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Abstract. The Market Models of the term structure of interest rates, in which forward
LIBOR or forward swap rates are modelled to be lognormal under the forward probability
measure of the corresponding maturity, are extended to a multicurrency setting. If log-
normal dynamics are assumed for forward LIBOR or forward swap rates in two currencies,
the forward exchange rate linking the two currencies can only be chosen to be lognormal
for one maturity, with the dynamics for all other maturities given by no{arbitrage rela-
tionships. Alternatively, one could choose forward interest rates in only one currency, say
the domestic, to be lognormal and postulate lognormal dynamics for all forward exchange
rates, with the dynamics of foreign interest rates determined by no-arbitrage relationships.

Since the seminal article of Black and Scholes (1973), their option pricing formula has
been applied to a myriad of derivative �nancial instruments, sometimes on the basis of
an arbitrage{free model and sometimes | especially in the hectic world of day{to{day
derivatives trading | just on the basis of heuristic analogy. The formula has a strong
intuitive appeal for practitioners and remains the most important tool of the �nancial
engineer. Furthermore, market prices for a variety of option contracts are routinely com-
municated in terms of their Black/Scholes implied volatility, since all other determinants
of an option's value, such as the price of the underlying asset and the relevant interest
rate, are readily observed elsewhere.
In this context, theoretical work which embeds Black/Scholes{type formulae favored by

practitioners in a consistent, arbitrage{free framework is particularly relevant. Miltersen,
Sandmann and Sondermann (1997)1 (MSS) showed that the practice of pricing interest
rate cap and 
oor contracts by a formula which had hitherto only been justi�ed by anal-
ogy to Black/Scholes is consistent with a term structure model satisfying the no-arbitrage
constraints of the Heath, Jarrow and Morton (1992) framework. The critical assumption
for this result is that relative volatility2 of observable market forward rates such as LI-
BOR, compounded according to market conventions, is deterministic.3 Brace, Gatarek
and Musiela (1997) (BGM) resolved key questions in the construction of such a model,
in particular concerning existence and measure relationships, and coined the term Market

Model: It re
ects market practice both in interest rate compounding and in the pricing of
caps and 
oors. Given the deterministic volatility assumption, BGM explicitly identi�ed
forward LIBOR as lognormal martingales under the forward measure to the end of the
respective accrual periods. Thus, they accomplished the paradigm shift toward modelling
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market observables under the appropriate forward measures,4 an approach on which the
present paper relies heavily. This paradigm was pursued further by Musiela and Rutkowski
(1997a), who also present a particularly straightforward construction of the Market Model.
The same methodology can be applied to forward swap rates to derive a model which sup-
ports the market practice of pricing swaptions instead of that of pricing caps and 
oors,
as demonstrated by Jamshidian (1997).
The aim of this paper is to extend the Market Models to multiple currencies and to de-

termine to what extent Black/Scholes{type valuation of interest rate caps and 
oors (or,
alternatively, swaptions) can be reconciled with the application of the Black/Scholes for-
mula to options on foreign exchange. We will focus on the core issues of the restrictions that
the no-arbitrage requirement imposes on simultaneous lognormality assumptions. These
restrictions become particularly clear when the relationships between the martingale mea-
sures associated with domestic and foreign numeraire assets are identi�ed. Given a set of
lognormality assumptions satisfying these restrictions, obtaining the corresponding closed
form option pricing formulae is a straightforward application of the standard techniques
of the Black/Scholes framework.5

The paper is organized as follows. Section 1 develops the relationships between domestic
and foreign equivalent martingale measures and elaborates on the no-arbitrage conditions
linking the volatilities of forward exchange and interest rates. The consequences of these
conditions for the consistent choice of lognormality assumptions are discussed in section
2. Section 3 covers the continuous tenor case and the implications for the dynamics
of the spot exchange rate. Section 4 demonstrates the derivation of closed form and
approximate formulae for cross{currency (quanto) instruments in the context of the model.
Extensions toMarket Model simulation algorithms to accommodate a multicurrency model
are presented in section 5, and section 6 concludes.

1. Measure Relationships

Given a �ltered probability space (
; fFtgt2[0;T �];PT �) satisfying the usual conditions,
let fWT �(t)gt2[0;T �] denote a d{dimensional standard Wiener process and assume that
the �ltration fFtgt2[0;T �] is the usual PT �{augmentation of the �ltration generated by
fWT �(t)gt2[0;T �].
The model is set up on the basis of assumptions (BP.1) and (BP.2) of Musiela and

Rutkowski (1997a):

(BP.1) For any date T 2 [0; T �], the price process of a zero coupon bond B(t; T ), t 2 [0; T ]
is a strictly positive special martingale6 under PT �.

(BP.2) For any �xed T 2 [0; T �], the forward process

FB(t; T; T
�) =

B(t; T )

B(t; T �)
; 8 t 2 [0; T ]

follows a martingale under PT �.

4The forward measure approach to pricing interest rate derivatives dates back to papers by Jamshidian
(1987) and Geman (1989).

5Independently of the present paper, Mikkelsen (1999) constructs consistent LIBOR Market Model

settings under various lognormality assumptions and derives a number of Black/Scholes{type formulae for
standard products.

6Musiela and Rutkowski (1997a) de�ne a special martingale as a process X which admits a decom-
position X = X0 +M + A, where X0 2 IR, M is a real{valued local martingale and A is a real{valued
predictable process of �nite variation.
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The objects to be modelled on the �xed income markets are the Æ-compounded forward
rates de�ned by

(1) L(t; T ) = Æ�1

�
B(t; T )

B(t; T + Æ)
� 1

�
Since the compounding matches the market convention for rates such as the London Inter-
bank O�er Rate, L(t; T ) is also referred to as forward LIBOR. Note that by assumption
(BP.2), L(t; T � � Æ) is a martingale under PT �.
Initially, let us consider the discrete{tenor case, i.e. for each of the �xed income markets,

the model is constructed in the manner described in section 4.1 of Musiela and Rutkowski
(1997a). For notational simplicity, assume a horizon date T � which is a multiple of Æ, i.e.
T � = NÆ, N 2 IIN, and focus on a �nite number of maturities Ti = iÆ, i 2 f0; : : : ; Ng (the
tenor structure T). The dynamics of the (domestic) forward LIBOR rate with the longest
maturity under the (domestic) time T � forward probability measure PT � are given by

