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Abbreviations 25 

AL, Actinic light; Ed, Incident downwelling photon irradiance (400-700 nm); E0(meas), Photon scalar 26 

irradiance within coral tissue (measured with microsensors, 400-700 nm); E0(calc), Photon scalar 27 

irradiance within coral tissue (calculated based on σII(λ)); ETR, Electron transport rate of PS II (µmol 28 

electrons m
-2

 s
-1

); ETRII, Absolute rate of PSII turnover (electrons PSII
-1

 s
-1

); ETRII
max

, Maximum rate 29 

of PSII turnover (electrons PSII
-1

 s
-1

); FRRf, Fast Repetition Rate fluorometry; LC, Light curve of 30 

fluorescence parameters, defined as photosynthesis versus irradiance; MC-PAM, Multi-colour Pulse 31 

Amplitude Modulated fluorometer, NPQ, Non-photochemical quenching; σII(λ), Wavelength-dependent 32 

absorption cross-section of PSII (nm
2
) as determined by the MC-PAM fitting routine 33 

Abstract 34 

Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative 35 

photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past 36 

technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of 37 

PSII. We used a new multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for 38 

the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), 39 

and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both 40 

in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was 41 

highest in the blue spectral region and showed a progressive decrease towards red wavelengths. 42 

Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar 43 

irradiance within the living coral tissue was reduced by 20% in the blue when compared to the 44 

incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm 45 

revealed a maximum PSII turnover rate of ca. 250 electrons PSII
-1

 s
-1

, consistent with one PSII 46 

turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer 47 

between PSII and PSI. Our results show that optical properties of the coral host strongly affect light 48 

use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the 49 

productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we 50 

provide a non-invasive approach to estimate absolute electron transport rates in corals.  51 
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Keywords: chlorophyll fluorescence, electron transport rate, coral, light absorption, spectral 52 

attenuation 53 

1. Introduction 54 

Coral primary productivity reflects a key indicator of “reef health” (Hoegh-Guldberg et al. 2007) 55 

but is time-consuming and labour intensive to measure based on conventional gas-exchange 56 

techniques (e.g. Warner et al. 2011) and is further complicated by the close coupling of symbiont 57 

photosynthesis and respiration with host respiration (Kühl et al. 1995). Pulse-amplitude modulated 58 

(PAM) chlorophyll fluorometry and the Saturation Pulse method (reviewed in Schreiber, 2004) are 59 

rapid tools for assessing the photosynthetic capacity of corals both in situ and in the laboratory (Hill et 60 

al. 2004; Ralph et al. 1999; Warner et al. 2011). Typically, PAM measurements of coral 61 

photosynthesis rely on determination of the effective PSII photochemical efficiency, ΔF‟/FM‟, under 62 

known irradiance levels of actinic light (AL), which is often quantified as the incident photon irradiance 63 

of photosynthetic active radiation (PAR=400-700 nm). A relative measure of photosynthetic activity is 64 

then calculated in terms of the relative electron transport rates (rETR), rETR = ΔF/FM 
.
 PAR 

.
 0.42, 65 

where ΔF/FM  stands for maximal quantum yield and 0.42 is the so-called “ETR factor”, which is a 66 

constant value assuming that 84% of all light is absorbed (as for plant leaves) and that only half of all 67 

light absorbed is delivered to PSII for photochemistry (Schreiber et al. 2012). However, the actual 68 

amount of light absorbed for PSII photochemistry is unknown for the symbiont algae (Symbiodinium 69 

sp.) residing in corals, and also appears variable amongst  different genetic types of Symbiodinium 70 

sp. and their growth condition (Hennige et al. 2009; Suggett et al. 2011), placing fundamental 71 

limitations on applying PAM measurements to yield absolute coral photosynthesis rates. 72 

Light harvesting by PSII is governed by the absorption cross-section of PSII photochemistry 73 

(σPSII) and concentration of functional PSII units (Oxborough et al. 2012; Schreiber et al. 2012). 74 

Importantly, σPSII describes an absolute measure of the photon capture efficiency of PSII, which is 75 

directly related to the photochemical efficiency of PSII (Ley and Mauzerall, 1982) and thus is 76 

indicative of the biochemical nature and biophysical arrangement of pigments within the light 77 

harvesting antennae (e.g. Suggett et al. 2004). In the past σPSII has been determined routinely using 78 

fast repetition rate fluorometry (FRRf) or fluorescence induction and relaxation (FIRe) fluorometry 79 

(Kolber et al. 1998) that employ single turnover flashes to progressively reduce the primary quinone 80 
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electron acceptor, QA, whereby the rise kinetics from the minimum to maximum fluorescence yield, 81 

i.e., from fully oxidised to fully reduced state of QA, describes the effective absorption and hence σPSII.  82 

To date, measurements of σPSII were mostly done with „optically thin‟ microalgal samples 83 

(Koblizek et al. 2001; Schreiber et al. 2012; Schreiber and Klughammer, 2013; Suggett et al. 2004, 84 

2009), including Symbiodinium cultures (Hennige et al. 2009, Ragni et al. 2010). The few published 85 

measurements of coral σPSII values show that σPSII for Symbiodinium sp. in hospite appears highly 86 

dynamic amongst coral species (Gorbunov et al. 2001; Hennige et al. 2011; Levy et al. 2003;), across 87 

water depth (Lesser 2000) and daytime (Gorbunov et al. 2001). Based on such PSII cross-sectional 88 

area determinations, the rate of photosynthetic electron transport per PSII reaction center was 89 

estimated in corals (Gorbunov et al. 2001). 90 

The apparent „plasticity‟ of σPSII in corals could play a key role in moderating absolute electron 91 

transfer rates and hence productivity in corals. It likely reflects differences in Symbiodinium genotype 92 

dominance since pigment properties (Hennige et al. 2009) and energetic connectivity amongst PSII 93 

reaction centres (Ragni et al. 2010, Hennige et al. 2011) is known to vary amongst sub-clades. Whilst 94 

these past measurements have demonstrated the inherent variability of σPSII in corals, they only 95 

involved measurements at a single wavelength and were not directly applicable to absolute 96 

production estimates without additional knowledge of the spectral dependency of PSII light 97 

harvesting. Light absorption by Symbiodinium is highest in the blue region (440-480 nm) due to the 98 

cumulative absorption of the photosynthetic pigments of chlorophyll a, c2 and carotenoids. Past FRR 99 

and FIRe fluorometers were therefore designed to target peak absorption, and hence σPSII, in the blue 100 

