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Abstract

Recently, Universum data that does not belong to any class of the training data, has been applied for training better
classifiers. In this paper, we address a novel boosting algorithm called UadaBoost that can improve the classification
performance of AdaBoost with Universum data. UadaBoost chooses a function by minimizing the loss for labeled data
and Universum data. The cost function is minimized by a greedy, stagewise, functional gradient procedure. Each
training stage of UadaBoost is fast and efficient. The standard AdaBoost weights labeled samples during training
iterations while UadaBoost gives an explicit weighting scheme for Universum samples as well. In addition, this paper
describes the practical conditions for the effectiveness of Universum learning. These conditions are based on the analysis
of the distribution of ensemble predictions over training samples. Experiments on handwritten digits classification and
gender classification problems are presented. As exhibited by our experimental results, the proposed method can obtain
superior performances over the standard AdaBoost by selecting proper Universum data.
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1. Introduction

Conventional machine learning algorithms take labeled
data, unlabeled data or both of them for learning. Vapnik
[1] proposed the third kind of data: Universum data. The
Universum data contains the data that belongs to the same
domain as the classification problem but it does not belong
to any class of the problem. For example, in handwritten
digits recognition problems, if the samples of handwrit-
ten digits ‘5’ and ‘8’ are prepared for learning, then other
handwritten digit samples can be naturally treated as U-
niversum data since they belong to the same domain but
cannot be assigned to any of the two classes.

It is a common case that large labeled training data
is included in order to obtain good quality of training.
However, it is quite costly or sometime even impossible to
have very large training data. To deal with such problem,
semi-supervised learning is a common option when unla-
beled data is available since unlabeled data helps model
data distribution of the whole data. On the other hand,
without unlabeled data, Universum data is still able to
provide the supports to maintain the training quality with
relatively small labeled data set. The reason is Universum
data can be generated through a lot of ways from labeled
data only [2] (mentioned later). Moreover, Universum da-
ta can carry additional valuable prior information from
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the domain of the problem into the training process. To
the best of our knowledge, there is no comparison between
semi-supervened learning and Universum based learning.
But in our opinion, Universum based learning can better
model the whole data set since Universum data stays in
the same domain of learning problem with which we are
concerned [1] while the unlabeled data may be too general
and stay outside of the domain. In terms of data acquisi-
tion, Universum data can be obtained more widely.

Vapnik first discussed transductive learning with U-
niversum since transductive learning provides prior infor-
mation to estimate the upper bound of inductive inference
[1]. However, the classifier trained by inductive learning
is more practical to classify unknown data. Weston et
al. [2] proposed an inductive algorithm, Universum Sup-
port Vector Machines (U-SVM). U-SVM contains an ad-
ditional regularization term for Universum data in addi-
tion to conventional SVM. The regularization is based on
this assumption: the decision values on the Universum
data should be close to zero. That is Universum data
should fall inside the margin of the classifier since it does
not belong to any class. The Universum samples which
meet such assumption are called contradictions because
the goal of learning is putting labeled data outside of the
margin. Thus the margin should contain more Universum
data to achieve better learning performance. More Uni-
versum data means more contradictions. Therefore the
learning criterion for Universum based learning is called
Maximal Contradiction on Universum (MCU) [1]. Two
learning problems: common semi-supervised and training
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based on Universum are demonstrated in Fig. 1. The un-
labeled data should be away from the margin like labeled
data while Universum data should fall between margins.

Sinz et al. [3] analyzed the U-SVM for inference and
they showed that U-SVM would give the hyperplane which
had its normal lying in the orthogonal to the principal di-
rections of Universum data. They also discussed the con-
nection of least squared version of U-SVM with fisher dis-
criminant analysis and oriented principal component anal-
ysis. They showed that U-SVM outperformed SVM with
carefully selected Universum data. In addition to SVM,
Universum data has also been extended to other learning
problems, such as semi-supervised learning [4], linear dis-
criminant analysis [5], twin support vector machine [6],
cost-sensitive learning [7], linear programming [8], domain
adaptation [9]. In terms of application, besides the hand-
written digits recognition problem mentioned above, it is
also applied into medical imaging [10], document cluster-
ing [11], pose recognition [12] [13], etc.

Universum data is always obtained from the domain
of the classification problem mentioned above. Weston et
al. [2] proposed four kinds of Universum data: random
noise, the rest of the training data (e.g. the other digits
in handwritten digits recognition problem), artificial data
from the same distribution of training data and random
average of training data. Bai & Cherkassky [14] applied
Universum data into gender classification and they took
three kinds of Universum data: random average, empiri-
cal distribution and animal faces. In the field of Univer-
sum data selection, Sinz et al. [3] suggested that a good
Universum set should contain invariant directions and be
positioned “in between” the two classes of the classification
problem. Chen & Zhang [15] proposed a guided formula-
tion to pick the informative ones, i.e., in-between Univer-
sum (IBU) samples.

