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1. Introduction 
 

Dynamic oligopoly models have been examined by many researchers during the last 

three decades. The most important references and results on single-product oligopolies 

are summarised in Okuguchi (1976) and their extensions to the multi-product case are 

discussed in Okuguchi and Szidarovszky (1999). Most of the earlier models were based 

on the special assumption that at each time period all relevant information is 

instantaneously available. However in economic reality there is always a time lag in 

obtaining and implementing information about the rivals’ output as well as about the 

firms’ own output. Time delays can be modelled either by assuming fixed time lags or 

continuously distributed time lags. Russel et al. (1986) used fixed time lags and their 

dynamic model was described by a differential-difference equation. The major difficulty 

in using this idea arises from the fact that time delays are not known exactly. 

Continuously distributed time lags are more realistic. They have been earlier introduced 

and used in mathematical biology (see for example, Cushing, 1977), and their first 

economic application was presented by Invernizzi and Medio (1991). Based on their 

ideas Chiarella and Khomin (1996) and Chiarella and Szidarovszky (2001) have 

examined dynamic oligopolies with continuously distributed time lags and examined the 

asymptotic behaviour of the equilibrium. Continuously distributed time lags are based on 

the weighted average of all past data from time zero up to the current time period t. For 

larger values of t this assumption seems unrealistic since very early, irrelevant data are 

also used in calculating the current average. In addition, dynamic economic models with 

continuously distributed time lags right back to the beginning of the process generally 

tend to be highly stable. The aim of this paper is to introduce continuously distributed 

lags over a finite time interval. Dynamic oligopoly models will be formulated with these 

bounded continuously distributed lags and their stability properties, particularly in 

relation to the possible birth of limit cycles, will be studied and compared with the 

infinitely continuously distributed lag case considered by Chiarella and Szidarovszky 

(2001).  
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This paper develops as follows. In section 2 bounded continuously distributed lags will 

be introduced, and in section 3 will be applied to the corresponding dynamic oligopoly 

models. We will also show that the resulting integro-differential equations are equivalent 

to a certain system of ordinary differential-difference equations. In section 4 stability 

analysis on the basis of local linearization will be undertaken, and the Hopf bifurcation 

theorem will be applied in section 5 to examine the possibility of the birth of limit cycles. 

Some important special cases will be discussed in section 6, and in sections 7 and 8 

computational results will illustrate the theoretical findings. Section 9 will conclude the 

paper. 

 

2. Bounded Continuously Distributed Lags 
 

Select a positive constant δ>0, and assume that the delayed information on any function 

x(t) is given by a weighted average of the past data x(s) for [ ],s t t∈ − δ . The weighting 

function of infinitely continuously distributed lags used in Invernizzi and Medio (1991), 

Chiarella and Khomin (1996) and Chiarella and Szidarovszky (2001) cannot be used 

here, since its integral equals 1 on the interval [0, ∞], rather than on the new interval [t-δ, 

t]. However we may still use basically the same weighting function if an appropriate 

normalising factor is introduced. Hence in this paper we will use weighting functions of 

the form 

( ) ( )
( )1 1, ,0, 0

0, ,

t s
Tw t s T e for m

C T T

−−
− δ = ⋅

δ
=   (1) 

and 

( ) ( )
1 ( )1 1( , , , ) 1, 2,...

, , !

m m t s
m Tmw t s T m t s e for m

C m T m T

+ −− − δ = ⋅ − = δ  
 (2) 

 

Here is the normalising factor and we note that functions (1) and (2) are the ( , , )C m T δ

1 (C m, , )T δ -multiples of the corresponding weighting functions used by Invernizzi and 

Medio (1991), Chiarella and Khomin (1996) and Chiarella and Szidarovszky (2001) in 
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modelling continuously distributed time lags. The weighting functions have the following 

properties: 

i.  for m=0, weights are exponentially declining with the most weight given to the most 

current data; 

ii.  for , zero weight is assigned to the most recent output, rising to maximum at t-s 

= T, and declining exponentially thereafter; 

1m ≥

iii. as m increases, the function becomes more peaked around t-s =T. For sufficiently 

large values of m the function may for all practical purposes be regarded as very close 

to the Dirac delta function centered at t-s =T; 

iv. as T→ 0, the function tends to the Dirac delta function. 

 

First we establish the functional form of the normalising factors. 

Lemma 1. 

The normalising factors are given by 

 (0, , ) 1 0,TC T e for m
δ−

δ = − =  

and for , by 1m ≥

   ( )
0

, , 1 .
!

k

m m
T

k

m
TC m T e
k

δ−

=

δ 
 
 δ = − ∑  

Proof.   

The normalising factors result from the requirement that  ( , , ) 1 for all
t

t
w t s T m ds m

−δ
− =∫ .

Notice first that 

 ( )
01 10, , 1 ,

ut st
T T

t
C T e ds e du e

T T

− δ−− −
δ

−δ δ
δ = = − = −∫ ∫  

when we introduce the new variable u = t-s.  

In the general case notice first that 

  
( ) ( )

1 ( )

1

0

1, ,
!

1 ,
!

m m t st m T

t

m mu
m T

mC m T t s e ds
m T

m u e du
m T

+ −−

−δ

+δ −

 δ = −∫  
 

 = ∫  
 
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and by introducing the integrals 

 
1

0

1 ( 0,1,2,..., )
!

k mu
k T

k
mC u e du k

k T

+δ − = =∫  
 

m  

we see that C m .  ( ), , mT Cδ =

Simple integration shows that 

  0
0

1 ,
mu m
T TmC e du e

T

δδ − −
= = −∫  

and by using integration by parts we have for all , 1k ≥

  

1 1
1

0

0

1

1 1
! !

