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Abstract Supervised classification approaches can predict labels for unknown
data because of the supervised training process. The success of classification
is heavily dependent on the labeled training data. Differently, clustering is
effective in revealing the aggregation property of unlabeled data, but the per-
formance of most clustering methods is limited by the absence of labeled data.
In real applications, however, it is time-consuming and sometimes impossible
to obtain labeled data. The combination of clustering and classification is a
promising and active approach which can largely improve the performance. In
this paper, we propose an innovative and effective clustering framework based
on self-adaptive labeling (CSAL) which integrates clustering and classification
on unlabeled data. Clustering is first employed to partition data and a certain
proportion of clustered data are selected by our proposed labeling approach
for training classifiers. In order to refine the trained classifiers, an iterative
process of Expectation-Maximization algorithm is devised into the proposed
clustering framework CSAL. Experiments are conducted on publicly data sets
to test different combinations of clustering algorithms and classification mod-
els as well as various training data labeling methods. The experimental results
show that our approach along with the self-adaptive method outperforms other
methods.
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1 Introduction

Clustering is an important task in unsupervised learning for dividing objects
into different groups. However, the performance of the existing clustering
methods is largely limited due to the absence of labels. Differently, classifi-
cation is advantageous for categorizing the new observations by a supervised
classifier learned from a training data set containing labeled observations. The
effectiveness of classification, to a great extent, depends on the quality of
labeled training data. Actually, lacking labeled data is the core challenging
problem in clustering and classification. In real applications, however, it is of-
ten very costly and sometimes even impossible to obtain sufficient correctly la-
beled data for training models. In order to solve this challenge, semi-supervised
learning [5] is proposed, which partitions unlabeled data based on the partially
available labeled training data, then the original labeled and self-labeled data
form a whole training data set for supervised learning. The typical applica-
tion scenario of semi-supervised learning is when the training data contains
a small amount of labeled data but with a large amount of unlabeled data.
Semi-supervised learning does not completely solve this problem because it
still needs the partially labeled data as a start, which leaves an open question
for supervised learning.

As an alternative, recently a new kind of approaches integrating unsuper-
vised and supervised learning on unlabeled data has been proposed, which has
shown to be effective in improving the learning performance. Through the new
integrated methods, the high quality labeled data points are first produced by
purely clustering the unlabeled data and the cluster assignments are used to
label training data, and finally the obtained labeled data is involved for bet-
ter classification. For example, Wang proposed a FCM-SLNMN [20] combined
algorithm by selecting training data from Fuzzy c-means (FCM) [6] clustering
results. Then the selected training data is applied to build a classifier with a
supervised normal mixture model. Similarly, Maulik et al. proposed a modified
differential evolution (DE)-based fuzzy c-medoids (FCMdd) [15][19] algorithm.
FCMdd selects 50% of the data points nearest to the cluster center (distance)
for training a SVM classifier.

Among these methods, the key step is the distance-based labeling process
for the unlabeled data (i.e., the correctly assigned data points by clustering
algorithms are taken as training data to train a classifier), which essentially
impacts the final classification results. Although these methods are more ef-
fective than traditional clustering algorithms, they also have some drawbacks.
For example, distance-based training data selection method may wrongly label
some points on the boundary. Specifically, due to the intrinsic unsupervised
limitations of the extant clustering algorithms, the labeling outcome is not
perfect: some points are distinctively assigned to one cluster, while others are
on the cluster boundary, where the points have the same distance from several
cluster centers, are wrongly placed. In order to choose the best quality labeled
data, one simple criteria is to select the points which are close to the cluster
centers. However, due to the existence of cluster overlapping fact in real ap-
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Fig. 1 The Clustering Results of Iris Data set by K-means. The 4-dimension data is mapped
into 2-dimension by PCA. The symbol × represents the points assigned into wrong clusters,
⊕ represents cluster centers.

plications, there may exist some points which are close to the cluster centers
but are located around the cluster boundaries. Fig. 1 gives an example of such
observations from clustering results on the Iris data set [7] by K-means [9][11]
algorithm. Here although point A is close to the cluster center, it should be
excluded from the labeling. It indicates that simply relying on distance-based
methods may select wrong data points into the training data, and eventually
mislead the final partition performance.

