎤
⎥⎥⎦
⎡
⎣ x(t)

v(t)

⎤
⎦+

sup(B)︷ ︸︸ ︷⎡
⎣ λ(1) λ(2) · · ·

λ(1) λ(2) · · ·

⎤
⎦
⎡
⎢⎢⎢⎣

E
[
ψ(1)|X = x(t)

]
E
[
ψ(2)|X = x(t)

]
...

⎤
⎥⎥⎥⎦

(5.37)

Y(t) =

C︷ ︸︸ ︷[
1 0

]⎡⎣ x(t)

v(t)

⎤
⎦ . (5.38)

The transfer function is consequently,

H(z) =
1

z2 +
(∑

l λ(l) − ω − 1
)

z + ω

[
λ(1)z λ(2)z · · ·

]
. (5.39)

Using the approach in Lemma 3.1.1, we have a guaranteed convergence when

0 ≤ ω < 1, and 0 <
∑

l

λ(l) < 2 + 2ω. (5.40)

Applying the final value theorem [158] to the RCE transfer function, we obtain convergence towards

the arithmetic center of the expected values conditional on the convergence position x(t → ∞),

x(t → ∞) = lim
z→1

{(z − 1)H(z)U(z)} , (5.41)

=
∑

l λ(l)E
[
ψ(l)|X = x(t → ∞)

]∑
l λ(l)

� (5.42)

Chapter 5. Rapid Centroid Estimation 169

It then follows naturally that the RCE generalizes to the k-means / fuzzy c-means simply by

enabling only the self-organizing term L = {so} and setting λ(so) < 2 + 2ω as follows,

x(t → ∞) =
λ(so)E

[
ψ(so)|X = x(t → ∞)

]
λ(so)

(5.43)

= E [Y |X = x(t → ∞)] , (5.44)

=
1

|Cx|
∑

y∈Cx

y, k-means (5.45)

=
∑

j uijyj∑
j uij

, fuzzy c-means / EM-GMM (5.46)

which therefore guarantees the convergence of RCE to a local minimum given a specified initial

position x(t = 0). �

With the same spirit, we can then compute the guaranteed point of convergence for RCE 2014.

Enabling both self-organizing and minimum term L = {so, mi} and setting λ(so) + λ(mi) < 2 + 2ω

gives,

x(t → ∞) =
λ(so)E [Y |X = x(t → ∞)] + λ(mi)E

[
XM |X = x(t → ∞)

]
λ(so) + λ(mi)

, (5.47)

which is the weighted arithmetic center between the local minimum and the maximum likelihood

(self-organizing) coordinates at convergence.

An illustration based on Game Theory: This behavior can be illustrated and simplified by

borrowing the concepts from Game Theory as follows. Let us assume an all-knowing oracle appears

to the player at the current time t. The oracle ensures the player that the trajectory Ψ(so)(xi)

leads to the maximum likelihood estimate given the current cluster assignment. The player listens

to the oracle, and proceed with a velocity vector imparted from the knowledge of both the oracle

Ψ(so) and the swarm Ψ(mi) weighted by λ(so) and λ(mi). Such situation is illustrated as follows.

Oracle: Let z∗
i ← mean(Ci), then z∗

i = xi + Ψ∗
i where Ψ∗

i = Ψ(so)(xi). The oracle gives the

player Ψ∗(xi).

Player (particle): Listens to the oracle and proceed with x̂i = xi + Ψ†
i , where Ψ†

i = ωv̇i +

Ψ(so)(xi)+Ψ(mi)(xi), an accumulative augmented knowledge from both the oracle and the swarm.

The player’s movement trajectory can be decomposed into three additive vectors: ωv̇i, Ψ(so) and

Ψ(mi). The cosine angle between each vector with the oracle’s (self-organizing) vector Ψ∗
i = Ψ(so)

Chapter 5. Rapid Centroid Estimation 170

are

cos(ωv̇i, Ψ∗
i) =

〈ωv̇i, Ψ(so)〉
|ωv̇i||Ψ(so)| , (5.48)

cos(Ψ(so), Ψ∗
i) =

〈Ψ(so), Ψ(so)〉
|Ψ(so)||Ψ(so)| = 1, (5.49)

cos(Ψ(mi), Ψ∗
i) =

〈Ψ(mi), Ψ(so)〉
|Ψ(mi)||Ψ(so)| , (5.50)

where obviously one of the components is guaranteed to perfectly align with Ψ∗
i . The local minimum

vector will be aligned with the self-organizing vector if the path to the swarm’s local minimum

is also the self-organizing vector. If the minimum vector is not aligned with the self-organizing

vector, then there is a possibility for the swarm to instead traverse the path of the local minimum.

5.5.2 Particle Behavior

We observe the trajectory using the same datasets as the PSC: namely the three circle dataset,

and; the five Gaussian dataset. The results can be seen in Figure 5.5 and Figure 5.6. Its trajectory

resembles the PSC using the updated stability bounds in Equation 4.37. Notice that higher value in

the self-organizing coefficient results in numerous overshoots, thus more abrupt particle movements.

From these results one can easily observe that the RCE is also dependent on initial position as

proven in Theorem 5.1.

5.6 Coping with Local Optima

At a glance, the particle behavior of the RCE resembles the k-means or fuzzy c-means. However, the

RCE benefit from the minimum term and the exploratory capability by overshooting the maximum

likelihood vector. The RCE is therefore not fully stochastic, because its movement trajectory is

directly “suggested” by the maximum likelihood vector. We can afford to do this because clustering

is different from normal optimization where the first derivative of the likelihood function is known.

We acknowledge that there are numerous local optima and that there is one unique global optimum

which can be quantified using the appropriate objective function. Accordingly, we realize that

settling at any “equilibrium” would increase the risk of suboptimal convergence. Therefore, we

propose strategies including substitution, particle reset, and multi-swarm to gracefully break these

equilibriums.

Chapter 5. Rapid Centroid Estimation 171

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7
0.7

0.7

0.7
0.7

0.7

0.7

0.7

0.7

0.8

0.8 0.8

0.8

0.8 0.8

0.8

0.8

0.8

0.9

0.
9

0.9

0.90.9

0.9

0.90.9

0.9

(a) λ(so) = 1, λ(mi) = 1, ω = 1.

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6
0.6

0.6

0.6
0.6

0.6

0.6

0.6

0.6

0.7

0.7 0.7

0.
7

0.7 0.7

0.7

0.7

0.7

0.7

0.8

0.8
0.8

0.8

0.8
0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.
9

0.9

0.9

0.
9

0.9

(b) λ(so) = 2.5, λ(mi) = 1, ω =
1.

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6
0.6

0.6

0.6
0.6

0.6

0.6

0.6

0.6

0.7

0.7 0.7

0.
7

0.7 0.7

0.7

0.7

0.7

0.7

0.8

0.8
0.8

0.8

0.8
0.8

0.8

0.8

0.8

0.9

0.
90.9

0.9

0.
9

0.9

0.9

0.
9

0.9

(c) λ(so) = 1, λ(mi) = 2.5, ω = 1

0.4
0.4

0.4
0.4

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0.5

0.6

0.6
0.6

0.6

0.6
0.6

0.6

0.6

0.6

0.7

0.7 0.7

0.
7

0.7
0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8
0.8

0.8

0.8

0.9
0.9

0.9

0.9
0.9

0.
9

0.9

(d) λ(so) = 0, λ(mi) = 3.5, ω =
1, does not converge.

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.

5

0.5

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7
0.7

0.7

0.7
0.7

0.7
0.7

0.7

0.7

0.8

0.8 0.8

0.8

0.8 0.8

0.8 0.8

0.8

0.9 0.9

0.9
0.

9

0.9

0.9

0.
9

0.9

0.9

(e) λ(so) = 3.5, λ(mi) = 0, ω =
1.

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.
5

0.5

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7
0.7

0.7

0.7
0.7

0.7
0.7

0.7

0.7

0.8

0.8 0.8

0.8

0.8 0.8

0.8 0.8

0.8

0.9 0.9

0.9

0.
9

0.9

0.9

0.
9

0.9

0.9

(f) λ(so) = 0.5, λ(mi) = 0.5, ω =
1

Figure 5.5: Trajectory of the RCE 2014 particles using various parameters.

0.3 0.3

0.
4

0.4

0.4

0.
4

0.
4

0.4

0.
4

0.4

0.4 0.4

0.4

0.4

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.
5

0.5

0.5

0.6

0.6

0.
6

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7
0.7

0.7

0.7

0.
70.7

0.
70.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

0.9

(a) Optimal 1

0.30.
3

0.
4

0.4

0.4

0.4

0.
4

0.4

0.
4

0.4

0.4 0.4

0.4

0.4

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0.5

0.5
0.5

0.5
0.5

0.
5

0.5

0.5

0.6

0.6

0.
6

0.6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
7

0.7
0.7

0.7

0.7

0.
70.7

0.
7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.
9

0.9

0.9

0.9

0.9

0.
9

0.9

(b) Optimal 2

0.3

0.
40.4

0.
4

0.4 0.4

0.4

0.4

0.
4

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.
5

0.5

0.5

0.5

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.
7

0.7

0.
7

0.
7

0.8

0.8

0.8

0.8

0.80.
8

0.8

0.8

0.
8

0.8

0.
9

0.9

0.9

0.
9

0.9

0.9

0.
9

(c) Suboptimal 1

0.
3

0.3

0.4
0.4

0.4

0.4

0.4

0.
4

0.4

0.4

0.4

0.4

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

0.
5

0.50.5

0.5

0.5
0.5

0.5

0.5

0.6

0.6

0.
6

0.6

0.6
0.6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.
70.7

0.8

0.
8

0.8

0.8

0.
8

0.8

0.8

0.8

0.8

0.8

0.9

0.
9

0.9

0.9

0.
9

0.9

(d) Suboptimal 2

0.3
0.3

0.
4

0.4

0.4

0.
4

0.
4

0.4

0.
4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.
6

0.6

0.6

0.6

0.6
0.6

0.6

0.
6

0.6

0.6

0.6

0.7

0.
7

0.7

0.7

0.7

0.
70.7

0.
70.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

0.
9

(e) Optimal 3

0.3
0.3

0.40.4

0.4

0.4

0.4

0.
4

0.4

0.4

0.4

0.4

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

0.
5

0.5
0.5

0.5

0.5 0.5

0.5

0.5

0.6

0.6

0.
6

0.6

0.6
0.6

0.6

0.6

0.
6

0.6

0.6

0.60.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.
70.7

0.8

0.8

0.8

0.8

0.
8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

(f) Suboptimal 3

Figure 5.6: Trajectory of the RCE 2014 particles on the five Gaussian dataset with numerous
random seeding shows RCE’s sensitivity to initialization.

Chapter 5. Rapid Centroid Estimation 172

5.6.1 Substitution

The purpose of the Substitution strategy is to force particles in a search space to reach alternate

equilibrium positions by introducing position instability. After each position update episode for a

particle, apply

xi(t + 1) =

⎧⎪⎨
⎪⎩

xI win(t + 1) + N(0, σ) if ϕ < ε

xi(t + 1) otherwise
,

Δxi(t + 1) =

⎧⎪⎨
⎪⎩

0 if ϕ < ε

Δxi(t + 1) otherwise
,

(5.51)

where ϕ is a uniform random number 0 ≤ ϕ ≤ 1 ∈ R, xI win is the position of the winning particle,

and N(0, σ) is a Gaussian random vector with mean μ = 0 and standard deviation σ of each

dimension of the data being clustered. ε denotes the substitution probability parameter. Larger ε

increases the frequency. Optimal ε values lie between 0.01 ≤ ε ≤ 0.05 [4].

The substitution strategy can be viewed analogous to the mutation operator in the Genetic Al-

gorithm (GA), where the mutative gene is taken from the coordinate of the winning particle. ε

quantifies the mutation probability, e.g. ε = 0.05 denotes that for each iteration, each particles

have 5% chance of entering the substitution mode, or in the context of GA – mutate.

The superscript plus (+) (e.g. RCE+) denotes an RCE with Substitution strategy.

5.6.2 Particle Reset

The Particle Reset strategy is triggered when fitness of the local minimum f(XM (t), y) does not

improve after a number of iterations. Stagnation can be detected using a stagnation counter δ

which is updated as follows:

δ(t + 1) =

⎧⎪⎨
⎪⎩

δ(t) + 1 if f(x(t), y) ≥ f(XM (t), y)

0 if f(x(t), y) < f(XM (t), y)
. (5.52)

When δ(t + 1) > δmax this strategy reinitializes all particles in a subswarm without resetting the

local minimum position matrix XM (t). Values being reinitialized are only xi(t) and Δxi(t). Swarm

convergence is detected when f(XM (t), y) does not improve even after many resets.

The superscript r (e.g. RCEr) denotes an RCE with Particle Reset strategy.

Chapter 5. Rapid Centroid Estimation 173

Using both the substitution and particle reset strategies allows the particles to continuously search

for a global minimum regardless of numerous suboptimal convergence. The two strategies therefore

reduce the likelihood of getting trapped inside local optima. RCEr+ is therefore less sensitive to

initialization and is almost guaranteed to find the natural global optimum clustering solution given

enough iterations. The particle trajectory of RCEr+ on the five Gaussian dataset can be seen in

Figure 5.7.

0.
3

0.4

0.4

0.40.4

0.
4

0.4

0.
4

0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.
5

0.5

0.5

0.
6

0.6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.
6

0.
6

0.6

0.6

0.6

0.6
0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.
8 0.9

0.9

0.9

0.90.9

0.9

(a) Trial 1.

0.
3

0.
3

0.4 0.
4

0.4

0.
4

0.40.4

0.4

0.4

0.
4

0.4

0.4

0.
4

0.4

0.4
0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.
5

0.50.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6

0.6

0.
6

0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.6

0.
60.

6

0.
7

0.7

0.
70.7

0.7

0.
7

0.7

0.
7

0.
7

0.7

0.7

0.8

0.
8

0.
8

0.
8

0.8

0.8

0.8

0.8

0.
8 0.

9

0.9

0.9

0.9

0.
9

0.
9

(b) Trial 2.

0.
3

0.
3

0.4

0.
4

0.
4

0.
4

0.4

0.4

0.4

0.4

0.
4

0.4

0.4

0.4

0.
4

0.40.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.
5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
6

0.6

0.
6

0.6

0.6

0.6

0.6

0.7

0.7

0.
70.7

0.7

0.7

0.7

0.7

0.7

0.
7

0.7

0.
8

0.8

0.8

0.8

0.8

0.8

0.
8

0.8

0.8
0.9

0.9

0.9

0.9

0.9

0.9

(c) Trial 3.

0.
3

0.
3

0.
4

0.
4

0.
4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.
4

0.4

0.5

0.5

0.
5

0.5

0.5

0.
5

0.5

0.
5

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.
6

0.6

0.6

0.6

0.6

0.6

0.6

0.
6

0.6

0.
60.6

0.6

0.6

0.6

0.7

0.
7

0.
7

0.7

0.7

0.7

0.7

0.7

0.7

0.
7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.
8

0.8

0.8

0.9

0.9

0.9

0.
9

0.9

0.9

(d) Trial 4.

Figure 5.7: Trajectory of the RCEr+ 2014 particles on the five Gaussian dataset with numerous
random seeding using both substitution and particle reset strategies reflects relative robustness
and insensitivity to initialization. λ(so) = 1.5, λ(mi) = 1.5, ω = 1, tmax = 30, ε = 0.05, δmax = 15.

Chapter 5. Rapid Centroid Estimation 174

5.6.3 Swarm RCE: The Multi-Swarm Paradigm

A limitation inherited from PSC is that the number of particles in a swarm is fixed according to

the desired number of clusters. To overcome this limitation, a strategy is proposed that is intended

to handle increases in swarm size, without increasing the number of clusters [72]. A subswarm, Θ,

consists of K particles, each corresponding to a cluster centroid prototype.

A Swarm{nm} RCE consists of nm RCE subswarms working in parallel. For example,

Swarm{3} RCE indicates a centroid optimization using 3 RCE subswarms, while Swarm{5} RCE

indicates a centroid optimization using 5 RCE subswarms.

Each RCE subswarm RCE{n} stores a best position matrix XM
n (t). The swarm strategy commu-

nicates each XM (t) such that the potentially optimal positions are informed to the subswarms.

On the start of every iteration, each subswarm contributes by sharing its minimum matrix XM
n (t)

such that

X M (t) =
{

[XM
1], [XM

2], . . . , [XM
nm

]
}

(5.53)

The matrix X M has K ×nm columns denoting the number of centroid vectors stored in X M . When

using the Swarm strategy, the Ψ(mi) uses X M instead of the individual XM
n .

The pseudocode for Swarm{nm} RCEr+ can be seen in Algorithm 5.23.

Algorithm 5.23 Swarm{nm} RCEr+ 2014

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of clusters K, # of swarms nm, λ(so), λ(mi), maximum

stagnation δmax, substitution rate ε.
Output: The swarm global optimum X M and the corresponding cluster validity f(X M ,Y).

