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The transport properties of electromagnetic waves in disordered, finite, two-dimensional photonic
crystals composed of circular cylinders are considered. Transport parameters, such as the transport
and scattering mean free paths and the transport velocity are calculated, for the case where the
electromagnetic radiation has its electric field along the cylinder axes. The range of the parameters
in which the diffusion process can take place is specified. It is shown that the transport velocity
vE can be as much as 108 times less than its free space value, while just outside the cluster vE can
be 0.3c. The effects of weak and strong disorder on the transport velocity are investigated. The
different regimes of the wave transport: ordered propagation, diffusion and anomalous diffusion are
demonstrated and it is inferred that Anderson localization is incipient in the latter regime. Exact
numerical calculations from the Helmholtz equation are shown to be in good agreement with the
diffusion approximation.

I. INTRODUCTION

Propagation of electromagnetic waves in ordered and disordered media has attracted much interest recently [1],
partly born of the invention of photonic crystals [2,3] -materials with a periodic refractive index distribution. Such
materials can prohibit propagation of light in all directions and for all polarizations at so-called gap wavelengths
[4,5]. Therefore a photon with a gap wavelength is trapped or localized inside such structure and we term this gap
localization.

In contrast to gap localization, Anderson localization of photons, the analog of electron Anderson localization, takes
place in a disordered medium. Due to multiple scattering of photons off the equivalent random potential created by
variability in optical properties such as refractive index, wave transport undergoes a phase transition from propagation
to exponential decay [6]. To demonstrate Anderson localization of photons, John [2] suggested use of disordered, but
periodic on average, photonic crystals composed of dielectric inclusions in a matrix [4,5].

One of the crucial parameters of Anderson localization is the linear “sample size” L of the random medium. As
waves propagate inside the random sample the original coherent propagation changes to diffusive propagation with
a scattered transport mean free path lt. Interference of waves can then reduce the transport mean free path lt and
renormalize the diffusion coefficient D, to a form that depends on the sample size and disorder. Such renormalization
of the diffusion coefficient leads to anomalous diffusion, and then to localization if D → 0. The scaling theory
of localization [7] predicts that, in an infinite medium, waves with all wavelengths are localized in one and two-
dimensional infinite media even for a small amount of disorder, while for three dimensional problems there exists a
region of wavelengths in which the localization takes place at a given level of disorder. However, all realistic random
samples are finite. Therefore it is important to take into account the effects of the finite size of the random samples
on localization properties. Furthermore the finiteness of the sample allows the possibility of a diffusive regime of wave
propagation even for one and two dimensional problems.

Since the suggestion by John [2] to use randomized photonic crystals to demonstrate Anderson localization of
photons, only a few papers have considered this and related problems. Some aspects of the localization of waves in
general have been considered [8], particularly for two-dimensional problems [9–11].

The diffusion coefficient D is closely related to the transport velocity of light vE , which has been calculated in the
limit of low concentration of scatterers [12,13]. The question of the transport velocity of light vE for high concentrations
of scatterers has been a difficult problem so far [14]. Effective medium models based on the spectral function approach
[15] and the approach of averaged energy density homogeneity [16,17] have been developed to model this problem,
but their limits of applicability are restricted [18,19].

A recent exact multipole expansion method [20–25] and the construction of the Green tensor Gij(r1, rs) [26,27]
allows one to calculate the transport velocity vE for high concentration of scatterers with high accuracy for two
dimensional problems. The method also allows one to investigate the transport properties of random media such as
the diffusion coefficient D and the correlation function 〈Gi(r1, rs)G∗

j (r2, rs)〉 [14].
In general one can specify four regimes of wave propagation in disordered media: The homogenized regime, in

which the random medium can be characterized by an effective dielectric constant εeff , applies when the wavelength
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is greater than that of any characteristic structures within the medium ; i.e., λ � Ls, where Ls is the size of the
scatterers or the distance between them. The diffusive regime, in which the intensity of the waves obeys the diffusion
equation, occurs when λ/2π � lt � L holds, where lt is the transport mean free path and L is the size of the sample
[28]. The regime in which the transport mean free path is a function of the size of the cluster and/or the degree of
disorder, called the anomalous diffusive regime. Finally, in the localized regime we have λ/2π � lt, which is known
as the Ioffe-Regel criterion.