Distance-based labeling algorithm chooses the data points which are close
to cluster center point. The algorithm works reliably when most points are
closely gathered in different groups. However, this approach fails to handle
the clusters which possess some intersections, i.e., the cluster boundaries are
overlapping largely. In another word, some points close to cluster centers but
around the boundaries should not be labeled. In order to solve this problem,
entropy-based algorithms [12] are proposed which estimate the entropies of
data points and select the points with lower entropy values, indicating the
points very likely belonging to one cluster but weakly associated with other
clusters. This approach can easily identify the points around cluster bound-
aries than the distance-based method. In short, the entropy-based selection
approach handles the points around the boundaries well, while the distance-
based labeling approach finds the good points close to the clustering center
well. However, due to the diversity of cluster characteristics which undoubt-
edly influence the labeling method performance, only one labeling approach
is not able to manipulate the various cluster characteristics. In this paper, we
thus propose a self-adaptive labeling approach for selecting training data in
line with the cluster characteristics. The underlying idea is that if a cluster is
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compact and separated well from others, distance-based labeling will be ap-
plied in the clusters. Otherwise, if one cluster is intersected and not separated
well with other clusters, the entropy-based labeling will be employed. In par-
ticular, we adopt Silhouette coefficient [10] to measure the compactness and
separation of the clusters and determine which method should be applied.

Although the labeling approach can find possible labeled training data, the
classification is not always satisfied as a result of the quality of labeled training
data, derived from the clustering. For instance, data point xi which belongs
to cluster Cm is wrongly partitioned into cluster Cn (m 6= n). This scenario
will result in the wrong labels for the training data. Thus the classification
performance will be accordingly limited. This problem motivates us to fur-
ther devise a solution following a labeling-classifying-relabeling-reclassifying
mechanism to refine the classifier training.

Therefore, we propose an iterative clustering framework by combining the
above two strategies, i.e., self-adaptive labeling and classifier refinement. The
iterative process aims at refining the classifiers from labeled training data via
an expectation-maximization algorithm. In each iteration, we use the trained
classifiers to classify the source data and all the labels of the source data
are updated accordingly, then the improved labels of training data are fed
back to train the classifiers iteratively until the convergence of classifications.
Unlike the semi-supervised learning, the self-adaptive labeling based clustering
(CSAL) method does not need any labeled data in advance, instead it only
involves clustering for labeling training data and building classifiers.

The contributions of the paper are as follows:

– We propose the CSAL method which integrates clustering and classification
together for unlabeled data.

– We compare the self-adaptive labeling method with distance-based and
entropy-based labeling approaches.

– We conduct substantial experiments to verify our labeling algorithms and
integrated framework.

The rest of this paper is organized as follows. Section 2 presents the related
work. In Section 3 we first introduce the proposed clustering framework, then
detail training data labeling algorithms. Section 4 introduces several clustering
algorithms integrating with supervised classification together such as CEM and
CSAL. Experiments are then conducted and analyzed in Section 5. The paper
is concluded in the last section.

2 Related Work

2.1 Semi-Supervised Learning

The underlying idea of semi-supervised learning is taking the existing rare la-
beled data as a guidance to partition unlabeled data for reducing the painful
manually labeling process. Blum and Mitchell proposed a co-training approach
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[2] which uses two independent classifiers and labeled examples to classify the
unlabeled data and pick up the most confident positive and negative examples
to enlarge the training set of the other. Nigam and Ghani [16] proposed co-EM
which combines the co-training and Expectation Maximization (EM) for low
errors. Nigam et al. [17] also introduced an algorithm for learning from labeled
and unlabeled documents based on the combination of EM and a Naive Bayes
classifier. Some other good outcomes such as graph-based semi-supervised
learning [4] [14], semi-supervised support vector [1] [13] and multi-manifold
semi-supervised learning [8] also assumed that a small amount of labeled data
is involved. Generally, semi-supervised learning can be typically used when the
data has small pieces of labeled data with a large amount of unlabeled data.
This indicates that a few data points needed to be labeled first when applying
semi-supervised learning approaches on the completely unlabeled data. In real
applications, however, the labeling is often time-consuming. So it is beneficial
to integrate clustering with classification for directly handling unlabeled data.

