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Abstract

Stated preference choice experiments are routinely used in many areas from mar-
keting to medicine. While results on the optimal choice sets to present for the forced
choice setting have been determined in a variety of situations, no results have ap-
peared to date on the optimal choice sets to use when either all choice sets are to
contain a common base alternative or when all choice sets contain a ‘none of these’
option. These problems are considered in this paper.
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1 Introduction

Stated choice experiments are widely used in various areas including health
research, marketing, transport and public welfare analysis; see Louviere, Hen-
sher and Swait (1) for an introduction to stated choice methods. A forced
choice stated preference experiment is an experiment in which several choice
sets are presented, in turn, to respondents and one of the options must be
chosen from each choice set presented.

Suppose that each option in a choice set is described by k attributes and each
choice set contains m options. We will assume that the gth attribute has ¢,
levels, represented by 0,1, ..., ¢,—1 and attributes may have different numbers
of levels. Under these circumstances results about the optimal forced choice
stated preference experiments for the estimation of main effects for any number
of attributes with any number of levels may be found in Burgess and Street (2)
and references cited therein. They also make some comments about finding
good designs for the estimation of main effects plus two-factor interactions
and some near-optimal designs may be found in Burgess and Street (3) and
Street and Burgess (4).

Scott (5) describes a discrete choice experiment to do investigate attributes
that have an effect on parent satisfaction with after hours medical care pro-
vided to children under 13. He used four attributes to describe each option.
The first attribute was where your child is seen with levels emergency centre
run by GPs, your home and hospital accident and emergency department. The
second attribute was Who sees your child with levels a GP from your prac-
tice/health centre and a GP who does not work at your practice/health centre.
The third attribute was Time taken between the telephone call and treatment
being received with levels 20 minutes, 40 minutes, 60 minutes and 80 minutes.
The final attribute is the attentiveness of the doctor with levels the doctor
seems to listen and the doctor does not seem to listen. These attributes are
then combined to give descriptions of possible consultations and respondents
are asked which of two consultations they would prefer. A typical choice set
appears in Table 1.

It seems that no results have been published to date on the construction of op-
timal stated preference choice experiments when a common base is to appear
in each choice set or when a “none of these” option is to be available in each
choice set. Statistically optimal designs for these situations are presented in
this paper. (For a discussion of how to design experiments to avoid consumers
choosing to defer choice, the “none of these option”, see Haaijer, Kamakura
and Wedel (6) and references cited therein. For a discussion of respondent
efficiency and the role of cognitive complexity in the design of choice experi-
ments readers are referred to De Shazo and Fermo (7) and Arentze, Borgers,



Table 1

One choice set in an experiment

Suppose that you have to consult a GP during the night because your child is sick.

Which of these two consultation would you prefer?

Consultation A Consultation B
Where your child is seen Your home Emergency centre
run by GPs
Who your child sees GP from your practice | GP from your practice
Time taken to receive 80 minutes 20 minutes
treatment
Attentiveness Seems to listen Does not seem to listen

Timmeramns and Del Mistro (8) and references cited therein.)

2 Common Base Option

If a particular combination of attribute levels appears in all choice sets then
this combination is called the common base option. It may represent the cur-
rent situation or the current treatment for a particular health condition (ex-
amples in Ryan and Hughes (9), Ryan and Farrar (10), Longworth, Ratcliffe
and Boulton (11)) or the common base may be randomly chosen from the
main effects plan and have all the other scenarios from the plan compared
to it pairwise (examples in Ryan (12), Ryan, McIntosh, Dean and Old (13),
Scott (5)).

To ensure that the matrix of contrasts for main effects is unambiguously de-
fined we will insist that the set of all treatment combinations that appear in
the choice experiment forms a fractional factorial design of resolution 3. Lewis
and John (14) discuss the appropriate structure of contrasts when there is not
equal replication of levels.