Here we investigate the different regimes of wave propagation: diffusion, anomalous diffusion and Anderson local-
ization for both pass-band and gap wavelengths. Other aims of this paper are to calculate rigorously the transport
velocity vE of light in finite sized photonic crystals for intermediate concentrations of scatterers where no theoretical
models exist, and to investigate the effects of disorder on vE .

In Sec. II we briefly outline the construction of the Green function. In Sec. III we calculate the transport and scat-
tering mean free paths, lt and ls, of photons and determine the values of these parameters where diffusive propagation
of waves can take place. In Sec. IV we calculate the transport velocity vE of waves inside finite photonic crystals
from first principles. In Sec. V we show that light propagation in disordered photonic crystals of finite size can be
diffusive and also demonstrate the anomalous regime of wave propagation. Incipient Anderson localization for gap
wavelengths is also inferred.

II. GREEN FUNCTION

In the recent paper [27] we constructed the Green tensor for two dimensional photonic crystals composed of a finite
cluster of Nc non-overlapping circular inclusions in a matrix, as illustrated in Fig.1. The radii of inclusions in a matrix
al, refractive indices nl, and positions cl of the circle centers are otherwise arbitrary. A point source is assumed to
be located at cs. This system can also be viewed as representing a collection of parallel circular cylinders with the
propagation strictly perpendicular to their axes from a line source and we will use the two descriptions interchangeably
below.

Here we give a brief outline of the method that we use to calculate the component of the Green tensor for Ez

polarization in the subsequent sections. For this polarization the electric vector is aligned along the axes of the cylinders
and the electromagnetic field can be described by a single component of the electric Green tensor Gzz = V e(r; cs)
that obeys the Helmholtz equation

∇2V e(r; cs) + k2n2(r)V e(r; cs) = δ(r − cs), (1)

where V e and ν · ∇V e are continuous across all cylinder boundaries. Here n(r) is the refractive index of the cylinders
or the matrix and ν is the local outward unit vector normal to the surface of the cylinders.

To construct the Green function we use exact multipole expansions in which the wave fields inside and outside the
cylinders are expressed in terms of Bessel functions with unknown coefficients. By using the boundary conditions of
the continuity of the field and its derivative at the surfaces of the cylinders and by applying Green’s second theorem
over the cluster we derive a linear set of equations for the unknown coefficients [26]. By solving the linear set of
equations, the Green function is then reconstructed as

V e(r; cs) = χext(cs)H
(1)
0 (k|r − cs|)/(4i) (2)

+
Nc∑
q=1

∞∑
m=−∞

Bq
mH(1)

m (k|r − cq|)eim arg(r−cq),

for points in the matrix, and

V e(r; cs) = χint
l (cs)H

(1)
0 (knl|r − cs|)/(4i) (3)

+
∞∑

m=−∞
Cl

mJm(knl|r − cl|)eim arg(r−cl),

for points inside the cylinders. The term χext(cs) = 1 if the source is outside the cylinders and is 0 when the source
is inside one of the cylinders. The term χint

l (cs) = 1 when the source is inside cylinder l and is 0 otherwise. By using
Maxwell’s equations we can calculate the components of the magnetic field H = (Hx,Hy), with
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H =
∇× E
ikZ0

, (4)

where Z0 =
√

μ0/ε0 is the free space impedance.
The above method is highly accurate and numerically effective. As an illustration, in Fig. 2 we present the intensity

distribution I = |V e(r; cs)|2 for a cluster of Nc = 317 cylinders with the refractive indices nl uniformly distributed in
the range 2.2 − 3.8 and radii al = 0.4d excited by a line source located at the center of the middle cylinder for one
realization. Here d is the distance between the centers of the neighboring cylinders. The cylinders form a finite cluster
of approximately circular shape with cylinder centers located in a square lattice. The calculations have been done for
a gap wavelength of the corresponding infinite structure, λ/d = 1.625. Note the tendency of the field to concentrate
at the center of the cluster, reflecting the localized nature of gap modes.