1: Initialize swarm Θ1,...,nm .
2: (∀Θ ∈ S),YΘ = randsample(Y, η%).
3: repeat
4: for S = {Θ1, . . . , Θnm }
5: Update the swarm Θ [Algorithm 5.22 lines 4–9].
6: Apply substitution at rate of ε
7: if f(XΘ,YΘ) does not improve after δmax iterations
8: Apply particle reset,
9: Reset stagnation counter δ

10: end if
11: end for
12: until Convergence (f(X M ,YΘ) does not improve after nmax resets) or maximum iteration reached
13: return X M = {[XM

1], . . . , [XM
nm

]} ∈ R
dim and f(X M ,Y) = {f(XM

1 ,Y), . . . , f(XM
nm

,Y)} ∈ R
dim.

The particle trajectory of Swarm{6} RCEr+ on five Gaussian dataset can be seen in Figure 5.8. In

this figure, it can be seen that in just 30 iterations the swarm has already explored a considerable

amount of optimum. The multi-swarm strategy alleviates RCE’s sensitivity to initialization.

Chapter 5. Rapid Centroid Estimation 175

(a) Trial 1. (b) Trial 2.

(c) Trial 3. (d) Trial 4.

Figure 5.8: Trajectory of the swarm{6} RCEr+ 2014 particles recorded after 30 iterations on
the five Gaussian dataset with numerous random seeding using both substitution and particle
reset strategies shows Swarm{6} RCEr+ robustness and insensitivity to initialization. λ(so) =

1.5, λ(mi) = 1.5, ω = 1, nm = 6, tmax = 30, ε = 0.05, δmax = 15.

5.7 Experimental Results

The comparative results of the algorithm on some of the datasets available in UCI machine learning

dataset repository [84] according to our 2012 publication [4] can be seen in Table 5.5. Note that the

RCE algorithms used in this table are based on RCE 2012 [4, 71–73], prior to the 2014 simplification

[55].

The results given in Table 5.5 indicate that the performance of the RCE 2012 algorithms was

superior to that of the predecessors. It can be seen that when using both Substitution and Particle

C
ha

pt
er

5.
Ra

pi
d

C
en

tro
id

Es
tim

at
io

n
17

6
Table 5.5: Performance against UCI Machine Learning datasets [84] as reported in [4].

Dataset Algorithm
Performance Metric K-means PSC mPSC RCE 2012 RCEr+ 2012 Swarm{5} RCEr+ 2012

Iris (Correlation) Classification Entropy 0.16 ± 0.03 0.31 ± 0.106 0.32 ± 0.090 0.16 ± 0.173 0.16 ± 0.173 0.15 ± 0.02
Purity 78.6% ± 16.8% 79.9% ± 11.6% 88.6% ± 10.7% 91.9% ± 8% 94.61% ± 4.9% 95.8% ± 0.66%
Time required (s) 5.4e-3 ± 0.8e-3 6.87 ± 8.51 6.39 ± 8.39 0.19 ± 0.136 0.32 ± 0.130 2.13 ± 0.93
Dunn Index 5.1 ± 2.58 5.01 ± 2.37 5.69 ± 1.89 4.55 ± 2.36 6.44 ± 0.41 6.54 ± 0.218
Adj. Rand Index 0.78 ± 0.19 0.76 ± 0.15 0.82 ± 0.13 0.75 ± 0.16 0.87 ± 0.04 0.88 ± 0.02
CH Index 2.7e4 ± 1.1e4 2.3e4 ± 1.2e4 2.8e4 ± 0.9e4 2.3e4 ± 1.2e4 3.2e4 ± 0.1e4 3.3e4 ± 0.03e4

Glass (Correlation) Classification Entropy 0.91 ± 0.112 0.626 ± 0.184 0.584 ± 0.154 0.679 ± 0.164 0.75 ± 0.15 0.797 ± 0.110
Purity 48.0% ± 6.25% 47.7% ± 5.1% 46.2% ± 5.9% 49.1% ± 5.7% 50.3% ± 4.9% 51.5% ± 4.8%
Time required (s) 5.6e-3 ± 2.2e-3 9.3 ± 8.03 7.84 ± 7.55 0.3 ± 0.098 0.25 ± 0.08 1.65 ± 0.32
Dunn Index 0.3 ± 0.25 0.39 ± 0.32 0.41 ± 0.27 0.45 ± 0.56 0.45 ± 0.31 0.47 ± 0.29
Adj. Rand Index 0.2 ± 0.08 0.5 ± 0.09 0.5 ± 0.11 0.48 ± 0.19 0.32 ± 0.12 0.31 ± 0.1
CH Index 1.9e3 ± 1.2e3 3.3e3 ± 1.5e3 3.5e3 ± 1.3e3 1.6e3 ± 0.6e3 2.7e3 ± 1.0e3 3.0e3 ± 1.2e3

Wine (Correlation) Classification Entropy 0.61 ± 0.03 0.1806 ± 0.05 0.189 ± 0.06 0.18 ± 0.027 0.18 ± 0.026 0.18 ± 0.015
Purity 66.7% ± 7.16% 79.38% ± 13.8% 82.7% ± 14.1% 90.6% ± 8.7% 95.2% ± 0.87% 95.31% ± 0.53%
Time required (s) 6.2e-3 ± 2.1e-3 4.4 ± 6.13 3.54 ± 5.14 0.27 ± 0.11 0.35 ± 0.09 2.19 ± 0.53
Dunn Index 3.36 ± 0.009 2.25 ± 0.74 2.46 ± 0.84 2.47 ± 1.14 3.32 ± 0.143 3.38 ± 0.06
Adj. Rand Index 0.316 ± 0.03 0.314 ± 0.03 0.291 ± 0.05 0.306 ± 0.04 0.322 ± 0.02 0.322 ± 0.01
CH Index 4.2e3 ± 0.01e3 2.65e3 ± 1.5e3 2.4e3 ± 1.2e3 2.8e3 ± 1.7e3 4.15e3 ± 0.3e3 4.21e3 ± 0.09e3

Breast Cancer (Euclidean) Classification Entropy 0.17 ± 0.0 0.16 ± 0.014 0.17 ± 0.012 0.17 ± 0.011 0.166 ± 0.016 0.17 ± 0.013
Purity 95.7% ± 0.0% 96% ± 0.5% 95.6% ± 0.5% 95.5% ± 0.5% 96% ± 0.7% 96% ± 0.5%
Time required (s) 5.7e-3 ± 0.7e-3 1.2 ± 4.66 5.46 ± 15.16 0.19 ± 0.157 1.003 ± 0.225 2.59 ± 0.32
Dunn Index 1.75 ± 0.00 1.76 ± 0.01 1.76 ± 0.004 1.78 ± 0.08 1.734 ± 0.08 1.734 ± 0.007
Adj. Rand Index 0.834 ± 0.00 0.832 ± 0.012 0.821 ± 0.006 0.76 ± 0.13 0.857 ± 0.015 0.861 ± 0.006
CH Index 1040 ± 0.00 1039 ± 0.99 1035 ± 1.55 946 ± 117 1036 ± 3.9 1038 ± 2.11

Diabetes (Correlation) Classification Entropy 0.50 ± 0.0 0.58 ± 0.087 0.54 ± 0.106 0.584 ± 0.058 0.61 ± 0.02 0.59 ± 0.03
Purity 66.02% ± 0.0% 68.5% ± 1.97% 67.6% ± 5.7% 68.1% ± 2.5% 68.5% ± 2.3% 71.3% ± 1.5%
Time required (s) 8.1e-3 ± 1.3e-3 13.15 ± 14.44 11.76 ± 18.43 0.59 ± 0.07 0.44 ± 0.13 2.48 ± 0.48
Dunn Index 2.5 ± 0.001 2.5 ± 0.003 2.4 ± 0.07 2.5 ± 0.03 2.5 ± 0.009 2.5 ± 0.9
Adj. Rand Index 0.03 ± 0.003 0.04 ± 0.04 0.03 ± 0.04 0.027 ± 0.037 0.029 ± 0.008 0.0273 ± 0.003
CH Index 530.4 ± 5.6 429.3 ± 89 403.6 ± 84.86 389.3 ± 22 526.7 ± 20.9 533.3 ± 4.8

Optical Digits (Euclidean) Classification Entropy 0.57 ± 0.05 0.61 ± 0.12 0.68 ± 0.06 0.69 ± 0.06 0.67 ± 0.05 0.61 ± 0.04
Purity 72.06% ± 8.2% 58.8% ± 17.5% 70.3% ± 4.7% 65.2% ± 9.8% 72.2% ± 6.1% 75.1% ± 3.7%
Time required (s) 0.39 ± 0.2 886 ± 229 575 ± 190 17.9 ± 12.1 29.5 ± 8.6 86.7 ± 14.3
Dunn Index 0.80 ± 0.12 0.68 ± 0.26 0.69 ± 0.18 0.73 ± 0.097 0.70 ± 0.07 0.73 ± 0.09
Adj. Rand Index 0.63 ± 0.06 0.54 ± 0.15 0.59 ± 0.04 0.56 ± 0.06 0.62 ± 0.04 0.65 ± 0.03
CH Index 509.5 ± 17.6 486.1 ± 36.1 468.1 ± 25.8 464.6 ± 28.3 490.7 ± 14.7 510.2 ± 9.8

Musk – version 1 & 2 (Euclidean) Classification Entropy 0.61 ± 0.04 0.63 ± 0.05 0.63 ± 0.0 0.6 ± 0.05 0.6 ± 0.04 0.59 ± 0.04
Purity 58.9% ± 9.3% 56.05% ± 11.3% 53.58% ± 0.0% 62.45% ± 10.5% 63.15% ± 9.9% 64.78% ± 9.7%
Time required (s) 0.3 ± 0.11 149.4 ± 3.18 530 ± 128.6 10.75 ± 15.9 32.8 ± 15.4 137.15 ± 29.5
Dunn Index 1.25 ± 0.13 1.18 ± 0.16 1.17 ± 0.5 1.3 ± 0.152 1.31 ± 0.136 0.332 ± 0.132
Adj. Rand Index 0.017 ± 0.07 0.038 ± 0.05 -0.03 ± 0.00 0.046 ± 0.07 0.048 ± 0.07 0.061 ± 0.07
CH Index 2.6e3 ± 198 2.4e3 ± 305 2.5e3 ± 1.1 2.6e3 ± 251 2.7e3 ± 196 2.73e3 ± 190

Chapter 5. Rapid Centroid Estimation 177

Reset strategies, RCEr+ 2012 produces solutions with levels of purity and repeatability that are, in

most cases, substantially greater than those of the other algorithms. It is also seen that performance

is further improved with the Swarm strategy. In all datasets, Swarm{5} RCEr+ 2012 achieves the

highest purity centroid locations. PSC and mPSC also show relatively good performance for all

benchmark datasets, however the time taken by PSC and mPSC to achieve those results was in most

cases several orders of magnitude larger. Table 5.6 shows that the new algorithms are significantly

faster than the predecessors. For the breast cancer dataset, the time taken per iteration of RCEr+

2012, and Swarm{5} RCEr+ 2012 compared to PSC are 139.67 and 27.5 times faster, respectively.

Table 5.6: Percentage improvement in time taken per iteration relative to PSC

Dataset Algorithm a

mPSC RCE 2013 RCEr+ 2013 Swarm{5} RCEr+ 2012
Iris 2.6% 5978.3% 5909.8% 813.5%
Glass 3.7% 2779.4% 2777.4% 383%
Wine 4.3% 4963.5% 4857.2% 752.9%
Breast Cancer 4.78% 14311.7% 13967.2% 2750.7%
Diabetes 5.1% 9915.5% 10012.9% 1828.3%
Optical Digits 3.5% 2734.3% 2723.5% 897.9%
Musk 7.5% 1332.2% 1302.9% 380.1%

a improvement % =

(
tPSC
iter

talgorithm
iter

− 1

)
× 100%

In order to analyze the experimental results regarding the time complexity of each algorithm, a

statistical significance test using one-way ANOVA is performed based on the experimental result

collected from centroid optimization of the optical digits and musk molecules datasets using the

null hypothesis, H0: there is no difference between iteration time of algorithm A and algorithm B.

The tests were done using the MATLAB statistics toolbox.

Similarly, the resulting CH cluster validity indices for each algorithm on each dataset were analyzed

using the null hypothesis, H0: there is no difference between the resulting CH indices of algorithm

A and algorithm B.

In all cases, H0 is rejected when the p-value is ≤ 0.05. The p-values from the ANOVA tests on the

iteration time of optical digits and musk molecules datasets are shown in Figure 5.9. The p-values

from the ANOVA tests on the resulting CH cluster validity indices on all benchmark datasets are

shown in Figure 5.10. The box-plots are shown in Figure 5.12.

The p-values in Figure 5.9 indicate that the differences in iteration times between all of the pairs

of algorithms, except between RCE and RCEr+, are statistically significant.

Chapter 5. Rapid Centroid Estimation 178

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.985

0.000

0.000

0.000

0.000

0.703

0.000

0.000

0.000

0.000

0.000

0.000

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(a) Optical Digits

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.541

0.000

0.000

0.000

0.000

0.493

0.000

0.000

0.000

0.000

0.000

0.000

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(b) Musk Molecules

Figure 5.9: P-values to three decimal places based on the iteration times given in Table 5.5.
Grey boxes indicate p ≤ 0.05. I. K-means; II. PSC; III. mPSC; IV. RCE 2012; V. RCEr+ 2012;

VI. Swarm{5}RCEr+ 2012.

Figure 5.11 shows box-plots comparisons for purity (P) from Table 5.5. Figure 5.11 shows that the

RCEr+ variants are able to achieve results that are more consistent than the results of K-means,

PSC, mPSC, and RCE 2012, with Swarm{5} RCEr+ 2012 being most consistent.

Figure 5.12 shows box-plot comparisons for CH indices that are given in Table 5.5. Both Table 5.5

and Figure 5.12 show that the RCEr+ 2012 variants produce clusters that have CH indices that are,

on average, higher than those of K-means, PSC, mPSC, and RCE 2012 on the iris, wine, diabetes,

optical digits, and musk molecules datasets. Observing the ANOVA results of the CH indices on

the iris, wine, diabetes, and optical digits datasets (Figures 5.10a, 5.10c, 5.10e, and 5.10f), the

clusters produced by PSC, mPSC and RCE 2012 are not significantly different from one another.

In addition, RCEr+ 2012 and Swarm{5}RCEr+ 2012 produce clusters that are not significantly

different from each other for the glass, wine, diabetes and musk molecules datasets (Figures 5.10b,

5.10c, 5.10e, and 5.10g).

Figure 5.13 shows box-plot comparisons for time required for optimization that are given in Ta-

ble 5.5. In terms of optimization time, Table 5.5 and Figure 5.13 show that k-means is still the

computationally lightest algorithm, followed by RCE 2012 and RCEr+ 2012. Swarm{5} RCEr+

2012 has a longer optimization time than the other RCE variants. PSC and mPSC exhibit the

longest optimization times.

5.8 Conclusion

Rapid Centroid Estimation (RCE) [4] is a light-weight semi-stochastic clustering algorithm which

is inspired by Eberhart and Kennedy’s Particle Swarm Optimization (PSO) [77] and Cohen and

Chapter 5. Rapid Centroid Estimation 179

de Castro Particle Swarm Clustering (PSC) [75]. We introduced the algorithm in 2012 [71, 73] as

a lightweight simplification to the PSC algorithm [75]. RCE shares similarly to its deterministic

predecessor (k-means algorithm) that it clusters data using the voronoi cells principle. Due to

its semi-stochastic nature, the RCE is almost guaranteed to discover the natural local optimum

solution given the correct number of clusters, parameters, and sufficient number iterations are

supplied.

In Definition 5.2.10, we propose a simplified update rule for PSC derived based on the proof in

Theorem 4.1. By calculating only the resultant vector, the time complexity for each position update

can be reduced up to as low as that of the k-means. Concurrently, this new redefinitions reveals

two problems associated with the PSC original formulation: The first problem is concerned with

computational complexity of random number generation; The second is concerned with the dilution

of randomness as a consequence of Kolmogorov’s strong law of large number. This discovery leads

to the proposition of Definition 5.2.11 (Simplified Resultant Vector) — the latter is used in RCE

— which addresses these issues.

In Theorem 5.1, we prove that the RCE in its fundamental form inherits the consequence of

Theorem 4.1 including the curse of initial position. Conceding this fact, we propose strategies

including substitution, particle reset, and multi-swarm in order to alleviate the severity of the curse.

Especially when the RCE is operated as a multi-swarm, each of the RCE subswarm can be assigned

partial random sampled data which greatly reduces computational burden and increases swarm

diversity. These characteristics are particularly desirable when the swarm are to be aggregated

using consensus/ensemble clustering.