(2) dL(t; TN�1) = L(t; TN�1)�(t; TN�1)dWT �(t)

where WT � is a standard Brownian motion with respect to PT �.
Analogously, (BP.1) and (BP.2) are assumed to hold for the foreign �xed income

market and under the foreign time T � forward probability measure ~PT �, we have

d~L(t; TN�1) = ~L(t; TN�1)~�(t; TN�1)d ~WT �(t)

i.e. we use the tilde to denote values on the foreign market. Note that if �(t; TN�1) is a
deterministic function of its arguments, L(t; T ) is a lognormal martingale. However, this
is not a necessary condition for the model construction.
Consider now the bond price quotients B(t; T )=B(t; Ti) for some i 2 f1; : : : ; Ng and any

T 2 [0; T �]. De�ne the time Ti forward measure PTi as the measure under which these bond
price quotients are martingales. Since B(t; T )=B(t; Ti) can be interpreted as the price of
B(t; T ) expressed in terms of units of B(t; Ti), we say that B(t; Ti) is a numeraire and PTi

is the equivalent martingale measure associated with this numeraire. In fact, in order to
guarantee the absence of arbitrage in the complete market setting we are considering, the
price process of any traded asset expressed in terms of the numeraire must be a martingale
under the associated martingale measure.7

As shown in Musiela and Rutkowski (1997a), the measures PTi exist and are linked by
the Radon/Nikodym{derivatives given in terms of the Dol�eans exponential as8

(3)
dPTi

dPTi+1

= ETi

�Z
�

0


(u; Ti; Ti+1) � dWTi+1(u)

�
PTi+1{a.s.

with

(4) 
(t; Ti; Ti+1) =
ÆL(t; Ti)

1 + ÆL(t; Ti)
�(t; Ti) 8 t 2 [0; Ti]

7This result goes back to a series of papers of Harrison and Kreps (1979), Harrison and Pliska (1981)
and Harrison and Pliska (1983), whose seminal work has since then been extended and re�ned in several
ways. For the change of numeraire techniques employed here, the results of Geman, El Karoui and Rochet
(1995) are particularly relevant. A more complete list of references can be obtained from any recent book
on mathematical �nance, such as Musiela and Rutkowski (1997b).

8The Dol�eans exponential is given by

Et

�Z
�

0

�(u)dW (u)

�
:= exp

�Z t

0

�(u)dW (u)�
1

2

Z t

0

�2(u)du

�
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In particular, we have

(5) dWTi(t) = dWTi+1(t)� 
(u; Ti; Ti+1)dt

If, for all i 2 f1; : : : ; N � 1g, �(t; Ti) is a deterministic function of its arguments, every
process L(t; Ti) is a lognormal martingale under the corresponding probability measure

PTi+1 (and analogously for ~L(t; Ti) under ~PTi+1).
Now let X(t) denote the spot exchange rate in terms of units of domestic currency

per unit of foreign currency. To satisfy technical regularity conditions, let us make the
following assumption:

(X.1) The spot exchange rate process X(t), t 2 [0; T �], is a strictly positive special
martingale under PT �.

Note that X(t) is not a tradeable asset in either market9; thus the spot exchange rate
(discounted by the numeraire) will generally not be a martingale under any equivalent
martingale measures associated with a numeraire asset. However, the foreign bond con-
verted to domestic currency at the spot exchange rate is a domestic asset, and thus

(6) X(t; Ti) :=
~B(t; Ti)X(t)

B(t; Ti)

is a martingale under PTi . Conversely,

1

X(t; Ti)
=

B(t; Ti)
1

X(t)

~B(t; Ti)

is a martingale under ~PTi . X(t; Ti) is the time Ti forward exchange rate.
By the Girsanov transformations (3), all domestic forward measures PTi are linked to

PT � and all foreign forward measures ~PTi are linked to ~PT �. Since these relationships are

transitive, specifying the measure transformation linkingPTi and ~PTi �xes the relationships
between all forward measures, domestic and foreign.
Without loss of generality (in the sense that we could have chosen any other forward

measure instead), let us specify the link for the terminal forward measures. Set

(7) dX(t; T �) = X(t; T �)�X(t; T
�) � dWT �(t)

Again, if �X(t; T
�) is a deterministic function of its arguments, X(t; T �) is a lognormal

martingale under PT �.
From general theory we know that in the complete, arbitrage{free market we are consid-

ering, there exist unique equivalent measures PT � and ~PT �, such that all assets discounted
by the time T � domestic zero coupon bond B(�; T �) are martingales under PT � and all

assets discounted by the foreign bond ~B(�; T �) are martingales under ~PT �. Consequently
we must have

d~PT �

dPT �
=

X(T �) ~B(T �; T �)B(0; T �)

X(0) ~B(0; T �)B(T �; T �)
=

X(T �; T �)

X(0; T �)

9In the context of the model under consideration, a tradeable asset is any semimartingale which can be
represented as the value process of a self�nancing trading strategy in domestic and/or foreign zero coupon
bonds. For a numeraire asset, we additionally require that the value process is strictly positive. X(t) is
only the time t rate of conversion from foreign to domestic currency, i.e. X(t) multiplied by the value of
an asset denoted in foreign currency gives the value of that asset denoted in domestic currency.
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and restricting PT �, ~PT � to the information given at time t (i.e. for Ft{measurable events),
we have

d~PT �

dPT �

�����
Ft

=
X(t; T �)

X(0; T �)

Given the dynamics (7) we chose for the forward foreign/domestic exchange rate X(t; T �),

PT � and ~PT � are therefore linked by

d~PT �

dPT �
= ET �

�Z
�

0

�X(u; T
�)dWT �(u)

�
PT �{a.s.

By Girsanov's Theorem, Brownian motions under the two measures are related by

(8) d ~WT �(t) = dWT �(t)� �X(t; T
�)dt

and by Ito's lemma,

d

�
1

X(t; T �)

�
=

1

X(t; T �)

�
��X(t; T

�) � dWT �(t) + k�X(t; T
�)k2dt

�
Thus the volatility of the forward domestic/foreign exchange rateX(t; T �)�1 is � 1

X
(t; T �) =

��X(t; T �) and we can write

d

�
1

X(t; T �)

�
=

1

X(t; T �)
� 1
X
(t; T �)d ~WT �(t)

Having linked the foreign and domestic �xed income markets by specifying the volatility
of the time T � forward exchange rate under the domestic and foreign time T � forward
measures, the volatilities of all other forward exchange rates under the respective forward
measures are �xed, since the forward measures of di�erent maturities are already linked by
the speci�cation of forward LIBOR volatilities. To derive the remaining forward exchange
rate volatilities, we inductively make use of the relationship

(9)
X(t; Ti)

X(t; Ti+1)
=

B(t; Ti+1)