Boosting family contains a series of well-known algo-
rithms with a large number of applications. Motivated by
the success of U-SVM, Shen et al. [16] proposed UBoost by
adding universum data to boosting algorithms and showed
that they can benefit from Universum data as SVM did.
UBoost is derived from AdaBoost-CG [17] which is anoth-
er view of boosting. Compared with AdaBoost-CG, Ad-
aBoost is a stagewise method [18] which is more general
and popular. The whole training procedure of AdaBoost
is also much faster. Although Universum data has shown
its power on U-SVM [2] and UBoost [16], to our knowledge,
its importance on AdaBoost has not been evaluated.

In this paper, we propose a new boosting algorith-
m called UadaBoost to improve the classification perfor-
mance of AdaBoost with the help of Universum data. The
learning is not straight forward since Universum data be-
longs to neither positive nor negative data. Stagewise Ad-
aBoost keeps the pre-selected weak classifiers unchanged in
the following training. It pays more attention on misclassi-
fied samples in the next training iteration. The weights for
training samples and coefficients for the pre-selected weak
classifiers are obtained according to gradient descent. In-

volving Universum data into AdaBoost framework needs
to take these properties of AdaBoost into account. Instead
of UadaBoost, UBoost takes Universum as an convention-
al convex optimization problem and solves it by column
generation as AdaBoost-CG does.

To tackle above challenges, we propose explicit weight-
ing schemes for both labeled data and Universum data
which are both involved in AdaBoost training procedure.
The rationale of updating weights in common AdaBoost
training is to enforce the training to focus on hard sam-
ples. In this paper, this rationale is revisited and further
extended on Universum data in the proposed UadaBoost.

The major contributions of this paper are as follows:
1) Given Universum data, a new UadaBoost learning

based on the framework of AdaBoost is proposed. We
propose UadaBoost using the same functional gradient de-
scent as AdaBoost. By taking advantage of AdaBoost,
UadaBoost is much easier and more practical to be ap-
plied than UBoost [16] since UadaBoost only needs one
parameter to tune.

2) The whole training procedure of UadaBoost is effi-
cient. The time cost for UadaBoost is less than UBoost.
Our experimental results demonstrate such improvement.

3) UadaBoost provides a better framework for inves-
tigating the benefits of Universum data in boosting ap-
proaches. It is known that AdaBoost is a popular algo-
rithm in boosting algorithm family. In recent years, re-
searches have contributed significant efforts to investigate
AdaBoost in order to improve its performance. To our
best knowledge, UadaBoost is the only framework using
the same approach (i.e. stagewise) as AdaBoost and inte-
grating Universum data, so the performance evaluation on
integrating Universum data into AdaBoost is more precise
and convincing. In contrast, UBoost follows column gen-
eration approach [17] which is different from AdaBoost so
we cannot use UBoost framework to evaluating benefits of
Universum data to AdaBoost.

4) Also, in this paper, we discuss a method for selecting
effective and informative Universum data in order to bet-
ter take the advantages of Universum data in AdaBoost
framework. This will benefit several applications in com-
puter vision area.

The paper is structured as follows. In section 2, we dis-
cuss the related work about U-SVM, UBoost and the mo-
tivation to UadaBoost. In section 3, we propose the novel
boosting formulation UadaBoost based on the Universum
data and compare it with semi-supervised boosting, Ad-
aBoost and UBoost. In section 4, we analyze the practical
conditions for UadaBoost. In section 5, the performance of
our model will be demonstrated with several public data
sets. In section 6, we conclude the paper.

2. Related Works and Motivation

Notations: In this paper, our focus is only on binary
classification problems, while our method can be extended
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to the multi-class scenario. Let XL = {(x1, y1), (x2, y2), ..., (xm, ym)}
be the set of m labeled examples, where yi ∈ {−1, 1} is
the class label. Let XU = {x∗1,x∗2, ...,x∗n} represent the
Universum data with n samples. wi and w∗j represent the
weights of the labeled sample (xi, yi) and x∗j during boost
training phase respectively.

2.1. U-SVM and UBoost

Weston et al. [2] proposed U-SVM and treated it as an
inductive learning problem. The Universum examples are
considered to be close to the separating hyperplane select-
ed by SVM. The optimization objective should minimize
the cumulative loss on the Universum examples. Given
the Hinge loss Ha[t] = max{0, a−t} for the standard SVM
(a = 1) and ε-insensitive loss Iε[t] = H−ε[t] +H−ε[−t] for
Universum data, the learning problem can be formulated
as:

min
w,b

1

2
‖w‖2 + CL

m∑
i=1

H1[yifw,b(xi)] + CU

n∑
j=1

Iε[fw,b(x
∗
j )]

(1)
The first two terms are for the standard SVM and the last
one is for Universum data. CL and CU are parameters for
regularization. fw,b(x) is the learned classifier. Parameter
ε controls the margin of Universum data. Sinz et al. [3]
gave the least squares version of U-SVM and showed that
this kind of U-SVM can also show similar performances
with the original U-SVM with less parameters (there is no
ε in Eq.(2)).

min
w,b

1

2
‖w‖2 +

CL

2

m∑
i=1

Qyi [fw,b(xi)] +
CU

2

n∑
j=1

Q0[fw,b(x
∗
j )]

(2)
where Qa[t] = ‖t − a‖22 is the quadratic loss for labeled
data (a = yi) and Universum data (a = 0).