1 .
!

mu mu
k kT T

k k
k

k m
k T

k

m e m eC u kum mk T k T
T T

m e C
k T

δ

− −+ +δ
−

δ−

−

 
    = − ∫    

    − −
 

 = − δ + 
 

du

                                                

 

The assertion follows by adding this equality for k=1,2, ..., m. 

                                                                                                                                     

We illustrate the bounded continuously distributed lag weighting function w (t-s, T, m) in 

Figure 1 for m varying from 0 to 10 at various values of δ . We note that the maximum 

(for m >0) of w (t-s, T, m) occurs at T and here we have taken T=12.  So for values of 

δ <1, the past values are given an increasing weight as one moves from t to t-δ; this is 

merely a reflection of the fact that over such a (relatively) short interval the most recent 

observations may be regarded as less reliable or less certain by the economic agents. As δ 

increases past T, the weighting function then drops off. In this case agents give less 

weight to most recent information for reasons previously stated; they give maximum 

weight  to information around lag T; information beyond lag T is given decreasing weight 

being regarded as less relevant to current circumstances. Thus Figure 1 illustrates clearly 

how the bounded continuously distributed lag weighting function allows economic agents  

to concentrate on those parts of past information that are considered most relevant and 

weight that information as they feel appropriate by adjusting the parameter m. 

 
2 Since the time scale can always be adjusted to make T=1, Figures 1 and 2 can be regarded as giving a feel 
for the general nature of the family of weighting functions. 
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It is worth pointing out that for all m ≥0 

  lim ( , , ) 1C m T
δ→∞

δ =

so that in this limit the weighting functions (1) and (2) reduce to the infinitely 

continuously distributed lag case. 

In Figure 2 we compare the cases δ=5 and δ=∞, still for T=1. There is essentially no 

difference between the two weighting functions. This observation will be useful later 

when we seek to illustrate the difference in dynamic behaviour between the bounded and 

infinitely continuously distributed lag situations. 
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Figure 1. The Bounded Continuously Distributed Lag Weighting Function 
for Various values of δ and m. 
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Figure 2. Comparing Large δ with the Infinitely Continuously 
Distributed Lag Weighting Function 

 

3. Dynamic Oligopolies 
Consider an n-firm single-product oligopoly without product differentiation in which 

( )ix t is the output of firm i at time period t,  is the output of the rest of 

the industry, and is the best response of firm i. The equilibrium of the 

oligopoly is a constant vector 

( ) ( )i
j i

Q t x t
≠

= ∑ j

)( )(i ig Q t

(* *
1 ,..., n )*x x= x  such that for all i=1,2,...,n,  

 * *
i i j

j i
x g x

≠

 = ∑ 
 

. 

In the local stability analysis to be considered in subsequent sections, the slopes of the 

best response functions at the equilibrium, namely  

    ' *( )i i ig Qγ =

play an important role. In this paper we only consider oligopolies for which the best 

response function is downward sloping, so 0iγ < . 

Assume that at each time period each firm adjusts its output in the direction of the 

expected best response then the following dynamic equations are obtained: 

  ( ) ( )( ) ( )( ) ( 1,2,..., )e e
i i i i ix t k g Q t x t i n

•
= − =    (3) 
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where >0 is a given speed of adjustment for each firm. Here Q and ik ( )e
i t ( )e

ix t are 

respectively firm i’s expectation of rest of industry output and its own output at time t. 

Both  and ( )te
iQ ( )e

ix t are based on delayed information, and the delays are bounded 

continuously distributed as described in Section 2. Thus 

      (4) ( ) ( ) ( ), , ,
i

t
e
i i i i

t
Q t w t s T m Q s ds

−δ
= − δ∫ i

.i

and 

  ( ) ( ), , , ( )
i

t
e
i i i i

t
x t w t s S l x s

−∆
= − ∆∫ ds

i

     (5) 

We use δ  and to respectively denote for firm i the length of the interval over which 

past rest of industry output and its own output enter its decision process. As Figure 1 

indicates, the values of T  and  show that among all past data being considered, 

and 

i

)i

i∆

(i

i iS

(iQ t T− )x t S− have the largest weights for m . The values of 

 indicate how peaked the weighting functions are around 

respectively. 

1 and 1i ≥ il ≥

il

i

andim

andiT ,S

Substituting these equations into (3) a non-linear integro-differential equation system is 

obtained, the local stability of which is the subject of the next section. 

It is clear that a constant vector (* *
1 ,..., n )*x x x=  is an equilibrium of the n-firm oligopoly 

if and only if it is the steady-state of the dynamic system (3). 

We will next show that all techniques for analysing the asymptotic properties of ordinary 

differential-difference equations  (expounded by Bellman and Cooke, 1963) can be 

applied by verifying that equations (3) are equivalent to a system of non-linear ordinary 

differential-difference equations. 

Lemma 2.  The system of integro-differential equations (3) is equivalent to the system of 

 ordinary differential-difference equations (8), (9), (15), (16) and (20) 

below. 