B(t; Ti)

~B(t; Ti)
~B(t; Ti+1)

For ease of notation, consider just the �rst step of the induction,

X(t; TN�1) = X(t; T �)
B(t; T �)

B(t; TN�1)

~B(t; TN�1)
~B(t; T �)

As shown in Musiela and Rutkowski (1997a), the dynamics of the forward bond price are
given by

d

�
B(t; TN�1)

B(t; T �)

�
=
B(t; TN�1)

B(t; T �)

(t; TN�1; T

�) � dWT �(t)

By Ito's lemma,

d

�
B(t; T �)

B(t; TN�1)

�
=

B(t; T �)

B(t; TN�1)

�
�
(t; TN�1; T

�) � dWT �(t) + k
(t; TN�1; T
�)k2dt

�
and for the foreign forward bond, after switching to the corresponding domestic measure

d

 
~B(t; TN�1)
~B(t; T �)

!
=

~B(t; TN�1)
~B(t; T �)

(~
(t; TN�1; T
�) � dWT �(t)� ~
(t; TN�1; T

�) � �X(t; T
�)dt)
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Thus

d

 
~B(t; TN�1)
~B(t; T �)

B(t; T �)

B(t; TN�1)

!
=

~B(t; TN�1)
~B(t; T �)

B(t; T �)

B(t; TN�1)

�
(~
(t; TN�1; T

�)� 
(t; TN�1; T
�)) � dWT �(t)

+
�
k
(t; TN�1; T

�)k2 � ~
(t; TN�1; T
�) � �X(t; T

�)

�
(t; TN�1; T
�) � ~
(t; TN�1; T

�)
�
dt

�
and

dX(t; TN�1) = X(t; TN�1)
�
(~
(t; TN�1; T

�)� 
(t; TN�1; T
�) + �X(t; T

�)) � dWT �(t)

�
(t; TN�1; T
�) � (~
(t; TN�1; T

�)� 
(t; TN�1; T
�) + �X(t; T

�))dt
�

Since dWTN�1 = dWT �(t)� 
(t; TN�1; T
�)dt, we have

dX(t; TN�1) = X(t; TN�1)
�
(~
(t; TN�1; T

�)� 
(t; TN�1; T
�) + �X(t; T

�)) � dWTN�1(t)
�

Thus we must set

(10) �X(t; TN�1) = ~
(t; TN�1; T
�)� 
(t; TN�1; T

�) + �X(t; T
�)

i.e. the forward exchange rate volatilities for all maturities are linked by

(11) �X(t; Ti�1) = ~
(t; Ti�1; Ti)� 
(t; Ti�1; Ti) + �X(t; Ti)

Note that the derivation of (11) does not depend on any of the assumptions of deterministic
volatilities, but solely on the fact that �X , 
 and ~
 are, respectively, the volatility functions
of the forward exchange rates, domestic and foreign forward bond prices.
Furthermore, if we choose to link the domestic and foreign market by a forward exchange

rate to a maturity other than the terminal, we also solve (11) for �X(t; Ti). In e�ect, we are
using the domestic and foreign forward bond volatilities 
 and ~
 to move either forward
or backward in maturity from the link.

2. Choices of Lognormality

As a consequence of (11), the choices of which underlying variables should follow a
lognormal probability law are restricted. In the extremes, we have two cases, which can
be mixed and matched to produce a variety of \hybrid" models. Consider �gures 1 and
2. Each arrow denotes a measure relationship based on a deterministic volatility function,
i.e. vertical arrows signify lognormal forward LIBORs while horizontal arrows signify
lognormal forward exchange rates.
In �gure 1, we have a discrete{tenor lognormal forward LIBOR model for both the

domestic and foreign �xed income markets. Furthermore, one forward exchange rate is
chosen to be lognormal. With that, all measure relationships are �xed and all remaining
forward exchange rate volatilities are given by (11). By inserting (4) into (11), it becomes
obvious that these volatilities depend on LIBOR levels and consequently only the forward
exchange rate chosen to \link" the two �xed income markets can be lognormal.
More speci�cally, in this case the model is constructed as follows. We �rst set up a

discrete tenor lognormal forward LIBOR model for each of the currencies as in Musiela
and Rutkowski (1997a), by specifying d{dimensional volatility vectors �(t; Ti) and ~�(t; Ti)
for all 0 � i < N . Specifying these volatilities completely determines the discrete tenor
term structure models in each of the currencies. The measure relationships between forward
measures in each currency are constructed by backward induction using equations (3)-(5).
Given these relationships, we can move backward and forward in maturity at will. Thus
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Measure Links 1

Domestic                                     Foreign

T0  forward measure T0  forward measure

T2  forward measure

T1  forward measure

T2  forward measure

T1  forward measure

Ti  forward measureTi  forward measure

TN  forward measureTN  forward measure

Figure 1. Lognormal LIBORs

Measure Links 2

Domestic                                     Foreign

T0  forward measure T0  forward measure

T2  forward measure

T1  forward measure

T2  forward measure

T1  forward measure

Ti  forward measureTi  forward measure

TN  forward measureTN  forward measure

Figure 2. Lognormal
exchange rates

it is suÆcient to link the two currencies by choosing a forward exchange rate volatility
function �X(�; Ti) for some arbitrary Ti.
In �gure 2, only domestic forward LIBORs are assumed to be lognormal, as well as every

forward exchange rate. Note that lognormality of the forward exchange rate under the
corresponding forward measure means that the Black/Scholes formula holds for a currency
option of this maturity, irrespective of the interest rate dynamics. Again, the resulting
(discrete{tenor) model is fully speci�ed and condition (11) precludes the lognormality of
foreign interest rates.
Here, the domestic discrete tenor model is constructed as in case 1. Furthermore, for all

0 � i � N , forward exchange rate volatility functions �X(t; Ti) are input into the model.
Given these, (8) permits us to move from any domestic forward measure to the foreign
forward measure of the same maturity, and indirectly between foreign forward measures of
di�erent maturities, thus all measure relationships are now �xed. By the input volatility
function and the measure relationships10, the continuous time dynamics of L(t; Ti) and
X(t; Tj) are well determined for all 0 � i < N and 0 � j � N , and by equation (9) the
~L(t; Ti) are well determined also and their dynamics are easily derived by applying Ito's
Lemma.
From a practical point of view, it may be attractive to mix the two cases. Consider, for

example, a situation where currency options for shorter maturities are very actively traded,
while for longer maturities there is very little implied volatility information available in the
market. On the other hand, longer{dated interest rate options may be reasonably liquid.
In such a case, one could model the \liquid" volatilities as deterministic, greatly facilitating

10Note that in this context, we could use the terms measure relationship and drift synonymously.
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model calibration. This means assuming lognormal forward exchange rates on the short
end and moving to lognormal forward interest rates in both markets on the long end, in
e�ect using the volatilities of longer{dated interest rates to extrapolate the volatilities of
forward exchange rates.