Shen et al. [16] proposed a boosting algorithm UBoost
using Universum data. They applied squared loss of Uni-
versum data in the optimization objective. They formulat-
ed this problem with the same framework of AdaBoost-CG
[17] by adding the regularization term for Universum data.

min
w

1

m

m∑
i=1

exp(zi) +
c

2n

n∑
j=1

z∗2j +D1>w

s.t. zi = −yiHiw,∀i; z∗j = H∗jw,∀j;w � 0.

(3)

D controls the regularization of the weighting coefficients
of boosting algorithm. c controls the trade-off between
the errors of labeled data and unlabeled data. H is the
prediction of all available weak classifiers on the train-
ing data. H = {hk(x) : x → {1,−1}}, Hik = hk(xi).
hk denotes the k-th weak classifier. Hi is the i-th row
of H which denotes the output of all weak classifiers on
example xi. Likewise, H∗ is the prediction of Univer-
sum data. Two additional variables z and z∗ are used
for generating the dual problem. Based on this formula-
tion, they obtained its corresponding dual problem and

solved it with column generation. Experiments on a vari-
ety of handwritten digits recognition problems and com-
puter vision problems showed that UBoost outperformed
AdaBoost and AdaBoost-CG.

2.2. Motivation

Although UBoost has shown the effectiveness of U-
niversum data for boosting algorithms, it still has some
drawbacks. First, the selection of the trade-off parameter
D of Eq.(3) in AdaBoost-CG influences the final perfor-
mance significantly and how to tune the parameter effi-
ciently remains an unsolved problem [17]. There are two
parameters D and c in Uboost, resulting in more difficul-
ties to select a pair of appropriate parameters. Second,
UBoost needs to update all the previous trained weighting
coefficients w during each iteration, making the training
procedure more and more slowly. Last, UBoost is built
on AdaBoost-CG, therefore, the direct performance com-
parison is between UBoost and AdaBoost-CG other than
AdaBoost. It is difficult to verify the effectiveness of Uni-
versum learning with conventional boosting algorithm.

In this paper, we propose a new boosting algorithm
with Universum data, termed UadaBoost, to overcome
these limitations. First, UadaBoost is derived by mar-
gin cost function framework of boosting algorithms which
gives explicit weighting schemes for labeled and Univer-
sum data. UadaBoost trains the coefficient of the selected
weak classifier at current iteration while UBoost updates
coefficients of both newly selected weak classifier and also
the previously determined weight values of existing weak
classifiers. Therefore, UadaBoost is much easier and faster
to train than UBoost. In addition, only one parameter
c for the loss of Universum data in UadaBoost makes it
more practical to use. Finally, since UadaBoost follows
the same stagewise way to learn as AdaBoost, it is easi-
er to understand the difference of the AdaBoost with and
without Universum data. This is very important since we
can predict the performance of boosting algorithm with d-
ifferent kinds of Universum data before really training the
final classifier.

Cherkassky et al. [19] proposed practical conditions to
verify the effectiveness of Universum data. Histogram is
applied as an analytical tool. They showed that the projec-
tion of effective Universum data on the norm direction of
the standard SVM decision boundary should be symmetric
and has a wide distribution between the margins. In addi-
tion, they analyzed these conditions and showed that they
were closely related to analytic conditions in [3]. Since
the proposed UadaBoost follows the marginal framework
of boosting, we can extend these conditions on U-SVM
to UadaBoost. Experiments show that the performance of
UadaBoost can be further improved with carefully selected
Universum data.
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3. The UadaBoost Algorithm

We first give an optimization objective for UadaBoost
and show the proposed algorithm with the same procedure
as AdaBoost. Then we compare UadaBoost with semi-
supervised boosting algorithms, AdaBoost and UBoost.

3.1. Loss function

Boosting learns a strong classifier consisting of a vot-
ed combination of base learners, i.e. weak learners. The
strong classifier is sign[f(x)], where f(x) is the linear com-

bination of weak learners: f(x) =
∑T
t=1 αtht(x). For bi-

nary classification, ht(x) → {+1,−1} is weak classifier,
αt(≥ 0) is the weight for linear combination and T is the
number of selected weak classifiers.