(450-480 nm). Recent developments in chlorophyll fluorescence instrumentation, the Multi-colour 101 

Pulse Amplitude Modulated chlorophyll fluorometer (further referred as MC-PAM, Schreiber et al. 102 

2012) however allows the determination of σPSII at multiple wavelengths across the visible spectral 103 

range, i.e also in the green (~560 nm) that is of special importance in dinoflagellates due to the light 104 

absorption by peridinin, located in their light-harvesting pigment-protein antenna complexes (see e.g. 105 

Iglesias-Prieto et al. 1993). The measuring principle for determining effective absorption of PSII with 106 

the MC-PAM is somewhat different from the approaches used in FRR and FIRe fluorometry (see 107 

above) and relies on so-called “O-I1 induction kinetics” (Schreiber et al. 2012). Briefly, O-I1 kinetics 108 

describe the photochemical phase in the polyphasic rise of PSII fluorescence at the onset of strong 109 

actinic  illumination used to yield a O-I1-I2-P induction curve (Schreiber et al. 2004); another 110 
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nomenclature describes this as the O-J-I-P induction curve (Strasser and Govindjee, 1992). Both I1 111 

and J fluorescence yields mark the end of the photochemical and the start of the thermal induction 112 

phase but their determination and interpretation are somewhat different (Schreiber et al. 2012). I1 is 113 

determined via a saturating single turnover flash applied at the end of the photochemical phase, 114 

which is driven by continuous actinic light (AL or MT). Following the saturating single turnover flash, 115 

QA is first fully reduced and then partially reoxidized with a time constant in the order of 300-400 µs. 116 

The I1-level is determined by extrapolation to the end of the flash. While J is also determined at the 117 

end of the photochemical phase, it simply represents a single inflection or step in the induction curve, 118 

where light driven QA reduction and reoxidation via electron transfer to the secondary acceptor QB 119 

overlap; therefore, fluorescence yield corresponding to full reduction of QA
-
 cannot be precisely 120 

determined without application of a flash (Schreiber et al. 2012). Accurate analysis of the O-I1 kinetics 121 

requires that changes in the original variable fluorescence yield are transformed into changes in QA 122 

reduction (PSII closure) by the equation (F - F0)/(I1 - F0) = (1 - q)/(1 + J q), with (1 - q) representing the 123 

fraction of closed PSII reaction centres and J being a measure of connectivity between PSII units 124 

(Lavergne and Trissl 1995).  125 

The alternative measuring and analysis routines used in the MC-PAM as compared to FRR 126 

(FIRe) fluorometry requires specification of alternate terminology for the wavelength-dependent 127 

absorption cross-section of PSII, which was defined here as σII(λ) (Schreiber and Klughammer, 2013). 128 

Using FRR/FIRe fluorometry, the σPSII(λ) can be determined for any physiological state, notably 129 

different states of PSII reaction centre openness, redox conditions in the intersystem electron 130 

transport chain, membrane energisation, and state 1/state 2 conditions of the photosynthetic 131 

apparatus (e.g. Oxborough et al. 2012). It should be noted, however, that if σPSII(λ) information is 132 

combined with information on the effective PS II quantum yield to estimate electron transport rate, 133 

care must be taken that e.g. NPQ by membrane energisation is not effective twofold by lowering PS II 134 

cross section as well as PS II quantum yield. In contrast, σII(λ) as defined for measurements with the 135 

MC-PAM is only defined for a particular reference state, where QA and the plastoquinone (PQ) pool 136 

are oxidized, and non-photochemical quenching (caused by membrane energisation or state 2 137 

formation) is absent (Schreiber et al. 2012). Thus, for calculation of electron transport rates, any loss 138 

in activity due to closure of PSII reaction centres or a decline in the efficiency of charge separation of 139 
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open reaction centres by non-photochemical quenching mechanisms is not accounted for via σII(λ) but 140 

via the measured effective PSII photochemical efficiency, ΔF/FM (Schreiber et al. 2011, 2012; see 141 

also Suggett et al. 2011). In our study, σII(λ) refers to the intrinsic, maximal potential absorption cross-142 

section of PSII at a given wavelength, measured under the same conditions under which the PSII 143 

photochemical efficiency is at its maximum (i.e., ΔF/FM). In its original definition, this intrinsic σII(λ) can 144 

be determined in optically thin samples only, i.e., in the absence of wavelength-dependent light 145 

gradients. However, the present study explores its possible application in opaque samples such as 146 

thin-tissued corals. In surface-associated phototrophs such as corals, the optical properties of the 147 

host system strongly modulate the actual light availability of zooxanthellae in hospite (Enriquez et al. 148 

2005; Kühl et al. 1995; Teran et al. 2010; Wangpraseurt et al. 2012, 2014). Coral tissue and the coral 149 

skeleton are both strong scatterers (Marcelino et al. 2013; Wangpraseurt et al. 2014), and as 150 

scattering increases the path length of photons per vertical distance travelled it can lead to a local 151 

enhancement in scalar irradiance over the incident downwelling irradiance (Wangpraseurt et al. 152 

2012). Steep light gradients exist within the coral tissue, where scalar irradiance can attenuate by one 153 

order of magnitude or more from the tissue surface to the skeleton. Light attenuation of 154 

photosynthetically active radiation (PAR) within the tissue is wavelength dependent due to the 155 

presence of host pigments and symbiont photopigments, where the blue spectral region is attenuated 156 

to a larger extent than red light (Wangpraseurt et al. 2012). Substantial distortions of photosynthesis 157 

vs. irradiance curves and photosynthetic action spectra can thus be observed when relating coral 158 

photosynthesis to incident irradiance instead of the actual scalar irradiance (Kühl et al. 1995).    159 