III. TRANSPORT lT AND SCATTERING MEAN FREE PATH lS IN TWO-DIMENSIONAL RANDOM
MEDIA

In appropriate regimes, a suitable description of wave propagation in strongly scattering disordered media is the
diffusion approximation, in which the wave equation for the fields is replaced by the simpler diffusion equation for the
intensity. The main parameters involved in the diffusion approximation are the diffusion coefficient D, the transport
velocity vE , the transport mean free path lt, and the scattering or elastic mean free path ls. The transport velocity
vE is considered in Sec. IV, while here we consider the properties of ls and lt.

The scattering mean free path ls is the average distance between two successive scattering events, while the transport
mean free path lt is the characteristic distance over which the direction of the momentum of photons becomes
randomized. In the limit of low scatterer concentration, they can be calculated using

ls =
1

ρσt
, (5)

lt =
ls

1 − 〈cos θs〉 , (6)

where ρ is the concentration of the scatterers, θs is the scattering angle, and σt is the total scattering cross section.
This is [29]

σt =
∫ 2π

0

σd(θ)dθ, (7)

for two dimensional problems, where σd(θ) is the differential scattering cross section

σd(θ) = lim
r→∞ r

|Ss(θ)|
|Si| . (8)

Here |Si| is the Poynting vector of the incident plane wave and |Ss| is that of the plane wave scattered by a single
inclusion, θ is the angle between the incident and scattered waves and r is the distance from the center of the inclusion.
For circular scatterers σd and σt can be calculated in closed form [29–31]. The Poynting vector of the scattered field
|Ss| can be calculated by using the scattered part of the fields (3) and (4), giving

σd(θ) =
2
πk

∞∑
m=−∞

∞∑
p=−∞

BmB∗
pei(m−p)θei(p−m)π/2

, (9)

σt =
4
k

∞∑
m=−∞

|Bm|2, (10)

where

Bm =
nJ ′

m(nka)Jm(ka) − Jm(kna)J ′
m(ka)

nJ ′
m(nka)H(1)

m (ka) − Jm(nka)H(1)′
m (ka)

. (11)

The average 〈cos θs〉 is
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〈cos θs〉 =
1

2πσt

∫ 2π

0

σd cos θdθ =
Re

∑∞
m=−∞ BmB∗

m+1∑∞
m=−∞ |Bm|2 , (12)

where n is the refractive index of the cylinder, the medium separating the cylinders is taken to have unit refractive
index, a is the radius and k = 2π/λ is the wave number. Equations (5) and (6) hold only for low concentrations
of scatterers with filling fraction f � 0.1 [32]. For higher concentrations of scatterers 0.1 � f � 0.6 the scattering
cross-section σt must be rescaled as σt → σt(1−f) [29], while for the f � 0.6 a more complicated rescaling parameter
needs to be used [33].

In the diffusive propagation regime the relation

λ/2π � lt � L (13)

between the wavelength λ, the transport mean free path lt and the sample size L of the medium must hold [28]. The
lower limit in (13) is given by the Ioffe-Regel condition klt ∼ 1 that determines the mobility edges of the Anderson
transition for three-dimensional problems.

To illustrate the parameters that favor diffusive propagation we plot the averages, obtained from the equations of
this section, 〈lt〉 (solid line) and 〈ls〉 (dashed line) as functions of the wavelength λ in Fig. 3 for a cylinder with the
refractive index uniformly distributed in the range 2.8 < nc < 3.2. The radii of the cylinders are a = 0.4d, where d
is the distance between the centers of two neighboring cylinders, and the filling fraction is f = πa2/d2 ≈ 0.5. Figure
3 shows that for long wavelengths lt ≈ ls, while for shorter wavelengths, they are different. This is understandable,
because for longer wavelengths the asymmetry parameter (12) approaches zero, since in this regime the monopole
term B0 is dominant in the cross section (9) and can make only a small contribution to the asymmetry parameter
(because of the term BmB∗

m+1 in 12). The horizontal and sloped straight lines indicate the predicted lower and upper
bounds for diffusive propagation (13). The scattering mean free path ls also can be determined by the decay length of
the average single-particle Green’s function 〈G〉 [29]. Due to randomness the effective refractive index of the medium
renormalizes and acquires a complex part keff = k′