Chapter 5. Rapid Centroid Estimation 180

0.043

0.369

0.035

0.000

0.000

0.042

0.002

0.981

0.000

0.000

0.459

0.002

0.001

0.000

0.000

0.025

0.930

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.022

0.000

0.000

0.000

0.000

0.016

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(a) Iris

0.000

0.000

0.222

0.000

0.000

0.000

0.001

0.000

0.038

0.002

0.000

0.001

0.000

0.338

0.406

0.167

0.000

0.000

0.000

0.000

0.000

0.043

0.491

0.000

0.154

0.000

0.003

0.394

0.000

0.206

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(b) Glass

0.000

0.000

0.000

0.000

0.000

0.000

0.220

0.261

0.000

0.000

0.000

0.253

0.013

0.000

0.000

0.000

0.249

0.013

0.000

0.000

0.000

0.000

0.000

0.000

0.052

0.000

0.000

0.000

0.000

0.053

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(c) Wine

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.036

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.026

0.000

0.016

0.000

0.000

0.000

0.000

0.007

algorithm
al

go
rit

hm

I II III IV V VI
I

II

III

IV

V

VI

(d) Breast Cancer

0.000

0.000

0.000

0.533

0.001

0.000

0.082

0.078

0.000

0.000

0.000

0.082

0.482

0.000

0.000

0.000

0.139

0.519

0.000

0.000

0.513

0.000

0.000

0.000

0.057

0.002

0.000

0.000

0.000

0.052

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(e) Diabetes

0.000

0.000

0.000

0.000

0.491

0.000

0.002

0.000

0.317

0.000

0.000

0.002

0.336

0.000

0.000

0.000

0.000

0.316

0.000

0.000

0.000

0.359

0.000

0.000

0.000

0.423

0.000

0.000

0.000

0.000

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(f) Optical Digits

0.000

0.000

0.174

0.001

0.000

0.000

0.003

0.000

0.000

0.000

0.000

0.003

0.000

0.000

0.000

0.206

0.000

0.000

0.180

0.017

0.001

0.000

0.000

0.149

0.386

0.000

0.000

0.000

0.023

0.305

algorithm

al
go

rit
hm

I II III IV V VI
I

II

III

IV

V

VI

(g) Musk Molecules

Figure 5.10: P-values to three decimal places based on the resulting CH indices on all bench-
mark datasets given in Table 5.5. Grey boxes indicate p ≤ 0.05. I. K-means; II. PSC; III. mPSC;

IV. RCE 2012; V. RCEr+ 2012; VI. Swarm{5}RCEr+ 2012.

Chapter 5. Rapid Centroid Estimation 181

0.4

0.5

0.6

0.7

0.8

0.9

1

I II III IV V VI

pu
rit

y

(a) Iris

0.3

0.4

0.5

0.6

I II III IV V VI

pu
rit

y

(b) Glass

0.4

0.5

0.6

0.7

0.8

0.9

1

I II III IV V VI

pu
rit

y

(c) Wine

0.5

0.6

0.7

0.8

0.9

I II III IV V VI

pu
rit

y

(d) Breast Cancer

0.4

0.5

0.6

0.7

I II III IV V VI

pu
rit

y

(e) Diabetes

0.2

0.4

0.6

0.8

I II III IV V VI

pu
rit

y

(f) Optical Digits

0.45

0.5

0.55

0.6

0.65

0.7

0.75

I II III IV V VI

pu
rit

y

(g) Musk Molecules

Figure 5.11: Box-plots [164, 165] of purity values given in Table 5.5. x-axis indicates algorithms:
I. K-means; II. PSC; III. mPSC; IV. RCE 2012; V. RCEr+ 2012; VI. Swarm{5}RCEr+ 2012.

Chapter 5. Rapid Centroid Estimation 182

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

I II III IV V VI

C
H

In
de

x

(a) Iris

0

1000

2000

3000

4000

5000

I II III IV V VI
C

H
In

de
x

(b) Glass

0

1000

2000

3000

4000

5000

I II III IV V VI

C
H

In
de

x

(c) Wine

600

700

800

900

1000

I II III IV V VI

C
H

In
de

x

(d) Breast Cancer

0

200

400

600

800

I II III IV V VI

C
H

In
de

x

(e) Diabetes

350

400

450

500

I II III IV V VI

C
H

In
de

x

(f) Optical Digits

1500

2000

2500

3000

I II III IV V VI

C
H

In
de

x

(g) Musk Molecules

Figure 5.12: Box-plots [164, 165] of CH indices given in Table 5.5. x-axis indicates algorithms:
I. K-means; II. PSC; III. mPSC; IV. RCE 2012; V. RCEr+ 2012; VI. Swarm{5}RCEr+ 2012.

Chapter 5. Rapid Centroid Estimation 183

10
2

10
1

10
0

10
1

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(a) Iris

10
2

10
1

10
0

10
1

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(b) Glass

10
2

10
1

10
0

10
1

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(c) Wine

10
2

10
1

10
0

10
1

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(d) Breast Cancer

10
2

10
1

10
0

10
1

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(e) Diabetes

10
0

10
1

10
2

10
3

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(f) Optical Digits

10
0

10
1

10
2

I II III IV V VI

op
tim

iz
at

io
n

tim
e

(g) Musk Molecules

Figure 5.13: Box-plots [164, 165] of optimization times given in Table 5.5. x-axis indicates al-
gorithms: I. K-means; II. PSC; III. mPSC; IV. RCE 2012; V. RCEr+ 2012; VI. Swarm{5}RCEr+

2012.

Chapter 6

Ensemble Rapid Centroid

Estimation

Rapid Centroid Estimation (RCE) has been both theoretically and empirically proven

to increase the efficiency of Particle Swarm Optimization (PSO) based clustering algo-

rithms, in particular Cohen - de Castro’s Particle Swarm Clustering (PSC) by providing

leaner computational complexity and higher stability [4]. However, due to the voronoi tessellation

principle, RCE is suitable only for Gaussian clusters. Moreover, the number of clusters also needs

to be pre-specified.

The Ensemble RCE (ERCE) sought to address the above limitations. ERCE modifies the concept

of swarm in RCE 2014, such that the algorithm can be used efficiently together with conventional

ensemble aggregation techniques including Co-Association Tree (CA-tree) [66], Fuzzy Evidence

Accumulation [76], and Weighted Evidence Accumulation [65] which allows it to handle non-convex

clusters and estimate the number of clusters in larger datasets with quasilinear complexity in both

time and space [55]. Interested readers are encouraged to refer to Section 2.6 for further details

regarding the three consensus algorithm. The graphical abstract of the algorithm can be seen in

Figure 6.1.

This chapter is organized as follows. Section 6.1 proposes two strategies for improving the diversity

of the swarm in an ensemble setting. Section 6.2 provides the guidelines for the application of

consensus clustering paradigm to ERCE. Section 6.3 proposes an improvement to ERCE we term

the consensus engrams. Section 6.4 provides real world applications of the proposed algorithm on

color image segmentation and retinal fundus images. Finally Section 6.5 concludes the chapter.

185

C
ha

pt
er

6.
En

se
m

bl
e

Ra
pi

d
C

en
tro

id
Es

tim
at

io
n

18
6

(a) Various fuzzy representations of the data obtained using ERCE. Each swarm in ERCE produces non-identical voronoi tessellations on the data. The degree
of fuzziness for each cluster is then optimized using the tradeoff between cluster entropy and the degree of fuzzified dissimilarity [55].

(b) The compressed co-association matrix obtained
using the CA-tree [66] and fuzzy WEAC [65, 76]

Hybrid [55].

1...137

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

l2

(c) The optimum cut for the corresponding CA-tree
using the highest lifetime criterion [64].

(d) Natural grouping is recovered by performing
inverse mapping on the CA-tree [55, 66].

Figure 6.1: The algorithmic flow of ERCE explained using an artificial dataset [55].

Chapter 6. Ensemble Rapid Centroid Estimation 187

6.1 Improving Swarm Diversity

This section focus mainly on modifying swarm{nm} RCEr+ to a self-evolving “ensemble swarm”.

The ERCE equips RCE with the capability to continuously evolve using the concept inspired by

Kulis and Jordan’s Dirichlet Process (DP) means algorithm [166]. As the result of consensus clus-

tering highly depends on the overall quality of the ensemble partitions [86], proper determination

of the quantization parameter k is crucial to ensure appropriate compartmentalization of the data.

The following subsections touch upon the ideas on how to elegantly automate such task.

6.1.1 The Concept of “Charged Particles”

This approach is later abandoned due to the relatively high complexity.

Lourenço et al. propose that the presence of redundant partitions in ensemble clustering aggregation

may produce an undesireable bias to the final solution [86]. In order to diversify the particles, The

concept of charge is introduced to create a constant chaotic turbulence in the search space, such

that the possibility of creating a duplicate partition is minimized.

There are two types of electric charges – positive and negative. Charges of the opposite polarity

will attract one another while charges of the same polarity will repel otherwise. ERCE particles

can carry either positive or negative charge. The initialization is done at random and each particle

remains the same charge until the end of the optimization.

Definition 6.1.1 (Positive Particles). Positively charged particles are attracted to their member

data such that the self-organizing resultant vector is positive,

Ψ+
(so)(t) = +Ψ(so)(t). (6.1)

Definition 6.1.2 (Negative Particles). Negatively charged particles are repelled by their member

data such that the self-organizing resultant vector is negative,

Ψ−
(so)(t) = −Ψ(so)(t). (6.2)

Furthermore, negative particles are attracted to their nearby non-empty positive particles,

Although the concept is relatively simple and effective for a number of benchmark datasets [55],

there are a number of disadvantages as can be seen in Table 6.1.

Chapter 6. Ensemble Rapid Centroid Estimation 188

Table 6.1: Pros and Cons of the Concept of Charged Particles.

Pros Cons

Charged particles are programmatically easy to im-
plement

The computational and memory complexities are lin-
ear to the total number of positive and negative par-
ticles,

Negatively charged particles converge to empty
spaces which automatically imposes “cannot link”
constraint to the yielded ensemble partitions.

The success rate of the method rather depends on
the number of positive particles because they are the
ones that actively perform the clustering process.

The charge of each particle is determined at ran-
dom during initialization, the quality of the final
outcome of the ensemble clustering is rather non-
deterministic.

The number of voronoi regions is upper-bounded by
K, the total number of particles in a subswarm.

6.1.2 Self-Evolution

Merriam-Webster defines self-evolution as the development by inherent quality or power [43]. The

self-evolving swarm RCE equips the swarm with the ability to summon additional particles until

the user specified average cluster entropy criterion ξΘ is satisfied. The average cluster entropy can

be calculated as follows,

HΘ = H(XM
Θ ,YΘ) =

1
KΘ|YΘ|

∑
j∈YΘ

∑
i∈XM

Θ

−uij log2 uij =
1

KΘ
VH(XM

Θ ,YΘ), (6.3)

where uij denotes the fuzzy membership value of the jth vector in the swarm’s self-organizing

memory YΘ with respect to the ith vector in the swarm’s local minimum memory X
M
Θ . VH

denotes Bezdek’s Cluster Entropy as described in Equation 2.98 in Section 2.4. Implementing

self-evolution is relatively straightforward with the following rule,

KΘ(t) =

⎧⎪⎨
⎪⎩

KΘ(t) + z+
r (t) if

1
KΘ(t)

VH(XM
Θ (t),YΘ) > ξΘ,

KΘ(t) otherwise,

(6.4)

where KΘ(t) denotes the number of particles in the swarm Θ at the current iteration t, z+
r denotes

an upper-bounded random integer, z+
r ∈ Z

+ = [1, 2, . . . , z+
max], while ξΘ ∈ (0, 0.5) denotes the

prespecified threshold for the average cluster entropy. The desired partition granularity can be

specified by varying ξΘ as shown in Figure 6.2. The swarm would automatically adjust K until the

entropy criterion is satisfied given YΘ and Θ. When ξ → 0, then theoretically K∞ → Koptimum for

the dataset which is the K that minimizes the average information loss for each cluster [87].

The ensemble partitions using the self-evolution scheme can be seen in Figure 6.3

Chapter 6. Ensemble Rapid Centroid Estimation 189

Figure 6.2: The typical growth curve of the swarm with varying entropy threshold.

(a) ξΘ = 0.14. (b) ξΘ = 0.17. (c) ξΘ = 0.19. (d) ξΘ = 0.21.

(e) ξΘ = 0.23. (f) ξΘ = 0.26. (g) ξΘ = 0.28. (h) ξΘ = 0.3.

Figure 6.3: Variability of K due to ξ in ERCE swarms on the Half Rings dataset.

The pseudocode for ERCE can be seen in Algorithm 6.24.

6.2 Ensemble Aggregation

The fuzzy ensemble aggregation operates similarly to a typical consensus clustering process. The

ERCE ensemble aggregation method uses the CA-tree which allows it to compress redundant label

vectors. Using the compression map obtained from the CA-tree, we proceed with compressing the

fuzzy membership matrix. The weight for each ERCE partition is quantified using the appropriate

cluster validity indices, with higher weight indicates greater quality. The compressed fuzzy weighted

Chapter 6. Ensemble Rapid Centroid Estimation 190

Algorithm 6.24 ERCE

Input: Data points Y = {y1, . . . ,yN } ∈ R
dim, # of swarms nm, cluster entropy threshold ξ =

{ξ1, . . . , ξnm}, λ(so), λ(mi), maximum stagnation δmax, substitution rate ε.
Output: The swarm global optimum X M and the corresponding cluster validity f(X M ,Y).

1: Initialize swarm Θ1,...,nm .
2: (∀Θ ∈ S),YΘ = randsample(Y, η%).
3: repeat
4: for S = {Θ1, . . . , Θnm }
5: Perform Swarm{nm} RCEr+ 2014 update procedures [Algorithm 5.23 lines 5–10],
6: if Average cluster entropy HΘ > ξΘ
7: KΘ(t) ← KΘ(t) + z+

r (t)
8: end if
9: end for

10: until Convergence (f(X M ,YΘ) does not improve after nmax resets) or maximum iteration reached
11: return X M and f(X M ,Y).

consensus matrix Cc fW EAC can be calculated from the compressed fuzzy representation as follows,

Cc fW EAC =
∑

Θ wΘUT
Θ ∗ UΘ∑N

Θ=1 wΘ
, (6.5)

where UΘ is the compressed fuzzy membership matrix for the swarm Θ, and ∗ denotes the fuzzy

T-norm operator. The consensus partition UC can be obtained from Cc fW EAC and then performing

inverse mapping on the CA-tree.

The pseudocode for the ensemble aggregation is listed in Algorithm 6.25. A few results are shown

in Figure 6.4. Three of the results presented in this figure are 2 dimensional nonconvex data;

The bottom right corner shows a 16 classes 32 dimensional Gaussians. All of which the algorithm

managed to recover considerably well.

Algorithm 6.25 Ensemble Aggregation
Input: Fuzzy membership U{1,...,nm}, Crisp membership U{1,...,nm}, Learned covariance matrices Σ.
Output: The consensus partition UC .

1: compression map ← CA-tree(U{1,...,nm}, th),
2: U{1,...,nm} ← compress(U{1,...,nm}, compression map),
3: wΘ ←

∏
V(XM

Θ ,CΘ)

4: CU ←
∑

Θ wΘUT
Θ UΘ∑

Θ wΘ
,

5: UC ← GraphP artitioning(CU , · · ·)
6: return UC ← decompress(UC , compression map).

6.2.1 Memory Complexity

To test the memory consumption of various clustering algorithm on a random data (byte precision,

volume = 1 Byte – 1 Megabytes, dimension = 2) can be seen in Figure 6.5.

Chapter 6. Ensemble Rapid Centroid Estimation 191

1
2

1
2
3

1
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 6.4: Clustering Non-convex dataset using ERCE with charged particles

Figure 6.5: Memory complexity for clustering 2-dimensional random noise (vol = 1 Byte – 1
Megabytes, d = 2) using various algorithms. The global settings for all algorithms are as follow:

the number of representatives (K) = 30; the number of trials/swarms (nm) = 30.)

Chapter 6. Ensemble Rapid Centroid Estimation 192

It can be seen from Figure 6.5 that the lowest memory requirement for non-ensemble methods is

achieved by Hard C-Means (HCM, or k-means), followed by Fuzzy c-Means (FCM), PSC, mPSC,

RCE (2012), and Swarm RCE (2012). For ensemble methods, ERCE (Using Swarm RCE 2014)

achieves the lowest memory complexity, followed by HCM Evidence Accumulation (EAC), Weighted

Evidence Accumulation (WEAC), and FCM with Fuzzy Evidence Accumulation (fEAC). The scal-

ability problem of EAC-based methods are clearly shown in the graph.

6.2.2 Computational Complexity

A known issue with traditional ensemble algorithms — such as the HCM EAC, HCM WEAC, and

FCM fEAC, — is that they do not scale well to larger datasets. The main bottleneck for is the

EAC algorithm [66].

Realizing this issue, the ERCE make use of the EAC algorithm efficiently on the representative

nodes which are extracted using CA-tree. The computational complexity of ERCE will be explained

in the following paragraphs.

During the clustering stage, ERCE computational complexity is O(nmKN) for a single iteration,

where nm denotes the number of swarms, K denotes the number of particles, and N denotes the

number of data. When compared with that of HCM/k-means, it is simply the HCM complexity

multiplied by the number of swarms nm. The complexity for distance fuzzification is O(nmKNLm),

where Lm is the number function evaluations required for the mth swarm.

During the ensemble aggregation scheme, the ERCE complexity relies on the complexity of both

CA-tree (O(N)[66]) and fuzzy WEAC on the compressed nodes (fcWEAC) O(nmKN2
th), where

nm denotes the number of swarms, K denotes the number of particles, and Nth denotes the number

of representative nodes at a given threshold, Nth < N . For higher threshold the volume of the

node representatives will be much smaller than the dataset, Nth << N , which in turn makes the

fcWEAC assume a quasi-linear complexity, O(nmKlog2(N)).

The overall complexity of ERCE is therefore,

O(
clustering + fuzzification︷ ︸︸ ︷
[nmKN(tmax + Lm)] +

CA-tree︷︸︸︷
[N] +

fcWEAC︷ ︸︸ ︷
[nmKlog2(N)]), (6.6)

where tmax denotes the predefined number of iterations.