(
1

3
n

i i
i

n m l
=

+ +∑ )
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Proof:  

Assume first that 1. For  introduce functions im ≥ 1,2,..., ik = m

  ( ) ( ) ( ) ( )
1 ( )

,
1 ,
!

i

i
i

i

k m t s
t kk Ti

i m i
t i

mq t t s e Q s d
k T

+ −−

−δ

 
= −∫  

 
s    (6) 

then the definition of the weighting functions w implies that  

  ( )
,

1( ) ( ).
( , , )

i
i

me
i

i i i

Q t q t
C m T

=
δ i m       (7) 

By simple differentiation we see that 

  ( ) ( ) ( ) ( ) ((0) 0
,,

i i

i
ii

m
Ti i

j i m ji m
j i j ii i

m mq t x t q t e x t
T T

δ−•

≠ ≠

 = − −∑  
)i−δ∑   (8) 

and for  1k ≥

 ( ) ( ) ( ) ( ) ( ) (
1

( ) 1
, ,,

1
!

i i

i
i ii

k m
k k k Tki i

i m i m i j ii m
j ii i

m mq t q t q t e x t
T k T

+ δ−•
−

≠

  = − − δ ∑    
)−δ . (9) 

In the case of , we have 0im =

   (0)
,0

1( ) ( )
(0, , )

e
i

i i

Q t q t
C T

=
δ i      (10) 

with 

   
( )

(0)
,0

1( ) ( ) .i

i

t s
t

T
i

t i

q t e Q s ds
T

−−

−δ
= ∫ i      (11) 

Then simple differentiation shows that 

   (0) (0)
,0 ,0

1 1( ) ( ) ( ) ( ).
i

iT
i j i j

j i j ii i

q t x t q t e x t
T T

δ−

≠ ≠

 = − −∑ ∑  
� i−δ   (12) 

Assume now that 1l . Similarly to the previous derivation introduce functions i ≥

   ( ) ( ) ( )
( )

( )
1

,
1 ,
!

i

i
i

i

k l t s
t kk Si

i l i
t i

lx t t s e
k S

+ −
−

−∆

 
= −∫  

 
x s ds   (13) 

then obviously 

   ( ) ( ) ( )( )
,

,

1
, ,

i
i

le
i

i i i
i lx t x

C l S
=

∆
t      (14) 
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and similar equations hold for ( )( )
, i

k
i lx t

i
. Thus 

   (0) (0)
, ,( ) ( ) ( ) ( )

i i

i
i i

l

Si i
i l i i l i i

i i

l lx t x t x t e x t
S S

∆
−

 = − − − � ∆   (15) 

and for , 1k ≥

  
1

( ) ( 1) ( )
, , ,

1( ) ( ) ( ) ( ).
!

i i

i
i i i

k l
Sk k k ki i

i l i l i l i i i
i i

l lx t x t x t e x t
S k S

+ ∆−
−  

 = − − ∆  
 

� −∆   (16) 

In the case of 0l , we have i =

   (0)
,0

1( ) ( ) ,
(0, , )

e
i

i i
ix t

C S
=

∆
x t      (17) 

with 

   
( )

(0)
,0

1( ) ( )i

i

t s
t

S
i

t i

.ix t e x s
S

−−

−∆
= ∫ ds      (18) 

By simple differentiation 

(0) (0)
,0 ,0

1 1( ) ( ) ( ) ( ).
i

iS
i i i i

i i

x t x t x t e x t
S S

∆−
 = − − − � i∆    (19) 

 

By using relations (7) and (14) we can rewrite the dynamic equation (3) in terms of the 

new variables as 

  ( ) ( )
( ) ( )
,

1 1( ) ( ) ( )
, , , ,

i
i

m
i i i i m i l

i i i i i i
,
i
i

lx t k g q t x t
C m T C l S

  
= −   δ ∆   

� .  (20) 

Then equations (8), (9), (15), (16) and (20) give a system of ordinary differential-

difference equations3 for the unknown functions  ( )
, ( ) ( 0,1,..., ),

i

k
i m iq t k m=

( )
, ( ) ( 0, 2,..., ),

i

k
i l ix t k l=  and ( )ix t for i=1,2,.., n with calculated from (7) 

and (14) respectively.  Notice that the number of equations equals the number of 

unknowns, namely 

( ) ande
iQ t ( )e

ix t

   .  ( ) ( )( ) ( )
1 1

1 1 1 3
n n

i i i
i i

m l n m
= =

+ + + + = + +∑ ∑ il

                                                 
3 The special subcases when mi=0 and/or li =0 are obtained by using (10)-(12) and (17)-(19) as appropriate. 
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The initial conditions are selected as follows: 

    

( )

( )

(0) 0 (for all )

(0) 0 (for all )
( ) close to equilibrium ( 0)

k
i
k

i

i

q k

x k
x

=

=
τ = −ε ≤ τ ≤

where { }1 1max ,..., , ,...,n nδ δ ∆ ∆ε = .  

                                                                                                                                   

 

4. Local Stability Analysis 
As we have demonstrated in the previous section the integro-differential equation system  

(3) is equivalent to a system of ordinary differential-difference equations, therefore the 

same methods can now be applied as used for the stability analysis of ordinary 

differential-difference equations. 