3. Continuous Tenor and the Spot Exchange Rate

The discrete tenor version of the model discussed so far completely speci�es stochastic
dynamics only for rates (both foreign exchange and interest) maturing at dates in the tenor
structure T. Consequently, payo�s that occur at intermediate dates not in T or depend
on intermediate rates cannot be valued. Extending the model to continuous tenor ensures
that the value of the numeraire asset is well determined at any point in time and stipulates
the dynamics of rates for all intermediate maturities. In particular, this is necessary in
order to specify the dynamics of the spot exchange rate X(t).
Case 1: In the continuous tenor version of the Market Models as it was originally

proposed in the MSS/BGM papers, the assumption is that all forward LIBORs L(t; T ),
i.e. for all t � T and T � T � � Æ, are lognormal martingales under the respective forward
measures. Then all that is missing are the volatilities of zero coupon bonds with time to
maturity less than Æ. BGM set this volatility to zero and derive the resulting dynamics of
all bond prices B(t; T ) and of the continuously compounded short rate r(t).
Case 2: Alternatively, as proposed in Schl�ogl (1999), one could set the volatility of all

bonds maturing strictly before the next date in the tenor structure11 to zero and determine
these bond prices by a deterministic interpolation scheme. This has the advantage of
preserving the Markovian structure of the discrete tenor model and | contrary to the
approach taken by MSS/BGM | guaranteeing the non-negativity of all interest rates.
Furthermore, it turns out that arbitrage{free interpolation by day{count fractions becomes
very tractable.
In either case, if T�(t) is the next date in the discrete tenor structure after t, the volatility

of B(t; T�(t)) is zero. This means that we can speak synonymously of the spot LIBOR

measure of Jamshidian (1997) and the risk neutral measure:

3.1. Definition. Given a tenor structure T = fTi : i 2 f0; 1; : : : ; Ngg, the spot LIBOR

measure P� is the equivalent martingale measure associated with the numeraire

�(t) = B(t; T�(t))

�(t)�1Y
i=0

(1 + ÆL(Ti; Ti))

where

�(t) = minfi 2 f0; : : : ; Ngjt � Tig

Note that the spot LIBOR measure can be interpreted as a chain of transition proba-
bilities given by conditional forward measures of consecutive maturities (cf. lemma A.1 in
the appendix).

3.2. Definition. Given a continuously compounded short rate r(t), the risk neutral mea-

sure P� is the equivalent martingale measure associated with the numeraire

�(t) = exp

�Z t

0

r(s)ds

�
11i.e. B(t; T�(t)), with �(t) de�ned as in de�nition 3.1 below
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3.3. Lemma. If the volatility of B(t; T�(t)) is zero for all T0 � t � TN , the spot LIBOR

measure and the risk neutral measure coincide when restricted to any Ft.

Proof. See appendix. Note that when speaking of the risk neutral measure in this context,
it is implicitly assumed that the continuously compounded short rate r(t) exists and is
integrable with respect to t almost surely. The key is that the savings account �(t) follows
a strictly positive, predictable process of �nite variation. As argued in Schl�ogl (1999),
if the short bond volatility is zero, the discrete tenor model can always be extended to
continuous tenor in such a manner that the short rate exists on each of the open intervals
[Ti; Ti+1[, which is all that is needed.

2

If domestic and foreign �xed income markets are described by continuous tenor models of
either type 1 or 2, B(t; T�(t)) and ~B(t; T�(t)) are well de�ned and the dynamics of the spot
exchange rate can be obtained (rather tediously) by applying Ito's Lemma to

(12) X(t) =
X(t; T�(t))B(t; T�(t))

~B(t; T�(t))

X(t; T ) can then be calculated for arbitrary T by inserting the X(t) resulting from the
above equation into (6).
Note that given BGM's choice setting short bond volatilities to zero, the above relation-

ship implies

�X(t; t) = �X(t; t+ Æ) = �X(t; T ) 8 t � T � t+ Æ

while in the second case of extending discrete to continuous tenor we only have

(13) �X(t; t) = �X(t; T�(t)) = �X(t; T ) 8 t � T � T�(t) � t+ Æ

Furthermore, since the spot exchange rate X(t) is well de�ned in a continuous tenor
framework, domestic and foreign �xed income markets could be linked by specifying the
volatility of X(t). However, stipulating deterministic volatility for the spot exchange rate
to link �xed income markets described by continuous tenor MSS/BGM models of cases
1 or 2 is not suÆcient to guarantee lognormality of X(t) under the risk neutral measure
(i.e. the equivalent martingale measure associated with the continuously compounded
savings account), or under any equivalent martingale measure associated with a tradeable
numeraire asset, for that matter. This can be seen as a consequence of the highly non-
linear drift term relating forward measures of di�erent maturities (cf. equation 5) and the
fact that the spot exchange rate is not a tradeable asset12 and therefore not a martingale
under any forward measure or the risk neutral measure.
Nor is the lognormality of X(t) a particularly desirable feature with a view to obtain-

ing Black/Scholes{type formulae: For currency options under stochastic interest rates, it
is easily veri�ed that a Black/Scholes{type pricing formula results if the exchange rate
forward to the maturity of the option is a lognormal martingale under the corresponding
forward measure; thus in view of market practice it is more natural to assume deterministic
volatilities for forward exchange rates.
If nevertheless one chooses to link �xed income markets in two currencies by a spot

exchange rate with deterministic volatility, lognormality under the domestic risk neutral

12cf. footnote 9
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measure holds for the foreign savings account converted to domestic currency at the spot
exchange rate: By de�nition of the risk neutral measure P�,

X(t) ~�(t)