In this study, we determine the first spectrally-resolved measurements of σII(λ) in an important 160 

reef building coral species, Pocillopora damicornis. We subsequently evaluate these properties 161 

alongside measurements of the light microenvironment within the coral tissues to assess the role of 162 

tissue optics in affecting light availability and hence σII(λ). These data are finally applied to yield 163 

absolute electron transport rates based on calculations of the effective light field in coral tissue.  164 

2. Methods 165 

 166 

2.1. Experimental material 167 
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Specimens of the branching coral Pocillopora damicornis were collected from the reef flat (1-2m 168 

depth) of Heron Island, in the southern Great Barrier Reef of Australia (151˚55‟E, 23˚27‟S) and were 169 

transported to the coral holding facility of the University of Technology Sydney. Here, all colonies 170 

were maintained in tanks provided with artificial seawater (prepared with „Ocean Nature‟ sea salt, 171 

Aquasonic) that was circulated through a natural biological sump. Tanks were provided with an 172 

incident photon irradiance of 50-70 μmol photons m
-2

 s
-1

 (250W metal-halide lamps, Aqualine, Aqua 173 

Medic Inc., colour temperature 13,000K) set to a 14h:10h day:night cycle at a constant temperature of 174 

26˚C. Corals were fragmented into nubbins with a surface area of ~1 cm
2
 two days prior to the 175 

experiment and kept in the same aquaria under essentially the same light conditions.  176 

Symbiodinium sp. (Australian National Algae Culture Collection, ANACC, strain CS-73, originally 177 

isolated from Heron Island, in the southern Great Barrier Reef of Australia) was cultured in f/2 medium 178 

(Guillard et al. 1975) in Erlenmeyer flasks under a downwelling photon irradiance of 30-40 μmol 179 

photons m
-2

 s
-1

 (TLD 18W/54 fluorescent tubes, Philips, colour temperature 10,000K) using the same 180 

irradiance cycle and water temperature as per the coral specimens. Cultures were maintained in 181 

exponential growth phase for 14-18 days prior to harvesting. Comparative measurements of σII(λ) 182 

were performed on freshly isolated Symbiodinium cells from the tissues of P. damicornis (Hill et al. 183 

2009). However, as the freshly isolated symbionts exhibited suboptimal ΔF/FM values that were ~20% 184 

lower than in cultured or in hospite Symbiodinium (data not shown), we propose that these 185 

preparations cannot be precisely used as a reference σII(λ) for Symbiodinium sp. in our calculations. 186 

 187 

2.2. Experimental setup 188 

Variable chlorophyll fluorescence measurements were performed with a MC-PAM (Heinz-Walz 189 

GmbH, Effeltrich, Germany) equipped with either (i) an optical unit designed for leaf measurements 190 

(MCP-BK, Heinz-Walz GmbH) for measurements on intact coral nubbins, or (ii) an optical unit with a 191 

central quartz cuvette (ED-101US/MD) for measurements on cell suspensions of Symbiodinium sp. In 192 

the case of the MCP-BK optical unit the optical guide rod (Perspex) for fluorescence excitation points 193 

to the specimen almost perpendicularly (12° angle of incidence) and tapers from 10 x 10 mm at the 194 

emitter site to 6 x 6 mm at the measuring point. The optical guide rod (Perspex) for fluorescence 195 

detection has constant edge lengths of 10 mm and collects fluorescence at a rather large angle of 196 
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incidence. The optical unit ED-101US/MD consists of a centrally located place for a 10 x 10 mm 197 

cuvette and perpendicularly positioned ports for the optical guide rods for the emitter and detector 198 

heads of the MC-PAM. Coral nubbins were housed in the measuring chamber (a glass cuvette with 199 

dimensions of 45 x 40 x 10 mm), which was placed adjacent to the LED light source in the leaf clip 200 

setup. The position of coral nubbins within the chamber was carefully adjusted with a 201 

micromanipulator (MM33, Märzhäuser GmbH, Wetzlar, Germany) in order to place a nubbin directly in 202 

the light path of the fluorometer. Throughout the measurements, coral nubbins were kept in the 203 

measuring chamber filled with seawater under continuous aeration provided by a glass Pasteur 204 

pipette attached to an air pump (Precision 9500, Aqua One, Ingleburn NSW, Australia). The aeration 205 

was adjusted to ~3 bubbles/s with a bleed valve that was inserted in the aeration line from the air 206 

pump to the measuring cuvette. The temperature was kept constant at 26˚C using a temperature 207 

control unit (US-T, Heinz-Walz GmbH, Effeltrich, Germany). Symbiodinium cultures were kept in the 208 

quartz cuvette of the ED-101US/MD unit under continuous stirring using a small magnetic stir bar 209 

(Heinz-Walz GmbH, Effeltrich, Germany). 210 

 211 

2.3. Establishment of PAR lists 212 

A full set of PAR lists contains data of photosynthetically active radiation (PAR; μmol photons m
-2

 213 

s
-1

), for all wavelengths and intensity settings of actinic illuminations (AL) and multiple turnover flashes 214 

(MT). As the three-dimensional curved geometry of the coral nubbins cannot be compared to the flat 215 

surface of a leaf, the PAR lists normally established by using a downwelling quantum irradiance 216 

sensor for leaves (US-MQS, Walz GmbH) were not applicable in our study. Moreover, we found 217 

considerable light inhomogeneity along the measuring head (see below), which would likely result in 218 

an incorrect estimation of incident PAR. Therefore, a quantum scalar irradiance sensor (US-SQS, 219 

Walz GmbH) was used to cross-calibrate the US-MQS sensor used to establish PAR list for the 220 

optical unit MCP-BK as follows. Both sensors were placed in the same orientation as for the sample 221 

holder used to calibrate PAR list during leaf measurements. The US-MQS sensor was placed in the 222 

leaf clip and into the middle of the emitter-detector Perspex rod pair, which serves as a light guide 223 

from the “Chip-On-Board” excitation source in the emitter unit to the photodiode in the detector unit. 224 