Chapter 6. Ensemble Rapid Centroid Estimation 193

6.3 Consensus Engrams

When dealing datasets that are too large to fit in memory, constructing a complete consensus

matrix, even with the help of CA-tree compression, is either very hard if not impossible to do due

to the obscene memory requirement. In this scenario the swarm RCE needs to be operated on

partial random sampled chunks similarly to the approach used in mini-batch k-means. We propose

that it is more efficient to operate on the subswarms which volumes are relatively much more

manageable (since |Xθ| = Kθ). In order to do so, we serially impose the consensus information

from the data and transform it into an affinity value between each consensus nodes.

The concept of node linking shares similarity to the perspective of the Self Organizing Map (SOM)

and Hebbian Network [78]. However, contrast to SOM, the internodal linkage in consensus engrams

is determined by the “consensus” between subswarms instead of the literal positions of particles in

the Euclidean space. This new concept of “closeness” provides a compact representation of clusters

as a collection of interconnected nodes, which makes the clustering result robust and much easier

to perceive. The efficiency of this approach is demonstrated in practical applications such as data

mining and information extraction from images.

6.3.1 Definitions

Definition 6.3.1 (Consensus Nodes). Let us define P as the set of all particles in all subswarms

such that

P =
⋃
Θ

XΘ. (6.7)

P can be clustered into C partitions to obtain P̂ = {P1,P2, . . . ,PC}. The consensus nodes are then

simply defined in term of expected values of each partition,

Z = {E[P|P1], . . . , E[P|PC]}, (6.8)

= {z1, . . . , zC} ∈ R
dim, (6.9)

which is simply the cluster center of each Pn. The consensus nodes can be elegantly obtained using

Satuluri and Parthasarathy’s Regularized Markov Clustering [153] described in Algorithm 2.10.

The affinity between each particles x ∈ P are quantified using the cross-cluster closeness.

Definition 6.3.2 (Cross-cluster Divergence). Let z ∈ R
dim be defined as a voronoi cell in the

voronoi tessellation Z, x ∈ R
dim as a voronoi cell in the voronoi tessellation X, and y ∈ R

dim as a

Chapter 6. Ensemble Rapid Centroid Estimation 194

data vector randomly sampled from a chunk of data Y. The conditional probabilities,

p(y|z) = p(z|y,Z), and (6.10)

p(y|x) = p(x|y,X) (6.11)

are defined as the responsibility values of the observation y ∈ Y with respect to the voronoi

cells z ∈ Z and x ∈ X, respectively. The marginal probabilities p(x) and p(z) are simply sum

of the conditional probabilities over all y ∈ Y such that p(z) =
∑
y∈Y

p(z|y,Z) ≤ 1, and p(x) =∑
y∈Y

p(x|y,X) ≤ 1, by definition. The corresponding empirical probability of y ∈ Y with respect to

z ∈ Z and x ∈ X are therefore,

P(y|z) =
p(y|z)
p(z)

=
p(z|y,Z)

p(z)
, and (6.12)

P(y|x) =
p(y|x)
p(x)

=
p(x|y,X)

p(x)
, (6.13)

where
∑
y∈Y

P(y|z) = 1 and
∑
y∈Y

P(y|x) = 1 by definition. The cross-cluster divergence of the voronoi

region Z due to X given the observations Y emerges naturally as the KL-divergence between the

empirical probabilities,

D(Z,X|Y) = KL(P(y|z)||P(y|x)), y ∈ Y (6.14)

=
∑
y∈Y

P(y|z) log
P(y|z)
P(y|x)

, (6.15)

=
∑
y∈Y

p(y|z)
p(z)

log
p(x)p(y|z)
p(z)p(y|x)

(6.16)

Definition 6.3.3 (Cross-cluster Closeness). The closeness of the approximation of Cz using Cx

can be calculated by applying a zero mean Gaussian kernel to the cross-cluster divergence,

φ(z, x) =
1√

2πσ2
exp
(

−D(Z,X|Y)
2σ2

)
, (6.17)

where σ denotes the standard deviation of the Gaussian kernel, describing the penalty factor. Lower

σ provides stricter emphasis on the closeness between partitions which is often more preferable for

preserving sensitivity when dealing with non-convex problems.

For larger datasets, observations are given in smaller chunks to decrease the memory and com-

putational complexity. In this situation φ(z, x) can be updated iteratively by calculating the

Chapter 6. Ensemble Rapid Centroid Estimation 195

probabilistic union. As observations are mutually exclusive, we can apply addition rule as follows,

φ(t+1) ← φ(t) + φ(t−1) − φ(t)φ(t−1), (6.18)

where φt denotes φ(z, x) at the tth iteration.

Definition 6.3.4 (Consensus Engrams). In neuropsychology, engrams are means by which memory

traces are stored as biophysical or biochemical changes in the brain (and other neural tissues) in

response to various external stimuli which leave a lasting trace in the brain [78].

The consensus nodes can be arranged in a fully connected cell assembly, called the consensus

engrams. The theory is based on one of Hebb’s theories on cell assembly [78] specifically, “When

one cell repeatedly assists in firing another, the axon of the first cell develops synaptic knobs (or

enlarges them if they already exist) in contact with the soma of the second cell.”

Donald O. Hebb [78].

The responsibility vector of an observation y due to the voronoi tessellation Θ =
⋃
θ

Cθ consisting

of KΘ voronoi regions can be expressed as a column vector with KΘ rows,

uΘ(y) =

⎛
⎜⎜⎜⎝

ux1

...

uxKΘ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

p(x1|y, Θ)
...

p(xKΘ |y, Θ)

⎞
⎟⎟⎟⎠ , (6.19)

where
∑

θ

p(xθ|y, Θ) = 1 by definition. uZ(y) can then be similarly defined in the context of the

consensus nodes Z =
⋃
z

Cz,

uZ(y) =

⎛
⎜⎜⎜⎝

uz1
...

uzC

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

p(z1|y,Z)
...

p(zC |y,Z)

⎞
⎟⎟⎟⎠ , (6.20)

where C denotes the number of consensus nodes.

Chapter 6. Ensemble Rapid Centroid Estimation 196

Let us define the mapping kernel ΠΘ for a swarm Θ as a C × KΘ matrix which linearly maps uΘ

to uZ,

ΠΘ =

⎛
⎜⎜⎜⎝

π(z1, x1) π(z1, x2) . . . π(z1, xKΘ)
...

...
. . .

...

π(zC , x1) π(zC , x2) . . . π(zC , xKΘ)

⎞
⎟⎟⎟⎠ , (6.21)

where

π(zi, xk) =
φ(zi, xk)∑C

c=1 φ(zc, xk)
, (6.22)

such that each column sums to 1. Note that each subswarm is assigned such kernel in order to

map the inputs to the appropriate consensus nodes.

The consensus mapping is the core concept that defines the Consensus Engrams algorithm. The

responsibility of the consensus node z ∈ Z in the engrams are determined by how the swarm

S = {Θ1, . . . , Θnm
} maps the information y ∈ Y to the corresponding node z. Each data y that

enters into the engrams has to be routed into these mapping kernels in order to calculate uZ(y) as

follows,

uZ(y) =

C×KΘ1[
ΠΘ1

]
uΘ1(y) +

C×KΘ2[
ΠΘ2

]
uΘ2(y) + · · · +

C×KΘnm[
ΠΘnm

]
uΘnm

(y)

|S| (6.23)

=
1

|S|
∑
Θ∈S

ΠΘuΘ(y), (6.24)

where ΠΘ1 , ΠΘ2 , . . . , ΠΘnm
are the mapping kernels previously learned in Equation 6.21. The

synaptic response of the consensus nodes due to y is defined as,

RZ(y) = uZ(y) ∗ uT
Z (y), (6.25)

where ∗ denotes the fuzzy t-norm operator. The RZ(y) matrix is a C × C positive definite matrix.

This synaptic response matrix describes the firing pattern of the consensus engrams due to an

input vector y. The strength of each response value ranges from r =
{

0,
1

C2

}
where higher values

indicate stronger link between corresponding node pairs. The consensus engrams are learned by

averaging the synaptic responses over as many inputs as possible,

AZ =
1

|Y|
∑
y∈Y

RZ(y) (6.26)

Chapter 6. Ensemble Rapid Centroid Estimation 197

The diagonal of the consensus engrams AZ are discarded,

diag(AZ) = 0. (6.27)

This matrix can then be interpreted by partitioning it into disjoint subsets using any conven-

tional graph partitioning algorithm. Linkage methods (single/average/ward) or Shi and Malik’s

normalized cuts [90] are two of many possibilities.

In the special case where the consensus engrams matrix is to be used together with agglomerative

clustering, it is usually more convenient to express AZ in terms of distance. We recommend the

following approach using zero mean Gaussian kernel as follows,

DZ = diag

(∑
col

AZ

)
, (Degree matrix)

Anor = D−1/2
Z

AZD−1/2
Z

DZ =
1√

2π var(Anor)
exp
(

− Anor

2 var(Anor)

)
,

(6.28)

where var(Anor) is the variance of all the elements in Anor.

An illustration for comparing the result of the conventional Gaussian neighborhood, ERCE with

CA-tree, and ERCE with Consensus Engrams approach on the iris flower dataset can be seen in

Figure 6.6. All methods correctly discovered three clusters as can be seen in the matrices.

6.3.2 Algorithmic Construct

The overall pseudocode can be summarized in Algorithm 6.26. On line 2 one may realize that

symmetrizing the cross-cluster affinity matrix is equivalent to computing the symmetrical KL-

divergence across cluster pairs.

An illustration of the consensus engrams method used on the BIRCH datasets (1 Million points in

R
2) [167] are shown in Figure 6.7. Each subswarm were assigned only 15% of the total data. The

number of particles for all subswarms were preset at 120.

6.3.3 Complexity Analysis

The consensus engram method is designed to run with the bare minimum memory requirement

since obviously all the required parameters in the model including φ(P,P), mapping kernel ΠΘ, and

Chapter 6. Ensemble Rapid Centroid Estimation 198

(a) Gaussian Neighborhood. (b) Compressed Fuzzy Evidence
Accumulation matrix (ERCE +

CA-tree + fWEAC).

(c) Consensus Engrams matrix
(1 − DZ).

5
6

7

2
2.5

3
3.5

4

1

2

3

4

5

6

Sepal LengthSepal Width

P
et

al
 L

en
gt

h

(d) The scatter plot and the corresponding Consensus Engrams.

Figure 6.6: Comparison of the graphs produced by Gaussian Neighborhood, ERCE (CA-
tree+fWEAC), and ERCE (Consensus Engrams).

consensus node affinity matrix AZ depend on neither the volume nor the order of data. In fact,

the quality of AZ only depends on the variety of data presented, which is directly related to the

number of loops. The user task is therefore to select just enough data which may be sufficiently

representative.

There are four main components that contributes to the complexity of the consensus engrams

algorithm: computation of pairwise cross-cluster closeness φ(P,P); construction of consensus nodes

(R-MCL); calculation of the mapping kernel ΠΘ; and computation of AZ.

From Equation 6.17 it is easy to observe that the computational complexity of cross-cluster close-

ness between two clusters depends on the volume of a chunk N , the total number of particles in

Chapter 6. Ensemble Rapid Centroid Estimation 199

Algorithm 6.26 Consensus Engrams Construction

Input: Randomly sampled data chunk Y = {y1, . . . ,yN } ∈ R
dim

Output: Consensus nodes Z = {z1, . . . , zC} ∈ R
dim, Affinity matrix between consensus nodes AZ, the

consensus mapping kernel ΠΘ.
1: [Θ1, . . . , Θnm ; Σ1, . . . , Σnm] ← ERCE(Yη%)
2: P ←

⋃
Θ

XΘ

3: AP ← φ(P,P) + φT (P,P).
4: Z ← R-MCL(AP) [Algorithm 2.10, Section 2.5].
5: Calculate the consensus mapping kernel ΠΘ for each subswarm.
6: for all y ∈ Y

7: AZ ← AZ +RZ

8: end for
9: diag(AZ) = 0 // Discard the diagonal values

10: —— End of Consensus Engrams construction ——
11: The steps below shows a sample partitioning step using Shi-Malik’s Normalized Cuts [90]. These steps

can be customized according to the use case.

12: DZ = diag

(∑
col

AZ

)
// Calculate the degree matrix

13: Lnormalized = I−D−1/2
Z

AZD−1/2
Z

// Calculate the graph Laplacian
14: [eigenvectors, eigenvalues] ← Lanczos Eigensolver(Lnormalized)
15: P ← N-cut(Lnormalized)
16: return Z, AZ, ΠΘ and partitioned graph P.

Figure 6.7: Finding the natural grouping in the BIRCH [167] datasets using ERCE with con-
sensus engrams. White dots denote particles, while red dots denote consensus nodes. Links were

constructed based on cross-cluster divergence.

Chapter 6. Ensemble Rapid Centroid Estimation 200

the swarm |∀Θ| = |P| = K. The complexity of calculating φ(P,P) is O(NK(K − 1)) as a result of

the calculation of KL-divergence and exponential kernel between cluster pairs. The complexity for

calculating (∀Θ)ΠΘ is O(NKC) due to the calculation of pairwise cross-cluster closeness between

the particles P and the consensus nodes Z. The complexity of AZ arises due to the consensus

mapping process uZ(y) =
1

|S|
∑
Θ∈S

ΠΘuΘ(y) and the fuzzy t-norm operation uZ(y) ∗ uT
Z (y). For

each chunk Y the total computational complexity is therefore,

OConsensus Engrams =
Distance Calculation︷ ︸︸ ︷

NKdim +

φ(P,P)︷ ︸︸ ︷
NK(K − 1) +

R-MCL︷︸︸︷
Kκ2 +

ΠΘ for each Θ︷ ︸︸ ︷
NKC +

AZ︷ ︸︸ ︷
N(KC + C2) (6.29)

where K denotes the total number of particles in the swarm, C denotes the number of consensus

nodes, and κ denotes the average number of non-zero entries in each column of AP. The nature

of voronoi tessellation guarantees that κ <
K

|S| , the average number of voronoi regions for each

subswarm. The complexity of R-MCL is therefore guaranteed to be <
K3

|S|2 .

6.4 Applications

6.4.1 Color Image Segmentation

A practical usage of clustering in computer vision is the task of image segmentation and labeling of

connected components. Conventional consensus and spectral clustering approaches would require

at least O(N2) complexity with N denotes the total number of pixels in an image to construct

the affinity matrix alone. ERCE + Consensus Engrams allows rapid approximation of connected

component from images in linear complexity O(N).

The images used in this subsection includes various natural segmentation images from Lotus Hill

Institute [79] and Berkeley Segmentation Dataset [168]. ERCE was operated using five self-evolving

swarms ξ = 0.03 – 0.05, each storing only 20% of the total pixels of the image, randomly sampled.

The Consensus Engrams were constructed using 20% of the data. An step-by-step illustrative

example of the execution of the algorithm are shown in Figure 6.8 and Figure 6.9. It can be

observed in Figure 6.9 that the consensus engrams provides an intuitive overview of the statistical

property of the features. The experimental results can be seen in Figure 6.10 and Figure 6.11.

We performed a comparative experiment on images of varying sizes to investigate the time and

space complexity of the algorithm. The competing algorithms are strictly consensus/graph-based

clustering which includes: ERCE (5 swarms, 20% random sampling, ξ = 0.03 – 0.05) with CA-tree

Chapter 6. Ensemble Rapid Centroid Estimation 201

and Fuzzy Weighted Evidence Accumulation (fWEAC); 80 runs of k-means (k is randomized) with

Evidence Accumulation (EAC), and; Normalized Cuts with Gaussian Neighborhood. The machine

used in this simulation is a laptop computer with Intel Core i5 M520 @ 2.4 Ghz, 4 GB of RAM,

running Windows 7. The experimental results are summarized in Figure 6.12.

(a) Original Image.

(b) The randomly generated sampling mask for each subswarm.

(c) The randomly sampled dataset assigned for each ERCE subswarms, each containing only 20% of Y.

(d) Various Centroids Learned by the ERCE subswarms.

(e) The segmentation result. The Consensus nodes and their linkages are shown on the left image.

Figure 6.8: Color Image Segmentation using ERCE (Consensus Engrams Scheme) on an image
from Lotus Hill Institute [79]

Chapter 6. Ensemble Rapid Centroid Estimation 202

(a) The scatter plot matrix of the two horses images in Figure 6.8.

Consensus Engrams — Voronoi Regions are approximate

(b) x: saturation; y: value. (c) x: x-coordinates; y: hue.

(d) x: value; y: y-coordinates. (e) x: saturation; y: x-coordinates.

Figure 6.9: The scatter plots of the two horses images in Figure 6.8 and its consensus engrams
overlays. 4 clusters were discovered.

Chapter 6. Ensemble Rapid Centroid Estimation 203

(a) Sea [168]. (b) Palm [168].

(c) Bears [168].

(d) Lake [168].

(e) Zebras [168].

Figure 6.10: Image segmentation results using ERCE and their consensus engrams overlay.
The graph clustering results are produced using single linkage.

Chapter 6. Ensemble Rapid Centroid Estimation 204

(a) Boat [168].

(b) Temple [168].

Figure 6.11: Image segmentation results using ERCE and their consensus engrams overlay —
continued. The graph clustering results are produced using single linkage.