Using ( )ix t and now to denote deviations of these variables from their equilibrium 

levels, the linearization of equations (3) reads 

( )iQ t

 
( )

( )

( ) { , , , ( )

, , , ( ) }

i

i

t
i i i i i i i

t

t

i i i i
t

,

x t k w t s T m Q s ds

w t S l x s ds

•

−δ

−∆

= γ − δ∫

− −∆ ∆∫
    (21) 

where is as defined previously, furthermore ( , , )w t s T m− iγ  is the derivative of the best 

response of firm i at the equilibrium. We now state the main result on the eigenvalue 

structure of the system (21): 

ig

 

Theorem 1.  The eigenvalue spectrum of the linearized equation (21) is given by the 

solutions of the polynomial-exponential equation  

   ( ) ( )( ) ( )
( ) ( )11

1
n n j

j j
jj j j

B
A B

A B==

 λ
λ − λ + =∑∏  λ − λ  

0

λ

  (22) 

where the quantities are defined by equations (25), (26) below. ( ), ( )i iA Bλ

Proof 

We look for the solution in the form 
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   ( ) ( 1, 2,..., )t
i ix t v e i nλ= =   

as in Bellman and Cooke (1963), then equation (21) has a similar form as in Chiarella 

and Khomin (1996). In order to obtain the specific expression, we need to compute 

integrals of the form: 

   ( )
( )11 1( , , ) ( )

!

m t s
T

t m mm
m T

t

sI t T t s e e ds
C m

−+ − λ

−δ
δ = ⋅ −∫   (23) 

if , and  1m ≥

    ( )0
1 1, ,

t s
T

t
s

t
I t T e e ds

C T

−− λ

−δ
δ = ⋅∫    (24) 

if m=0, where C is given earlier as the normalising constant C(m, T, δ). From equation 

(23) we have (with new variable u =t-s) 

  

( )

( ) ( )

( )

( )
( ) ( )

1
1

1

0
0

10
0

1
1

1 1( , , )

1

0, , (1 )
1 (

(0, , )

u
T

Tt
T

t
T

t u

u
ut

T

t

T

I t T e e du
C T

e ee e du
CT CT

C T Te e T
CT C T

λ

λ

δ − λ −

δ
− λ+

δ − λ+λ

−δ λ+ − λ

δ = ⋅∫

 
 = =∫ − λ + 
 

δ +λ = − = +λ λ + δ 
1 ) .e

  

If , then by introducing the new variable u =t-s again,  1m ≥

   
( ) ( )1

0
1

(1 )

0

1 1( , , )
!

1 1 .
!

mu
T

mu T
T m

m t umm
m T

m
m t

I t T u e e du
C m

m u e du e
C m T

λ

δ + − λ −

+δ − + λ

δ = ∫

 = ⋅∫  
 

 

Introduce next the new variable (1 T
m
λ= ⋅ + )v u to obtain 

  
( ) ( )

( )( )
( )

1(1 )

0

1

1 1( , , )
! 1 1

, , 1 1 .
( , , ) 1

T
mvm
T

m m
t

m mT T
m m

T
m t

mT
m

m v dvI t T e e
C m T

C m T
e

C m T

λ +δ +
− λ

λ λ

λ
λ

+λ

 δ = ⋅∫  
  + +

δ +
= ⋅

δ +

  

Introduce the following notation: 
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( )
( )

( )
( ) ( )

1

1

, , (1 )
1 1

, ,
( )

0, , (1 )
1 0

0, ,

ii
i

lS
i i i l i

i i
i i i i

i

i i i
i i

i i

C l S Sk i
C l S l

A
C S S

k S
C S

− −λ

−

 ∆ +  λλ + + ≥ ∆  λ = 
∆ +λλ + +λ = ∆

i

f l

if l

  (25) 

and 

  

( )
( )

( )
( ) ( )

1

1

, , (1 )
1 0

, ,
( )

0, , (1 )
1 0

0, ,

ii
i

mT
i i i m i

i i i
i i i i

i

i i i
i i i i

i i

C m T Tk i
C m T m

B
C T T

k T
C T

− −λ

−

 δ +  λ−

.

f m

if m

γ + ≥ δ  λ = 
δ +λ− γ +λ = δ

 (26) 

Then the eigenvalue equation of the linearized differential-difference equation system 

(21) has the form: 

     (27) ( ) ( ) 0 ( 1, 2,..., )i i i j
j i

A v B v i n
≠

λ + λ = =∑

which is equivalent to the determinantal equation 

      (28) 

( ) ( )1 1 1

2 2 2

( )
( ) ( ) ( )

0.

( ) ( ) ( )n n n

A B B
B A B

det

B B A

 λ λ λ
 λ λ λ =
  λ λ λ 

…
…

# # % #
…




Notice that this determinant has the same structure as in the case of infinitely 

continuously distributed lags (see Chiarella and Szidarovszky, 2000)4, so equation (28) 

can be rewritten as equation (22).  

                                                                                                                                       

The main local stability result may now be stated as: 

Corollary.  The equilibrium of the system (3) is locally asymptotically stable if all roots 

of equation (22) have negative real parts. 

Notice that equation (22) can be solved by solving n+1 equations of more simple 

structure: 

      (29) ( ) ( ) 0 ( 1, 2,..., )i jA B jλ − λ = = n

                                                 
λ

4 Indeed the expressions for reduce to the corresponding ones in Chiarella and       

Szidarovszky (2001) when . 

( ) , ( )i iA Bλ

andi i∞ ∆ →δ → ∞
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and 

    
( )

( ) ( )1

n j

j j j

B
A B=

λ
+ ∑

λ − λ
1     (30) 0.=

We will now consider the symmetric case when , im m≡

, , , ,i i i i il l k k S S T T≡ ≡ ,γ ≡ γ ≡ ≡ iδ ≡δ , and . Let  i∆ ≡ ∆

                 and           
1

1 0
l if l

q
if l

≥
=  =

1
1 0
m if m

r
if m

≥
=  = .

With symmetric initial conditions system (21) becomes one-dimensional and similarly to 

equation (22) we can prove that in this case equation (28) has the special form 

( )( )
( )

( )( )

1 1 1

1

, , 1
1 1 1

, ,

, , 1
( 1) 1 0.