eff + i/(2ls). Here k′
eff is the real part of the effective refractive

index, which includes the real part of the forward scattering cross-section [29].
Figure 4 shows the dependence of |〈G〉|2 on the distance along the y axis for the cluster of 317 cylinders with

random refractive index uniformly distributed in the range 2.8 − 3.2. The cluster is excited by a point source in the
center of the central cylinder and the pass band wavelength is λ/d = 1.4. The transport mean free path is equal to
lt/d = 3.29 for this wavelength (see the solid line in Fig. 4). The slope of the straight lines on Fig. 4 determine the
scattering mean free path ls/d = 2.0± 0.2, which is consistent with (5) scaled by a factor 1− f , which gives the value
〈ls〉/d = 2.1. This exponential decay is simply the decay of the coherent intensity |〈G〉|2 ≈ ei2keffr ≈ e−r/ls [29].

Note that the results shown in Fig. 4, as in all later figures, have been calculated by averaging over an ensemble of
200 randomly chosen cluster realizations. This ensemble size seems sufficient to give stable results, even in the cases
of strong randomization investigated.

IV. TRANSPORT VELOCITY IN TWO-DIMENSIONAL RANDOM MEDIA

The speed of energy transport is one of the main characteristics of wave propagation in disordered media. In spite of
its importance this quantity was only treated phenomenologically until recently [34,35]. In the low concentration limit
a microscopic derivation of the speed of light is given in [12], while for the high concentration limit, different effective
medium models have been developed [15,17]. All of these approaches, as models, have successes and shortcomings [18].
Therefore it is important to study this problem rigorously for some model problems that allow exact solution. The
multipole method [20–25] is well adapted to the accurate calculation of the transport velocity from first principles.

The transport velocity vE is defined to be the ratio of the averaged energy flux determined from the Poynting vector
S to the averaged energy density of the wave W (where averaging is over a sufficiently large random ensemble)

vE = 〈S〉/〈W 〉. (14)

This definition was originally given by Brillouin [34] and correctly calculated by Loudon [35]. The group velocity
vg = dω/dk does not take into account the multiple scattering of waves [12] over random distributions of scatterers.
Furthermore, near resonances it can become greater than the speed of light in vacuum [36]. The calculation of the
transport velocity given by (14) is consistent with experiments [12] and does not give values greater then speed of
light.
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Before considering the speed of wave propagation in disordered photonic crystals it is first useful to calculate the
transport velocity of waves in the ordered case. The geometry of the cluster is the same as in Fig. 2. The refractive
indices of the cylinders are nc = 3. The line source is located in the center of the middle cylinder. The solid line in
Fig. 5 represents |vE |/c from (14) versus the position y with the source located in the middle of the central cylinder
for the wavelength λ/d = 1.625, which is located just inside the gap region of the corresponding infinite structure. It
is seen that the transport velocity can be as low as 10−8c, for a cluster of this size. The linear trends indicate that
the transport velocity increases exponentially away from the center of the cluster. The transport velocity vE tends to
zero in the vicinity of the source, as a consequence of symmetry (the absence of a preferred direction for this vector
quantity). It is also seen that just outside the cluster at y/d = ±11 the transport velocity vE/c reduces its value to
0.3 before it rapidly approaches the free space value away from the edge of the cluster. This local minimum of vE

is due to a strong interference effect at the edge of the cluster. We calculated vE/c also for a bigger cluster with
Nc = 625 cylinders and this reduction of the transport velocity vE/c outside the cluster still takes place.

The dashed line on Fig. 5 is vE/c versus position for the wave with the pass band wavelength λ/d = 3.425. For this
wavelength the transport velocity oscillates around its homogeneous value vE/c = 1/neff = 0.44 calculated using the
linear mixing formula εeff = 1 − f + f〈εl〉 [24], which is rigorous for this polarization, and approaches the free space
value c outside the cluster.