The light-collecting tip of the US-SQS sensor was carefully placed in the same location using a 225 

micromanipulator (MM33, Märzhäuser GmbH, Wetzlar, Germany). Using 440 nm actinic light (AL) at 226 
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setting 20, and with both sensors kept at 1 mm distance from the centre of the emitter-detector light 227 

guide pair, a photon irradiance of 2730 µmol photons m
-2

 s
-1

 was measured by both sensors. Placing 228 

the US-SQS sensor in the same measurement configuration in the optical glass cuvette filled with 229 

seawater, the sensor was further carefully adjusted with the micromanipulator to different positions 230 

relative to the emitter light guide rod: the centre, the four corners, the edge, and the middle of the 231 

emitter and detector light guide rods. The calibration factor of the US-SQS sensor was adjusted for 232 

the water immersion effect. The PAR list was then recorded at each position. Significant 233 

heterogeneities in the light field could be quantified across a 10x10 mm square, i.e., representing the 234 

area of coral nubbins that were later placed in front of the MC-PAM optical unit. The highest variance 235 

was observed when PAR lists at the edges of emitter and detector light guide rods were compared 236 

(differing by a factor of two). Therefore, to maximise the accuracy of incident PAR calibrations, a 237 

3.5x5 mm aperture was mounted in front of the optical unit and adjusted so that the PAR obtained via 238 

the calibration process remained homogeneous at ~1580 µmol photons m
-2

 s
-1

 using 440 nm AL at 239 

setting 20. The PAR list established in this way was used for all coral measurements in this study. 240 

PAR lists in the cuvette system were subsequently verified using a spherical micro-quantum sensor 241 

(US-SQS/WB, Heinz-Walz GmbH, Effeltrich, Germany) according to (Schreiber et al. 2012). 242 

 243 

2.4. Measurement protocol 244 

Coral nubbins and cell suspensions were dark-acclimated for 15 min in the presence of weak far-245 

red light (setting 2 on the MC-PAM) to ensure oxidation of the intersystem photosynthetic electron 246 

transport pool and obtain a defined reference state for chlorophyll fluorescence measurements of the 247 

PSII maximum photochemical efficiency (ΔF/FM) and the PSII absorption cross-section (σII(λ)). ΔF/FM 248 

was quantified via application of a strong saturating light pulse (intensity: 3500-4000 µmol photons m
-2

 249 

s
-1

, width: 0.6s), followed by a dark acclimation period of 1 min. A pre-programmed script optimised 250 

for coral nubbins (see below „Determination of functional absorption cross-section of PSII‟) was then 251 

applied according to Schreiber and Klughammer (2013) to determine σII(λ) sequentially for five 252 

wavelengths: 440, 480, 540, 590 and 625 nm. A further 5 min of dark-acclimation in the presence of 253 

weak far-red was applied to ensure full oxidation of the PQ-pool followed by an automated steady-254 

state light curve (SSLC) with 3 min incubation at each irradiance to examine the light response of the 255 
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PSII photochemical efficiency (ΔF‟/FM‟) of the effective PSII quantum yield. The SSLC comprised of a 256 

series of increasing irradiance of a specific wavelength (here the 440 nm LED), with data recorded via 257 

Light Curve Program files (lcp-files, Schreiber et al. 2012). The lowest irradiance levels (<10 µmol 258 

photons m
-2

 s
-1

) were generated by using the MC-PAM measuring light (ML) at high pulse frequency 259 

settings (1000-2000), where the same colour ML was used as per the AL. Three replicates were run 260 

using a new nubbin for each measurement. Data are thus shown as averages ± standard error (S.E.) 261 

of three independent biological replicates of P. damicornis nubbins. 262 

 263 

2.5. Measurements of wavelength-dependent absorption cross-section of PSII 264 

A pre-programmed fast kinetic trigger file of the MC-PAM system (Sigma500.FTM) was used for 265 

automated measurements of fast fluorescence induction kinetics according to Schreiber and 266 

Klughammer (2013). Consecutive O-I1 rise kinetics were recorded for each LED colour (440, 480, 267 

540, 590 and 625 nm) using pre-programmed script files, which define wavelength-specific intensities 268 

of ML and AL (or multiple turnover light pulses), as well as the amplifier gain and the time intervals 269 

between the start of various trigger files (these scripts are available from the primary author upon 270 

request). 271 

The optimisation process for obtaining reliable σII(λ) values for nubbins of  P. damicornis consisted 272 

of two steps. Firstly, the ML intensity and gain were adjusted to obtain similar minimal fluorescence 273 

(F0) values, which facilitate a comparison of the rise kinetics. Secondly, the intensity of actinic light or 274 

multiple turnover light pulses were adjusted to obtain similar initial rise kinetics of the O-I1 curves for 275 

all colours. When initial slopes are identical, differences in PAR are directly proportional to changes in 276 

σII(λ). The σII(λ) values were derived using a dedicated fitting routine provided by the PamWin-3 277 

software (Heinz-Walz GmbH, Effeltrich, Germany) according to Schreiber et al. (2012). The fitting is 278 

based on the reversible radical pair model of PSII originally described by Lavergne and Trissl (1995) 279 

extended to take into account QA
- 
reoxidation (Schreiber et al. 2012). The free-fitting parameters in 280 

this model that are fitted by the PamWin-3 program, are i) J, a connectivity parameter (Lavergne and 281 

Trissl 1995), ii) τ, the time constant of light-driven reduction of QA (by actinic light or multiple turnover 282 

pulses), and iii) τ(reox), the time constant of QA
-
 reoxidation. Additional parameters F0 and I1 (O and I1 283 

levels in the PAM fluorescence induction terminology) are directly measured to define the variable 284 
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fluorescence (ΔF) that can be induced by a combination of strong continuous light (AL) or multiple 285 

turnover pulse (MT) and a single turnover saturating flash (ST pulse). The measurement is routinely 286 

carried out in the presence of weak far-red light (peaking at 735 nm), i.e., when the PQ pool is 287 

oxidised. The O-I1 curves recorded with the five colours were fitted simultaneously with fixed J and 288 