( , , )

l Sm m
q

lT
r

C l SS T Tk
q r C l S r

C m T Sk n
C m T q

+ λ+ +

+λ

∆ + λ λ λ   λ + + + +     ∆    

δ +  λ− γ − + = δ  

  (31) 

Thus we have the following result: 

 

Theorem 2.  The equilibrium of the symmetric dynamic oligopoly with bounded 

continuously distributed lags is locally asymptotically stable if the roots of the 

polynomial-exponential equation (31) have negative real parts. 

 

If both lags δ and ∆ are allowed to tend to infinity then the polynomial-exponential 

equation (31) reduces to the polynomial equation for the corresponding infinitely 

continuously distributed lag case in Chiarella and Szidarovszky (2001). 

 

5. The Birth of Limit Cycles 
In general equation (31) will have an infinite number of roots, many of which are 

possibly complex. Thus this class of dynamic oligopolies is quite prone to exhibiting 

fluctuating output. In this situation it becomes relevant to consider whether such 
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fluctuations, could turn into limit cycle motion as certain parameters vary. The aim of 

this section is to consider this question. 

For the sake of simplicity we restrict our analysis to the symmetric case. It is well-known 

from bifurcation theory (see, for example Hale and Verduyn Lunel, 1993) that limit 

cycles are possible if there are non-zero pure complex eigenvalues with additional 

conditions that will be presented later. Assume therefore that with some real non-

zero α. In order to investigate equation (31) under this situation introduce the following 

notation: 

iλ = α

   
1

( ) ( )1 ( )
l

r ii S A iA
q

+
 α+ = α + 
 

( )α  

with 
1

2 2 2
( )

2
0

1
( ) ( 1)

2

l v v
r v

v
v

l SA
v q

+ 
 

=

+  αα = −∑  
 

 

and 

2 2 1 2 1
( )

2 1
0

1
( ) ( 1) .

2 1

l v v
i v

v
v

l SA
v q

  + + 

+
=

+  αα = −∑  + 
 

Similarly let 
1

( ) ( )1 ( )
m

r ii T B iB
r

+α + = α + 
 

( )α  

with 
1

2 2 2
( )

2
0

1
( ) ( 1)

2

m v v
r v

v
v

m TB
v r

+ 
 

=

+  αα = −∑  
 

 

and 

2 2 1 2 1
( )

2 1
0

1
( ) ( 1) .

2 1

m v v
i v

v
v

m TB
v r

  + + 

+
=

+  αα = −∑  + 
 

Notice furthermore that 

( ) ( )1

0

11, , 1 1 .
!

i S
q

kl k k i S
l qS

k
k

li SC l S e
q k

α∆ + α
−

=

∆ +  α∆ + = − ∑  
   S

 

Introduce next the following additional notation: 
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2

1
2

2 2
( )
1 2

0 0

2 1 2 1
( )
1 2 1

0 0

1( ) ( 1) ,
2!

1( ) ( 1) ,
2 1!

k

k

k k v vlr v
k v

k v

k k v vli v
k v

k v

kl SD
vk S q

kl SD
vk S q

−

 
 

= =

  + + 

+
= =

  ∆ α
 α = −∑ ∑     
  ∆ α
 α = −∑ ∑   +  

 

and notice that 

( )1

cos sin .

i S
ql l

S S l le e i
q q

α− ∆ + ∆−  α ∆ α ∆= − 
 

 

Similarly, 

( )( )
( ) ( )1

0

11, , 1 1
!

i T
rm kk k i Tm ri T T

r k
k

m
C m T e

k T

αδ + α−
α

=

δ +
δ + = − ∑ . 

Introduce the further notation, 

2

1
2

2 2
( )
2 2

0 0

2 1 2 1
( )
2 2 1

0 0

1( ) ( 1) ,
2!

1( ) ( 1) ,
2 1!

k

k

k k v vmr v
k v

k v

k k v vmi v
k v

k v

km TD
vk T r

km TD
vk T r

−

 
 

= =

  + + 

+
= =

  δ α
 α = −∑ ∑     
  δ α
 α = −∑ ∑   +  

 

and notice that 

( )1

cos sin
i T

rm m
T T m me e i

r r

α− δ + δ− α δ α δ = − 
 

. 

Using the above notation, equation (31) with λ = can be rewritten as iα

( )( )

( ) ( )

( ) (

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )

1 cos sin ( ) ( ) ( ) ( )
( , , )

( 1) 1 cos sin ( ) ( ) ( ) ( )
( , , )

r i r i

l
r i r iS

m
r i r iT

i A iA B iB

k l le i D iD B iB
C l S q q

k n m me i D iD A iA
C m T r r

∆−

δ−

α α + α α + α +

  α ∆ α ∆− − α + α α + α  ∆   
 γ − α δ α δ − − − α + α α + α  δ   

.) 0=

 

Equating the real and imaginary parts to zero we have the following equations: 

1 1

2 2

( ) ( )( 1)
( ) ( )

E Fk n
E F

αγ − = =
α α

α     (32) 

with 
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( )

( )

( )

( ) ( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
( , , )

cos ( ) ( ) ( ) ( )

sin ( ) ( ) ( ) ( )

[

]

{

},

r i i r r

l
r r i iS

r i i r

kE A B A B B
C l S

le D B D B
q

l D B D B
q

∆−

α = −α α α + α α + α
∆

α ∆− α α − α α

α ∆+ α α − α α

 

( )

( )

2

( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
2 2

1( ) ( ) cos ( ) ( ) ( ) ( )
( , , )

sin ( ) ( ) ( ) ( )

[

]