Our first optimality result gives the determinant of the information matrix for
any resolution 3 fractional factorial design in which any one of the treatment
combinations may be used as the common base. First we need the following
result about the main effects contrast matrix B.

Theorem 1 Let B be a normalised main effects contrast matrix corresponding
to all the attributes in a 1 X ly X ... L]/t resolution 3 fractional factorial
design. Then the diagonal entries of B'B are all equal to Z';:l(fq —1)/t.



Proof. Suppose that (), is an orthonormal matrix of order ¢ with all the entries
of the first row equal. Then Q,Q) = Q,Q¢ = I,. Let B, be the (/—1) x £ matrix
obtained from @), by removing the first row. Then

QyQ¢ = 33je + BiBe = 3Jo + ByB, = I,

where j, is a 1 x £ vector of ones and J; is an ¢ x £ matrix of ones. Thus
B,B, = I, — 1/0J,. Note that By is a main effects matrix for an attribute with
0 levels.

Now consider a main effects matrix, B say, corresponding to all the attributes
inaf; x 0y x---x{//t resolution 3 fractional factorial design. For the gth
attribute the matrix By, , possibly with columns permuted, appears t//, times
in the main effects matrix for the fractional factorial design. The entries in

each such B, will have been normalised by division by 4/t//,.

The diagonal entries of B’B equal the sum of the diagonal entries in the
ng By, which appears in B, suitably normalised. Thus all the diagonal entries
are equal to

Ek:( Zq t/£q> Ek:@—l

q=1 q=1
as required.

Now we can explicitly evaluate the determinant of the information matrix,
which is given by C = BAB’, where A is the matrix of second derivatives of
the likelihood function for the multinomial logit (MNL) model (see El-Helbawy
and Bradley (15) or Burgess and Street (2)). We will let w = >-F_, (¢, — 1),

the total degrees of freedom for main effects, and L = H’;Zl ly

From Theorem 2 in Burgess and Street (2), we know that the maximum pos-
sible determinant for the information matrix, when choice sets are of size 2,
is given by
'“ [ ! r det
—_— = optdet, say.

q[{ 2(6, — )L/JL, pract, say
This is for a forced choice stated preference experiment with no restrictions
on the options that can appear in each choice set.

Theorem 2 Let F be a resolution 3 fractional factorial design with equal
replication of levels and t treatment combinations. Choose any treatment com-
bination in F' to be the common base. Then

det(C) = M (z)w

The efficiency of the design, relative to the optimal forced choice stated pref-



erence experiment with choice sets of size 2, is given by
1
det(C) \ w
optdet

Proof. Without loss of generality, order the treatment combinations so that
the first treatment combination is the common base and let B be the nor-
malised main effects contrast matrix. Then BB’ = I, and

(t—1)—1-1...-1
-1 1 0... 0
At—DA=| -1 0 1... 0

Then C' = tBAB'/L, since we have normalised B without allowing for the
fact that it is derived only from the treatment combinations in a fraction, so
C = W(BB' + thb})

where by is the first column of B. Since b;b] is the first diagonal entry of
B'B, we see that

det(C) = (ztyyz) det(Ly +thyb)) = (1 +w) (17t )

by Theorem 1. (We need the result that for any vector a it is true that det(1,,+
aa’) =1+ ,;a}.)

By definition, the efficiency relative to the unrestricted forced choice experi-
ment is (det(C)/optdet)'/™, as required.

Using Theorem 2, we can see that from the point of view of statistical efficiency
all resolution 3 designs with the same number of treatment combinations are
equally good for a particular number of attributes with given number of lev-
els. It is also immaterial which of the treatment combinations is used as the
common base.

Example 1 Consider an experiment where there are four attributes describ-
ing each option. Three of the attributes have 2 levels and one has 4 levels.
Then using any 2 X 2 X 2 x 4//16 and using any treatment combination as
a common base gives a design which is 45.17% efficient relative to a forced



choice stated preference design. Using a 2 X 2 X 2 x 4//8 gives an efficiency
of 48.40%, while using the complete factorial gives an efficiency of 43.71%.