Figure 6 shows the same relationship as in Fig. 5 but for a disordered photonic crystal with uniformly distributed
cylinder refractive index in the range 2.9 < nc < 3.1 (dashed line, middle curve, weak disorder) and in the range
2.2 < nc < 3.8 (dotted line, top curve, strong disorder) averaged over 200 realizations. The solid line is vE/c for a
fully ordered photonic crystal with nc = 3.0. For weak disorder 2.9 < nc < 3.1, vE/c ≈ 10−5 at the center of the
cluster, while strong disorder has a larger effect on the transport velocity. Note that although the transport velocity
vE/c is substantially increased for strong disorder compared to vE/c for the perfect crystal, its value is nearly 15
times less than the free space value. Similar low values of the transport velocity have been reported experimentally
[12,37]. As we approach the edge of the cluster the transport velocity vE/c rapidly approaches the free space value.

V. DIFFUSION, ANOMALOUS DIFFUSION AND INCIPIENT ANDERSON LOCALIZATION

In this section we consider the different regimes of wave propagation: the diffusive and anomalous diffusive regimes,
and evidence for incipient Anderson localization. The transport mean free path lt and velocity vE are important
characteristics of diffusive propagation. The diffusion constant D is given by D = vElt/2 for two dimensional
problems. In the diffusion approximation, where the transport mean free path is bigger than the wavelength, the
wave equation for the electric field component (1) can be replaced by a diffusion equation for the wave intensity
[29,30]. For monochromatic problems with a source at cs the diffusion equation takes the form

∇2I = −2P0

lt
δ(r − cs), (15)

where P0 is the total emitted energy, lt is the transport mean free path, and I is the intensity given by I = 〈GG∗〉 −
|〈G〉|2 [29]. Note that the coherent intensity |〈G〉|2 is negligible here (for sufficient degree of disorder) and can be
disregarded in (15). For example for the cluster with 317 cylinders and the refractive index disorder in which the
refractive index is uniformly distributed in the range nl ± Q the degree of disorder Q = 0.2 is sufficient to render
negligible the coherent intensity.

The diffusion equation is usually solved with boundary conditions [29] at the edge of the sample

I ± 2lt
3

∂I

∂ν
= 0, (16)

where ν is the unit outward normal from the diffusive region. Note that the diffusion equation as well as the proposed
boundary conditions (16) are approximate [29,30]. Other boundary conditions are discussed in [38]. These boundary
conditions are obtained by the requirement that the intensity flux directed inward from the exterior of the disordered
sample vanishes. Here, we first solve the exact Helmholtz equation using the multipole method and find the averaged
intensity value at the edge of the cluster r = L. Then we use this value as a boundary condition for the diffusion
equation (15). By using this boundary condition we automatically satisfy the requirement of the absence of the inward
flux. Given this boundary condition the analytical solution of the diffusion equation (15) inside the cluster takes the
form

I = − P0

πlt
ln

|r − cs|
L

+ I0, (17)
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where lt is the transport mean free path, I0 is the exact value for the intensity at the edge of the cluster found from
the numerical solution of the Helmholtz equation and L is the size of the cluster, which we take to have a circular
shape. For points outside the cluster |r − rs| > L we continue the diffusive solution (17) by the relation

I = I0
L

r
, (18)

where I0 is the intensity at the edge of the cluster, L is the size of the cluster and r is the distance from the source.
Note that for two-dimensional problems the intensity of a point source located at the origin decays as 1/r far from
the source.

Below we consider both the transport properties of a wave with pass band and gap wavelengths of the corresponding
regular infinite photonic crystal.

A. Diffusion and anomalous diffusion for a pass band wavelength

In Fig. 7 we plot I versus y for a source located at the middle of the central cylinder for a pass wavelength λ/d = 1.4
(indicated by the letter A on Fig. 3) of a corresponding infinite structure and for a cluster as in Fig. 2. The refractive
indices nl of cylinders are uniformly distributed in the range 2.8− 3.2. The oscillating line is the exact solution of the
Helmholtz equation averaged over Nr = 200 random realizations and the dashed line is the analytical solution given
by (17) for points inside the cluster and by (18) for points outside the cluster. There is good agreement between two
curves. Therefore, we conclude that this is the diffusive regime of wave propagation.