Chapter 6. Ensemble Rapid Centroid Estimation 205

(a) Time Complexity.

(b) Memory Complexity.

Figure 6.12: The CPU time and memory required of various algorithms with respect to the
number of pixels in an image.

Chapter 6. Ensemble Rapid Centroid Estimation 206

The results presented in Figure 6.10 and Figure 6.11 are visually close to the proposed ground truths

in [168]. The performance in comparison with graph based algorithms are still unavailable at the

present moment since the current machine used for the experiment are incapable of processing the

pictures using neither normalized cuts nor k-means EAC. Further investigation will be included in

our future works.

From Figure 6.12, we can see that ERCE with Consensus Engrams (CE) were the leanest in terms of

both memory and computational complexity. Both the proposed algorithm and ERCE + CA-tree

+ fWEAC achieved linear complexity in both time and space, with ERCE + CE being significantly

leaner. k-means EAC exhibited O(N1.4558) and O(N1.745) computational and memory complexity,

respectively. The most expensive algorithm was the normalized cuts which exhibited O(N2.5826)

and O(N1.8548) computational and memory complexity, respectively.

6.4.2 Vessel Extraction from Retinal Fundus Images

Another challenge in biomedical informatics is blood vessel extraction from retinal Fundus image.

One of the main clinical objectives for retinal vessel segmentation is the early screening of diabetic

retinopathy [80]. Diabetic retinopathy is caused by complications of diabetes, which can eventually

lead to blindness if not treated. To date, the fundus photography is the only way to detect the

early stage of diabetic retinopathy, the non-proliferative diabetic retinopathy (NPDR) [169].

One of the challenges in retinal fundus imagery is to accurately isolate the blood vessels from

the other parts of the retina. However, as retinal fundus images are usually complex and noisy,

accurate extraction would require the use of advanced technique in computer vision and machine

intelligence. We apply our method on the retinal fundus images from the Digital Retinal Images

for Vessel Extraction (DRIVE) dataset [80]. The size of each image is 584 × 565 pixels.

Blood vessels are generally more pronounced in the green channel compared to the other color

channels [53]. We perform a morphological closing with a 15 × 15 disc structuring element on the

channel, which is large enough to blur the blood vessels and obtaining the overall background of

the channel. This background is then subtracted out of the green channel such that the foreground

(blood vessels) are isolated in bright pixels. In addition to the inverted green channel, morphologic

features for each pixel in the foreground image were extracted [53, 57]. The first feature was ridge

features obtained using Zana’s geodesic approach [53]; The second was line features using multiple

convolutions of Nguyen’s oriented multiscale line filters with L = {3, 5, 7, 9, 11, 13, 15, 17, 19, 21}
[57]. The visualization of the features and segmentation result are presented in Figure 6.14.

Chapter 6. Ensemble Rapid Centroid Estimation 207

Using these three features, pixels corresponding to blood vessels can be distinguished using ERCE

+ CE. The ERCE swarm is set to self-evolving mode with target cluster entropy ξ = {0.1 - 0.3}.

The swarm size is set to 5 subswarms, each memorizes 10% of the data, randomly sampled. The

consensus engrams is also constructed using only 10% of the data. The chosen metric is the

squared Euclidean distance. The conversion of distance to membership uses Bezdek’s fuzzification

method with the fuzzifier parameter m = 2. The consensus engrams σ parameter for the cross-

cluster closeness calculation is set to 0.3. Shi-Malik’s normalized cuts [90] is chosen as the graph

clustering method, forcing 2 clusters using 2-way cut. The final fuzzy value (u1, u2) for each

pixel y with respect to the first and second consensus nodes (z1 and z2) are then calculated using

Equation 6.24 such that,

⎛
⎝ u1(y)

u2(y)

⎞
⎠ =

1
|S|
∑
Θ∈S

⎛
⎝ π(z1, x1) π(z1, x2) . . . π(z1, xKΘ)

π(z2, x1) π(z2, x2) . . . π(z2, xKΘ)

⎞
⎠
⎛
⎜⎜⎜⎝

ux1(y)
...

uxKΘ
(y)

⎞
⎟⎟⎟⎠ , (6.30)

π(zi, xk) =
φ(zi, xk)∑C

c=1 φ(zc, xk)
, (6.31)

where S denotes the ERCE swarm S = {Θ1, . . . , Θnm
} and π(zi, xk) denotes the column normalized

cross-cluster closeness φ(zi, xk) of zi approximated by xk. uxi
denotes the cluster membership of

the ith voronoi region in the subswarm Θ, where (∀j),
∑

i

uxi,j = 1 by definition. u1 and u2 denotes

the fuzzy membership of the first (vessels) and second (background) cluster, respectively, where

(∀j), u1j + u2j = 1.

The cluster corresponding to the blood vessels are naturally identified as the cluster with the least

size Ivessels = arg min
i

|Ci| where |Ci| =
∑

j

uij , i denotes the cluster index, j denotes the pixel

index.

We propose the optimal threshold value for the algorithm is the ratio between the size of the two

clusters, |Cvessels| and |Cbackground|,

th =
|Cvessels|

|Cbackground| =
∑

j uvessels,j∑
j ubackground,j

, (6.32)

Chapter 6. Ensemble Rapid Centroid Estimation 208

where j denotes the pixel index. This formula is derived as follows. Suppose the two clusters C =

{V, B} foreground (blood vessels) and background, respectively. The probabilities are therefore,

p(V) =
∑
y∈Y

p(y|V), (6.33)

p(B) =
∑
y∈Y

p(y|B), (6.34)

p(V) < p(B), (6.35)

p(V, B) = p(B) − p(V). (6.36)

The degree of contamination is simply,

% Contamination =
p(B) − p(V, B)

p(B)

=
p(V)
p(B)

,

(6.37)

which reminiscent to the signal to noise ratio (SNR) calculation. A descriptive illustration can be

seen in Figure 6.13.

Figure 6.13: Illustration of % contamination (not to scale).

The scatter plots showing the features and the consensus engrams overlay are shown in Figure 6.15.

The machine used in this simulation is a laptop computer with Intel Core i5 M520 @ 2.4 Ghz, 4

GB of RAM, running Windows 7. The original data from the DRIVE datasets [80] are presented

in Figure 6.16 and Figure 6.17, while the corresponding results are shown in Figure 6.18 and

Figure 6.19.

The DRIVE database provides two manually traced gold standard annotations referred to as ob-

server 1 and observer 2. We measure the sensitivity, specificity and accuracy of the proposed

Chapter 6. Ensemble Rapid Centroid Estimation 209

method on each image against the provided observer 1. The average area under the ROC curve

against observer 1 is also reported. The local accuracy (where only the vessels and background

pixels around the true vessels are considered for accuracy measurement) is also measured using

morphological dilation operator with a structuring element of size 3 as proposed by [57]. The

correctness of the segmentation were analyzed using Cohen’s Kappa statistics. The kappa value

measures the degree of agreement between observer 1 and observer 2 given each segmentation re-

sult. The overall statistics of the results are then appended using the reported values in [57] and

the DRIVE website. The individual result for each image summarized after 20 extraction trials

is presented in Table 6.2. The comparative summary against other methods is summarized in

Table 6.3. The resulting ROC graph compared to the other approaches are shown in Figure 6.20.

Table 6.2: Fundus Image Clustering Results Against the Gold Standard (Observer 1) summa-
rized after 20 trials.

Sensitivity Specificity Accuracy # Sensitivity Specificity Accuracy

1 75.3% ± 0.6% 97.8% ± 0.2% 95.8% ± 0.0% 21 75.1% ± 0.1% 98.2% ± 0.0% 96.5% ± 0.0%

2 77.7% ± 0.2% 98.2% ± 0.0% 96.1% ± 0.0% 22 75.1% ± 0.1% 97.7% ± 0.0% 95.7% ± 0.0%

3 75.3% ± 0.5% 97.1% ± 0.2% 95.0% ± 0.1% 23 78.3% ± 0.8% 92.9% ± 0.5% 92.4% ± 0.3%

4 75.2% ± 0.2% 98.1% ± 0.0% 96.1% ± 0.0% 24 75.2% ± 0.2% 97.5% ± 0.0% 95.0% ± 0.0%

5 75.2% ± 0.2% 97.8% ± 0.0% 95.8% ± 0.0% 25 75.2% ± 0.3% 96.3% ± 0.1% 94.4% ± 0.1%

6 75.1% ± 0.1% 97.2% ± 0.2% 95.1% ± 0.0% 26 75.1% ± 0.2% 96.9% ± 0.1% 95.1% ± 0.0%

7 75.2% ± 0.1% 97.1% ± 0.0% 95.2% ± 0.0% 27 75.2% ± 0.2% 97.7% ± 0.0% 95.7% ± 0.0%

8 75.3% ± 0.3% 97.0% ± 0.1% 95.2% ± 0.0% 28 75.2% ± 0.1% 97.6% ± 0.0% 95.4% ± 0.0%

9 75.1% ± 0.2% 97.8% ± 0.0% 96.0% ± 0.0% 29 75.1% ± 0.2% 97.7% ± 0.0% 95.9% ± 0.0%

10 75.1% ± 0.1% 97.7% ± 0.0% 95.9% ± 0.0% 30 75.2% ± 0.2% 97.1% ± 0.0% 95.4% ± 0.0%

11 75.1% ± 0.2% 96.9% ± 0.1% 95.1% ± 0.0% 31 75.4% ± 0.6% 97.2% ± 0.3% 96.0% ± 0.0%

12 75.3% ± 0.2% 97.5% ± 0.0% 95.6% ± 0.0% 32 75.1% ± 0.2% 98.1% ± 0.0% 96.3% ± 0.0%

13 75.1% ± 0.2% 97.2% ± 0.0% 95.1% ± 0.0% 33 75.2% ± 0.2% 98.1% ± 0.0% 96.3% ± 0.0%

14 75.5% ± 0.9% 97.8% ± 0.2% 96.1% ± 0.1% 34 75.2% ± 0.1% 90.3% ± 0.1% 89.0% ± 0.0%

15 75.2% ± 0.1% 97.5% ± 0.0% 96.0% ± 0.0% 35 75.2% ± 0.2% 97.7% ± 0.0% 95.7% ± 0.0%

16 75.2% ± 0.2% 97.2% ± 0.0% 95.3% ± 0.0% 36 75.2% ± 0.2% 97.0% ± 0.0% 94.7% ± 0.0%

17 75.2% ± 0.9% 96.7% ± 0.8% 95.0% ± 0.2% 37 75.1% ± 0.2% 96.7% ± 0.0% 94.9% ± 0.0%

18 75.2% ± 0.1% 96.9% ± 0.0% 95.3% ± 0.0% 38 75.2% ± 0.3% 97.0% ± 0.0% 95.1% ± 0.0%

19 76.7% ± 3.5% 98.0% ± 0.7% 96.5% ± 0.3% 39 75.1% ± 0.3% 97.0% ± 0.0% 95.2% ± 0.0%

20 75.1% ± 0.2% 97.5% ± 0.0% 95.9% ± 0.0% 40 75.2% ± 0.4% 97.8% ± 0.1% 96.1% ± 0.0%

The statistical summary in Table 6.3 shows that the proposed method is superior in all performance

aspects compared to the other methods in the literatures. Using both Zana’s and Nguyen’s feature

together with the inverted green channel, ERCE + CE consensus clustering algorithm outperforms

even Staal’s supervised approach to vessel segmentation (proposed: 95.58% ± 0.51%; Staal: 94.42%

± 0.65%). We attribute this to the highly accurate feature extraction methods by Zana [53] and

Nguyen [57].

Chapter 6. Ensemble Rapid Centroid Estimation 210

(a) Fundus Image. (b) Smoothed Green Channel
(Background).

(c) Foreground = Green Chan-
nel - Background.

(d) Inverted Green Channel (e) Zana’s Geodesic Morphology and Curvature
filter [53].

(f) Summation of multiple convolutions of
Nguyen’s oriented multiscale line filters L =

{3, 5, 7, 9, 11, 13, 15, 17, 19, 21} [57].

(g) Classification Result using ERCE + CE.
Sensitivity = 82.5%; Specificity = 96.64%; Ac-

curacy = 95.56%

Figure 6.14: Feature extraction from a retinal fundus image.

Chapter 6. Ensemble Rapid Centroid Estimation 211

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Zana’s Geodesic Features

In
ve

rte
d

G
re

en
 C

ha
nn

el

0 1 2 3 4 5 6 7 8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nguyen’s Line Features

In
ve

rte
d

G
re

en
 C

ha
nn

el

0 1 2 3 4 5 6 7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Nguyen’s Line Features

Za
na

’s
 G

eo
de

si
c

Fe
at

ur
es

0
2

4
6

8
10

0.2

0.4

0.6

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9

Nguyen’s Line FeaturesZana’s Geodesic Features

In
ve

rte
d

G
re

en
 C

ha
nn

el

Figure 6.15: Scatter plot of the extracted features with the Consensus Engrams overlay.

Chapter 6. Ensemble Rapid Centroid Estimation 212

Figure 6.16: Fundus Images (1–20) from DRIVE [80] arranged left to right, top to bottom.

Chapter 6. Ensemble Rapid Centroid Estimation 213

Figure 6.17: Fundus Images (21–40) from DRIVE [80] arranged left to right, top to bottom.

Chapter 6. Ensemble Rapid Centroid Estimation 214

Figure 6.18: Fuzzy segmentation results (gray) + detection mask (black) (1–20), arranged left
to right, top to bottom.

Chapter 6. Ensemble Rapid Centroid Estimation 215

Figure 6.19: Fuzzy segmentation results (gray) + detection mask (black) (21–40), arranged left
to right, top to bottom.

Chapter 6. Ensemble Rapid Centroid Estimation 216

Table 6.3: Fundus Image Clustering Results Summary on the DRIVE database, appended with
the results in [52, 57]. Values are expressed in its mean (standard deviation).

Method Accuracy L.Acc Kappa AUC Time(s)

Proposed Method (unsupervised) 0.9558 (0.0051) 0.8543 0.7736 0.9522 Total: 30.7 (3.7)

Feature Extr.: 17.1 (1.7)

ERCE+CE: 13.6 (3.3)

Human observer 0.9473 (0.0048) n/a 0.7589 n/a 7200

Staal (supervised) [80] 0.9442 (0.0065) 0.7749 0.7345 0.9520 900

Niemeijer (supervised) [52] 0.9416 (0.0065) 0.7562 0.7145 0.9294 n/a

Nguyen (unsupervised) [57] 0.9407 0.7883 n/a n/a 2.5

Zana (unsupervised) [53] 0.9377 (0.0077) 0.7318 0.6971 0.8984 < 180

Al-Diri (supervised) [170] 0.9258 (0.0126) n/a 0.6716 n/a 660 (180)

Jiang (unsupervised) [171] 0.9212 (0.0076) 0.6915 0.6399 0.9114 n/a

Martínez-Pérez (unsupervised) [172] 0.9316 0.7670 0.6389 n/a n/a

Chaudhuri (unsupervised) [173] 0.8773 (0.0232) 0.5587 0.3357 0.7878 n/a

All background 0.8727 (0.0123) n/a 0 n/a n/a

Figure 6.20: The ROC curve of the proposed method vs other methods in the literature [80].

Chapter 6. Ensemble Rapid Centroid Estimation 217

Another important characteristic of the algorithm is its relatively lightweight nature. The proposed

method requires 30.7 ± 3.7 seconds (17.1 seconds were spent for feature extraction) to extract blood

vessels from a 584 × 565 pixels retinal fundus image, which is significantly faster than Staal’s

method which takes 15 minutes for each image on average [80].

It should be noted that the performance of the proposed method depends heavily on the feature

extraction method. In this implementation, our approach suffers from limitations in Zana’s [53]

and Nguyen’s [57] approaches. Using these features the ERCE+CE still struggles when dealing

with noisy images such as image 23 and 34. Future works will include the incorporation of various

additional morphological features such as those described by Staal [80].

6.5 Conclusion

Ensemble RCE (ERCE) [55] was proposed in 2014 as an ensemble extension to RCE, improving

RCE in terms of memory and computational efficiency, capability to automatically determine the

number of clusters, and gracefully handle non-convex datasets in quasilinear complexity. Using

the self-evolving cooperative semi-stochastic swarm ERCE constructs the essential building blocks

required for large scale consensus clustering using minimal memory and computational resources.

Benefiting from the robustness of swarm intelligence, the versatility of voronoi tessellation and the

flexibility of graph algorithms, the ERCE is designed to discover natural groupings in both convex

and non-convex data. Two strategies are proposed to increase the ERCE swarm diversity including

charged particles and self evolution. The complexity of the algorithm has been theoretically and

empirically analyzed where we discover that the algorithm has quasilinear complexity in both time

and space.

Inspired by Hebb’s theories on cell assembly [78], we arrange the particles in the swarm in a fully

connected construction called the consensus engrams. This approach substantially increases the

scalability of the swarm to handle data whose total size exceeds the physical random access memory

(RAM) limit of the machine. The method is specifically designed to extract statistical structure

from incomplete data of large volume and noise content. It is insensitive to neither the volume nor

the order of data and the engrams only need to “see” just enough representative data to learn the

overall statistical structure. The algorithm has been tested on image processing applications with

promising results.