�(t)
=

X(t) exp
nR t

0
~r(s)ds

o
exp

nR t
0
r(s)ds

o
is a martingale under P�, where r and ~r denote the domestic and foreign continuously

compounded short rates, respectively. ~�(t) and �(t) are of �nite variation, thus deter-
ministic volatility of X(t) implies lognormality of X(t) ~�(t)=�(t) under P�. However, this
only implies a Black/Scholes{type formula for the rather exotic option to exchange a for-
eign savings account for a domestic savings account, i.e. for time T payo�s of the type
[X(T ) ~�(T )�K�(t)]+.
As in the discrete tenor version of the model, alternatively to lognormal forward LIBOR

dynamics in both currencies, one could specify deterministic volatilities for domestic for-
ward LIBORs only and link �xed income markets in the two currencies by stipulating the
volatilities of all exchange rates, forward and spot. The dynamics of foreign zero coupon
bonds are then well de�ned in terms of spot and forward exchange rates, and domestic
zero coupon bonds, simply by rearranging (6). Foreign forward LIBOR volatilities are
determined by (11), valid in the continuous tenor case for all maturities t < T � T � � Æ:

~
(t; T; T + Æ) = �X(t; T )� �X(t; T + Æ) + 
(t; T; T + Æ)

Furthermore, (8) holds for every maturity, in particular

d ~W�(t) = dW�(t)� �X(t; t)dt

d ~WT�(t)(t) = dWT�(t)(t)� �X(t; T�(t))dt

Since the spot LIBOR and risk neutral measures coincide, this implies

d ~WT�(t)(t) = d ~W�(t) + �X(t; t)dt� �X(t; T�(t))dt

which is not surprising since rearranging (12) yields

~B(t; T�(t))

B(t; T�(t))
=

X(t; T�(t))

X(t)

and applying Ito's lemma to both sides of this equation reveals that the volatility of the
foreign short bond ~B(t; T�(t)) must be �X(t; T�(t))��X(t; t). In addition, it is easily veri�ed
that the drift of X(t) under P� is r(t)� ~r(t).

4. Application Examples

The most obvious case in which one would resort to a multicurrency term structure
model is the pricing of quanto style interest rate derivatives. A large and diverse number
of such instruments are becoming increasingly popular.13 Two examples serve to illustrate
the techniques for derivative pricing in the context of a Multicurrency Lognormal Interest
Rate Market Model: the 
oating{for{
oating di� swap and an option on such a swap.
While the former can actually be priced in closed form under the appropriate lognormality
assumptions, for the latter only an approximate formula can be derived.

13It is a measure of this popularity that other authors are also actively working on pricing formulae for
such products. Independently of the present paper, Pedersen and Miltersen (2000) develop formulae for a
range of quanto instruments.
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Consider a di� swap to pay 3{month USD LIBOR and receive 3{month EUR LIBOR,
with all payments in arrears, in USD, calculated on a USD notional. Let USD be the do-
mestic currency. The value of the di� swap can be expressed as the discounted expectation
under the relevant forward measures, i.e.

notional � Æ
X
i

B(0; Ti+1)ETi+1 [ ~L(Ti; Ti)� L(Ti; Ti)]

= notional � Æ
X
i

B(0; Ti+1)
�
ETi+1 [

~L(Ti; Ti)]� L(0; Ti)
�

Thus one needs to evaluate ETi+1 [
~L(Ti; Ti)], the expected value of foreign LIBOR under

the domestic time Ti+1 forward measure. The dynamics of ~L(t; Ti) are given by

d~L(t; Ti) = ~L(t; Ti)~�(t; Ti)d ~WTi+1(t)

= ~L(t; Ti)~�(t; Ti)(dWTi+1(t)� �X(t; Ti+1)dt)

If one chooses the foreign forward LIBOR volatilities ~� and the forward exchange rate
volatilities �X to be deterministic for all Ti, the expectation can be evaluated in closed
form:

~L(t; Ti) = ~L(0; Ti)

� exp

�
�

Z t

0

~�(s; Ti)

�
�X(s; Ti+1) +

1

2
~�(s; Ti)

�
ds

�

� exp

�Z t

0

~�(s; Ti)dWTi+1(s)

�

) ETi+1[ ~L(Ti; Ti)] = ~L(0; Ti) exp

�
�

Z Ti

0

~�(s; Ti)�X(s; Ti+1)ds

�
Thus the value of the di� swap is14

notional � Æ �
X
i

B(0; Ti+1)

�
~L(0; Ti) exp

�
�

Z Ti

0

~�(s; Ti)�X(s; Ti+1)ds

�
� L(0; Ti)

�
Alternatively, one may for some reason15 have chosen the domestic forward LIBOR volatil-
ities � to be deterministic. In this case the problem of evaluating ETi+1 [ ~L(Ti; Ti)] no longer

lends itself to a closed form solution. Writing the dynamics of ~L(t; Ti) in terms of the
deterministic volatility functions � and �X yields

d~L(t; Ti)
~L(t; Ti)

=
1 + Æ ~L(t; Ti)

Æ ~L(t; Ti)

�
�X(t; Ti)� �X(t; Ti+1) +

ÆL(t; Ti)

1 + ÆL(t; Ti)
�(t; Ti)

�
d ~WTi+1(t)

In order to obtain an approximate solution, one can employ the argument which was �rst
used to derive an approximate swaption formula in a lognormal forward LIBOR model.16

14Note that in general, the driving Brownian motions are multidimensional and the volatilities �(t; Ti),
~�(t; Ti) and �X(t; Ti) are vectors. The correlation between interest rates and exchange rates thus enters
the pricing equation via the scalar products of volatility vectors. For a more explicit discussion of these
correlations, see Pedersen and Miltersen (2000).

15Ease of calibration is one potential reason which springs to mind, e.g. in a situation where domestic
caps and 
oors are the most liquid source of interest rate volatility information.

16This argument �rst appears in Brace, Gatarek and Musiela (1997). It was developed further in Brace,
Dun and Barton (1998a) and formalized by Brace and Womersley (2000).
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Noting that the quotient ÆL(t; Ti)=(1 + ÆL(t; Ti)) has low variance under the time Ti+1

forward measure, it is substituted by its initial value ÆL(0; Ti)=(1 + ÆL(0; Ti)) to yield the
SDE

d~L(t; Ti) �

�
1

Æ
+ ~L(t; Ti)

�
�
�X(t; Ti)� �X(t; Ti+1) +

ÆL(0; Ti)

1 + ÆL(0; Ti)
�(t; Ti)

�
| {z }

~�approx(t;Ti)

d ~WTi+1(t)

which is solved explicitly by

~L(t; Ti) =

�
1

Æ
+ ~L(0; Ti)

�
exp

�Z t

0

~�approx(s; Ti)dWTi+1(s)

�

Z t

0

~�approx(s; Ti)

�
�X(s; Ti+1) +

1

2
~�approx(s; Ti)

�
ds

�
�

1

Æ
(14)

Then,

ETi+1 [ ~L(t; Ti)] �

�
1

Æ
+ ~L(0; Ti)