τ(reox) parameters. As J and τ(reox) are intrinsic dynamic properties of PSII, they should not be 289 

influenced by the colour of light used for induction. Fluorescence was recorded at ˃665 nm using a 290 

RG long-pass emission filter in front of the MCP-D detector head. 291 

 292 

2.6. Direct measures of light field within coral tissue 293 

To directly measure the scalar irradiance within coral tissue (E0(meas)) we used scalar irradiance 294 

microsensors (Lassen et al. 1992) as described previously (Wangpraseurt et al. 2012). Briefly, coral 295 

fragments were placed in a black flow-through chamber supplied with seawater (25 ºC; flow velocity 296 

~3 cm s
-1

) and illuminated with a downwelling photon irradiance of 400 µmol photons m
-2

 s
-1

. Scalar 297 

irradiance was recorded within coenosarc tissue, i.e., the connective tissue in between polyps 298 

measuring light microprofiles from the skeleton surface upwards into the tissue surface. Prior to each 299 

scalar irradiance measurement, a micro-incision was made with a micro-needle (effective tip size <50 300 

µm; ProSciTech Pty Ltd, USA) to allow smooth sensor penetration through the tissue. Five replicate 301 

profiles were carried out on randomly chosen coenosarc tissues of P. damicornis. Spectral data was 302 

recorded with the scalar irradiance microsensors connected to a fibre-optic spectrometer (USB2000+, 303 

Ocean Optics, Dunedin, FL, USA) controlled by the manufacturer‟s software (Spectrasuite). Scalar 304 

irradiance measurements were normalised to the incident downwelling irradiance (Ed), as measured 305 

with the microsensor positioned in the collimated light beam above a black non-reflective surface. 306 

 307 

2.7. Calculation of σII(λ) 308 

σII(λ) for the intact coral and the Symbiodinium culture were calculated according to Schreiber et 309 

al. (2012) as: 310 

dA

II
EN 





1

)(            (1) 311 
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where σII(λ) (nm
2
) is the intrinsic wavelength-dependent functional absorption cross section of PSII (in 312 

optically thin suspension) or the apparent wavelength-dependent functional absorption cross section 313 

of PSII (in intact corals). Here, τ is the time constant of light-driven QA
-
 reduction (ms) determined from 314 

the fast fluorescence kinetics measurements (see above), NA = Avogadro‟s constant (6.03 · 10
23

 315 

quanta [mol photons]
-1

), and Ed (µmol photons m
-2

 s
-1

) is the incident downwelling irradiance that was 316 

kept equal in the coral and culture experiments. 317 

 318 

2.8. Theoretically derived scalar irradiance within coral tissue  319 

We theoretically derived the effective scalar irradiance within the coral tissue by assuming that in 320 

first approximation any change in σII(λ) between coral and culture is caused by differences in the coral 321 

tissue scalar irradiance with respect to incident irradiance at a given wavelength, i.e., ΔσII = ΔE. 322 

Therefore we calculated the ratio of σII(coral)/σII(suspension) at each wavelength (440, 480, 540, 590 323 

and 625 nm) and subsequently used the average value (n= 5-6) of the σII(coral)/σII(suspension) ratio 324 

to calculate the effective PAR at a given wavelength (λ) as:   325 

 326 

E0(calc) = Ed · σII(coral)/σII(suspension)                                                                  (2) 327 

 328 

This equation is valid only if it is assumed that all cells involved in fluorescence measurements are 329 

exposed to the same scalar irradiance intensity. This assumption is likely only justified for the topmost 330 

layers of tissue which is monitored via short-wavelength fluorescence. However, if excited within 331 

deeper layers, the fluorescence signal is likely to become re-absorbed. We propose that potential 332 

errors in σII(λ) calculations are minimised when strongly-absorbed 440 nm light is used (Schreiber et 333 

al. 2011). Therefore, recordings of light response curves with determinations of photon absorption 334 

rate of PSII (PARII) and electron turnover rate of PSII (ETRII) were carried out using 440 nm light (see 335 

below).  336 

 337 

2.9. Photon absorption rate of PSII (PARII) and electron turnover rate of PSII (ETRII) 338 

The wavelength-dependent quantum absorption rate of PSII (PARII, photons PSII
-1

 s
-1

), which is 339 

equivalent to the photosynthetically usable radiation, was calculated as 340 

 341 
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PARII =s II ×NA ×PAR               (3) 342 

 343 

where PAR is either Ed, E0(calc) or E0(meas). The wavelength-dependent absolute electron turnover 344 

rate of PSII, ETRII was thus calculated as  345 

  346 















M

M
IIII

FF

FF
PARETR

/

'/'
         (4)  347 

 348 

where ΔF‟/FM‟ is the effective quantum yield of PSII (in the light-adapted state), and ΔF/FM is the 349 

maximal quantum efficiency of PSII (determined in the dark-adapted state with weak far-red 350 

background light). The ETR parameters ETRII
max 

and Ek(II) were determined using the curve fitting 351 

protocol of PamWin-3. 352 

 353 

2.10. Absorption measurements  354 

Optical absorption spectra for Symbiodinium sp. were recorded by using a custom built 355 

spectrophotometer composed of a Tungsten-Halogen light source (LS-1, Ocean Optics), and a fibre 356 

optic spectrophotometer (USB2000, Ocean Optics) interfaced with an integrating sphere (FOIS-1, 357 

Ocean Optics) (see details in Petrou et al. 2013). Symbiodinium cells were filtered to GF/F filter paper 358 

(Whatman) which was placed directly in the light path of the Tungsten-Halogen lamp and across the 359 

collection port of the integrating sphere Absorption spectra were recorded using Spectra Suite 360 

software (Ocean Optics). Reference spectra were taken on clean filter paper filtered only with f/2 361 

medium. Spectra were averaged (n=4) to increase S/N ratio and the average spectrum is shown 362 

along with the standard error (S.E.) at 440, 480, 540, 590 and 625 nm (Fig. 1). 363 