On color image segmentation, ERCE with Consensus Engrams (CE) were the leanest in terms of

both memory and computational complexity. Both the proposed algorithm and ERCE + CA-tree

Chapter 6. Ensemble Rapid Centroid Estimation 218

+ fWEAC achieved linear complexity in both time and space, with ERCE + CE being significantly

leaner.

On the fundus image segmentation application, our proposed unsupervised image segmentation

method is able to achieve the highest classification performance compared to the competing meth-

ods, which is up to 95.58% global accuracy, 85.43% local accuracy, and 0.7736 kappa score using

the fundus image data from the DRIVE database. The method takes about 30 seconds per image

which is significantly faster than the method described in [80] (15 minutes).

Chapter 7

Conclusion

This thesis analyzes in great depth, both theoretically and empirically, the development

stages, strengths and limitations of our proposed semi-stochastic swarm clustering al-

gorithm, the Rapid Centroid Estimation (RCE) and its variants [4, 55, 71–73]. This

thesis establishes the theoretical foundation of the algorithm, much extending those that have

been previously proposed in the published manuscripts. The analyses focus mainly on the stabil-

ity, convergence, computational and memory complexities as well as the overall effectiveness of the

algorithm on practical problems.

As a general purpose clustering algorithm, the practical applications of the proposed algorithm are

vast. The application scenarios included in this thesis are meant as investigative medium intended

for benchmarking the strengths and limitations of the proposed algorithm against other approaches

in the literature.

7.1 Primary Findings

1. Challenges in Particle Swarm Optimization Clustering

The research develops from Section 3.3 where we discover the rationale behind the perfor-

mance degradation of Van Der Merwe - Engelbrecht’s Particle Swarm Optimization (PSO)

Clustering [83] for problems of higher dimension. The efficiency of PSO clustering degrades

exponentially for each dimensionality increment as particle vectors become perpendicular to

the maximum likelihood vector. The empirical validation in Table 3.1 provides strong statis-

tical evidence on the inferiority of the algorithm to Stuart Lloyd’s k-means in problems over

15 dimensions.

219

Chapter 7. Conclusion 220

2. Challenges in the Particle Swarm Clustering Algorithm

Cohen and de Castro [75] proposes a new concept of particle-data interaction in their Parti-

cle Swarm Clustering (PSC) algorithm. We discover significant issues with their proposition

regarding stability, movement redundancies, local convergence, as well as its memory and

computational complexity. Theorem 4.1 especially shows how the PSC generalizes to the

Expectation Maximization (EM) algorithm — more specifically, k-means — when the stabil-

ity constraints in Equation 4.37 are satisfied. This theoretical proof completes the empirical

observation by Szabo et al. [85], where they stated that “there were no much gain obtained

with the PSC when compared with a standard self-organizing clustering methods” [85].

We also discover that all PSC families, including the original Cohen - de Castro’s PSC [75],

Szabo’s Modified memoryless Particle Swarm Clustering (mPSC) [74], and Szabo’s Fuzzy

Particle Swarm Clustering (FPSC) [70], share the behavior depicted in Figure 4.4 and Fig-

ure 4.5. The three algorithms, although proposed under varying names and time frames, are

conceptual duplicates of the original PSC.

3. Rapid Centroid Estimation and its Variants

The RCE and its variants in 2012 (RCE 2012) to alleviate general clustering issues pertaining

reliability due to initialization and local convergence [4, 71–73]. Using the openly available

benchmark datasets from UC Irvine [84] we investigate the performance of the algorithm

against its predecessors. The results, presented in Table 5.5, reveals the superior performance

the RCE 2012 variants to that of its predecessors. The levels of reliability and repeatability

of RCE variants in most cases are substantially greater than those of the other algorithms.

Table 5.6 shows that the new algorithms are significantly faster than the predecessors.

4. Ensemble Rapid Centroid Estimation

The discovery of both Equation 4.37 and Lemma 5.2.1 lead to the simplification scheme in the

2014 proposition which further reduce the complexity of RCE and extends its applicability

to larger datasets and access to scalable consensus/ensemble approaches which allow it to

cope with arbitrarily shaped clusters and estimate the number of clusters in quasilinear

time and space complexity. We refer the improved algorithm with a new name called the

Ensemble RCE (ERCE). To our knowledge, to date we are the first multi-swarm based

ensemble clustering algorithm that has achieved such low complexity in both time and space.

In this thesis we introduce the self-evolution to the ERCE which is proposed to address the

issues in the concept of charged particles [55]. Self evolution allows the RCE to have unlimited

number of particles in order to satisfy the cluster entropy requirement. The approach further

reduces the memory requirement of ERCE.

Chapter 7. Conclusion 221

5. Consensus Engrams

The consensus engrams further simplifies the ERCE to deal with partial data. Instead of

dealing with the complete consensus matrix, the consensus engrams encodes the feature

statistical properties in the form of relationship between subswarms and particles. The

algorithm was applied on image clustering and retinal fundus images with satisfactory result.

Based on the empirical experiments, the proposed approach provides significant improvement

to ERCE in term of computational and memory efficiency as shown in Figure 6.12. In retinal

fundus vessel extraction task, Table 6.3 shows that the algorithm outperforms even Staal’s

supervised approach [80] with much lower computational complexity.

7.2 Limitations of the research

1. Sensitivity to feature quality

RCE variants are limited on performing unsupervised clustering on problems which classes

are separable based on the statistical landscape of the feature space. Should the majority of

the features contain redundant and irrelevant information, the algorithm would experience a

significant performance degradation.

2. Sensitivity to distance quantifier selection

The performance of RCE variants are dependent on the selection of quantifier which defines

the distance between two feature vectors. The definition of “distance” will need to be pre-

specified by the user.

3. Final result is nondeterministic

Like other clustering algorithms, the results of RCE varies on each repetitions. The proposed

strategies (particle reset, substitution, swarm) decrease the likelihood of the particles getting

trapped in a local minimum, hence increasing the likelihood of getting an optimal partition.

The chance of returning suboptimal partitions, although minimized, still exist.

4. Sensitivity to the consensus/ensemble aggregation or graph partitioning method

The ERCE requires the user to manually specify the graph partitioning algorithm. The user

needs to choose between clustering based on close connectivity (e.g. normalized cuts) or

arbitrary interconnected shapes (e.g. single linkage), but not both.

5. Sensitivity to the choice of parameters

Chapter 7. Conclusion 222

The choice of parameters, especially the width of fuzzifier, number of particles, swarm size,

substitution probability, and stagnation threshold (particle reset), are significant parame-

ters that determine the performance of the algorithm. The penalty factor for cross-cluster

closeness (consensus engrams) and the variations of the data fed to the engrams would deter-

mine whether the synaptic bonds learnt by the engrams can properly represent the statistical

structure of the feature space.

In a highly non-convex problems, there need to be enough particle in order to ensure proper

extraction of the statistical structure of the data. However, the only parameter that RCE uses

to control the growth of the particle is the cluster entropy, which depends on the user-defined

width of the fuzzifier.

6. RCE does not perform supervised learning

The RCE belongs to the class of unsupervised clustering algorithm. It is designed to minimize

the likelihood function given the data and the assumption of the model. Supervised learning

such as Neural Networks and Support Vector Machines belong to the different class of machine

learning which are specifically intended for function approximation. For such task, the RCE

may not be the right tool.

7.3 Recommendations for Future Work

The RCE algorithm has been under continuous improvement since its proposal in 2012 [71, 73].

Based on the aforementioned limitations, the algorithm is still far from finishing. One of the major

goals includes making the RCE parameter free. As the algorithm is designed for parallel processing,

a possible future work is the parallelization of RCE for mining very large data. Finally further

practical implementations and empirical tests on even larger and more complex data needs to be

done.

Bibliography

[1] P. Dayan, M. Sahani, and G. Deback. Unsupervised learning. In In The MIT Encyclopedia

of the Cognitive Sciences. The MIT Press, 1999.

[2] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letter, 31(8):

651–666, June 2010. ISSN 0167-8655. doi: 10.1016/j.patrec.2009.09.011.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing

Surveys, 31(3):264–323, September 1999. ISSN 0360-0300. doi: 10.1145/331499.331504.

[4] M. Yuwono, S. Su, B. Moulton, and H. Nguyen. Data clustering using variants of rapid

centroid estimation. IEEE Transactions on Evolutionary Computation, 18(3):366–377, June

2014. ISSN 1089-778X. doi: 10.1109/TEVC.2013.2281545.

[5] W. Li, L. Jaroszewski, and A. Godzik. Clustering of highly homologous sequences to reduce

the size of large protein databases. Bioinformatics, 17(3):282–283, Mar 2001.

[6] W. Li, L. Fu, B. Niu, S. Wu, and J. Wooley. Ultrafast clustering algorithms for metagenomic

sequence analysis. Briefings in Bioinformatics, 13(6):656–668, Nov 2012.

[7] C. P. Cheng, Y. C. Liu, Y. L. Tsai, and V. S. Tseng. An efficient method for mining cross-

timepoint gene regulation sequential patterns from time course gene expression datasets.

BMC Bioinformatics, 14 Suppl 12:S3, 2013.

[8] Y. Iwasaki, K. Wada, Y. Wada, T. Abe, and T. Ikemura. Notable clustering of transcription-

factor-binding motifs in human pericentric regions and its biological significance. Chromo-

some Res., 21(5):461–474, Aug 2013.

[9] W. Chen, Y. Cheng, C. Zhang, S. Zhang, and H. Zhao. MSClust: A Multi-Seeds based Clus-

tering algorithm for microbiome profiling using 16S rRNA sequence. J. Microbiol. Methods,

94(3):347–355, Sep 2013.

223

Bibliography 224

[10] P. Kolekar, M. Kale, and U. Kulkarni-Kale. Alignment-free distance measure based on return

time distribution for sequence analysis: applications to clustering, molecular phylogeny and

subtyping. Mol. Phylogenet. Evol., 65(2):510–522, Nov 2012.

[11] C. K. Kontos and A. Scorilas. Molecular cloning of novel alternatively spliced variants of

BCL2L12, a new member of the BCL2 gene family, and their expression analysis in cancer

cells. Gene, 505(1):153–166, Aug 2012.

[12] M. M. Rashid, M. R. Karim, B. S. Jeong, and H. J. Choi. Efficient mining of interesting

patterns in large biological sequences. Genomics Inform, 10(1):44–50, Mar 2012.

[13] A. Balasubramanian, B. Prabhakaran, and A. Sawant. Mining pattern sequences in respira-

tory tumor motion data. Conf Proc IEEE Eng Med Biol Soc, 2012:5262–5265, 2012.

[14] M. Yuwono, B. D. Moulton, S. W. Su, B. G. Celler, and H. T. Nguyen. Unsuper-

vised machine-learning method for improving the performance of ambulatory fall-detection

systems. Biomedical Engineering Online, 11:9, 2012. [PubMed Central:PMC3395835]

[DOI:10.1186/1475-925X-11-9] [PubMed:22336100].

[15] M. Yuwono, A. M. Handojoseno, and H. T. Nguyen. Optimization of head movement recog-

nition using Augmented Radial Basis Function Neural Network. Conf Proc IEEE Eng Med

Biol Soc, 2011:2776–2779, 2011. [DOI:10.1109/IEMBS.2011.6090760] [PubMed:22254917].

[16] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Gait episode identification based

on wavelet feature clustering of spectrogram images. Conf Proc IEEE Eng Med Biol Soc,

2012:2949–2952, 2012. [DOI:10.1109/EMBC.2012.6346582] [PubMed:23366543].

[17] M. Yuwono, S. W. Su, Y. Guo, B. D. Moulton, and H. T. Nguyen. Unsupervised nonparamet-

ric method for gait analysis using a waist-worn inertial sensor. Applied Soft Computing, 14,

Part A(0):72 – 80, 2014. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.asoc.2013.07.027.

URL http://www.sciencedirect.com/science/article/pii/S1568494613002822. Spe-

cial issue on hybrid intelligent methods for health technologies.

[18] U. Abdulla, K. Taylor, M. Barlow, and K. Naqshbandi. Measuring walking and running

cadence using magnetometers. In 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom), 2013, pages 1458–1462, July

2013. doi: 10.1109/TrustCom.2013.176.

[19] A. Oliynyk, C. Bonifazzi, F. Montani, and L. Fadiga. Automatic online spike sorting with

singular value decomposition and fuzzy C-mean clustering. BMC Neurosci, 13:96, 2012.

[PubMed Central:PMC3473300] [DOI:10.1186/1471-2202-13-96] [PubMed:22871125].

Bibliography 225

[20] C. C. Lin, C. H. Lee, C. S. Fuh, H. F. Juan, and H. C. Huang. Link clustering reveals

structural characteristics and biological contexts in signed molecular networks. PLoS ONE,

8(6):e67089, 2013. [PubMed Central:PMC3691148] [DOI:10.1371/journal.pone.0067089]

[PubMed:23826198].

[21] J. Wang, P. Liu, M. F H She, S. Nahavandi, and A. Kouzani. Biomedical time series

clustering based on non-negative sparse coding and probabilistic topic model. Comput

Methods Programs Biomed, 111(3):629–641, Sep 2013. [DOI:10.1016/j.cmpb.2013.05.022]

[PubMed:23846155].

[22] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Gait cycle spectrogram analysis

using a torso-attached inertial sensor. Conf Proc IEEE Eng Med Biol Soc, 2012:6539–6542,

2012. [DOI:10.1109/EMBC.2012.6347492] [PubMed:23367427].

[23] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Unsupervised segmentation of

heel-strike IMU data using rapid cluster estimation of wavelet features. Conf Proc IEEE Eng

Med Biol Soc, 2013:953–956, 2013. [DOI:10.1109/EMBC.2013.6609660] [PubMed:24109847].

[24] M. Yuwono, J. Sepulveda, and A. M. Ardi Handojoseno. Centroid extraction from Hartmann-

Shack images using swarm clustering approach. Conf Proc IEEE Eng Med Biol Soc, 2012:

1446–1449, 2012. [DOI:10.1109/EMBC.2012.6346212] [PubMed:23366173].

[25] M. Yuwono. Unwrapping hartmann-shack images of off-axis aberration using artificial cen-

troid injection method. In IEEE Conference in Biomedical Engineering and Informatics

(BMEI), pages 560–564, 2011.

[26] W. Cui, Y. Wang, Y. Fan, Y. Feng, and T. Lei. Localized FCM Clustering with Spa-

tial Information for Medical Image Segmentation and Bias Field Estimation. Int J Biomed

Imaging, 2013:930301, 2013. [PubMed Central:PMC3749607] [DOI:10.1155/2013/930301]

[PubMed:23997761].

[27] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. B. Chklovskii. Machine learning

of hierarchical clustering to segment 2D and 3D images. PLoS ONE, 8(8):e71715, 2013.

[PubMed Central:PMC3748125] [DOI:10.1371/journal.pone.0071715] [PubMed:23977123].

[28] F. Mualla, S. Scholl, B. Sommerfeldt, A. Maier, and J. Hornegger. Automatic Cell Detection

in Bright-field Microscope Images Using SIFT, Random Forests, and Hierarchical Clustering.

IEEE Trans Med Imaging, Aug 2013. [DOI:10.1109/TMI.2013.2280380] [PubMed:24001988].

Bibliography 226

[29] A. Abdullah, A. Hirayama, S. Yatsushiro, M. Matsumae, and K. Kuroda. Cerebrospinal

fluid image segmentation using spatial fuzzy clustering method with improved evolution-

ary Expectation Maximization. Conf Proc IEEE Eng Med Biol Soc, 2013:3359–3362, 2013.

[DOI:10.1109/EMBC.2013.6610261] [PubMed:24110448].

[30] T. Alexandrov, I. Chernyavsky, M. Becker, F. von Eggeling, and S. Nikolenko. Anal-

ysis and interpretation of imaging mass spectrometry data by clustering mass-to-charge

images according to their spatial similarity. Anal. Chem., 85(23):11189–11195, Dec 2013.

[DOI:10.1021/ac401420z] [PubMed:24180335].

[31] J. Dietlmeier, O. Ghita, H. Duessmann, J. H. Prehn, and P. F. Whelan. Unsupervised mito-

chondria segmentation using recursive spectral clustering and adaptive similarity models. J.

Struct. Biol., 184(3):401–408, Dec 2013. [DOI:10.1016/j.jsb.2013.10.013] [PubMed:24184470].

[32] M. Hassan, A. Chaudhry, A. Khan, and M. A. Iftikhar. Robust information gain based

fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput

Methods Programs Biomed, 113(2):593–609, Feb 2014. [DOI:10.1016/j.cmpb.2013.10.012]

[PubMed:24239296].

[33] A. Faktor and M. Irani. "Clustering by Composition" - Unsupervised Discovery of Image

Categories. IEEE Trans Pattern Anal Mach Intell, Dec 2013. [DOI:5F856FDE-10D1-46A6-

98B9-0A0053CD27C1] [PubMed:24344078].

[34] N. E. El Harchaoui, M. Ait Kerroum, A. Hammouch, M. Ouadou, and D. Aboutajdine. Un-

supervised approach data analysis based on fuzzy possibilistic clustering: application to med-

ical image MRI. Comput Intell Neurosci, 2013:435497, 2013. [PubMed Central:PMC3891616]

[DOI:10.1155/2013/435497] [PubMed:24489535].

[35] C. H. Lyoo, P. Zanotti-Fregonara, S. S. Zoghbi, J. S. Liow, R. Xu, V. W. Pike, C. A.