2.2 Integrating Clustering for Classification

In order to solve the challenging problems, the combination of clustering and
classification becomes an active research area. Unlike semi-supervised learn-
ing combining labeled data with unlabeled data together, this method inte-
grates clustering and classification for directly partitioning on unlabeled data.
For example, Celeux and Govaert [3] described a classification EM algorithm
(CEM) which is a classification version of the EM algorithm, it incorporates
a classification step between the E-step and M-step of the EM algorithm by
a maximum a posteriori principle. Wang also proposed a FCM-SLNMN clus-
tering algorithm [20] by a distance-based training data labeling method from
FCM clustering results. But the performance of the extant integrated classifi-
cation algorithms is limited by distance-based training data labeling approach.
Different from FCM-SLNMN, the proposed CSAL relies on a self-adaptive la-
beling process considering information entropy and distance to select training
data, leading to much more reliable labeled data for further classification.

3 CSAL Framework

This section introduces the effective clustering framework (CSAL) which is
described in Fig 2.

3.1 Notations

For better illustration of the CSAL framework, we first list the notations used
in this paper in Table 1.
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Table 1 Notations

Notations Explanations
x = {x1, x2, ..., xN} input data set including N points
xi = {xi1, xi2, ..., xid} d-dimension vector
Cl a specific cluster, l = 1, ...,K
P (Cl|xi) probability of a point xi to be assigned to cluster Cl,

where l = 1, ...,K, i = 1, ..., N .
H(xi) information entropy of a point xi, i = 1, ...,N .
s(xi) silhouette coefficient s(xi) of point xi.
MS(Cl) mean silhouette coefficient
E selected training data

ωil
k posterior probabilities of xi belonging to Cl

θ = {αl, µl, Σl} parameters to train a classifier, where α, µ, Σ respectively
represent the mixing probability, means and covariance.

A% parameter for controlling the percentage of selected data.
s(xi) the silhouette coefficient of point xi.
MS(Cl) the mean silhouette coefficient for a specific cluster Cl.

3.2 The CSAL Framework

Calculating 

Information 

Entropy Classifying

Data

Calculating 

Distance

Labeling

Training

Data

Training

ClassifierClustering

Fig. 2 The CSAL Framework

The core components of the CSAL framework include: clustering, training
data labeling, training classifier and iteration. Among the components, train-
ing data labeling plays a vital role by connecting clustering and supervised
classifier together. Since the selected training data may have wrong assigned
points, the reselecting and iteration steps aim to refine the selected training
data after considering the classification results. The process of CSAL frame-
work is detailed below:

1. Clustering: Clustering algorithms are employed to divide the unlabeled
data into different groups;

2. Calculating information entropy and distance: Information entropy and
distance are computed for every point in terms of its probability of being
associated with each cluster;

3. Labeling training data: Different strategies (distance-based, entropy-based
and self-adaptive methods) are applied to select training data;

4. Training a classifier: Classifiers are trained based on the training data set;
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5. Classifying data: The trained classifier is used to classify the source data;
6. Recalculating information entropy and distance: Information entropy and

distance are recalculated regarding the classification outcomes;
7. Reselecting training data: Training data is refined based on the results of

step 6);
8. Iteration: Repeating the steps 2) - 7); and
9. Stopping: The algorithm stops until the partition is converged.

3.3 Training Data Labeling Algorithms

The goal of clustering is to groupN data points intoK clusters. To improve the
clustering results, the selected training data should consist of a proper quantity
of points which are correctly assigned to clusters. If the size of selected training
data is too small or too big, the performance of further classification will
be affected. Besides this, the quality of selected training data determines the
effectiveness of the further classification. In this section, we introduce distance-
based, entropy-based training data selection approaches, and propose a self-
adaptive labeling method involving distance and entropy to select training
data from the clustering results.

3.3.1 Distance-based Training Data Labeling Algorithm

The distance-based training data selection is depicted in Algorithm 1.

Input: A source data set {x1, x2, ..., xN}
Output: Selected training data E

1. Initiate E to be the empty set for selected training data;
2. Apply clustering algorithm on the given data to get clusters {C1, C2, ...,CN};
3. Calculate the distance of xi to the center of the cluster it belongs to;
4. Select the points which are close to the cluster centers with percentage A% into E.

Algorithm 1: Distance-based Training Data Labeling

3.3.2 Entropy-based Training Data Labeling Algorithm

First let us introduce the definition of entropy.