 364 

3. Results 365 

3.1. Wavelength-dependent absorption cross-section of Photosystem II (σII(λ)) of Symbiodinium 366 

for intact corals and cultures 367 

 368 
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Wavelength-dependent variations of σII were similar for Symbiodinium harboured in P. damicornis 369 

and in culture, with highest values in the blue and a progressive decrease towards the red end of the 370 

spectrum (Fig.1). However, the absolute values of σII differed between intact corals and Symbiodinium 371 

culture with mean σII values of ~6.5 and ~4.5 at 440 nm for cultured Symbiodinium cells and P. 372 

damicornis nubbins, respectively (Fig. 1). For P. damicornis, σII(λ) values were ca. 20-30% lower 373 

between 440-540 nm (paired t-test, p<0.05), but ca. 15% higher at 590 nm than for cultured 374 

Symbiodinium. However, it should be noted that these differences at 590 nm were not statistically 375 

significant (p<0.05). In contrast, mean σII values in coral and culture were identical at 625 nm 376 

(p>0.05). The absorption spectrum of cultured Symbiodinium followed closely the shape of the σII(λ) 377 

(Fig. 1), although the relative values differed when both spectra were normalised to their maximal 378 

levels. The corresponding data of the O-I1 kinetic rise that were used for σII calculations are shown in 379 

Table 1, which shows that largely different PAR values were adjusted at different wavelengths to 380 

attain nearly identical τ values. 381 

 382 

3.2. Effect of light microenvironment on σII(λ) of Symbiodinium 383 

Microscale spectral scalar irradiance at and within the tissue surface revealed strong spectral 384 

distortion from the incident downwelling irradiance (Ed), indicating that Symbiodinium in the intact 385 

coral and in suspension are subject to different light regimes (Fig. 2). Most pronounced was the red-386 

shifted enhancement in tissue scalar irradiance relative to Ed. To assess whether differences in σII 387 

between coral and suspension translated to differences between the light field of the dilute 388 

suspension (i.e. Ed) and the light field within the intact coral [E0(meas)] we also examined the ratio of 389 

σII(coral)/σII(suspension) vs. E0(meas)/Ed (Fig. 2). The relative differences in σII(coral)/σII(suspension) 390 

followed closely (5-10% deviation) the differences in light availability for Symbiodinium in the intact 391 

coral  vs. culture in the blue-green and red spectral region (Fig. 2). However, in the orange-red region 392 

(590-625 nm), the differences between coral and culture did not match well with measured differences 393 

in σII (offset between PAR and σII) of ~20-40% (Fig. 2). 394 

 395 

3.3. Absolute electron transport rates of Symbiodinium in intact corals 396 

 397 
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Absolute electron transport rates under 440 nm light were determined for intact corals using full 398 

downwelling irradiance (Ed) or measured scalar irradiance within the tissue (E0(calc)) for PAR in 399 

equation 3 (Fig. 3). Based on Ed, the mean ETRII
max

 was 370 electrons PSII
-1

 s
-1

 (± 30 S.E.) and the 400 

mean Ek(II) was 402 (± 37 S.E.) photons PSII
-1

 s
-1

. As expected, when based on E0, both the mean 401 

ETRII
max

 and Ek(II) were substantially lower at 261 electrons PSII
-1

 s
-1

 (± 35 S.E.) and 248 (± 33 S.E.) 402 

photons PSII
-1

 s
-1

, respectively. The 1.4 factor of difference between Ed and E0(calc) reflects the ratio 403 

of intrinsic σII (measured with an optically thin suspension of Symbiodinium) and the apparent σII 404 

determined with the intact coral (see Table 1).  405 

 406 

3.4. Effect of scalar irradiance within the coral on relative electron transport rates of Symbiodinium 407 

In most studies, rETR values are calculated with the unrealistic assumption that a constant fraction 408 

of incident PAR is absorbed by the sample, independent of the colour of applied light and the actual 409 

absorption of this light in the sample. Nevertheless, measurements of rETR have proven useful for 410 

many practical applications to analyse relative changes in photosynthetic performance in particular 411 

species of corals, as long as the wavelength of light available (and the fundamental absorption 412 

properties) remained constant. When rETR curves of the intact coral P. damicornis based on Ed were 413 

compared with rETR curves based on E0(calc) the LCs showed different maximal relative electron 414 

transport rates (rETRmax of 36 ± 2 and 26 ± 2, respectively) and an onset of saturation at different 415 

irradiance levels (Ek of  143 ± 16 and 91 ± 11  μmol photons m
-2

 s
-1

, respectively; Fig. 4). 416 

 417 

4. Discussion 418 

Our data demonstrate the wavelength dependency of the absorption cross section of PSII for 419 

Symbiodinium in culture and in hospite. This comparison is essential to determine the effective 420 

Symbiodinium light absorption properties in hospite that can be used to estimate absolute electron 421 

transport rates in intact corals. Our measurements of σII(λ) confirm past accounts of the spectral 422 

dependency of absorption that were based solely on fluorescence excitation spectra of PSII 423 

absorption from various Symbiodinium genotypes (Hennige et al. 2009).  424 
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The wavelength-dependent character of σII(λ) reflects the unique pigment composition of 425 

Symbiodinium sp. The most pronounced difference was the high functional absorption in the green 426 

spectral region relative to the blue spectral region, which is indicative of a strong absorption of 427 

peridinin, the main light harvesting carotenoid of Symbiodinium (Fig. 1). These findings are supported 428 

by the absorption spectrum of Symbiodinium cultures (Fig. 1) and are in good agreement with 429 

previous results showing the absorption and fluorescence excitation spectrum of various clades, i.e., 430 

the energy absorbed in the blue (440-480 nm) region is partitioned to PSII-specific absorption to a 431 

larger extent than in the orange-red region (590-625 nm) (Hennige et al. 2009).  432 

This spectral dependency of σII(λ) is important when considering how Symbiodinium 433 

photosynthesis is driven by light quality. Several previous studies have shown that blue light affects 434 

coral photosynthetic parameters differently than red light (e.g. Kinzie et al. 1984; Levy et al. 2003; 435 