�
exp

�
�

Z t

0

~�approx(s; Ti)�X(s; Ti+1)ds

�
�

1

Æ

Using the same type of approximation argument, the di� swap can also be priced under the
assumption that both domestic and foreign forward LIBOR volatilities are deterministic.
Consider now an option on a 
oating{for{
oating di� swap, with the option expiring at

time T0. This can be generically valued as

(15)

B(0; T0)ET0

"
max

 
0; notional � Æ �

nX
i=1

B(T0; Ti)(ETi [
~L(Ti�1; Ti�1)jFT0]� L(T0; Ti�1))

!#

This can no longer be calculated in closed form for any permissible combination of choices
for deterministic volatilities from �, ~� and �X . To illustrate the technique for deriving an
approximate pricing formula, choose � and �X to be deterministic. Then (15) becomes

B(0; T0)ET0

"
max

 
0; notional � Æ �

nX
i=1

B(T0; Ti)

��
1

Æ
+ ~L(T0; Ti�1)

�

� exp

�Z Ti�1

T0

~�approx(s; Ti�1)�X(s; Ti)ds

�
�

1

Æ
� L(T0; Ti�1)

���

De�ne

!(t) :=

Pn

i=1B(t; Ti)
��

1
Æ
+ ~L(t; Ti�1)

�
exp

n
�
R Ti�1
t

~�approx(s; Ti�1)�X(s; Ti)ds
o
� 1

Æ

�
Pn

i=1B(t; Ti)

!(t) :=

Pn

i=1B(t; Ti)L(t; Ti�1)Pn

i=1B(t; Ti)
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Note that the latter is a domestic forward swap rate. Now (15) can be written as

notional � Æ �B(0; T0)ET0

"
nX
i=1

B(T0; Ti)[!(T0)� !(T0)]
+

#

= notional � Æ �

 
nX
i=1

B(0; Ti)

!
E!

�
[!(T0)� !(T0)]

+
�

where E! is the expectation operator under the forward swap measure P!, i.e. the mar-
tingale measure associated with the numeraire

Pn

i=1B(�; Ti). Clearly, !(t) is a martingale
under this measure:17

d!(t)

!(t)
= �!(t)dW!(t)

Brace and Womersley (2000) derive the forward swap rate volatility as

�!(t) =
nX

j=1

Aj(t)�(t; Tj�1)

where

Aj(t) =
B(t; Tj)L(t; Tj�1)Pn

i=1B(t; Ti)L(t; Ti�1)
+

ÆL(t; Tj�1)

1 + ÆL(t; Tj�1)

nX
`=j

�
B(t; T`)Pn

i=1B(t; Ti)
�

B(t; T`)L(t; T`�1)Pn

i=1B(t; Ti)L(t; Ti�1)

�
By noting that the components of Aj(t) are low variance martingales, Brace/Womersley
justify replacing Aj(t) by its initial value Aj(0), i.e.

(16) �!(t) =
nX
j=1

Aj(0)�(t; Tj�1)

resulting in a lognormal martingale for !(t) under P!. This is consistent with the �nding
of Brace, Dun and Barton (1998a), that forward swap rates are statistically lognormal in
the lognormal forward LIBOR model.
Consider now !(t). By the solution (14) to the dynamics of foreign forward LIBOR,�

1

Æ
+ ~L(t; Ti�1)

�
exp

�Z t

0

~�approx(s; Ti�1)�X(s; Ti)ds

�

=

�
1

Æ
+ ~L(0; Ti�1)

�
exp

�Z t

0

~�approx(s; Ti�1)dWTi(s)�
1

2

Z t

0

~�2approx(s; Ti�1)ds

�
(17)

where the terms on either side of (17) are PTi{martingales. Now,�
1

Æ
+ ~L(t; Ti�1)

�
exp

�
�

Z Ti�1

t

~�approx(s; Ti�1)�X(s; Ti)ds

�

=

�
1

Æ
+ ~L(t; Ti�1)

�
exp

�Z t

0

~�approx(s; Ti�1)�X(s; Ti)ds

�
(18)

� exp

�
�

Z Ti�1

0

~�approx(s; Ti�1)�X(s; Ti)ds

�
where both sides of (18) are still PTi{martingales, since we have simply multiplied a mar-
tingale by a deterministic factor independent of t. By multiplying each term in the sum in
the numerator of !(t) by the corresponding numeraire B(t; Ti) and dividing the result by

17The forward swap measure was �rst studied by Jamshidian (1997).
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the denominator, one has in e�ect changed numeraires to
Pn

i=1B(t; Ti). Therefore, !(t)
is also a P!{martingale. To shorten notation, set

Bi := B(t; Ti)

Bi := B(t; Ti) exp

�
�

Z Ti�1

t

~�approx(s; Ti�1)�X(s; Ti)ds

�
~Li := ~L(t; Ti)

~�i := ~�approx(t; Ti)

�
(i)
F :=

iX
`=1

ÆL(t; T`�1)

1 + ÆL(t; T`�1)
�(t; T`�1)

Applying Ito's lemma, the volatility of !(t) can be written as

Pn

i=1

�
Bi

�
1
Æ
+ ~Li�1

�
~�i�1 +Bi�

(i)
F

Pn
j=1 Bj( 1Æ+~Lj�1)
Pn

j=1 Bj
�
�

1
Æ
+ ~Li�1

�
Bi�

(i)
F

�
Pn

i=1

�
Bi

�
1
Æ
+ ~Li�1

�
� 1

Æ
Bi

�
To justify substituting the B(t; Ti), L(t; Ti) and ~L(t; Ti) in the above expression by their
time 0 values, consider the following:

nX
i=1

Bi�
(i)
F

Pn

j=1Bj

�
1
Æ
+ ~Lj�1

�
Pn

j=1Bj

�
nX
i=1

�
1

Æ
+ Li�1

�
Bi�

(i)
F

,

 
nX
i=1

Bi�
(i)
F

!
nX

j=1

Bj

�
1

Æ
+ ~Lj�1

�
�

 
nX
j=1

Bj

!
nX
i=1

�
1

Æ
+ Li�1

�
Bi�

(i)
F(19)

On either side of (19) we have slightly di�erently weighted sums of the forward bond price

volatilities �
(i)
F . Any changes in these terms due to changes in B(t; Ti), L(t; Ti) and ~L(t; Ti)

will tend to cancel. Similarly, any such changes in the numerator
Pn

i=1Bi(Æ
�1+ ~Li�1)~�i�1

will be mostly compensated by corresponding changes in the denominator
Pn

i=1(Bi(Æ
�1 +

~Li�1)� Æ�1Bi).
Given approximate deterministic volatilities for !(t) and !(t), the option on a di� swap

can be priced by the Black/Scholes{type formula

notional �  
nX
i=1

B(0; Ti)