In Fig. 8 we plot the same relation as in Fig. 7, but for stronger disorder, where the refractive index is uniformly
distributed in the range 2.2 − 3.8. The dashed line is the solution (17) of the diffusion equation for points inside the
cluster and the relation (18) for points outside. In order to obtain the fit for this case we had to rescale the transport
mean free path from the value lt ≈ 3.29 indicated by the letter A in Fig. 3 ( corresponding to the Ioffe-Regel value
klt ≈ 14.77) to the value lt/d ≈ 0.55±0.15 indicated by the letter A∗ in Fig. 3 (corresponding to the Ioffe-Regel value
klt ≈ 2.47). This reduction of the transport mean free path is an indication of the anomalous diffusion regime. Note
that for the Anderson transition to take place the condition klt ≈ 1 must be satisfied, corresponding to the transport
mean free path lt ≈ 0.22. To achieve this regime, bigger clusters or/and possibly stronger disorder are required,
requiring computer times which are prohibitive at present.

B. Diffusion and anomalous diffusion for a gap wavelength

In Fig. 9 we plot 〈|G|2〉 versus y for the gap wavelength λ/d = 1.625 (indicated by the letter B on Fig. 3) which is
located just inside the edge of the gap for the corresponding infinite structure. It has been suggested [39] that photons
with gap wavelengths are easier to localize by the Anderson mechanism. The refractive indices of the cylinders are
uniformly distributed in the range 2.2 − 3.8 (top curve), 2.8 − 3.2 (middle curve) and regular nl = 3 for the bottom
curve. Here we investigate transition from gap localization (bottom curve) to possible Anderson localization (top
curve) as we increase the degree of disorder. It might be expected that we would first see the classical diffusive regime
of wave propagation as we increase the disorder. However, it turns out that for a gap wavelength this transition takes
place directly (or at least, very rapidly) to the anomalous diffusive regime. The dotted line on the oscillating top
curve for points inside the cluster is the solution of the diffusion equation (15) with the rescaled transport mean free
path l∗t . We obtain the fit for the value l∗t /d = 0.3 indicated by the letter B∗ in Fig. 3, which corresponds to the
value of the Ioffe-Regel number kl∗t ≈ 1.16, close to the edge of the Anderson transition kl∗t ≈ 1. Interestingly, the
exponential relationship f(x) = 0.25 ∗ × exp(−|x|)/3 is also a good fit for the intensity curve and one can estimate
the localization length l/d ≈ 3.

The above calculations suggest that for the gap wavelengths the transition from gap localization to Anderson
localization takes place through the anomalous diffusive regime, in which the transport mean free path can no longer
be taken as constant, but is a function of the size of the cluster and the degree of the disorder.

VI. CONCLUSION

We have investigated the different transport regimes: regular/ordered, diffusive, and anomalous diffusive regimes
of wave propagation in disordered photonic crystals for both gap and pass band wavelengths of corresponding infinite
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regular structures. The main parameters of diffusive propagation: the transport velocity vE , and the transport and
scattering mean free paths, lt and ls, have been calculated. The parameters that corresponds to diffusive propagation
have been quantified.

For the first time the transport velocity vE/c introduced by Brillouin has been calculated from first principles for
a random medium with an intermediate filling fraction f = 0.5. It was found that the transport velocity of light
vE in ordered finite-size photonic crystals can be substantially lower (vE/c ≈ 10−8) than the free space value for a
gap wavelength. The effects of the disorder on the transport velocity were also considered and it has been shown
that vE/c can be more then 15 times less than in free space, which is in agreement with the experimental results
reported earlier. Although the transport velocity is rather sensitive to the degree of disorder, use of bigger clusters
can substantially reduce the transport velocity even for weak disorder. The calculation of the transport velocity vE

based on our rigorous method can serve as a basis on which the accuracy and the limits of applicability of different
effective medium models can be verified and checked.