{

},

m
r r r iT

r i i r

mE e D A D
C m T r

m D A D A
r

A
δ− α δα = α − α α − α α

δ
α δ+ α α + α α

iA
 

( )

( )

( )

( ) ( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
( , , )

cos ( ) ( ) ( ) ( )

sin ( ) ( ) ( ) ( )

[

]

{

}

r r i i i

l
r i i rS

r r i i

kF A B A B B
C l S

le D B D B
q
l D B D B
q

∆−

α = α α α − α α + α
∆

α ∆− α α + α α

α ∆− α α − α α

 

and 

( )

( )

2

( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
2 2

1( ) ( ) cos ( ) ( ) ( ) ( )
( , , )

sin ( ) ( ) ( ) ( )

[

]

{

}.

m
i r i iT

r r i i

mF e D A D
C m T r

m D A D A
r

A
δ− α δα = α − α α + α α

δ
α δ− α α − α α

rA

*

 

Any real root of equation (32) must satisfy  

        (33) 1 2 2 1( ) ( ) ( ) ( ) 0E F E Fα α − α α =

which is a mixed polynomial-trigonometric equation for α. Notice that equation (33) 

might have other roots which are not solutions of equation (32).  These additional roots 

can be identified by simple substitution.  Let  be a root of equation (32), then 

is an eigenvalue, and there is a functional relation between α and the critical 

bifurcation value of the parameter γ.  

*α
* iλ = α *

Using conditions stated in Hale and Verduyn Lunel (1993)5, we may assert that limit 

cycles are born if equation (32) has no other real root *α = µα  with any integer µ  for 
*γ = γ , and if the real part of the derivative d dλ γ  is non-zero at the root . The *λ
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condition on the other eigenvalues is hard to verify analytically, but computer methods 

can be used in particular cases.  

Notice that   

 1

2

( )
( )

d P
d P
λ = λ
γ λ

      (34) 

where  

 1
1

( , , (1 ))( ) ( 1) (1 ) ,
( , , )

T
lrC m T SP k n

C m T q

λ
+δ + λλ = − +

δ
 

and

( )

2
1 11 1

1

( )

1 1 ( 1) 1 1 ( 1) 1 1

[ ( , , (1 )) 1 ( , , (1 ))( 1) 1 ]
, ,

( 1) [
( , , )

l lm m

m m

P

S T S S T T S Tl m
q r q q r r q r

k d S T S T TC l S C l S m
C l S d q r q r r

k n d
C m T d

+ ++ +

+

λ =

     λ λ λ λ λ λ     + + +λ + + + +λ + + +          
          

λ λ λ λ   + ∆ + + + ∆ + + +   ∆ λ    

γ −−
δ

l m

1

( , , (1 )) 1 ( , , (1 ))( 1) 1 ].
l l

T S T S SC m T C m T l
r q r q q

+
   λ λ λ λδ + + + δ + + +   λ    

 

Hence we may appeal to the Hopf bifurcation theorem (Hale and Verduyn Lunel, 1993) 

to state the following result: 

 

Theorem 3.  Let be a real root of equation (32) with *α *γ  being the derivative of the 

best response function at the equilibrium, assume there is no other root *α = µα  for any 

integer µ , furthermore at *,γ = γ  

 
( )
( )

*
1

*
2

0.
P i

Re
P i

α
≠

α
 

Then there is a limit cycle around the equilibrium. 

 

The Hopf bifurcation theorem does not enable us to say anything about the stability of 

the limit cycle. To do so in the context of these dynamic oligopoly models would require 

                                                                                                                                                 
5 See section 11.1. 
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specification of the best response function and consideration of conditions arising from 

normal form theory.  However in the present context this may be difficult and numerical 

simulations are probably the only practical approach.  We consider one specific example 

in Section 8.  

 

6. Pure Complex Roots in a Special Case 
In this section we consider the special case of S=0, when no time-lag is assumed in 

obtaining and implementing information on the firms’ own output. In this case equation 

(31) simplifies to: 

  

(1 )

1
0

0

1 1
!( ) 1 ( 1)

1
!

T
rm kk km

T
m k

k
m k km
T

k
k

m Te
T k T rk k n
r me

k T

λδ +
−

+
=

δ−

=

δ λ − +∑  λ  λ + + = γ −  δ  − ∑
.

1).

 (35) 

Consider first the case of m=0. Then the above equation is quadratic: 

   ( )(1 ) (k T k nλ + +λ = γ −  

If , then this equation becomes iλ = α

   .( )(1 ) (i k i T k nα + + α = 1)γ −  

Equating the real and imaginary parts we have 

   2 ( 1) and (1 ) 0k T k n kT− α = .γ − α + =  

Therefore * * 10 and
1n

α = γ =
−

 is the only solution, which implies that the birth of limit 

cycles is not guaranteed in this case given that γ<0, and the pure complex root is zero. 

Consider next the case of m=1. Then equation (35) reduces to 

  

(1 )

2
1 1 (1

( )(1 ) ( 1)
1 1

T
T

T

e T
Tk T k n

e
T

δ +λ

δ

−

−

δ − + +λ 
 λ + +λ = γ −

δ − + 
 

)
.