When Universum data is added into a supervised learn-
ing algorithm, it needs additional loss function or regular-
ization term for Universum data. So does AdaBoost algo-
rithm. We propose UadaBoost algorithm which contains
Universum data to improve the performance of AdaBoost.
A loss function L(y, f(x)) is defined for the learning pro-
cess of UadaBoost which contains two components corre-
sponding to the labeled data L1 and Universum data L2

as:

L(y, f(x)) =
1

m

m∑
i=1

L1(yi, f(xi))+
c

2n

n∑
j=1

L2(f(x∗j )). (4)

c (≥ 0) is the trade-off parameter between the loss of la-
beled data and Universum data. It also can be regarded as
the contribution of Universum data. Since we are trying to
formulate our model as a boosting method, conventional
boosting algorithms can be applied here, e.g. AdaBoost,
GentleBoost [18], LogitBoost [18]. For simplicity, we use
AdaBoost with the traditional exponential loss function
for the labeled data while squared loss function for Univer-
sum data, i.e. L1(y, f(x)) = e−yf(x), L2(f(x∗)) = f(x∗)2.
Then Eq.(4) can be written as:

L(y, f(x)) =
1

m

m∑
i=1

e−yif(xi) +
c

2n

n∑
j=1

f(x∗j )
2 (5)

When c equals 0, the above equation becomes the standard
AdaBoost.

Within the margin cost functional framework, ρi =
yif(xi) is defined as the margin of an labeled example
(xi, yi) and then L1 = e−ρ in AdaBoost. Considering the
loss for Universum data, we define the margin for Univer-
sum sample x∗j with ρ∗j = f(x∗j ) and the corresponding

loss L2 = ρ∗2.

3.2. Learning

Since L is a convex function (both L1 and L2 are con-
vex) and the available weak classifiers span a convex set,
Eq.(5) is a convex optimization problem. Then the opti-
mization problem will converge to a globally optimal so-
lution. We adopt the functional gradient descent view of

boosting to select the weak learner during each iteration
of the boosting [18] [20]. According to the gradient de-
scent principles, at the training step t, a weak classifier
ht(x) will be selected to be added to the current ensem-
ble classifier ft−1(x). This selected ht(x) should improve
the objective value based on the loss function. Given the
current learned strong classifier at iteration t, ft(x), the
descent direction should be the gradient direction. Since
the best weak classifier may not be available from the weak
classifiers candidates (e.g. function family), the available
best weak classifier can be obtained from the following e-
quation. Note that we sometimes omit the argument x
throughout this paper.

h∗ = arg max
h
− < 5L(y, f), h > (6)

where <,> is dot product, < f, h >=
∑
i f(xi)h(xi). The

gradient of convex function L(y, f) based on Eq.(5) with
respect to the current models f(x) can be written as:

5L(f)(x) =


1
mye

−yf(x), x = xi
c
nf(x∗), x = x∗j ,
0, otherwise,

(7)

The sample weight is defined as

wi=
L′(ρ(f(xi), yi))∑
xi
L′(ρ(f(xi), yi))

, with L′1 = −e−ρ, L′2 = 2ρ∗ (8)

Then the best weak classifier h∗ for the current learned
strong classifier f(x) should be

h∗ = arg max
h
− < 5L(y, f), h >

= − 1

m+n
{ 1

m

m∑
i=1

−yih(xi)e
−yif(xi)+

c

n

n∑
j=1

f(x∗j )h(x∗j )}

= − 1

m+n
{ 1

m

m∑
i=1

−yiwih(xi) +
c

n

n∑
j=1

w∗jh(x∗j )}

(9)
where wi = e−yif(xi) and w∗j = f(x∗j ) are the weights of
labeled sample xi and Universum data x∗j based on Eq.(8).

Here we give a brief explanation of the weights for Uni-
versum samples. Since the optimal objective value for x∗j
is 0, 0 can be treated as its label. This is reasonable be-
cause it does not belong to any class of the problem while
the optimal values for labeled samples should be their la-
bels. Based on this explanation, Universum examples are
misclassified during all the iterations since each weak clas-
sifier gives the prediction +1/-1. If its current predicted
value ht(x

∗
j ) (+1/-1) is the same as the previous iteration

ht−1(x∗j ), meaning that the previous error still exists, its
weight increases. This is consistent with AdaBoost which
amplifies the importance of those misclassified samples.
On the other hand, if ht(x

∗
j ) 6= ht−1(x∗j ), its weight de-

crease since w∗j = f(x∗j ) =
∑
t αtht(x

∗
j ). This implies that

current weak classifier changes the prediction for this sam-
ple and decreases the ensemble predicate value (error).
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The boosting algorithm should terminate as no h can
be found to reduce L(y, f), i.e. − < 5L(y, f), h >≤ 0.
The optional step size, in the direction of h∗, is

α∗ = arg min
α
L(f(x) + αh∗(x)) (10)

By the gradient descent method, the best α∗ happens when
the gradient 5L(f + αh∗) = 0. That is

∂L(f+αh∗)