For a wavelength in the pass band and a wavelength in the gap we have calculated the transport properties of
waves. In Fig. 10 we schematically illustrate and summarize the overall results obtained. Wave propagation for a pass
band wavelength of the corresponding infinite cluster for weak disorder is diffusive (region D in Fig. 10), while for
strong disorder the transport becomes anomalously diffusive (region AD in Fig. 10). To demonstrate the Anderson
transition bigger clusters and/or larger disorder are needed. For a gap wavelength we have investigated the transition
from gap localization to Anderson localization and have shown that this transition takes place directly through the
anomalous diffusive regime (region AD in Fig. 10) and the threshold of the Anderson transition is more easily achieved
(region AL in Fig. 10) [39]. An incipient Anderson transition was demonstrated. This qualitative smooth picture of
the Anderson transition in 2D is in agreement with the scaling theory of localization.
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FIG. 1. The geometry of the problem. The positions of the centers of the cylinders are given by the vectors cl and that of
the source by cs, while r is the position at which the Green function is calculated .
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FIG. 2. Intensity distribution for a source at the center of the central cylinder of a cluster with Nc = 317 cylinders. The black
circles indicate the positions of the cylinders. The refractive indices of the cylinders are random with a uniform distribution
over the range 2.2 − 3.8.
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FIG. 3. Transport 〈lt〉 (solid line) and 〈ls〉 scattering mean free paths (dashed line) versus λ. The region formed by the
straight lines is the region that satisfies the condition (13) for diffusive propagation. The sloped straight line is the limiting
value of the Ioffe-Regel criterium λ = 2πlt from below, while the horizontal and vertical straight lines are the limitations due
to the size of the cluster L/d = 10. The black dots indicated by letters A, A∗, B, and B∗ are discussed in Sec. V
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FIG. 4. Average modulus of the Green function versus distance y from the point source at xs = 0, ys = 0 . The slope of
the straight lines determines the scattering mean free path ls (see text), which is in agreement with Eq. (5) scaled by a factor
1 − f .
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FIG. 5. Transport velocity vE/c for an ordered photonic crystal versus the distance from the line source at the center of
the central cylinder at xs = ys = 0; (solid line) for gap wavelength λ/d = 1.625, and (dashed line) for pass band wavelength
λ/d = 3.425.
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FIG. 6. The modulus of the transport velocity vE/c versus the distance from the line source at the center of the central
cylinder at xs = ys = 0 for an ordered photonic crystal (solid line) and disordered photonic crystal for a gap wavelength
λ/d = 1.625. The refractive index is distributed in the range 2.9 − 3.1 (dashed line) and in the range 2.2 − 3.8 for dotted line.

11



0.0001

0.001

0.01

0.1

1

10

100

-15 -10 -5 0 5 10 15

I

y/d
FIG. 7. Intensity versus distance from a point source at the center of the central cylinder at xs = ys = 0; for a wavelength

λ/d = 1.4. The solid oscillating line is the averaged solution of the Helmholtz equation and the dashed line is the Eq. (15)
for points inside of the cluster and Eq. (18) for points outside. The cluster comprises 317 cylinders and the refractive index
distribution is uniform in the range 2.8-3.2.
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FIG. 8. The same relationship as in Fig. 7, but for the refractive index distribution in the range 2.2-3.8. Due to strong

randomness the transport mean free path renormalizes from the value 〈lt〉/d ≈ 3.29 to the value 〈lt〉 ≈ 0.55. This is the regime
of the anomalous diffusion.
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FIG. 9. Intensity I versus the distance from a point source at the center of the central cylinder at xs = ys = 0; for a gap

wavelength λ/d = 1.625. The transition from gap localization to Anderson localization. The refractive index of the cylinders
are uniformly distributed in the range 2.2− 3.8 (top curve), and 2.8− 3.2 (middle curve), and have fixed nl = 3 for the bottom
curve. The dotted line overlaying the oscillating top curve is the anomalous diffusion fit.
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FIG. 10. Schematic picture of the different regimes of the wave propagation. D-stands for diffusion, AD-for anomalous
diffusion, AL-Anderson localization, H-homogenization. The sloping line is an indication of the Ioffe-Regel criterion, while the
dotted line gives an indication of the boundary between the normal and anomalous diffusion regimes. Reading from left, the
vertical lines mark the edges of the bandgap and the size of the sample.
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