Zarate, M. Fujita, and R. B. Innis. Image-derived input function derived from a su-

pervised clustering algorithm: methodology and validation in a clinical protocol us-

ing [11C](R)-rolipram. PLoS ONE, 9(2):e89101, 2014. [PubMed Central:PMC3930688]

[DOI:10.1371/journal.pone.0089101] [PubMed:24586526].

[36] B. C. Ko and J. Y. Nam. Object-of-interest image segmentation based on human attention

and semantic region clustering. J Opt Soc Am A Opt Image Sci Vis, 23(10):2462–2470, Oct

2006. [PubMed:16985531].

[37] T. H. Tsai, W. H. Cheng, C. W. You, M. C. Hu, A. W. Tsui, and H. Y. Chi. Learning and

recognition of on-premise signs from weakly labeled street view images. IEEE Trans Image

Process, 23(3):1047–1059, Mar 2014. [DOI:10.1109/TIP.2014.2298982] [PubMed:24474374].

Bibliography 227

[38] B. Jun, I. Choi, and D. Kim. Local transform features and hybridization for accurate face

and human detection. IEEE Trans Pattern Anal Mach Intell, 35(6):1423–1436, Jun 2013.

[DOI:10.1109/TPAMI.2012.219] [PubMed:23599056].

[39] B. Yao, Z. Liu, X. Nie, and S. C. Zhu. Animated Pose Templates for Modelling and Detecting

Human Actions. IEEE Trans Pattern Anal Mach Intell, Aug 2013. [DOI:5DD67F8B-FF2B-

4ED7-8C16-957691F64B8E] [PubMed:23917419].

[40] W. Deng, J. Hu, J. Lu, and J. Guo. Transform-Invariant PCA: A Unified Approach

to Fully Automatic Face Alignment, Representation, and Recognition. IEEE Trans Pat-

tern Anal Mach Intell, Oct 2013. [DOI:AC37C0FF-FF8D-456D-9D9E-36CF42BFEB14]

[PubMed:24101334].

[41] B. Z. Yao, B. X. Nie, Z. Liu, and S. C. Zhu. Animated pose templates for modeling and

detecting human actions. IEEE Trans Pattern Anal Mach Intell, 36(3):436–452, Mar 2014.

[DOI:10.1109/TPAMI.2013.144] [PubMed:24457502].

[42] A. B. Chan and N. Vasconcelos. Modeling, clustering, and segmenting video with mix-

tures of dynamic textures. IEEE Trans Pattern Anal Mach Intell, 30(5):909–926, May 2008.

[DOI:10.1109/TPAMI.2007.70738] [PubMed:18369258].

[43] Merriam-Webster Online Dictionary. Online, 2014. URL http://www.merriam-webster.

com.

[44] T. G. Dietterich. Ensemble methods in machine learning. In I. J. Kittler and F. Roli, editors,

First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer

Science, pages 1–15. Springer Verlag, New York, 2000.

[45] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In I. Guyon,

G. Dror, V. Lemaire, G. W. Taylor, and D. L. Silver, editors, ICML Unsupervised and

Transfer Learning, volume 27 of JMLR Proceedings, pages 37–50. JMLR.org, 2012. URL

http://dblp.uni-trier.de/db/journals/jmlr/jmlrp27.html#Baldi12.

[46] S. Dasgupta. Algorithms for minimally supervised learning. Online, November 9 2013. URL

http://cseweb.ucsd.edu/~dasgupta/papers/paris.pdf.

[47] F. Berman, G. Fox, and T. Hey. The Data Deluge: An e-Science Perspective, chap-

ter 36, pages 809–824. John Wiley & Sons, Ltd, 2003. ISBN 9780470867167. doi:

10.1002/0470867167.ch36. URL http://dx.doi.org/10.1002/0470867167.ch36.

Bibliography 228

[48] R. Bellazzi, M. Diomidous, I. N. Sarkar, K. Takabayashi, A. Ziegler, and A. T. McCray. Data

analysis and data mining: current issues in biomedical informatics. Methods Inf Med, 50(6):

536–544, 2011.

[49] A. D. Corlan. Medline trend: automated yearly statistics of pubmed results for any query,

2004. Online, 2014. URL http://dan.corlan.net/medline-trend.html.

[50] M. Iacomi, D. Cascio, F. Fauci, and G. Raso. Mammographic images segmentation based

on chaotic map clustering algorithm. BMC Med Imaging, 14:12, 2014. [PubMed Cen-

tral:PMC3987162] [DOI:10.1186/1471-2342-14-12] [PubMed:24666766].

[51] Y. Zhu, F. Li, T. J. Vadakkan, M. Zhang, J. Landua, W. Wei, J. Ma, M. E. Dickinson,

J. M. Rosen, M. T. Lewis, M. Zhan, and S. T. Wong. Three-dimensional vasculature recon-

struction of tumour microenvironment via local clustering and classification. Interface Fo-

cus, 3(4):20130015, Aug 2013. [PubMed Central:PMC3915834] [DOI:10.1098/rsfs.2013.0015]

[PubMed:24511379].

[52] M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abramoff. Comparative

study of retinal vessel segmentation methods on a new publicly available database. In SPIE

Medical Imaging, volume 5370, pages 648–656, 2004. doi: 10.1117/12.535349. URL http:

//dx.doi.org/10.1117/12.535349.

[53] F. Zana and J.-C. Klein. Segmentation of vessel-like patterns using mathematical morphology

and curvature evaluation. IEEE Transactions on Image Processing, 10(7):1010–1019, Jul

2001. ISSN 1057-7149. doi: 10.1109/83.931095.

[54] D. Liang, Z. YongPing, and Z. Xueying. An approach to retinal image segmentations using

fuzzy clustering in combination with morphological filters. In 30th Chinese Control Confer-

ence (CCC) 2011, pages 3062–3065, July 2011.

[55] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. An algorithm for scalable clus-

tering: Ensemble rapid centroid estimation. In Proc of the IEEE Congress on Evolutionary

Computation, pages 1–8, 2014.

[56] professional vision care. Eye health. Online, 2014. URL

http://www.professionalvisioncareinc.com/vision-care-services/

eye-health-for-Westerville-Johnstown-OH-New-Albany-Gahanna-Worthington-&

-Sunbury.

[57] U. T. Nguyen, A. Bhuiyan, L. A. Park, and K. Ramamohanarao. An effective retinal blood

vessel segmentation method using multi-scale line detection. Pattern Recognition, 46(3):703

Bibliography 229

– 715, 2013. ISSN 0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2012.08.009. URL

http://www.sciencedirect.com/science/article/pii/S003132031200355X.

[58] G. Wewerka and B. Iglseder. [Measuring gait velocity in the elderly with a gait analysis system

and a 10-meter walk test : A comparison.]. Zeitschrift fur Gerontologie und Geriatrie, Dec

2013.

[59] M. Yuwono, S. W. Su, and B. D. Moulton. Fall detection using a gaussian distribution

of clustered knowledge, augmented radial basis neural-network, and multilayer perceptron.

In 6th International Conference on Broadband and Biomedical Communications (IB2Com),

2011, pages 145–150, Nov 2011. doi: 10.1109/IB2Com.2011.6217909.

[60] G. N. Lance and W. T. Williams. A general theory of classificatory sorting strategies: 1.

hierarchical systems. The Computer Journal, 9(4):373–380, 1967. doi: 10.1093/comjnl/9.4.

373. URL http://comjnl.oxfordjournals.org/content/9/4/373.abstract.

[61] F. R. K. Chung. Spectral graph theory. Regional Conference Series in Mathematics, Americal

Mathematical Society, 1997.

[62] J. Handl and J. Knowles. An evolutionary approach to multiobjective clustering. IEEE

Transactions on Evolutionary Computation, 11(1):56–76, 2007. ISSN 1089-778X. doi: 10.

1109/TEVC.2006.877146.

[63] M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. pages 226–231. AAAI Press, 1996.

[64] A. L. Fred and A. K. Jain. Combining multiple clusterings using evidence accumulation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):835–850, Jun 2005.

[65] F. Duarte, A. L. N. Fred, A. Lourenco, and M. Rodrigues. Weighting cluster ensembles in

evidence accumulation clustering. In Portuguese conference on Artificial intelligence, 2005.

epia 2005., pages 159–167, 2005. doi: 10.1109/EPIA.2005.341287.

[66] T. Wang. Ca-tree: A hierarchical structure for efficient and scalable coassociation-based clus-

ter ensembles. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

41(3):686–698, 2011. ISSN 1083-4419. doi: 10.1109/TSMCB.2010.2086059.

[67] L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka. On the comparison of relative

clustering validity criteria. In SIAM International Conference on Data Mining, pages 733–

744, 2009.

Bibliography 230

[68] L. Jing, M. Ng, and J. Huang. An entropy weighting k-means algorithm for subspace clus-

tering of high-dimensional sparse data. IEEE Journal on Knowledge and Data Engineering,

19(8):1026–1041, Aug 2007.

[69] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison:

Variants, properties, normalization and correction for chance. Journal of Machine Learning

Research, 11:2837–2854, December 2010.

[70] A. Szabo, L. de Castro, and M. Delgado. The proposal of a fuzzy clustering algorithm based

on particle swarm. In Proc. of the Third World Congress on Nature and Biologically Inspired

Computing (NaBIC), pages 459–465, oct. 2011.

[71] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Fast unsupervised learning method

for rapid estimation of cluster centroids. In Proc. of the 2012 IEEE Congress on Evolutionary

Computation, pages 889–896, June 10–15 2012.

[72] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Optimization strategies for rapid

centroid estimation. In Proc. of the 34rd Annual International Conference of the IEEE

EMBS, pages 6212–6215, San Diego, Aug. 28–sept. 1 2012.

[73] M. Yuwono, S. W. Su, B. D. Moulton, and H. T. Nguyen. Method for increasing the compu-

tation speed of an unsupervised learning approach for data clustering. In Proc. of the 2012

IEEE Congress on Evolutionary Computation, pages 2957–2964, June 10–15 2012.

[74] A. Szabo, A. K. F. Prior, and L. N. de Castro. The proposal of a velocity memoryless

clustering swarm. In Proc. of the 2010 IEEE Congress on Evolutionary Computation, pages

1–5, Barcelona, July 18–23 2010.

[75] S. C. M. Cohen and L. N. de Castro. Data clustering with particle swarms. In Proc. of the

2006 IEEE Congress on Evolutionary Computation, pages 1792–1798, Vancouver, 2006.

[76] T. Wang. Comparing hard and fuzzy c-means for evidence-accumulation clustering. In

Proceedings of the 18th International Conference on Fuzzy Systems, FUZZ-IEEE’09, pages

468–473, Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-3596-8.

[77] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proc. of the

6th International Symposium on Micro Machine and Human Science, pages 39–43, Oct. 4–6

1995.

[78] D. O. Hebb. Organization of Behavior. Wiley, 1949.

[79] Lotus Hill Reseach Institute for Computer Vision and Information Science. Image parsing.

Online, 2007. URL http://www.imageparsing.com/.

Bibliography 231

[80] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken. Ridge-based vessel

segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):

501–509, April 2004. ISSN 0278-0062. doi: 10.1109/TMI.2004.825627.

[81] M. Jiang, Y. Luo, and S. Yang. Stochastic convergence analysis and parameter selection

of the standard particle swarm optimization algorithm. Information Processing Letters, 102

(1):8 – 16, 2007. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/j.ipl.2006.10.005. URL

http://www.sciencedirect.com/science/article/pii/S0020019006003103.

[82] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and convergence in a

multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1):

58–73, Feb 2002. ISSN 1089-778X. doi: 10.1109/4235.985692.

[83] D. W. Van Der Merwe and A. Engelbrecht. Data clustering using particle swarm optimization.

In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 1, pages 215–

220 Vol.1, Dec 2003. doi: 10.1109/CEC.2003.1299577.

[84] K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

[85] A. Szabo, A. Prior, and L. de Castro. The behavior of particles in the particle swarm

clustering algorithm. In Fuzzy Systems (FUZZ), 2010 IEEE International Conference on,

pages 1–7, July 2010. doi: 10.1109/FUZZY.2010.5584118.

[86] A. Lourenço, S. Rota Bulò, A. Fred, and M. Pelillo. Consensus clustering with robust

evidence accumulation. In A. Heyden, F. Kahl, C. Olsson, M. Oskarsson, and X.-C. Tai,

editors, Energy Minimization Methods in Computer Vision and Pattern Recognition, volume

8081 of Lecture Notes in Computer Science, pages 307–320. Springer Berlin Heidelberg, 2013.

ISBN 978-3-642-40394-1. doi: 10.1007/978-3-642-40395-8_23.

[87] J. C. Bezdek. Mathematical models for systematic and taxonomy. In Estabrook, G. (Ed.),

Proc. 8th International Conference on Numerical Taxonomy, pages 143–166, Freeman, San

Fransisco, CA, 1975.

[88] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical

Statistics, 22(1):79–86, 03 1951. doi: 10.1214/aoms/1177729694. URL http://dx.doi.org/

10.1214/aoms/1177729694.

[89] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob. Comput.

Commun. Rev., 5(1):3–55, January 2001. ISSN 1559-1662. doi: 10.1145/584091.584093.

URL http://doi.acm.org/10.1145/584091.584093.

Bibliography 232

[90] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug 2000. ISSN 0162-8828. doi:

10.1109/34.868688.

[91] A. L. Fred and A. K. Jain. Data clustering using evidence accumulation. In Proc. of the

International Conference on Pattern Recognition, pages 276–280, 2002.

[92] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-based

method for class discovery and visualization of gene expression microarray data. Machine

Learning, 52(1-2):91–118, 2003. ISSN 0885-6125. doi: 10.1023/A:1023949509487. URL

http://dx.doi.org/10.1023/A%3A1023949509487.

[93] S. Grossberg. Competitive learning: From interactive activation to adaptive resonance.

Cognitive Science, 11(1):23 – 63, 1987. ISSN 0364-0213. doi: http://dx.doi.org/10.

1016/S0364-0213(87)80025-3. URL http://www.sciencedirect.com/science/article/

pii/S0364021387800253.

[94] G. Carpenter and S. Grossberg. Adaptive resonance theory. In M. A. Arbib, editor, The

Handbook of Brain Theory and Neural Networks, Second Edition, pages 87–90. MIT Press,

2003.

[95] T. Kohonen. Neurocomputing: Foundations of research. chapter Self-organized Formation

of Topologically Correct Feature Maps, pages 509–521. MIT Press, Cambridge, MA, USA,

1988. ISBN 0-262-01097-6. URL http://dl.acm.org/citation.cfm?id=65669.104428.

[96] E. F. Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Courier Dover

Publications, 1986.

[97] MathWorks. kmeans. Online, 2014. URL http://www.mathworks.com.au/help/stats/

kmeans.html.

[98] R Documentation. hclust {stats}. Online, 2014. URL http://stat.ethz.ch/R-manual/

R-patched/library/stats/html/hclust.html.

[99] J. Ducci. Derivations for linear algebra and optimization. Online.

http://www.cs.berkeley.edu/ jduchi/projects/general_notes.pdf.

[100] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT

Press, Cambridge, MA, USA, 1999. ISBN 0-262-13360-1.

[101] I. Dagan, L. Lee, and F. Pereira. Similarity-based methods for word sense disambiguation.

In Proceedings of the Eighth Conference on European Chapter of the Association for Com-

putational Linguistics, EACL ’97, pages 56–63, Stroudsburg, PA, USA, 1997. Association

Bibliography 233

for Computational Linguistics. doi: 10.3115/979617.979625. URL http://dx.doi.org/10.

3115/979617.979625.

[102] B. Fuglede and F. Topsoe. Jensen-shannon divergence and hilbert space embedding. In

Proceedings. International Symposium on Information Theory (ISIT), 2004., pages 31–, June

2004. doi: 10.1109/ISIT.2004.1365067.

[103] R. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,,

29(2):147–160, April 1950. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1950.tb00463.x.

[104] T. Sørensen. A method of establishing groups of equal amplitude in plant sociology based

on similarity of species and its application to analyses of the vegetation on Danish commons.

Biol. Skr., 5:1–34, 1948.

[105] L. R. Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):

297–302, July 1945. ISSN 0012-9658. doi: 10.2307/1932409. URL http://dx.doi.org/10.

2307/1932409.

[106] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, New

York, NY, USA, 1991. ISBN 0-471-06259-6.

[107] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for combining

multiple partitions. J. Mach. Learn. Res., 3:583–617, March 2003. ISSN 1532-4435. doi:

10.1162/153244303321897735. URL http://dx.doi.org/10.1162/153244303321897735.

[108] M. Meila. Comparing clusterings: an axiomatic view. In L. D. Raedt and S. Wrobel, editors,

Proceedings of the 22nd International Conference on Machine Learning (ICML-05), pages

577–584, 2005. URL http://www.machinelearning.org/proceedings/icml2005/papers/

073_ComparingClustering_Meila.pdf.

[109] Y. Yao. Information-theoretic measures for knowledge discovery and data mining. In

Karmeshu, editor, Entropy Measures, Maximum Entropy Principle and Emerging Appli-

cations, volume 119 of Studies in Fuzziness and Soft Computing, pages 115–136. Springer

Berlin Heidelberg, 2003. ISBN 978-3-642-05531-7. doi: 10.1007/978-3-540-36212-8_6. URL

http://dx.doi.org/10.1007/978-3-540-36212-8_6.