∂α
=

1

m

∑
i

−yh∗e−yfe−yαh
∗
+
c

n

∑
j

(f + αh∗)h∗

=
1

m

∑
i

−ywih∗e−yαh
∗

+
c

n

∑
j

(w∗j + αh∗)h∗

=
1

m
(
∑

yi 6=h∗(xi)

wie
α −

∑
yi=h∗(xi)

wie
−α

︸ ︷︷ ︸
AdaBoost for labeled data

) +
c

n

∑
j

(w∗j + αh∗)h∗

(11)
When c equals 0, the optimization problem will become
the standard AdaBoost. Then we can obtain the closed
solution for α:

α∗ =
1

2
ln

1−
∑
yi 6=h∗(xi)

wi∑
yi 6=h∗(xi)

wi
. (12)

Algorithm 1 UadaBoost: AdaBoost with the Universum

1: Input:
Training samples: XL and XU;
The number of weak classifiers: T ;
Realization parameter: c.

2: Initialization:
set t = 0, ft(x) = 0;
∀x ∈ XL : wL(x) = 1

m and ∀x ∈ XU : wU(x) = 1
n

3: for t = 1 to T do
4: Normalize the weights

∀x ∈ XL : wL(x)← wL(x)/
∑

x∈XL wL(x)
∀x ∈ XU : wU(x)← wU(x)/

∑
x∈XU

wU(x)
5: Find the best weak classifier by Eq.(9)
6: Find the optimal step α∗ by Eq.(11) (13) (14)
7: Update the weights

∀x ∈ XL : wL(x)← wL(x)e−yh
∗(x)

∀x ∈ XU : wU(x)← wU(x) + h∗(x)
8: Update the strong classifier: ft+1 = ft + α∗h∗

9: end for
10: Output: The final strong classifier sign[fT (x)].

However, there is no closed solution in Eq.(11), so line
search is performed to find the optimal step size. In prac-
tice Newton-Raphson method is used for its fast speed.
The iteration at n+ 1-th is

αn+1 = αn −
5L(αn)

52L(αn)
(13)

The second order gradient is

52L(f + αh∗) =
1

m

m∑
i=1

wie
−yαh∗ + c (14)

The updated strong classifier is ft+1 = ft + α∗h∗.
During the iterations, some variables can be pre-saved

to speed up the calculation of the first derivative and
the second derivative. Experiments show that the iter-
ation stops after only several steps. The framework of
UadaBoost is presented in Algorithm 1.

3.3. Comparison with Semi-supervised Boosting

UadaBoost is different from semi-supervised boosting
algorithms because Universum data does not belong to any
class of the problem while unlabeled data can be treated
as either positive samples or negative samples. That is to
say, there is an explicit label for unlabeled sample even we
cannot know during the learning procedure. The label of
Universum sample is explicitly known which can be treated
as 0 during the training.

Besides that, the difference of conventional semi-supervised
boosting algorithms and UadaBoost is clear from the loss
function. Specifically, a pseudoclass [21] or a pseudomar-
gin [22] is always introduced to unlabeled data in semi-
supervised algorithms. The pseudoclass label of an unla-
beled point x is typically defined as ỹ = sign[f(x)] and its
corresponding pseudomargin is ỹsign[f(x)] = |f(x)| [22]
[21]. With pseudoclass or pseudomargin, semi-supervised
boosting algorithms can be treated as a supervised learn-
ing problem. In comparison, UadaBoost omits the label
for Universum data.

3.4. Training Efficiency Evaluation on AdaBoost, UBoost
and UadaBoost

Training efficiency (e.g. training time) is an important
issue to be considered in Universum based boosting. In
order to select effective Universum data and proper pa-
rameter for the loss of Universum data, a large number
of experiments are needed (e.g. cross validation). Fast
training procedure is beneficial to better experimental de-
sign. Training speed is also of great concern when a large
amount of weak classifier candidates and training itera-
tions are evaluated, e.g. Haar-like feature in face detec-
tion application [23]. Here we compare the training speed
of AdaBoost, UBoost and UadaBoost. Boosting based al-
gorithms are trained through a number of iterations. Thus
training time is determined by the cost of one iteration and
the number of iterations.

AdaBoost is the fastest in one iteration training for
weak classifier selection since only labeled samples are in-
cluded. For the Universum based boosting algorithms,
UadaBoost and UBoost share the same weak classifier can-
didates generation step. UadaBoost only needs to update
one weak classifier coefficient α in each training iteration
while all coefficients for the pre-selected weak classifiers
in UBoost are updated. Thus UadaBoost is faster than
UBoost in each iteration.

In terms of number of iterations, both UBoost and
UadaBoost have a faster convergence speed than AdaBoost.
UBoost needs the least number of iterations to converge be-
cause column generation is used. Fig. 2 shows that three
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algorithms converge at about 100 iterations. Experiment
is performed on MNIST data set (see description in sec-
tion 5). Although UBoost obtains the best training perfor-
mance, the gaps with UadaBoost is marginal. Overall, to
reach the convergence point, the total time cost by train-
ing procedures for UBoost is much more than UadaBoost.
Experiments show that the speed of UadaBoost is more
than 10 times faster than UBoost. Specific total time for
training a classifier is shown in Table 1.