Definition 1 The information entropy H(xi) of point xi is defined as:

H(xi) = −ΣK
l=1P (Cl|xi)log2P (Cl|xi) (1)

whereΣK
l=1P (Cl|xi) = 1, P (Cl|xi) ≥ 0, l = 1, ...,K and P (Cl|xi)log2P (Cl|xi) =

0 when P (Clxi) = 0.
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The information entropy specified in Definition 1 makes clustering get a better
data partition. The underlying idea of entropy-based training data selection
algorithm is below: if the probability of assigning a point to a cluster is much
higher than to other clusters, then its information entropy to the cluster is
much lower than to any other clusters. If the probability of assigning a point
to several clusters are similar, then it indicates that the point is likely on the
boundaries of the clusters.

On top of the above idea, the entropy-based training data selection is given
in Algorithm 2.

Input: A source data set {x1, x2, ..., xN}
Output: Selected training data E

1. Initiate E to be the empty set for selected training data;
2. Apply clustering algorithm on the given data to get clusters {C1, C2, ...,CN};
3. Calculate the information entropy of point xi by (1) ;
4. Select points which have the lowest information entropy with percentage A% into E.

Algorithm 2: Entropy-based Training Data Labeling

3.3.3 Self-adaptive Training Data Labeling Algorithm

The two training data selection algorithms described above (distance-based
and entropy-based selection algorithms) have corresponding advantages and
disadvantages. The distance-based labeling algorithm is effective for the points
which are close to the cluster center. By contrast, the entropy-based selection
algorithm has a higher accuracy for the points which are on the boundaries of
clusters. We propose a novel and self-adaptive selection algorithm integrating
the distance-based and the entropy-based selection algorithms by data char-
acteristics.

Definition 2 The Silhouette coefficient s(xi) of point xi is defined as:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(2)

where, a(xi) is the average dissimilarity between point xi and all other points
in the same cluster, and b(xi) is the average dissimilarity between point xi and
all other points in the next nearest cluster.

Silhouette coefficient is a good method to evaluate how objects in a cluster
are closely related, and how distinct or well-separated a cluster is from other
clusters. A higher Silhouette coefficient score relates to a model with better
defined clusters. For a specific cluster, we use the mean silhouette coefficient
which is defined in (3) to evaluate the cluster.

MS(Cl) =
1

n
Σn

i=1s(xi) (3)
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High MS(Cl) denotes that the cluster Cl is separated from other clusters
well and the related objects in this cluster are close with each other. We know
that the distance-based training data labeling method is effective for the points
which are close to the center of the cluster, the entropy-based training data
labeling method outperforms the former on the boundaries of the clusters. The
mean silhouette coefficient can be applied to determine which method should
be chosen for labeling training data. The integrated self-adaptive training data
labeling algorithm is described as Algorithm 3.

Input: A source data set {x1, x2, ..., xN}
Output: Selected training data E

1. Initiate E to be the empty set for selected training data;
2. Apply clustering algorithm on the given data to get clusters {C1, C2, ...,CN};
3. Compute the mean silhouette coefficient MS(Cl) of cluster Cl;
4. if MS(Cl) > threshold then

Select A% of points in Cl into E by distance-based labeling algorithm;
else
Select A% of points in Cl into E by entropy-based labeling algorithm.
end

Algorithm 3: Self-Adaptive Labeling

4 Integrated Algorithms

Different supervised classification methods can be applied in the CSAL frame-
work. In this section, we firstly introduce a classification expectation maxi-
mization (CEM) algorithm [3], then detail our proposed innovative classifica-
tion algorithm (CSAL) integrating clustering and supervised normal mixture
model, followed by three derived algorithms.

4.1 CEM Algorithm

The CEM algorithm calculates the parameters, determines the clusters by a
classification approach and starts from an initial partition.

Start: Given an initial partition {x1, x2, ..., xN},
E-step: For cluster l = 1, ...,K, and data point i = 1, ..., N , calculate the

current posterior probabilities of xi belonging to Cl:

ωil
k =

α̂k
l f(xi, µ̂

k
l , Σ̂

k
t )

ΣK
t=1α̂

k
t f(xi, µ̂

k
l , Σ̂

k
t )

(4)

where f(xi, µ̂
k
l , Σ̂

k
t ) denotes the d-dimensional normal density in terms of mean

µ̂k
l and covariance matrix Σ̂k

t .
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C-step: Assign xi to cluster Cl with the maximum posterior probability
ωk
il, and generate the partition results Pk.
M-step: For l = 1, ...,K, calculate the estimates of maximum likelihood

α̂k+1
l ,µ̂k+1

l ,Σ̂k+1
t by (5).



