[110] T. O. Kvalseth. Entropy and correlation: Some comments. IEEE Transactions on Systems,

Man and Cybernetics,, 17(3):517–519, May 1987. ISSN 0018-9472. doi: 10.1109/TSMC.1987.

4309069.

[111] S. Dasgupta. CSE 291: Topics in unsupervised learning — Lecture 2: The k-means problem.

University of California San Diego, Jacobs School of Engineering, Spring 2008.

Bibliography 234

[112] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In

Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1,

pages 281–297, Berkeley, 1967. University of California Press.

[113] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-

bridge University Press, 2008. http://nlp.stanford.edu/IR-book/html/htmledition/k-means-

1.html.

[114] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings

of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages

1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

ISBN 978-0-898716-24-5. URL http://dl.acm.org/citation.cfm?id=1283383.1283494.

[115] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Com-

pact Well-Separated Clusters. Journal of Cybernetics, 3(3):32–57, 1973. doi: 10.1080/

01969727308546046. URL http://dx.doi.org/10.1080/01969727308546046.

[116] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[117] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning 2nd Edition.

Springer-Verlag, 2009.

[118] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data

via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39

(1):1–38, 1977. ISSN 00359246. doi: 10.2307/2984875. URL http://web.mit.edu/6.435/

www/Dempster77.pdf.

[119] M. A. T. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. IEEE

Transactions on Pattern Analysis and Machine Intelligence,, 24(3):381–396, March 2002.

ISSN 0162-8828. doi: 10.1109/34.990138.

[120] L. Xu and M. I. Jordan. On convergence properties of the em algorithm for gaussian mixtures.

Neural Comput., 8(1):129–151, January 1996. ISSN 0899-7667. doi: 10.1162/neco.1996.8.1.

129. URL http://dx.doi.org/10.1162/neco.1996.8.1.129.

[121] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook Version: November 15, 2012.

University of Waterloo, Toronto, November 2012. URL http://orion.uwaterloo.ca/

~hwolkowi/matrixcookbook.pdf.

[122] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1988. ISBN 0-13-022278-X.

Bibliography 235

[123] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1981. ISBN 0306406713.

[124] J. C. Bezdek. Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3):58–73, 1973. doi:

10.1080/01969727308546047. URL http://dx.doi.org/10.1080/01969727308546047.

[125] B. Balasko, J. Abonyi, and B. Feil. Fuzzy Clustering and Data Analysis Toolbox. Department

of Process Engineering, University of Veszprem, Veszprem, Hungary. URL http://www.fmt.

vein.hu/softcomp/fclusttoolbox/.

[126] M. R. Rezaee, B. Lelieveldt, and J. Reiber. A new cluster validity index for the fuzzy c-

mean. Pattern Recognition Letters, 19(3–4):237–246, 1998. ISSN 0167-8655. doi: http://dx.

doi.org/10.1016/S0167-8655(97)00168-2. URL http://www.sciencedirect.com/science/

article/pii/S0167865597001682.

[127] L. M. Silva, C. S. Felgueiras, L. A. Alexandre, and J. Marques de Sá. Error entropy in classi-

fication problems: A univariate data analysis. Neural Comput., 18(9):2036–2061, September

2006. ISSN 0899-7667. doi: 10.1162/neco.2006.18.9.2036. URL http://dx.doi.org/10.

1162/neco.2006.18.9.2036.

[128] A. Bensaid, L. Hall, J. Bezdek, L. P. Clarke, M. Silbiger, J. Arrington, and R. Murtagh.

Validity-guided (re)clustering with applications to image segmentation. IEEE Transactions

on Fuzzy Systems, 4(2):112–123, May 1996. ISSN 1063-6706. doi: 10.1109/91.493905.

[129] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of clus-

ter analysis. Journal of Computational and Applied Mathematics, 20(0):53 – 65, 1987.

ISSN 0377-0427. doi: http://dx.doi.org/10.1016/0377-0427(87)90125-7. URL http://www.

sciencedirect.com/science/article/pii/0377042787901257.

[130] J. Bezdek and N. Pal. Some new indexes of cluster validity. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 28(3):301–315, 1998. ISSN 1083-4419. doi:

10.1109/3477.678624.

[131] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.

ISSN 0176-4268. doi: 10.1007/BF01908075.

[132] R. Xu, J. Xu, and D. Wunsch. A comparison study of validity indices on swarm-intelligence-

based clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

42(4):1243–1256, Aug. 2012. ISSN 1083-4419. doi: 10.1109/TSMCB.2012.2188509.

[133] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communications in

Statistics, 3(1):1–27, 1974. doi: 10.1080/03610927408827101.

Bibliography 236

[134] S. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. Extraction and Anal-

ysis of Facebook Friendship Relations. 2012. URL http://www.emilio.ferrara.name/

wp-content/uploads/2011/06/SN-76.pdf.

[135] M. Thelwall. Social networks, gender, and friending: An analysis of myspace member profiles.

J. Am. Soc. Inf. Sci. Technol., 59(8):1321–1330, June 2008. ISSN 1532-2882. doi: 10.1002/

asi.v59:8. URL http://dx.doi.org/10.1002/asi.v59:8.

[136] U. Gargi, W. Lu, V. Mirrokni, and S. Yoon. Large-scale community detection on youtube

for topic discovery and exploration. In in Proc. of the Fifth international AAAI Conference

on Weblogs and Social Media, pages 486–489, 2011.

[137] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query log. In

Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’00, pages 407–416, New York, NY, USA, 2000. ACM. ISBN 1-58113-

233-6. doi: 10.1145/347090.347176. URL http://doi.acm.org/10.1145/347090.347176.

[138] L. Page. Method for node ranking in a linked database, 2001.

[139] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut trees.

Internet Mathematics, 1:385–408, 2004.

[140] R. Morales, T. Di Matteo, and T. Aste. Dependency structure and scaling properties of

financial time series are related. Scientific Report, 4, 2014. doi: 10.1038/srep04589.

[141] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological net-

works and gene expression data. Bioinformatics, 18(suppl 1):S145–S154, 2002. doi:

10.1093/bioinformatics/18.suppl_1.S145. URL http://bioinformatics.oxfordjournals.

org/content/18/suppl_1/S145.abstract.

[142] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and clustering.

Trans. Comp.-Aided Des. Integ. Cir. Sys., 11(9):1074–1085, November 2006. ISSN 0278-0070.

doi: 10.1109/43.159993. URL http://dx.doi.org/10.1109/43.159993.

[143] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–

416, 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL http://dx.doi.org/10.

1007/s11222-007-9033-z.

[144] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.

Journal of the Royal Statistical Society, Series C (Applied Statistics)., 18(1):54–64, 1969.

URL http://www.jstor.org/stable/2346439.

Bibliography 237

[145] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a Network with Power

Estimation. Soviet Math Doklady, 11:1277–1280, 1970. URL http://www.cs.bgu.ac.il/

~{}dinitz/D70.pdf.

[146] Y. Dinitz. Dinitz’ Algorithm: The Original Version and Even’s Version. In O. Goldreich,

A. Rosenberg, and A. Selman, editors, Theoretical Computer Science, volume 3895 of Lecture

Notes in Computer Science, chapter 10, pages 218–240. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2006. ISBN 978-3-540-32880-3. doi: 10.1007/11685654_10. URL http://dx.

doi.org/10.1007/11685654_10.

[147] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian Journal of

Mathematics, 8:399–404, 1956. URL http://www.rand.org/pubs/papers/P605/.

[148] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.

URL http://eudml.org/doc/211191.

[149] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591, July 1997.

ISSN 0004-5411. doi: 10.1145/263867.263872. URL http://doi.acm.org/10.1145/263867.

263872.

[150] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht,

Utrecht, May 2000. http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm.

[151] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American

Mathematical Society, 2009.

[152] T. Jaakkola. course materials for 6.867 machine learning, fall 2006. Online, 2006. MIT Open-

CourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on

20 Aug 2014.

[153] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: Appli-

cations to community discovery. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 737–746, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-495-9. doi: 10.1145/1557019.1557101. URL

http://doi.acm.org/10.1145/1557019.1557101.

[154] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the IEEE

International Conference on Neural Networks, 1995., volume 4, pages 1942–1948 vol.4, Nov

1995. doi: 10.1109/ICNN.1995.488968.

Bibliography 238

[155] X. Li. Niching without niching parameters: Particle swarm optimization using a ring topol-

ogy. Evolutionary Computation, IEEE Transactions on, 14(1):150–169, Feb 2010. ISSN

1089-778X. doi: 10.1109/TEVC.2009.2026270.

[156] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas. Standard particle swarm optimisation 2011

at cec-2013: A baseline for future pso improvements. In 2013 IEEE Congress on Evolutionary

Computation (CEC),, pages 2337–2344, June 2013. doi: 10.1109/CEC.2013.6557848.

[157] W. M. Spears, D. T. Green, and D. F. Spears. Biases in particle swarm optimization. Int. J.

Swarm. Intell. Res., 1(2):34–57, April 2010. ISSN 1947-9263. doi: 10.4018/jsir.2010040103.

URL http://dx.doi.org/10.4018/jsir.2010040103.

[158] P. McLean. 48540 Lecture Notes on Signal and Systems. University of Technology, Sydney,

2014.

[159] R. Hassan, B. E. Cohanim, and O. L. de Weck. Comparison of particle swarm optimization

and the genetic algorithm. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, number AIAA-2005-1897, Austin, Texas, April 18-21

2005. American Institute of Aeronautics and Astronautics.

[160] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Jour-

nal of Symbolic Computation, 9(3):251 – 280, 1990. ISSN 0747-7171. doi: http://dx.

doi.org/10.1016/S0747-7171(08)80013-2. URL http://www.sciencedirect.com/science/

article/pii/S0747717108800132. Computational algebraic complexity editorial.

[161] F. L. Gall. Powers of tensors and fast matrix multiplication. CoRR, abs/1401.7714, 2014.

[162] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30,

January 1998. ISSN 1049-3301. doi: 10.1145/272991.272995. URL http://doi.acm.org/

10.1145/272991.272995.

[163] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,

7(2):179–188, 1936. ISSN 2050-1439. doi: 10.1111/j.1469-1809.1936.tb02137.x. URL http:

//dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x.

[164] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The American Statisti-

cian, 32(1):12–16, Feb. 1978. doi: 10.2307/2683468.

[165] M. Frigge, D. C. Hoaglin, and B. Iglewicz. Some implementations of the boxplot. The

American Statistician, 43(1):50–54, Feb. 1989. doi: 10.2307/2685173.

Bibliography 239

[166] B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via bayesian nonparametrics.

CoRR, abs/1111.0352, 2011.

[167] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method

for very large databases. SIGMOD Rec., 25(2):103–114, June 1996. ISSN 0163-5808. doi:

10.1145/235968.233324. URL http://doi.acm.org/10.1145/235968.233324.

[168] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.

In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[169] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes

Care, 20(7):1183–1197, Jul 1997.

[170] B. Al-Diri, A. Hunter, and D. Steel. An active contour model for segmenting and measuring

retinal vessels. Medical Imaging, IEEE Transactions on, 28(9):1488–1497, Sept 2009. ISSN

0278-0062. doi: 10.1109/TMI.2009.2017941.

[171] X. Jiang and D. Mojon. Adaptive local thresholding by verification-based multithreshold

probing with application to vessel detection in retinal images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(1):131–137, Jan 2003. ISSN 0162-8828. doi: 10.1109/

TPAMI.2003.1159954.

[172] M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath, and K. H. Parker. Segmen-

tation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis,

11(1):47 – 61, 2007. ISSN 1361-8415. doi: http://dx.doi.org/10.1016/j.media.2006.11.004.

URL http://www.sciencedirect.com/science/article/pii/S1361841506000909.

[173] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection of blood ves-

sels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical

Imaging, 8(3):263–269, Sep 1989. ISSN 0278-0062. doi: 10.1109/42.34715.

	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Symbols
	List of Publications
	1 Introduction
	1.1 Overview
	1.2 Clustering in Biomedical Informatics
	1.3 Applications
	1.4 Challenges
	1.5 Contribution of This Thesis

	2 Literature Review
	2.1 Challenges in Cluster Analysis
	2.2 Quantifying Dissimilarity
	2.2.1 Metric Family
	2.2.2 Correlation Family
	2.2.3 Bregman Divergences
	2.2.4 Distance Between Logical/Categorical Vectors
	2.2.5 Mutual Information

	2.3 Divisive Clustering
	2.3.1 k-means
	2.3.1.1 Proof of Convergence

	2.3.2 k-means++
	2.3.3 Fuzzy c-means
	2.3.3.1 Proof of convergence

	2.3.4 Soft k-means
	2.3.4.1 Proof of Convergence

	2.3.5 Gaussian Mixture Models
	2.3.5.1 Proof of Convergence

	2.4 Cluster Validity Indices
	2.4.1 Internal Validity Indices
	2.4.2 External Validity Indices

	2.5 Graph Theoretic Clustering
	2.5.1 Graph Preliminaries
	2.5.1.1 Graph Theoretic Definitions
	2.5.1.2 Constructing Graphs

	2.5.2 Agglomerative Linkage Clustering
	2.5.3 Maximum Flow: Edmonds-Karp-Dinitz algorithm
	2.5.3.1 Complexity Analysis

	2.5.4 Stoer-Wagner’s Deterministic Minimum Cut Algorithm
	2.5.4.1 Complexity Analysis
	2.5.4.2 Proof of correctness

	2.5.5 Stochastic Flows
	2.5.5.1 Theoretical Framework
	2.5.5.2 Markov Clustering Algorithm
	2.5.5.3 Regularized Markov Clustering

	2.5.6 Spectral Clustering
	2.5.6.1 Ratio Cut
	2.5.6.2 Normalized Cut

	2.6 Consensus Clustering
	2.6.1 Definitions
	2.6.2 Monti’s Consensus Clustering
	2.6.3 Evidence Accumulation
	2.6.4 Weighted Evidence Accumulation
	2.6.5 Fuzzy Evidence Accumulation
	2.6.6 Co-Association Tree

	2.7 Summary

	3 Particle Swarm Optimization and Data Clustering
	3.1 Particle Swarm Optimization
	3.1.1 Convergence Analysis
	3.1.2 Complexity and Performance Analysis

	3.2 Van Der Merwe - Engelbrecht’s PSO Clustering
	3.2.1 Performance Analysis

	3.3 Suboptimal Convergence in Higher Dimension
	3.3.1 Trajectory Analysis
	3.3.2 Analogy Using Game Theory
	3.3.3 Empirical Validation

	3.4 Summary

	4 The Particle Swarm Clustering
	4.1 Definitions
	4.2 Algorithmic Framework
	4.2.1 Cohen - de Castro’s Particle Swarm Clustering
	4.2.2 Szabo’s Modified PSC (mPSC)
	4.2.3 Szabo’s Fuzzy PSC (FPSC)

	4.3 Complexity Analysis
	4.3.1 Computational Complexity
	4.3.1.1 Computational Complexity of δ
	4.3.1.2 Computational Complexity of κ

	4.3.2 Memory Complexity

	4.4 Trajectory Analysis
	4.4.1 Stability and Convergence
	4.4.2 Particle Behavior

	4.5 Performance Analysis
	4.5.1 Fisher - Iris Dataset
	4.5.1.1 General Overview
	4.5.1.2 Choosing the Distance Quantifier
	4.5.1.3 Cluster Validity Analysis

	4.5.2 Wine Dataset
	4.5.2.1 General Overview
	4.5.2.2 Choosing the Distance Quantifier
	4.5.2.3 Cluster Validity Analysis

	4.5.3 Spam E-mail Dataset
	4.5.3.1 General Overview
	4.5.3.2 Choosing the Distance Quantifier
	4.5.3.3 Cluster Validity Analysis

	4.6 Conclusion

	5 Rapid Centroid Estimation
	5.1 The PSC and its Challenges
	5.1.1 Computational Complexity
	5.1.2 Memory Complexity
	5.1.3 Redundancies and Sensitivity to Initialization

	5.2 Definitions and Redefinitions
	5.3 Algorithmic Fundamentals
	5.4 Complexity Analysis
	5.4.1 Computational Complexity
	5.4.2 Memory Complexity
	5.4.3 Empirical Experiment

	5.5 Trajectory Analysis
	5.5.1 Stability and Convergence
	5.5.2 Particle Behavior

	5.6 Coping with Local Optima
	5.6.1 Substitution
	5.6.2 Particle Reset
	5.6.3 Swarm RCE: The Multi-Swarm Paradigm

	5.7 Experimental Results
	5.8 Conclusion

	6 Ensemble Rapid Centroid Estimation
	6.1 Improving Swarm Diversity
	6.1.1 The Concept of “Charged Particles”
	6.1.2 Self-Evolution

	6.2 Ensemble Aggregation
	6.2.1 Memory Complexity
	6.2.2 Computational Complexity

	6.3 Consensus Engrams
	6.3.1 Definitions
	6.3.2 Algorithmic Construct
	6.3.3 Complexity Analysis

	6.4 Applications
	6.4.1 Color Image Segmentation
	6.4.2 Vessel Extraction from Retinal Fundus Images

	6.5 Conclusion

	7 Conclusion
	7.1 Primary Findings
	7.2 Limitations of the research
	7.3 Recommendations for Future Work

	Bibliography