)

  (36) 

If  , then the left hand side of (36) is iλ = α

  . 2 2 2 2 2 3 2( )(1 2 ) ( 2 ) ( 2i k i T T T k k T i T k Tα + + α −α = −α + − α + α −α + α

Similarly the right hand side is 
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( )( 1) 1 cos sin 1
1 (1 )

( 1) {1 [cos 1 sin ( )] [ cos ( ) sin 1 ]}.
1 (1 )

T

T

T T

T

T

T

k n e i i
Te

k n e ie
T Te

δ

δ

δ δ

δ

−

− δ

− −

− δ

 γ − δ − δα − δα + +δα    − +
γ − δ δ   = − δα + + δα δα + − δα δα + δα +   

   − +

 

Comparing the real and imaginary parts we obtain 

   

( ) ( )( )
( )

( ) ( )( )
( ) ( )

2 2 2

3 2

2 1
( 1)

1 cos 1 sin (

2 1 1
.

cos sin 1

T

T

T

T

T

T

T

T

T k k T e
k n

e

T k T e

e

δ

δ

δ

δ

− δ

− δ

− δ

− δ

−α + − α − +
γ − =

1

) − δα + + δα δα 

α − α + α − +
=

 − δα δα + δα + 

  (37) 

This equation can be rewritten as a single polynomial-trigonometric equation for α, viz., 

  
( )

( ) ( ){ }
2 2

3 2

( ) (2 ) cos 1 sin

1 2 1 1 cos sin 0.

T

T

T

T

G k T kT e

kT T e

δ

δ

− δ

− δ

   α ≡ −α + −δα δα + + δα  

   − α + −α − + δα +δα δα =  
 (38) 

All eigenvalues satisfy equation (38).  However there might be additional roots of (38) 

which are not eigenvalues.  They can be identified by simple substitution into equation 

(36).  For instance,  is always a root, but  solves equation (36) for only 

 which is not possible, since 

0=α 0=λ

(1/ 1nγ = − ) 0<γ .   

We need at least one non-zero real root in order to establish the birth of limit cycles. Let 

be a non-zero real root, then the corresponding value *α *γ of the bifurcation parameter is 

obtained from equation (37). The derivative d dλ γ  (evaluated at the equilibrium) can 

also be obtained from equation (36) as 

  1

2

( )
( )

d P
d P
λ = λ
γ λ

      (39) 

with 

   
(1 )

1( ) 1 1 (1 ( 1)
T

TP e T k n
T

δ +λ− δ λ = − + +λ −    
 

and 
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( )
(1 )2

2
2 ( ) 1 1 1 ( )2 (1 ) ( 1) (1 ).

T
T TP e T k T T k n e

T T

δ +λδ− − δ δ   λ = − + +λ + λ + +λ − Tγ − ⋅ +λ      
 

If equation (36) has no other root *α = µα  with any integer µ  for *=γ γ , and if the real 

part of this derivative at and *α = α *γ = γ is non-zero, then there are limit cycles around 

the equilibrium. 

Note that by letting δ → in equation (38) we obtain  ∞

    *2
2

2kT
T

+α = 1 ,      (40) 

and then from the first equality in (37) 

 * 2 1 2
( 1)

kT
n kT

 γ = − + + −  
,     (41) 

these being indeed the results obtained for this case by Chiarella and Szidarovszky 

(2001). In the bounded lag case equation (38) possibly has an infinite number of roots 

and hence, an infinite number of bifurcation values *γ  are possible. In order to appreciate 

the much richer set of possibilities it is necessary to consider a numerical example. 

 

7. Numerical Example 
We consider from Section 6 the special case of m =1 with T =1, k =3 and n=10. 

The key to understanding the overall structure of the eigenvalues and the critical values 

of γ is to consider how the roots of equation (38) evolve as the parameter δ increases 

from 0 through 5 (the value that for our purposes may be regarded as infinity).  

Since we are only concerned with non-zero roots the ensuing discussion ignores the root 

at α =0. We note that equation (38) is symmetric with respect to α, so we only consider 

positive values. Figure 3a shows a plot of G(α)  at  δ =2.5 for α up to 30 illustrating the 

cyclically increasing nature of this function. Some elementary manipulations on G(α) for 

large α indicate easily that G(α) must have an infinite number of real roots. A root  

may lead to the birth of limit cycles if none of the other roots is integer multiple of  

and gives the same critical value of 

0α ≠
*α

γ . 
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0 10 20
α

-2E+5

-1E+5

0E+0

1E+5

2E+5

k = 3 δ = 2.5T = 1

Figure 3a 
30

Figure 3b shows the more detailed structure of G(α) for α up to about 7.5, for three 

separate values of δ . At δ =3.0 (the blue curve) we can view the intersections with the 

horizontal axis resulting in the first seven roots. At δ =3.17 (the red curve) we see how 

the first two roots disappear via a tangency, the third root declines, roots four and five 

decline and move closer together, and roots six and seven appear. At δ =3.40 (the black 

curve) the third root continuous to decline, the fourth and fifth roots are close to 

disappearing and the sixth and seventh roots are just disappearing. For this set of 

parameters this is the only “reversal” in the order in which roots disappear that we have 

observed. 

 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0

40

80

k = 3

δ = 3.0    3.17     3.40

T = 1

 

 

 

 

 

 

 

 

 

Figure 3b α
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The foregoing observations on Figure 3b should then make fairly transparent how Figure 

4a is constructed. The blue “tongue” shows the first (lower) and second (upper) roots 

which come together and then disappear at δ =3.17. The black curve show the third root 

declining continuously to its limiting value at δ =5, this limiting value is in fact close to 

7 as would be expected from equation (40). The red tongue shows the fourth (lower) 

and fifth (upper) roots which came together and then disappear at δ =3.48. The green 

tongue shows the sixth and seventh roots which come together and then disappear at 

δ =3.41. The tongues for roots eight, nine and ten, eleven are also shown in Figure 4a. 

The full range of tongues up to α =25 are shown in Figure 4b, this is close to the largest 

value of α that is relevant given that δ =5 is considered to be infinity for the purposes of 

these illustrative calculations. 