4. Practical Conditions for UadaBoost

Although Universum data has been applied into a lot
of applications and have been analyzed, it needs carefully
selected since not all the generated Universum samples are
effective and informative. Cherkassky et al. [19] took his-
togram as an analysis tool and gave practical conditions
to verify the effectiveness of Universum data under SVM
classifier. First, an optimal SVM classifier will be trained
with the labeled data. Then they project the training data
and Universum data onto the normal direction vector of
the trained hyperplane. Finally, the relationships of train-
ing data and Universum data are analyzed. The histogram
of projections of effective Universum data should be sym-
metric relative to the SVM decision boundary and have a
wide distribution between margin borders (+1/-1).

These conditions are designed for SVM based learning.
When they are applied into boosting based learning, two
differences happen. The first one is the standard boosting
does not need parameters to tune compared to the stan-
dard SVM which has one parameter CL in Eq.(1). When
Universum data is added, least square version of U-SVM
and UadaBoost both need another parameter of the trade-
off losses between labeled data and Universum data. The
original U-SVM still needs another parameter ε in Eq.(1).
That is to say, UadaBoost is easier to use than U-SVM.
The second one is that AdaBoost is not an explicit mar-
gin controlled algorithm. It only considers the training
loss while SVM gives an explicit margin in the optimiza-
tion problem in Eq.(1). AdaBoost does not maximize the
minimum margin but has some relations about the aver-
age and division of the margin [24]. In comparison, SVM
separates the two classes with a clear margin [-1 +1].

Based on above analysis, the same Universum data
matching above conditions will not be appropriate for UadaBoost.
But we can still analyze Universum data with the tool of
histogram. As in [19], the distribution of effective Univer-
sum data should be symmetric relative to decision hyper-
plane w>x + b = 0. In boosting, the decision function
is f(x) =

∑
t αtht(x) + b,with b = 0 from section 3.2.

In practice, we can project the available Universum data
onto the pre-trained AdaBoost classifier and choose those
samples meeting the conditions above. For a separable
problem, AdaBoost can also give a clear margin (similar
to Fig. 5). The following experiments will show that the
performance of UadaBoost can be further improved by se-
lecting effective Universum data.

5. Experiment

5.1. Experimental setup

Handwritten digits sets are always used for evaluating
the algorithms with Universum data [15] [16] [3]. The rea-
son is that if we take two digits for classification, the other
digits data can be naturally used as Universum data. We
experiment UadaBoost on two handwritten sets: MNIST
and USPS, and a computer vision application: Gender
Recognition. The original feature provided in the data
sets (gray value) is used. Decision stump is applied as
weak classifiers in all tests and the maximum number of
iterations Tmax is limited to 1000. Note that most of the
boosting algorithms converge at less than 100 iterations
from the experiments. There is only one parameter c for
the loss ratio between labeled data and Universum data. c
is validated from {2−17, 2−15, 2−13, 2−11, 2−9, 2−7, 2−5}.
The best performance with the highest accuracy on vali-
dation set will be selected. The experiments are run on
all the data sets for 10 times, and average test errors with
standard deviations are reported.

5.2. Performance Comparison

MNIST MNIST handwritten digits data set contains
10 categories of digits with 1,000 for each digit and 10,000
in total. It has split the total data into training set and
test set. Each digit is represented by a 28 × 28 image.
Sample images are shown in Fig. 3.

Since both USVM and UBoost showed their perfor-
mance of classifying digits ‘5’ and ‘8’ with digits ‘3’ and ‘6’
for Universum data, we also take this option. The train-
ing and validation samples are randomly selected from the
original training set. The original test set is used for test-
ing. We use all the training examples of digits ‘3’ and ‘6’
for Universum data (12,094 examples). Four experiments
are performed with different sizes of training and valida-
tion samples. The size of validation set is the same as
training set which is selected from {200, 400, 600, 800}.
The classification accuracies and standard deviations are
reported in Table 2. In addition, we fix the size of valida-
tion set with 400 and change the size for training set. The
results are shown in Table 3. Both Table 2 and 3 show
that UadaBoost outperformed AdaBoost under different
situations. Compared with UBoost, our method achieves
better performances for the most of cases. Still we notice
that the performance of UBoost is unstable. Sometimes,
it is even inferior to AdaBoost.

USPS The USPS data set contains 16× 16 images for
10 categories of digits. Sample images are shown in Fig. 3.
Like the experiment of MNIST data set, we classify digits
‘5’ vs. ‘8’ with ‘3’ and ‘6’ as Universum data. The original
test is used for testing. Four experiments are taken with
different sizes of training examples which are selected from
{100, 200, 400, 600}. The validation set contains 200 ex-
amples. All the training examples of digits ‘3’ and ‘6’ are
used as Universum data, containing 1,287 examples. The
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classification results are shown Table 4. Our proposed al-
gorithm achieves better performances over AdaBoost and
UBoost in most cases.

