

Asset Pricing under Ambiguity and Heterogeneity

A Thesis Submitted for the Degree of
Doctor of Philosophy

by

Qi Nan Zhai

Bachelor of Mathematics and Finance (Hons)
University of Technology, Sydney
qinan.zhai@uts.edu.au

in

Finance Discipline Group, UTS Business School
University of Technology, Sydney
PO Box 123 Broadway
NSW 2007, Australia

February 2015

Declaration of Authorship

I certify that this thesis has not previously been submitted for a degree nor has it been submitted as part of requirement for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed:

Date:

Acknowledgements

The completion of this thesis would not be possible without the encouragement, guidance and support from my principal supervisor Prof Xue-Zhong (Tony) He. The discussions we had throughout my PhD candidature have proven to be most helpful. His positive attitude towards research and work will continue to be a motivation for my future professional career.

I would also like to thank my co supervisors Prof Carl Chiarella and Dr Corrado Di Guilmi for their continuous support and fellow PhD students including Dr Kai Li, Dr Swee Guan Yap, Dr Samuel Chege, Dr Yang Chang, Dr Wayne Chan and many more.

I appreciate the financial support from the University of Technology, Sydney (UTS), UTS Business School, Quantitative Finance Research Centre (QFRC) in contributing to cost of attending numerous national and international conferences and workshops which provided constant and timely feedback for my research. I am grateful to the University of Technology, Sydney for the UTS Business Faculty's Scholarship and the Quantitative Finance Research Centre's Scholarship, which are of great financial assistance.

Lastly, but not the least I am extremely grateful and fortunate for the constant support from my loving mother and father.

Abstract

Financial markets are becoming increasingly complex, volatile and uncertain in light of the recent financial crisis. Markets are characterised by a variety of anomalies and stylised facts that pose challenges to the traditional asset pricing theory, where market is represented by a single agent and investor is always perfectly aware of his (her) own preference forming rational expectation by maximising his (her) expected utility. However, empirical evidence suggests that instead, markets are populated with boundedly rational investors that are heterogeneous in beliefs and can often follow some heuristic trading rules. Further, the famous thought experiment known as the Ellsberg's Paradox reveals evidence that contradicts utility maximisation theory. In fact, it implies that investors are ambiguity-averse and prefer taking on risk in situations where they know specific odds rather than an alternate risk scenario in which the odds are completely ambiguous.

This thesis contributes to the development of the ambiguity literature by modelling uncertainty and incorporating boundedly rational behaviours to examine their joint impact on asset price dynamics as well as the various market anomalies. First, we provide a multi-asset setup to understand implication of ambiguity on correlated assets, and therefore market liquidity in time of uncertainty. Second, we propose two new dynamic ambiguity models and examine their impact on various market behaviours such as price deviations from the fundamental values, excess volatility, and long memories in return volatility. The main contributions are described below.

- (i) Different from a single risky asset market, Chapter 2 adds to the ambiguity literature by exploring a multi-asset setup under ambiguity and heterogeneity, and studies the consequent implication on market illiquidity during a market downturn. We firstly explore how market illiquidity is impacted by ambiguity when risky assets are correlated. Second, we add on heterogeneity and study the implication

of heterogeneous beliefs on the first and second moments of a risky asset, and consequently the spillover effect among the correlated assets on equilibrium price, risk-free rate and market liquidity.

(ii) Although some researchers have discussed the relationship between ambiguity and volatility, most of these models remained in static setups and have not explicitly demonstrated models' capabilities to generate market anomalies and stylised facts in price and return series. Chapters 3 and 4 contribute to the literature by filling this gap. We develop dynamic ambiguity models that incorporate heuristic behaviours that investors exhibit in markets. By assuming that fundamental value of the risky assets are becoming increasingly ambiguous in times of market turmoils, we introduce models that incorporate three types of investors whose beliefs are updated through some heuristic strategies, namely fundamentalists, trend followers and noise investors. In particular, fundamentalists are assumed to be ambiguity-averse due to ambiguity about the fundamental value. The core difference between Chapters 3 and 4 lies in how we incorporate ambiguity in the fundamentalists' beliefs. In Chapter 3, we consider a simple and exogenous approach in structuring ambiguity, whereas Chapter 4 allows ambiguity to be endogenously embedded through an ambiguous signal received by fundamentalists and a Bayesian updating mechanism.

Overall, this thesis shows that asset pricing models under ambiguity and boundedly rational behaviour can help to characterise markets in time of turmoil and demonstrate models' capability to generate various financial market anomalies and stylised facts.

Contents

Declaration of Authorship	i
Acknowledgements	ii
Abstract	iii
1 Introduction	1
1.1 Heterogeneous Agent Models	3
1.2 Ambiguity Models	6
1.3 Market Freeze and Limited-participation	7
1.4 Equity Premium Puzzles, Risk-free Puzzles and Excess Volatility	9
1.5 Bayesian Updating under Ambiguity	10
1.6 Motivation	11
1.7 Structure of the Thesis	14
2 Liquidity and Valuation Under Ambiguity	18
2.1 Introduction	18
2.2 The Model	23
2.3 Market equilibrium at period 0	24
2.4 Market Equilibrium at period 1	26
2.4.1 Scenario I - shock with known size	27
2.4.2 Scenario II - shock with unknown size	28
2.5 Numerical Analysis	32
2.5.1 Benchmark: Homogeneous belief	34
2.5.2 Case 1: Heterogeneity in the first moment of asset 2 and risk preferences	37
2.5.3 Case 2: Heterogeneity of the second moment of Asset 2	42
2.5.4 Case 3: Heterogeneity in the first and second moments of Asset 2	46
2.6 Conclusion	49
3 Price Dynamics and Excess Volatility under Heterogeneous Beliefs and Ambiguity	51
3.1 Introduction	51

3.2	The Model	55
3.2.1	Market Equilibrium	60
3.3	Characterisation of Equilibrium	63
3.3.1	Static Model	64
3.3.2	Dynamic Model	66
3.3.2.1	Implications of Ambiguity and the Key Parameters	69
3.3.3	Analysis of Stylised Facts	77
3.4	Conclusion	79
4	Price Dynamics and Excess Volatility under Heterogeneous Beliefs and Ambiguous Information	81
4.1	Introduction	81
4.2	The Model	83
4.2.1	Optimal Demand	84
4.2.2	Market Equilibrium	89
4.3	Market Dynamics and Stylised Facts	94
4.3.1	Excess Volatility and Volatility Clustering	95
4.3.2	Volatility Clustering and Autocorrelation Patterns	96
4.4	Conclusion	100
5	Conclusion	101
A	for Chapter 2	105
A.1	Bid and ask prices of two assets	105
A.2	The Threshold Δ_o	106
A.3	Bid and ask prices	107
A.3.1	Case 1 - bid and ask price for equation (2.32) and (2.33)	107
A.3.2	Case 2 - bid and ask price for equation (2.36) and (2.37)	107
A.3.3	Case 3 - bid and ask price	108
B	for Chapter 3	110
B.1	Demand function for fundamentalists	110
C	for Chapter 4	112
C.1	Conditional beliefs on f	112
C.2	Certainty Equivalent of Fundamentalists	113
C.3	Equilibrium Price	114
	Bibliography	118