 

0

2

4

6

8

10

α∗

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
δ

T = 1, K = 3

Figure 4b Figure 4a 
 

We next use the values of α in Figure 4a to construct, via equation (37), the 

corresponding critical values of γ at which a pair of pure complex roots occurs.  These 

are shown in Figure 5a with the colours corresponding to the tongues (except in the case 

of root three) shown in Figure 4a. The limiting value to which the black curve 
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(corresponding to the third root for α) tends is in fact close to –32/27 as expected from 

equation (41). Figure 5b shows the whole sequence of critical γ  curves corresponding to 

the sequence of tongues in Figure 4b.  

In order to obtain a more detailed global picture of the dynamics it would be necessary to 

specify functional forms for the reaction function g and calculate for example a 

bifurcation diagram with respect to δ . This we do for one specific example in the next 

section. 

1 2 3 4
δ

-200

-160

-120

-80

-40

0

γ∗

2 4
δ

-20

-10

0

γ∗

5

Figure 5a Figure 5b 

 

8. A Specific Reaction Function 

In order to generate a specific example we assume linear cost functions and the 

hyperbolic inverse demand function ( ) Af Q
Q

=  with some A>0.  The profit of firm j is 

then given as  

 j j j
j j

A
jx c x

x Q
π = −

+
, 

(where c  is the marginal cost) and the best response of this firm is j

 23



 ( )
0, ,

, otherwise.

j j

j j j
j

j

if Q A c

g Q AQ
Q

c

≥


=  −


 (42) 

We continue to focus on the symmetric case considered in Section 6 where in addition we 

have set .  At a symmetric equilibrium Q n  and Q , and jc = c x *( )* *1j = − * nx= *x  is the 

solution of equation 

 ( )( )1x g n x= − , 

which by use of (42) yields 

 ( ) ( )1
1

A n x
x n x

c

 −
 = −
 
 

− , 

implying that 

  ( )*
2

1
cn

−A n
x = . 

It is easy to see that for n>2, the function gj is strictly decreasing in Qj in the 

neighborhood of the equilibrium, hence satisfying the condition on the best response 

function made in Section 3.  

From equation (8) and (9) it is easy to verify that 

  ( ) ( )* *
,

1

1 1
!

j

m k
k T

i m
j

m
Tx e
j

δ
δ

−

=

  
  

  = − −
 
  
 

∑q n  

for , so in the special case of ,  0,1, ,k = … m

),

x

5

k m=

  q n  ( ) ( ) (* *
, 1 ,m

i m x C m T δ= −

implying that 

  Q n . ( )* *1e
i = −

Using the reaction function (42) we have simulated the system of Lemma 2 for the case 

S=0 (as in Section 6) and k=3, n=10 and m=1 (as in Section 7) and A/c=1.  The lag  

was taken as a bifurcation parameter and the bifurcation diagram in Figure 6 was 

calculated for T=1 and T=1.5 over the range .  Recall that from a practical point 

δ

0 δ< ≤
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of view  may be regarded as the infinitely distributed lag case.  We see that 

compared to this limiting case the bounded lag weighting schemes increase the likelihood 

of limit cycle motions, depending on the value of T.  This one numerical example 

illustrates how the bounded lag weighting scheme can more readily yield fluctuating 

dynamics.  We leave for future research a more extensive numerical study of this model, 

which should study other reaction functions and allow the firms to differ in various ways. 
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  Figure 6 

 

9. Conclusions 
In this paper we have introduced a weighting function that caters for bounded 

continuously distributed lags in dynamic economic models. In this way past data are 

averaged only over a bounded interval thus avoiding the use of very old or less relevant 

economic data. We have used this weighting function to capture the effects of 

information and implementation lags about firms’ own, as well as rivals’, output in a 
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fairly general class of dynamic oligopoly models. We have formulated the dynamics of 

the resulting oligopoly as a system of integro-differential equations and shown how this 

may be reduced to a system of ordinary differential-difference equations. We have then 

employed standard techniques from the theory of differential-difference equations to 

analyse the local stability of the equilibrium. We have then applied the Hopf-bifurcation 

theorem to determine conditions on the model parameters under which limit cycle motion 

may be born (or destroyed). We have considered in some detail the special case of a 

symmetric oligopoly and examined it numerically for a particular set of parameters. This 

example indicates how the dynamic structure becomes much more complex compared to 

the corresponding (and limiting) infinitely continuously distributed lag case. In that case 

there is just one critical value of which limit cycles are born (or destroyed), whereas in 

the bounded lag case there may be many such values. Dynamic oligopoly models with 

bounded continuously distributed lags are thus far more easily able to exhibit limit cycle 

and possibly more complex motion. We have given one simple numerical example that 

seems to confirm these insights from the theoretical discussion. 

We believe we have taken an analytical investigation of the stability of this class of 

dynamic oligopoly models as far as is possible. It would be of interest to complement this 

study with a more extensive simulation study to see how Figures 3 to 6 are altered by 

allowing the firms to differ in some way, also by considering a higher value of the 

parameter m in Section 6. It would also be of interest to analyse globally the types of 

attractors, as well as their basins of attraction, that may occur. Whilst in this paper we 

have only considered bounded continuously distributed lags within dynamic oligopoly 

models, we believe their implications within a range of other dynamic economic models 

should be examined. Such lags surely reflect more accurately the reality of economic 

decision making and it seems difficult to believe that the stability structure displayed by 

the example in Sections 7 and 8 is confined merely to dynamic oligopoly models. 
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