Another experiment shows the effectiveness of different
sizes of Universum data. We use 400 examples for training
and 400 examples for validation. The Universum data set
is selected with different sizes (100, 300, 500, 800). From
Table 5, we can see that, the performances of UadaBoost
are further improved with more Universum data.

Gender Recognition We test UadaBoost on a gender
recognition task [14]. The data set contains 113 males and
20 females (20 images for per person). Sample images are
shown in Fig. 4. The colored face images are converted to
8-bit gray level images and scaled to 45 × 50 sizes without
extra preprocessing. The feature length for each training
example is 2,250.

Following the experimental setting of [14], a set of 52
individuals (32 males and 20 females) is randomly select-
ed, containing 13 individuals for training (8 males and 5
females) and the remaining 39 individuals for test. The
training and validation sets are randomly selected from 52
individuals (one image for one individual) consisting of 13
training samples, 13 validation samples and 39 test sam-
ples. Universum data is generated by random average [14]
shown in Fig. 4 (the average value of one male sample and
one female sample). Experimental results with differen-
t sizes of Universum data are shown in Table 6. Similar
to previous results, the performances of the standard Ad-
aBoost are improved by Universum data.

5.3. Universum Data Selection

In order to further take advantage of Universum data,
we refine the Universum data by ignoring the Universum
samples whose final confidence scores are out of the margin
of the pre-trained classifier. For example, for the setup of
Table 3, the histograms of projections over training data
and Universum data are shown in Fig. 5. The margin is
about [-0.18 0.18] which is different from SVM based mar-
gin. The majority of projections of Universum samples are
located into the margin borders. We refine the original U-
niversum data and reject about 3,000 Universum samples.
Then we retrain the classifier with this newly generated
Universum data. The results are shown in the last row of
Table 3. It shows that the performance of UadaBoost can
be further improved. The similar results can be seen in
Table 4.

In order to investigate the effectiveness of different kind-
s of Universum data, additional experiments are conducted
on three kinds of Universum data. For handwritten digits
classification in MNIST data, digits ‘1’, ‘3’ and ‘6’ are cho-
sen as Universum data to classify digits ‘5’ and ‘8’. The
training/validation set size is 200 (100 per class); Univer-
sum set size is 1000 and test set size is 1866. Experimental
results in Table 7 show that UadaBoost outperforms Ad-
aBoost with all the three Universum data, and digits ‘3’,
‘6’ make it better. The observation is the same as U-SVM
in [19]. Fig. 6 shows the histograms of projection for the

three kinds of Universum data. This confirms the result
of Table 7 that digit ‘1’ is not as good as digits ‘3’ and ‘6’
for Universum data because its histogram of projections
is more biased and a large amount of them are out of the
decision boundary.

5.4. Remarks and Conclusion

UadaBoost follows the same procedures as AdaBoost
while the model of UBoost is based on AdaBoost-CG. The
classification performance of AdaBoost-CG is similar to
the standard stage-wise AdaBoost. There is no theoret-
ical evidence to clarify which one is better [17]. Above
experiments show such conclusion still remains when they
meet Universum data. During the experiments, we find
that UBoost is sensitive to parameters. Inappropriate pa-
rameters (i.e. c and D in Eq.(3)) will result in large de-
creases of performance. Only one parameter in UadaBoost
(i.e. c in Eq.(5)) makes it more practical to use. Finally,
with carefully selected Universum data, it is easy to pre-
dict the improved performance of AdaBoost with the help
of Universum data.

6. Conclusion

This paper presented a new algorithm UadaBoost which
improved the performance of AdaBoost by taking advan-
tage of Universum data. Explicit weighting schemes were
derived by functional gradient descent which made UadaBoost
similar speed to AdaBoost. By analyzing the distribution
of Universum data on AdaBoost classifier, more informa-
tive and effective Universum data can be obtained. Ex-
periments showed that the performance of UadaBoost can
be improved further with the refined Universum data.
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Figure 1: The comparison of semi-supervised learning problem and Universum based learning problem. The former takes labeled
positive, labeled negative and unlabeled samples for learning, and the latter learns models from labeled positive, labeled negative
and Universum samples.
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Figure 2: Training error of AdaBoost, UBoost and UadaBoost on MNIST data set. The training set size is 200 and the validation
set size is 400.
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Figure 3: Examples of handwritten digits from two data sets. (a) MNIST (b) USPS.
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Figure 4: Examples of male and female faces (column 1 and 2) and the corresponding Universum samples (column 3) obtained
by averaging the two images from column 1 and 2 respectively.
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Figure 5: Histogram of ensemble prediction over labeled training data and Universum data. The vertical axis is the number of
training samples. The model is trained by UadaBoost on MNIST data set.
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Figure 6: Histogram of ensemble prediction over labeled training data and Universum data. The vertical axis is the number of
training samples. The model is trained by UadaBoost on MNIST data set. The Universum data comes from digits ‘1’ (a), ‘3’ (b)
and ‘6’ (c) respectively.
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Table 1: Training time (s) comparisons between UBoost and UadaBoost. Experiments are performed on MMIST and USPS data
set respectively. In MNIST data set (MNIST 1 and MNIST 2), the train set size is 100 and 400 respectively, and the validation
set size is 400. In USPS data set (USPS 1 and USPS 2), one is with 400 training samples, 400 validation samples and the other
is with 600 training samples, 200 validation samples.