�
(1 + Æ ~L(0; Ti�1)) exp

�
�

Z Ti�1

0

~�approx(s; Ti�1)�X(s; Ti)ds

�
� 1

�!
� N (h1)

�(B(0; T0)� B(0; Tn))N (h2)

!

with

h1;2 =
ln !(0)

!(0)
� 1

2

R T0
0
(�!(s)� �!(s))

2dsqR T0
0
(�!(s)� �!(s))2ds
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where �!(�) is de�ned in (16) and

�!(t) :=
nX
i=1

�
Ai(0)�(t; Ti�1) + ~Ai(0)~�approx(t; Ti�1)

�

Ai(t) :=

ÆLi�1
1+ÆLi�1

Pn

`=i

�Pn
j=1 Bj( 1Æ+~Lj�1)
Pn

j=1 Bj
B` �

�
1
Æ
+ ~L`�1

�
B`

�
Pn

j=1

�
Bj

�
1
Æ
+ ~Lj�1

�
� 1

Æ
Bj

�
~Ai(t) :=

Bi

�
1
Æ
+ ~Li�1

�
Pn

j=1

�
Bj

�
1
Æ
+ ~Lj�1

�
� 1

Æ
Bj

�
Thus one has obtained an approximate pricing formula for an option on a 
oating{for{

oating di� swap in a model where domestic forward LIBOR volatilities � and forward
exchange rate volatilities �X are deterministic. Using the same approach, this option
could be priced under other lognormality assumptions.18 Also, instead of a 
oating{for{

oating di� swap, one could consider di� swaps (and the corresponding options) where
one or both parties pay a �xed rate. Applying the above techniques to such contracts is
straightforward, and actually simpler than in the 
oating{for{
oating case, as the value
of the �xed side of a di� swap is trivial to determine.
The lognormal approximations used to develop the di� swaption formula mirror those

made in the derivation of the swaption formula in the single currency case, where they
have been shown to be suitable for both pricing and hedging19. In the multicurrency case,
this approach also appears reasonable and serves to illustrate how one might apply the
volatility and measure relationships derived here. While beyond the scope of the present
paper and thus left to further research, a comprehensive simulation study would be useful
to verify the accuracy of the approximations in a multicurrency setting.

5. Simulation Algorithms

As discussed above, consistency with no-arbitrage conditions restricts the lognormality
assumptions which can be made simultaneously, leaving some standard products and of
course the more complex derivative instruments to be priced numerically or by approximate
formulae. The non-linear drift terms relating Brownian motions under forward measures
of di�erent maturities preclude any simple Markovian structure of the model20 and thus
Monte Carlo simulation becomes the numerical method of choice in many cases. This
section serves to brie
y outline how two simulation algorithms proposed in the literature
can be easily extended to accommodate the multicurrency case.
Glasserman and Zhao (2000) present an algorithm in which forward LIBORs (or forward

swap rates) are �rst transformed into variables which are martingales under the forward
measure chosen for simulation. These variables are then simulated and forward LIBORs are
subsequently recovered from the simulated values. By simulating martingales, Glasserman

18Clearly one could also take an approach along the lines of Jamshidian (1997) to construct a model
where an option on a 
oating{for{
oating di� swap can be priced exactly by a Black/Scholes{type formula.
However, the calculations of measure changes and volatilities in such a model would become extremely
tedious and it does not seem worthwhile to consider such a highly specialized model.

19cf. Brace, Dun and Barton (1998a) and Dun, Schl�ogl and Barton (2001)
20For a discussion of the Markovian properties of the lognormal Market Models, see Schl�ogl (1999).
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and Zhao avoid the bias that results from the discretization of a stochastic drift term. To
apply their approach, suitably transformed variables need to be speci�ed.
First, let us consider a discrete tenor model21 with both domestic and foreign lognormal

forward LIBORs. Assume the simulation is to be carried out under the domestic time
Tn forward measure (the case for a simulation under a foreign measure is covered by a
symmetric argument). As in Glasserman/Zhao, the variable

(20) Vn(t; Tj) =

(
L(t; Tj)

Qn�1
i=j+1(1 + ÆL(t; Ti)) j = 1; : : : ; n� 1

L(t; Tj)
Qj

i=n_�(t)(1 + ÆL(t; Ti))
�1 j = n; : : : ; N � 1

is a martingale under the Tn forward measure up to Tn, and under the spot LIBOR measure
thereafter. Given Vn(t; Tj) for all j 2 f1; : : : ; N�1g, all domestic forward LIBORs L(t; Tj)
can be recovered.
Analogously de�ned, ~Vn(t; Tj) is a martingale under the foreign time Tn forward mea-

sure up to Tn, and under the foreign spot LIBOR measure thereafter. Consequently,
X(t; Tn_�(t)) ~Vn(t; Tj) is a martingale under the domestic measure, as isX(t; Tn_�(t)). There-

fore, X(t; Tn_�(t)) is simulated directly, and given X(t; Tn_�(t)) and X(t; Tn_�(t)) ~Vn(t; Tj) for

all j 2 f1; : : : ; N � 1g, all foreign forward LIBORs ~L(t; Tj) can be recovered. Obviously,
one would choose the simulation measure PTn to match the choice of deterministic forward
exchange rate volatility, i.e. such that the link exchange rate X(t; Tn_�(t)) is lognormal un-
der PTn up to Tn, and conditionally lognormal under P�(t) given FT�(t)�1 on each interval

[T�(t)�1; T�(t)] thereafter. Given X(t; Tn_�(t)), all L(t; Tj) and ~L(t; Tj), the remaining for-
ward exchange rates can also be recovered.
For the case where all discrete tenor forward exchange rates are assumed to be lognormal

under the respective forward measures, a slightly di�erent transformation suggests itself.
Set

Un(t; Tj) =

(
X(t; Tj)

Qn�1
i=j (1 + ÆL(t; Ti)) j = 1; : : : ; n� 1

X(t; Tj)
Qj�1

i=n_�(t)(1 + ÆL(t; Ti))
�1 j = n; : : : ; N

which is a martingale under the Tn forward measure up to Tn, and under the spot LIBOR
measure thereafter. Simulating Un(t; Tj) for all j 2 f1; : : : ; Ng and Vn(t; Tj) for all j 2

f1; : : : ; N � 1g yields all L(t; Tj) and all X(t; Tj), from which all ~L(t; Tj) can then be
recovered.
Alternatively to the algorithm by Glasserman/Zhao, one can make use of the relation-

ships between domestic and foreign forward measures derived in section 1 to transform
Brownian motion increments generated under the measure chosen for simulation into the
corresponding Brownian motion increments for all other measures, following the approach
proposed in Brace, Musiela and Schl�ogl (1998b). Each of the rates for which deterministic
volatility is assumed is then simulated as a lognormal martingale under the correspond-
ing forward measure. Again, only these rates need to be simulated, as all others can be
recovered by means of static relationships such as (6) and (9), i.e.