α̂k+1
l =

#Pk

l

N

µ̂k+1
l =

Σ
xi∈Pk

l

xi

#Pk

l

Σ̂k+1
t =

ΣK

i=1Σxi∈Pk

l

‖xi−µ̂
k+1

l
‖

Nd

(5)

where #P k
l is the number of points assigned to cluster Cl.

4.2 CSAL Algorithm

The CSAL algorithm is described as follows. First, a clustering algorithm is
applied to cluster the data set, and each point is given a class label. Second,
A% data points in each cluster are selected as training data, then a supervised
normal mixture model for classification is trained on the selected training data.

θ̂0l = 1
N
ΣN

i=1yil are calculated by (6):















α̂0
l = 1

N
ΣN

i=1yil

µ̂0
l =

ΣN

i=1yilxi

ΣN

i=1
yil

Σ̂0
l =

ΣN

i=1yil(xi−µ̂0
l
)(xi−µ̂0

l
)T

ΣN

i=1
yil

(6)

Finally, we repeat the process of training data labeling and classification of
the whole data set until the convergence of the algorithm. Below, we show the
main process of the CSAL algorithm:

Start: Given an initial partition {x1, x2, ..., xN},
E-step: For l = 1, ...,K, and i = 1, ..., N , compute the posterior probabili-

ties of xi belonging to Cl:

ω̂k
il =

α̂k
l |Σ̂

k
l |

− 1
2 exp− 1

2 (xi − µ̂k
l )Σ̂

k
l (xi − µ̂k

l )
T

ΣK
t=1α̂

k
t |Σ̂

k
l |

− 1
2 exp− 1

2 (xi − µ̂k
t )Σ̂

k
t (xi − µ̂k

t )
T

(7)

C-step: Assign xi to cluster Cl with the maximum posterior probability
ωk
il, and set ykil = 1 and ykit = 0, t 6= l.
S-step: Select A% data points from each cluster by training data selection

algorithm. If point xi is selected as training data, si = 1; otherwise si = 0. Let

λ =

{

1, yil = 1, and si = 1;
0, otherwise.

(8)

M-step: l = 1, ...,K, calculate the estimates of maximum likelihood α̂k+1
l ,

µ̂k+1
l , Σ̂k+1

l by (9).
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





























α̂k+1
l =

∑

N

i=1
λk

il
∑

K

t=1

∑

N

i=1
λk

il

µ̂k+1
l =

∑

N

i=1
λk

il
xi

∑

N

i=1
λk

il

Σ̂k+1
l =

∑

N

i=1
yil(xi−µ̂

k+1

l
)(xi−µ̂

k+1

l
)
T

∑

N

i=1
λk

il

(9)

The CSAL algorithm extends the CEM algorithm: the S-step is added
after the C-step to select training data, and in the M-step the parameters are
calculated on the selected training data. Different clustering algorithms such
as K-means, FCM and Gaussian Mixture Model (GMM)[18] can be integrated
with the CSAL algorithm, and respectively generate the derived algorithms as
Kmeans-CSAL, FCM-CSAL and GMM-CSAL.

4.3 CSAL Convergence and Complexity Analysis

The convergence of the CEM algorithm has been proved [3]. Similarly, we
prove the convergence of the CSAL algorithm as follows.

Theorem 1 The log likelihood of CSAL is log p
(

x|λ̂k, α̂k, µ̂k, Σ̂k
)

, and

the estimates of the parameters θ̂k+1 = {α̂k+1
l , µ̂k+1

l , Σ̂k+1
l }Kl=1 of the CSAL

algorithm converges to fixed values.
Proof The log likelihood is

log (p (x|θ)) =

N
∑

i=1

K
∑

l=1

λil logαlp(xi|µl, Σl) (10)

θ̂k+1 = {α̂k+1
l , µ̂k+1

l , Σ̂k+1
l }Kl=1 is the maximum log likelihood of

log
(

p
(

x|λ̂k, α̂k, µ̂k, Σ̂k
))

, we have:

log
(

p
(

x|λ̂k, α̂k+1, µ̂k+1, Σ̂k+1
))

≥ log
(

p
(

x|λ̂k, α̂k, µ̂k, Σ̂k
))

(11)

and when ykil = 1, ŵk+1
il ≥ ŵk+1

it holds for all t 6= l, which implies

α̂k+1
l p(xi|µ̂

k+1, Σk+1) ≥ α̂k
l p(xi|µ̂

k, Σk) (12)