Method MNIST 1 MNIST 2 USPS 1 USPS 2

UBoost 2.05 × 104 2.96 × 104 1.04 × 104 1.55 × 104

UadaBoost 2.00 × 103 2.08 × 103 3.45 × 102 4.10 × 102

Table 2: Experimental results (test error rates (%) mean ± standard deviation) on MMIST data set with different training data
sizes. The validation set size is the same as training set size. Digits ‘5’ and ‘8’ are used as labeled data, and digits ‘3’ and ‘6’ as
Universum data (12,094 samples).

Method 200 400 600 800

AdaBoost 7.22 ± 0.69 5.38 ± 0.58 5.86 ± 0.56 4.97 ± 0.30
UBoost 7.42 ± 1.14 5.52 ± 0.88 5.25 ± 0.45 4.66 ± 0.40
UadaBoost 7.19 ± 0.76 5.36 ± 0.46 5.78 ± 0.56 4.79 ± 0.40

14



Table 3: Experimental results (test error rates (%) mean ± standard deviation) on MMIST data set with different training data
sizes. The validation set size is 400. Digits ‘5’ and ‘8’ are used as labeled data, and digits ‘3’ and ‘6’ as Universum data (12,094
samples). The last line shows the results of UadaBoost with the refined Universum data (9657 samples).

Method 100 200 300 400

AdaBoost 8.33 ± 1.15 7.49 ± 0.62 6.63 ± 0.76 5.38 ± 0.58
UBoost 8.83 ± 1.15 7.50 ± 0.59 6.40 ± 0.69 5.52 ± 0.88
UadaBoost 8.17 ± 1.06 7.33 ± 0.51 6.42 ± 0.46 5.36 ± 0.46
UadaBoost* 8.10 ± 1.18 7.29 ± 0.59 6.33 ± 0.49 5.28 ± 0.30

Table 4: Experimental results (test error rates (%) mean ± standard deviation) on USPS data set with different training data
sizes. The validation set size is 200. Digits ‘5’ and ‘8’ are used as labeled data, and digits ‘3’ and ‘6’ as Universum data. The last
line shows the results of UadaBoost with the refined Universum data (950 samples).

Method 100 200 400 600

AdaBoost 4.84 ± 1.35 4.06 ± 0.71 3.37 ± 0.41 3.05 ± 0.51
UBoost 4.44 ± 0.86 4.02 ± 0.92 3.77 ± 0.80 3.51 ± 0.80
UadaBoost 4.66 ± 1.26 4.03 ± 0.50 3.28 ± 0.36 3.02 ± 0.41
UadaBoost* 4.66 ± 1.41 4.00 ± 0.64 3.20 ± 0.33 3.01 ± 0.43

Table 5: Experimental results (test error rates (%) mean ± standard deviation) on USPS data set with different Universum data
sizes. Digits ‘5’ and ‘8’ are used as labeled data, and digits ‘3’ and ‘6’ as Universum data. The training set size and the validation
set size are both 400 (200 per class).

Method 100 300 500 800

AdaBoost 3.17 ± 0.45 3.17 ± 0.45 3.17 ± 0.45) 3.17 ± 0.45)
UBoost 3.74 ± 0.35 3.60 ± 0.60 3.74 ± 0.45) 3.48 ± 0.49)
UadaBoost 3.11 ± 0.46 3.05 ± 0.45 3.05 ± 0.41) 3.02 ± 0.54)

Table 6: Experimental results (test error rates (%) mean ± standard deviation) of Gender Recognition with different sizes of
Universum data. Universum data is generated by random average. The training set size and the validation set size are both 13
(one image for one individual).

Method 100 500 1000

AdaBoost 23.85 ± 14.51 23.85 ± 14.51 23.85 ± 14.51
UBoost 23.62 ± 7.76 21.54 ± 9.76 23.07 ± 8.55
UadaBoost 20.00 ± 10.79 20.76 ± 6.67 23.07 ± 9.75

Table 7: Experimental results (test error rates (%) mean ± standard deviation) on MNIST data set with different kinds of
Universum data (digits ‘1’, ‘3’ and ‘6’).

Method digit ‘1’ digit ‘3’ digit ‘6’

AdaBoost 6.82 ± 0.71 6.82 ± 0.71 6.82 ± 0.71
UadaBoost 6.79 ± 0.91 6.66 ± 0.68 6.76 ± 0.69
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