In Scott(5) a similar experiment was carried out with four attributes, two with
2 levels, one with 3 levels and one with 4 levels, and using 16 choice sets. In
this case the efficiency depends on the treatment combination chosen to be the
common base. If the common base has the level of the 3 level attribute which
appears 8 times then the efficiency is 44.49% and if the common base has
either of the other levels of the 3 level attribute then the efficiency is 46.12%.

If we want to use this approach to estimate main effects plus two-factor inter-
actions then we need to start with a resolution 5 fractional factorial design.
Unfortunately in this setting we can only know that all effects are estimable
and compare particular designs. We cannot calculate the efficiency relative to
the optimal design since only a general expression for det(C') is available (see
Burgess and Street (2)).

3 The ‘None of These’ Option

In this section we consider what happens when we adjoin a “none of these”
option to each choice set in a stated preference choice experiment. It turns out
that there is a simple relationship between the matrices for a forced choice
stated preference experiment and those from the the same choice sets with a
“none of these” option adjoined to each choice set.

We let By be the contrast matrix for the forced choice experiment, Ay be the
matrix of second derivatives of the likelihood function and let Cy = B fAfB}
be the information matrix for the forced choice experiment. We assume that
By is ¢ x L so there are ¢ contrasts of interest and note that Ay will contain
rows and columns of Os if not all treatment combinations appear in the choice
experiment. We will use B,, A, and C,, = B,A, B, for the corresponding
matrices when a “none of these” option has been adjoined. We assume that
each choice set in the forced choice experiment has m options in it and that
there are p such choice sets.

The next result establishes the relationship between By and B,, and between
Ay and A,,.

Theorem 3 (1) Let d* = L(L +1). Then

By 0
B,—|
aL



where 0. is a 1 X ¢ vector of zeroes and “none” is the final treatment.
Thus B,Bl, = I.1.

(2) Let r; be the number of times the ith treatment combination appears in
the stated preference experiment andr = (ry,...,rp). Let D be a diagonal
matriz with these replication numbers on the diagonal. Then

1 m*pAs+D -1’
(m+1)%p Ty mp

n

Proof.

(1) The only additional contrast is between “none” and some treatment com-
bination. The divisor d ensures that the contrast is of unit length.

(2) The “none” option will appear with each treatment combination as many
times as that treatment combination appears in the design so rpone =
mp = Y_; ;. Again only one additional row and column need to be ad-
joined to A.

Now we are in a position to evaluate C,,.

Theorem 4 Consider a forced choice stated preference experiment in which
a “none” option has been adjoined to each choice set. Then

1 m*pCy + By DB %Bfr’
T (m+1)%p %rB} mp(iﬂ)

Proof. This result follows directly from the definition, noting that jrr’ = mp,
Afj'p=0and j,D =r.

Recall that the treatment combinations in an 1 X f5 X ... X £, complete
factorial design can be thought of the elements in an Abelian group of the
same order. Thus we can represent the treatment combinations as the elements
of a subgroup (of the Abelian group) and the elements of the cosets of that
subgroup. Within each coset each level of each attribute appears equally often.
(It may be more familiar to think of the subgroup as the principal block and the
cosets as the other blocks in a blocked factorial design.) Using this observation
we can establish the following result.

Theorem 5 Suppose that all the treatment combinations in each coset (of
any fized but arbitrary subgroup) appear the same number of times, perhaps 0



times, in the choice experiment. Then

m me -+ %[c O/C

1)2 L41
(m+1) 0.

Proof. Without loss of generality we can order the treatment combinations
so that all treatment combinations from the subgroup appear first, then all of
those from some coset and so on. We assume that there are s distinct cosets
(including the subgroup) and that ¢; is the number of times each treatment in
the ith coset is replicated. Now Y=, 7; = mp and each coset has L/s treatment
combinations in it so >; t; = (mps/L).