Mass et al. 2010). For example, Levy et al. (2003) used FRR fluorescence to show that blue light 436 

decreases the effective quantum yield to a greater extent than red light. These results correspond to 437 

the differences of σII in blue vs. red parts of the spectrum reported here (Fig. 1) and indicate that 440 438 

nm light is ~3.4-fold more efficiently utilised than 625 nm light in Symbiodinium.  439 

We found that σII(λ) of Symbiodinium harboured in P. damicornis showed a similar wavelength-440 

dependency as the cultured Symbiodinium, but that the absolute  σII(λ) values differed significantly 441 

between the two types of symbiont environment (Fig. 2). Such deviation of the apparent σII(λ) of P. 442 

damicornis from the intrinsic σII(λ) of a dilute Symbiodinium sp. is a result of the lowering of the mean 443 

effective PAR within the coral tissues which increases with extinction. Similarly, Schreiber and 444 

Klughammer (2013) observed lower σII(λ) values for intact plant leaves (Dandelion) compared to 445 

green algal cultures (Chlorella) and suggested that reduced σII(λ) values are due to part of the 446 

incident light being absorbed within the leaf and that such attenuation is most pronounced at 447 

wavelengths of strong absorption, i.e., blue and red in higher plants chloroplasts. In a more recent 448 

study, a thorough characterisation of σII(λ) in optically dilute and dense Chlorella suspensions showed 449 

that for optically dense cell suspensions, apparent σII(λ) has to be distinguished from intrinsic σII(λ), 450 

with the latter corresponding to the value best measured with an optically thin cell suspension 451 

(Klughammer and Schreiber, submitted to Photosynthesis Research). 452 

The experimental procedure for determinations of apparent σII(λ)  and intrinsic  σII(λ)  is 453 

identical; however, σII(λ) values cannot be determined with the same precision as intrinsic σII(λ) values 454 
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since the underlying O-I1 kinetics are the sum of many different components, as induced by a gradient 455 

of light intensities experienced by all cells within the optically-dense sample that ultimately contribute 456 

to the fluorescence signal. As noted above, it may be assumed that the reduction of apparent σII(λ) 457 

with respect to intrinsic σII(λ) is a measure of the reduction of the mean effective PAR with respect to 458 

incident PAR for the cells where fluorescence is measured. Importantly the measured effective 459 

quantum yield is representative for the same population of cells. Thus the MC-PAM allows us to 460 

obtain estimates of paired values of wavelength-dependent effective PAR and ΔF‟/FM‟ under identical 461 

conditions, from which absolute electron transport rates can be calculated.  462 

Our light microsensor measurements within the intact coral suggest that differences in apparent 463 

σII(λ) between corals and Symbiodinium culture are mainly due to differences in the light 464 

microenvironment of in hospite zooxanthellae. In the blue part of the spectrum, relative differences in 465 

σII(λ) between coral and culture correlated closely with respective differences in light availability (Fig. 466 

3). However, towards the red part of the spectrum (590-625 nm), light availability itself was insufficient 467 

to explain the differences in σII(λ)  between coral and culture (Fig. 3). The reason for this mismatch 468 

remains unknown, but could be related to the configurational differences of microsensor and 469 

chlorophyll fluorescence measurements, as discussed in the following section. 470 

Since fluorescence is measured by the MC-PAM predominantly from a defined subsurface 471 

layer of photosymbionts, which is thinner than the microsensor tip, there is an intrinsic difference 472 

between the theoretical scalar irradiance calculated from differences in σII(λ)  as compared to 473 

measured scalar irradiance values that will average over a larger tissue volume. In cases of very thin 474 

coral tissue, it cannot be ruled out that the small white light collecting sphere of the microsensor 475 

substitutes for a substantial part of tissue that normally contributes to light absorption, which would 476 

thus affect the tissue light field. However, in the case of very thin tissue, such potential measurement 477 

artefact may also be masked by increased diffuse reflectance of the tissue light field from the 478 

underlying coral skeleton. Other comparisons of calculated and measured scalar irradiance 479 

measurements indicate that such artefact is likely negligible in strongly scattering sediment (Kühl and 480 

Jørgensen 1994). Additional reasons explaining these discrepancies could be (i) the presence of host 481 

pigments that might have additional effects on coral photosynthesis e.g. due to spectral conversion 482 

(Dove et al. 2008, Smith et al. 2013), (ii) differences in the penetration depth of the PAM excitation 483 

light (i.e. measuring and actinic light), (iii) imbalance of excitation energy that arrives in PSII or PSI, 484 
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which was shown to be wavelength dependent in Symbiodinium (Hennige et al. 2009) or iv) other 485 

factors that could lead to physiological differences of cultured and in hospite Symbiodinium such as 486 

differences in the physico-chemical microenvironment of free-living and symbiotic Symbiodinium cells.  487 

Despite these differences in microsensor and σII(λ) data, both approaches revealed the same 488 

magnitude of light attenuation in the blue and blue-green spectral region, which thus allowed for 489 

estimating absolute electron transport rates in the blue region. Absolute electron transfer rates at 440 490 

nm based on E0(calc) and  E0(meas) were similar and both were approximately 40% lower than the 491 

rates estimated when using Ed (Fig. 3). Interestingly, an ETRII
max

 value of ca. 220-250 electrons PSII
-1

 492 

s
-1 

corresponded to PARII values (i.e. photon absorption rate) of ca. 1000 photons PSII
-1

 s
-1

, when 493 

PARII was based on E0(calc) or E0(meas) (Fig. 3); PARII  of 1000 photons PSII
-1

 s
-1 

(= 1 photon PSII
-1

 494 

ms
-1

) corresponds to a rate of QA
-
 reduction of ~1 ms

-1
 under reference conditions. Consequently, at 495 

the maximum steady state ETRII, PSII turns over approximately once for every 4 photons absorbed by 496 