In addition, the proportion of selected data is the same in each iteration, and
the selected data has the highest ŵk+1

il , so

log p
(

x|λ̂k+1, α̂k+1, µ̂k+1, Σ̂k+1
)

≥ log p
(

x|λ̂k, α̂k, µ̂k, Σ̂k
)

(13)

Since the number of instances into each cluster is finite, log p
(

x|λ̂k, α̂k, µ̂k, Σ̂k
)

converges to a fixed value. If k is large enough, then






α̂k = α̂k+1

µ̂k = µ̂k+1

Σ̂k = Σ̂k+1

(14)
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In each iteration, the complexity of the CSAL algorithm is O(dKN).

5 Experiments and Evaluation

In this section, we firstly introduce the experiment settings and evaluation
method. Then we detail the experimental results.

5.1 Data Sets

The data sets mainly involve two synthetic data sets and four real data sets
from the UC Irvine Machine Learning Repository [7].

1) Synthetic Gaussian data: The Gaussian data sets are synthesized in two
ways. Firstly, 200 instances (we name the data set GData1) falling into two
classes of bivariate Gaussian density with the following parameter settings:































µ1 = (1, 1)
µ2 = (2, 0)

Σ1 =

[

1
0

0
0.25

]

Σ2 =

[

0.8
0

0
1

]

(15)

Secondly, 300 instances (we call it GData2) falling into three classes of bivariate
Gaussian density with the following parameter settings:























































µ1 = (0, 0)
µ2 = (6, 6)

µ3 = (−10,−10)

Σ1 =

[

1
0
0
1

]

Σ2 =

[

3
0
0
3

]

Σ3 =

[

100
0

0
100

]

(16)

2) Real Data Sets: Four real data sets from UCI repository, which are Iris,
Heart Diseases, New Thyroid and Wine are exploited in this paper.

5.2 Experimental Settings

Classification accuracy is used to evaluate the performance of the CSAL algo-
rithms.

ClassificationAccuracy =

∑K

l=1 Dl

N
(17)
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where Dl is the number of samples correctly partitioned in the genuine class
Cl.

To evaluate the performance of our proposed CSAL algorithms, exper-
iments are conducted as follows. First, we compare different training data
labeling strategies which connect clustering algorithms with supervised clas-
sifiers together. Second, we compare the derived CSAL algorithms with three
different clustering algorithms (K-means, FCM and GMM). Next, we evaluate
the derived CSAL algorithms comparing with clustering algorithms integrating
different classification methods (Naive bayes and SVM). Then they are com-
pared with the CEM algorithms. Last, the execution time of all the algorithms
are compared.

5.3 Experimental Results

5.3.1 Training Data Labeling

In this paper, different training data labeling strategies (distance-based, entropy-
based and self-adaptive methods) are compared, where threshold is empiri-
cally set to 0.35. Fig. 3-8 show that the entropy-based method performs better
than the distance-based method for selecting training data, and self-adaptive
method outperforms the distance-based and entropy-based methods. Because
entropy-based and self-adaptive methods have the same performance on Iris
and New Thyroid data sets, their curves are overlapped in Figs. 5 and 6.

5.3.2 Comparison of the CSAL with Traditional Clustering Algorithms

In order to evaluate our CSAL framework, we compare it with traditional
clustering algorithms (K-means, FCM and GMM). The comparison result is
described in Fig. 9 which clearly indicates that the CSAL is more effective than
traditional clustering algorithms. The derived Kmeans-CSAL, FCM-CSAL
and GMM-CSAL algorithms performs much better than the corresponding
clustering algorithms.

5.3.3 Comparison of the CSAL Algorithms with Traditional Clustering
algorithms Integrating Different Supervised Classification Methods

The comparison results are shown in Figs. 10 and 11. For all data sets, Fig. 10
indicates that the derived CSAL algorithms are more effective than the corre-
sponding clustering algorithms which integrate Naive Bayes classifier without
the training data labeling process. For most of the data sets, Fig. 11 shows that
the derived CSAL algorithms perform better than the corresponding cluster-
ing algorithms which integrate SVM classifier without a training data labeling
process.
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Fig. 3 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on GData1
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Fig. 4 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on GData2
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Fig. 5 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on Iris
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Fig. 6 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on New Thyroid
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Fig. 7 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on Wine
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Fig. 8 The Classification Accuracy of Self-adaptive, Entropy-based, Distance-based Meth-
ods for Training Data Labeling on Heart Disease
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Fig. 9 Performance Comparison of K-means vs Kmeans-CSAL, FCM vs FCM-CSAL, GMM
vs GMM-CSAL
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Fig. 10 Performance Comparison of Kmeans-NaiveBayes vs Kmeans-CSAL, FCM-
NaiveBayes vs FCM-CSAL, GMM-NaiveBayes vs GMM-CSAL
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Fig. 11 Performance Comparison of Kmeans-SVM vs Kmeans-CSAL, FCM-SVM vs FCM-
CSAL, GMM-SVM vs GMM-CSAL