We can write
By By...Bs 0,

n= 1 L
L a

where B; is the B matrix for the ith coset. Since ByB} = I. = >7;_, B;B] we
have that B;B, = (1/s)I. fori =1,2,...,s.

Since each treatment combination in each coset appears the same number
of times, Byr' = 0.. Also ByDB} = i t;B;B; = >_;_,(ti/s)I.. The result
follows.

Although this result may appear to be rather restrictive at first glance, in fact
most of the constructions for optimal design presented in the literature give
designs which satisfy the conditions of the Theorem 5. For example optimal
designs for estimating main effects, given in Street and Burgess (4), have this
structure. These designs have

_ _2 : 514 Sat Sily
Cf = mQLBlleag(le_lllglfl, [22_211'@2,1, ceey Kk—llek*1>

where

(m?—1)/4 l, =2, m odd,
m? /4 l, =2, m even,
(m? — (L,2® 4+ 22y +y)) /22 < L, <m,

m(m —1)/2 ly>m

and positive integers x and y satisfy the equation m = {,a +y for 0 <y < £,

So



o) =1 oot 25z

q=1

If we adjoin a ‘none’ option to each choice set then

Ch = T BlkDiag (#2002 GU T, ) o (L 4+ 1)),
Thus
Fl20,8, + (6, —1) 7 L+1
det(C) =11 tly =) 1 mL L)
L5 L m+1)2(6, — 1)L L(m +1)?2

Hence the same designs that are optimal for the estimation of main effects
in the forced choice setting are optimal for the estimation of main effects
when a “none of these” option has been adjoined to each choice set, although
the efficiency of the design is reduced from 100% to m*{ITi_,[¢,S, + (¢, —

1)/LgSq}* /(m + 1)%

But adjoining a “none” option does change the properties of the design. If
there is no “none” option then the optimal design for main effects can not be
used to give any information about two-factor interactions. The inclusion of
a “none” option makes it possible to estimate two-factor interactions as well,
although the efficiency may not be very high.

Example 2 Suppose that we have k = 3 attributes with ¢, = o = 2 and
U3 = 3. The optimal design using pairs for estimating main effects has the
following 12 choice sets: (000, 111), (001, 112), (002, 110), (010, 101), (011,
102), (012, 100), (100, 011), (101, 012), (102, 010), (110, 001), (111, 002),
(112, 000).

The optimal design using pairs for estimating main effects plus two factor
interactions has the following 30 choice sets: (000, 011), (001, 012), (002,
010), (010, 001), (011, 002), (012, 000), (100, 111), (101, 112), (102, 110),
(110, 101), (111, 102), (112, 100), (000, 101), (001, 102), (002, 100), (010,
111), (011, 112), (012, 110), (100, 001), (101, 002), (102, 000), (110, 011),
(111, 012), (112, 010), (000, 110), (001, 111), (002, 112), (010, 100), (011,
101), (012, 102). The determinant of the corresponding information matrix is
2.60417 x 10712

If we adjoin a “none of these” option to the 12 choice sets which are optimal
for estimating main effects then the determinant for the part of the infor-
mation matriz that corresponds to main effects plus two factor interactions
is 7.29363 x 107 and so the design is 67.2% efficient for estimating these
effects. The same set of 12 choice sets are now only 70.3% efficient for esti-
mating main effects. In this example all effects are independently estimated in



all of the designs discussed.

4 Concluding Remarks

If it is important to have a common base in a forced choice, stated preference
experiment then the most statistically efficient design for estimating main
effects uses the smallest possible resolution 3 design.

Including a “none of these” option in a set of choice sets that are optimal for
main effects reduces their efficiency for the estimation of main effects but does
mean that the sets can be used to estimate two factor interactions as well. It
does not seem to be possible to quantify these changes in efficiency in general.

Finally note that we have assumed that all components of the main effects
are of equal importance. If only the linear component was of interest then it
is possible that smaller designs could be used.
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