PSII (equivalent to 1 electron transported by PSII per 4 ms) reflecting the limiting step between PSII 497 

and PSI at the protolytic reaction between PQH2 and the Cyt b6/f complex. Similar ETRII
max

 rates have 498 

been observed from the single-celled photosynthetic model organism Chlorella grown under a similar 499 

light environment (Schreiber et al. 2012). The similarity of ETRII
max

 values in the intact coral and 500 

Chlorella in dilute suspension suggests that photosynthetic electron transport is limited by the same 501 

partial reaction, i.e., most likely the protolytic step between PQH2 and Cyt b6/f (see above).  502 

Together, these results have important implications for our understanding of coral photobiology. 503 

Firstly, the optical properties of the coral host environment strongly affect the photon absorption rate 504 

of Symbiodinium and secondly, the MC-PAM approach facilitates a reliable estimation of such rates in 505 

a non-invasive and rapid manner. Our results also have implications for the determination of the light 506 

saturation irradiance, Ek, commonly derived from rETR vs. irradiance measurements. For instance, 507 

we found that if coral optical properties are not taken into account, Ek was overestimated by ca. 40% 508 

(Fig. 4), thus further highlighting the value of coral tissue optics data for improving accuracy of not 509 

only photosynthesis rates but also photosynthesis-irradiance parameterisation, i.e., estimates in line 510 

with earlier findings comparing P vs. E curves and action spectra using downwelling versus scalar 511 

irradiance as measures of the actinic light levels in coral tissue (Kühl et al. 1995). 512 

In conclusion, we resolved the wavelength dependency of the functional absorption cross-513 

section of PSII in Symbiodinium and provided the first PAM-based measures of absolute electron 514 
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transfer rates in intact corals. The optical properties of coral tissues have a central role in affecting the 515 

photosynthetic performance of in hospite Symbiodinium and our study implies that knowledge of coral 516 

tissue optics is needed to determine absolute electron transport rates in corals. A potential future 517 

approach could see a combination of microfiber-PAM measurements over different wavelengths, 518 

and/or multilayered fluorescence models (see e.g. Evans, 2009) to account for different light 519 

penetration and thus different operational tissue volumes contributing to PAM measurements at 520 

different wavelengths. Expanding the applicability of PAM-based fluorescence parameters to 521 

investigate absolute electron transport is an important step towards an improved means to better 522 

characterise and hence understand how coral productivity varies over space and time.     523 
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Table 1. Parameters to calculate σII(λ) values of P. damicornis and Symbiodinium sp.
a 650 

Wavelength F0 I1 PAR p J τ τ(reox) σII 

(nm) (V) (V) (μmol photons m
-2

 s
-1

)   (ms) (ms) (nm
2
) 

P. damicornis 651 
440 1.192 2.267 1050 0.432 0.760 0.327 0.354 4.46 

480 1.234 2.346 1227 0.432 0.760 0.338 0.354 3.60 

540 1.436 2.678 2254 0.432 0.760 0.31 0.354 2.14 

590 1.373 2.606 3074 0.432 0.760 0.325 0.354 1.47 

625 1.547 3.043 3256 0.432 0.760 0.323 0.354 1.32 

Symbiodinium sp. 652 

440 1.104 2.584   942 0.529 1.124 0.283 0.499 6.23 

480 1.022 2.098 1110 0.529 1.124 0.312 0.499 4.80 

540 1.186 2.269 2112 0.529 1.124 0.315 0.499 2.50 

590 1.082 2.159 4827 0.529 1.124 0.289 0.499 1.19 

625 1.078 2.224 4373 0.529 1.124 0.285 0.499 1.33 

 653 
a 

Representative data from consecutive measurements of the O–I1 rise kinetics in Pocillopora 654 

damicornis and Symbiodinium sp. F0, minimal fluorescence obtained by measuring light when QA was 655 

completely oxidised; I1, fluorescence obtained upon actinic light+single turnover flash, when QA was 656 

completely reduced; PAR, applied PAR to attain constant τ values; τ, time constant of QA
- 
reduction; 657 

τ(reox), time constant of QA reoxidation. τ curves were fitted separately for the five wavelengths, 658 

whereas parameters of τ(reox) (time constant of QA oxidation) and J (connectivity) were fixed since 659 

they are independent of the wavelength (see Materials and Methods). 660 
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Figure legends 

 

Fig. 1 Wavelength-dependent absorption cross section of PSII, σII(λ) in cultured Symbiodinium sp. 

cells (closed squares, solid line) and in coral Pocillopora damicornis (open squares, dashed line).  

σII(λ) was derived from automated measurements of five consecutive O–I1 rise curves for each colour 

in the presence of far-red background light. Each transient was averaged 5-10 times in order to 

improve the signal-to-noise ratio. The interval between consecutive O–I1 measurements was 10 s.  

σII(λ)  values were derived by the PamWin-3 O-I1 fitting routine (Walz GmbH, Effeltrich, Germany). 

Symbols and error bars represent the average ± S.E. (n=15). * denotes statistically significant 

differences of σII(λ) based on paired sample t-test (P0.05). Relative absorption spectrum of 

Symbiodinium sp. (normalised to 1 at its maximum at ~475 nm, grey line). The spectrum is an 

average of 4 replicate measurements and S.E. is shown at 440, 480, 540, 590 and 625 nm.  

 

Fig. 2 Effect of coral optics on the ratios of σII(λ)  of Symbiodinium. The figure shows the ratio of 

σII(coral)/σII(suspension) (triangles) vs. the ratio of scalar irradiance/incident downwelling irradiance at 80 µm 

tissue depth (thick line) and at mean tissue depth (thin line).  Standard errors (S.E.) of the scalar 

irradiance spectra at 80 µm and at mean tissue depths and the σII(λ)  ratios are shown in dark and 

light grey and black vertical lines, respectively 

 

Fig. 3 Steady-state light curves of ETRII recorded at 440 nm  of Pocillopora damicornis as a function 

of PARII that was obtained based either on Ed (closed squares) or on E0(calc) (open squares)  

 

Fig. 4 Steady-state rel. ETR light curves recorded at 440 nm of Pocillopora damicornis as a function of 

either Ed (closed squares) or E0(calc) (open squares)  

 

Figure legends