X(t; Ti) = X(t; Ti+1)
1 + Æ ~L(t; Ti)

1 + ÆL(t; Ti)

21Glasserman and Zhao's algorithm is formulated in terms of the discrete tenor model. However, it is
also directly applicable to the continuous tenor version of the model proposed in Schl�ogl (1999), since in
that case all Markovian properties of the discrete tenor model are preserved.
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6. Conclusion

Applying a Black/Scholes{type formula to price a derivative �nancial instrument relies
on the lognormality of the underlying asset under the appropriate martingale measure.
When simultaneously considering interest rate and currency risk, the choice of lognor-
mality assumptions is restricted by no-arbitrage conditions resulting from the relationship
between forward exchange rates and domestic and foreign interest rates. Postulating a
lognormal Market Model for both the domestic and foreign �xed income markets leaves
only the possibility of specifying a lognormal probability law for one forward exchange
rate, while if only domestic interest rate dynamics are given, all forward exchange rates
could be assumed to be lognormal under the respective forward measures. These two
cases may be mixed and combined in a variety of ways into \hybrid" models. Conversely,
choosing lognormality assumptions so as to facilitate calibration to at{the{money prices of
liquidly traded instruments allows less liquid volatilities to be interpolated or extrapolated
in a consistent manner, for example using implied volatilities of short{dated currency op-
tions and long{dated interest rate options to obtain prices for currency options of longer
maturity.
However, the key point to be made by formulating a consistent, arbitrage{free model

is not which variables can (simultaneously) have deterministic volatilities and therefore a
lognormal probability law under the corresponding martingale measure. Approximations
permit the derivation of Black/Scholes{type formulae in many cases where the underlying
rates are not strictly lognormal. Rather, the key point is that the model has to re
ect
the relationships between the volatilities of the underlying variables and between measures
associated with various numeraires. These relationships are determined by no{arbitrage
constraints and are valid irrespective of the assumptions on the volatilities. Given a partic-
ular set of assumptions, they determine the appropriate approximations when evaluating
instruments which cannot be priced exactly in closed form.
Two further extensions of the model suggest themselves. They are simple (though

in some cases tedious) applications of the basic approach discussed in this paper. For
one, the present results easily scale to the case of arbitrarily many currencies. Secondly,
for the domestic and/or foreign �xed income market, the lognormality assumption on
forward LIBORs may be replaced by a forward swap rate model of the type developed by
Jamshidian (1997).
Also, it is worthwhile to stress that the measure relationships derived in section 1 do not

depend on assumptions of deterministic volatility functions.22 Thus they are equally valid
in any term structure model constructed along the lines of Heath, Jarrow and Morton
(1992)23 as well as in extensions of the Market Models to more general volatility func-
tions, such as the model of level{dependent LIBOR volatilities proposed by Andersen and
Andreasen (1998).

22That no{arbitrage contraints restrict the choice of volatilities and thereby the relationships between
martingale measures associated with various numeraires has been previously noted by Andreasen (1995),
who relates the spot exchange rate volatility to the risk premia for the component currencies and constructs
a consistent multicurrency, multidimensional extension of the Cox, Ingersoll and Ross (1985) model with
time dependent parameters.

23Other consistent multicurrency models in the literature implicitly satisfy the restrictions derived here.
This includes the model of Andreasen (1995), as well as Frey and Sommer (1996). However, in the latter
case all volatility functions in equation (11) are deterministic, i.e. lognormal exchange rate dynamics and
lognormal bond price dynamics in all currencies can consistently coexist in a multicurrency Gaussian HJM
model.
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In summary, while this paper makes no attempt to develop a model to better explain the
empirical dynamics of interest rates and exchange rates, we have identi�ed the trade{o�s
between lognormality assumptions supporting the simultaneous use of Black/Scholes{type
formulae for various derivative �nancial instruments, showing to what degree a model can
re
ect popular market practice while remaining consistent with no-arbitrage.

Appendix A

Proof of lemma 3.3: By the de�nition of the two measures, we must have

dP�

dP�

����
Ft

=
�(t)

�(0)

�(0)

�(t)
=

�(t)

�(t)
P�{a.s.

If the volatility of B(t; T�(t)) is zero for all T0 � t � TN , we have
24

B(t; T�(t)) =
�(t)

�(T�(t))
= exp

�Z T�(t)

t

r(s)ds

�
8 T0 � t � TN

and consequently

�(t)

�(t)
= �(t)�1B(t; T�(t))

�(t)�1Y
i=0

B(Ti; Ti + Æ)�1

= �(t)�1 �(t)

�(T�(t))

�(t)�1Y
i=0

�(Ti+1)

�(Ti)

= �(T0)
�1 = 1

Thus

dP�

dP�

����
Ft

= 1 8 T0 � t � TN ; P�{a.s.

and the two measures coincide.

2

The following lemma shows that the spot LIBOR measure may be interpreted as the
measure obtained by \chaining" conditional probabilities of forward measures:

A.1. Lemma. For all FTi+1{measurable events, the conditional probabilities given FTi are

identical for the spot LIBOR measure and the time Ti+1 forward measure, i.e.

P�fAjFTig = PTi+1fAjFTig 8 i 2 f0; : : : ; N � 1g; A 2 FTi+1

24cf. remark 2.1 of Brace, Gatarek and Musiela (1997)
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Proof. Let E� and ETi+1 denote the expectation operators under the measures P� and
PTi+1, respectively.

P�fAjFTig = E�[IAjFTi]

=

ETi+1

"
IA �

 
dP�

dPTi+1

����
FTi+1

!�����FTi

#

ETi+1

" 
dP�

dPTi+1

����
FTi+1

!�����FTi

#

=
B(0; Ti+1)

�Qi

j=0(1 + ÆL(Tj; Tj))
�
ETi+1 [IAjFTi]

B(0; Ti+1)
�Qi

j=0(1 + ÆL(Tj; Tj))
�

= ETi+1 [IAjFTi] = PTi+1fAjFTig

2
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