5.3.4 Comparison with the CEM algorithm

The CSAL is also compared with the CEM algorithm, which is shown in Fig.
12. It illustrates that the derived CSAL algorithms are more effective than the
corresponding CEM algorithms.

5.3.5 Comparison of Runtime

The following Table 2 indicates the comparison of execution time of different
algorithms. The algorithms are coded in Matlab and executed in a machine
with 3.10GHz CPU and 4.00GB RAM. Table 2 shows that the execution time
of the CSAL process is longer than that of the Naive Bayes classifier and
the CEM algorithms, but much shorter than that of the SVM algorithm. The
runtime of GMM is much longer than the CSAL process, consequently GMM-
CSAL takes slightly longer time than GMM. The runtime of the Kmeans-
CSAL algorithm is in the same size of that of K-means. The runtime of the
FCM-CSAL algorithm is much longer than that of FCM, but they are still in
the same order of magnitude.



CSAL 19

GData1 Gdata2 Iris NewThyroid Heart Wine

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

Different Datasets

Kmeans-CEM Kmeans-CSAL

FCM-CEM FCM-CSAL

GMM-CEM GMM-CSAL

Fig. 12 Performance Comparison of Kmeans-CEM vs Kmeans-CSAL, FCM-CEM vs FCM-
CSAL, GMM-CEM vs GMM-CSAL

Table 2 The Execution Time (in seconds)

Algorithms GData1 GData2 Iris Heart NewThyroid Wine
K-means 0.1391 0.1644 0.1405 0.2772 0.2777 0.1645

Kmeans-NaiveBayes 0.1475 0.1748 0.1482 0.2873 0.2876 0.1746
Kmeans-SVM 0.2095 0.3166 0.2395 0.8544 0.4467 0.3848
Kmeans-CEM 0.1494 0.1802 0.1495 0.2892 0.2951 0.1827
Kmeans-CSAL 0.1839 0.2212 0.1672 0.3315 0.3335 0.2212

GMM 2.3863 4.7656 2.5647 1.56 1.1084 1.7350
GMM-NaiveBayes 2.3925 4.7746 2.5709 1.5694 1.1196 1.7467

GMM-SVM 2.4752 4.9741 2.6884 2.2133 1.3220 2.0992
GMM-CEM 2.3958 4.7823 2.5794 1.5735 1.1276 1.7548
GMM-CSAL 2.4184 4.8218 2.6034 1.6052 1.1782 1.7903

FCM 0.0088 0.0158 0.0123 0.0173 0.06 0.0423
FCM-NaiveBayes 0.0181 0.0275 0.0227 0.0314 0.0714 0.0547

FCM-SVM 0.165 0.4844 0.1998 1.1267 0.7006 0.4798
FCM-CEM 0.0214 0.0344 0.0292 0.0339 0.0789 0.0617
FCM-CSAL 0.0681 0.0881 0.0631 0.0955 0.1288 0.1125

6 Conclusion

The challenging problem in clustering and classification is the absence of la-
beled data, however, it is costly and time-consuming to obtain labeled data
in real applications. In this paper, we proposed a novel clustering framework
CSAL to solve the challenge. In this framework, we also proposed a new self-
adaptive labeling approach for training data selection and compared it with



20 Fangfang Li et al.

distance-based and entropy-based labeling methods. The experiments on pub-
licly data sets showed that the self-adaptive labeling method outperforms the
distance-based and entropy-based methods. Additionally, the experiments also
demonstrated that the CSAL is more effective than the corresponding com-
parison partners. From the experiments we know that the CSAL can handle
unlabeled data well, but it still does not consider the data characteristics such
as gaussian or gamma distribution of the data. We believe that the perfor-
mance of the CSAL framework can be further enhanced if we involve the data
distribution in the future.
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