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Abstract—Human action recognition in video is often 

approached by means of sequential probabilistic models as they 
offer a natural match to the temporal dimension of the actions. 
However, effective estimation of the models’ parameters is 
critical if one wants to achieve significant recognition accuracy. 
Parameter estimation is typically performed over a set of training 
data by maximizing objective functions such as the data 
likelihood or the conditional likelihood. However, such functions 
are non-convex in nature and subject to local maxima. This 
problem is major since any solution algorithm (expectation-
maximization, gradient ascent, variational methods and others) 
requires an arbitrary initialization and can only f ind a 
corresponding local maximum. Exhaustive search is otherwise 
impossible since the number of local maxima is unknown.  

While no theoretical solutions are available for this problem, 
the only practicable mollification is to repeat training with 
different initializations until satisfactory cross-validation 
accuracy is attained. Such a process is overall empirical and 
highly time-consuming. In this paper, we propose two methods 
for one-off initialization of hidden Markov models achieving 
interesting trade-offs between accuracy and training time. 
Experiments over three challenging human action video datasets 
(Weizmann, MuHAVi and Hollywood Human Actions) and with 
various feature sets measured from the frames (STIP descriptors, 
projection histograms, notable contour points) prove that the 
proposed one-off initializations are capable of achieving accuracy 
above the average of repeated random initializations and 
comparable to the best. In addition, the methods proposed are 
not restricted solely to human action recognition as they suit time 
series classification as a general problem. 

Notes to Practitioners—This paper presents a method useful 
for the development of automated video surveillance systems. 
The current generation of video surveillance systems is geared 
towards recognizing actions of interest (such as tampering with 
infrastructure, drawing graffiti, looking inside a car etc) 
automatically from video streams. To this aim, computer 
algorithms can be employed to learn to recognize such actions 
simply from presentation of example videos. However, the 
learning time can prove excruciatingly high, up to the order of 
days or weeks of computing time depending on the size of the 
dataset. This paper presents two methods to dramatically reduce 
such a learning time. The main practical advantage is the rapid 
re-configurability of the video surveillance system to recognize 
new and different action types arising from different scenarios of 
application. 
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I. INTRODUCTION 

UTOMATIC recognition of human actions in video 
allows automation of many otherwise manually-intensive 

tasks such as video surveillance, retrieval of videos from large 
databases, pedestrian traffic monitoring, and many others. 
Understanding human behavior is a high-level task relying on 
several, lower-level tasks such as segmentation, tracking and 
pose estimation. The typical goal of automatic action 
recognition is the classification of a given image sequence as  
one of several classes of pre-defined actions. 

Many different approaches for action recognition have been 
proposed over the past two decades. The most recent surveys 
in [1-3] offer a comprehensive overview. However, it is a 
common opinion that many open issues still affect the 
accuracy of action recognition. As a main challenge, the 
instances of the same action by various people are 
significantly different; moreover, every individual performs 
each action in a different manner over various instances, both 
in space and time. This can be formulated as a problem of 
high, intrinsic within-class variability. Adding to the 
challenge, the number of samples available for training is 
typically limited compared to the parameters, preventing a 
“brute force” training approach. 

Recognition of human actions typically requires the 
classification of a time series of measurements, also called 
observations, 	� = ��� , … , �	 , … �
�,	extracted from the video 
depicting the action. Amongst the common approaches to 
classification, the hidden Markov model (HMM) [4] has 
played a special role in that it has been widely used and has 
inspired a number of other similar probabilistic graphical 
models, both directed and undirected (hidden semi-Markov 
models, layered HMM, conditional random fields, and many 
others [5-7]). However, certain problems with the training of 
graphical models are still partially unresolved. The main 
principle guiding the training of a model from a set of 
observation sequences, �� = 
��� , … , �	� , … �
�� �, e = 1...E, is to 

learn its set of parameters, noted as λ hereafter, with 
maximum likelihood. The likelihood function contains hidden 
variables and is therefore non-convex in nature, giving lieu to 
an undefined number of local maxima. Solution algorithms 
such as gradient ascent, expectation-maximization (EM) [8], 
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variational methods [9], are only guaranteed to converge to a 
local maximum of the likelihood which, in turn, directly 
depends on an arbitrary initialization of the training algorithm. 
This problem is major as the difference in value of such 
maxima can be extreme, with corresponding major changes in 
the accuracy of the recognition task. The main workaround for 
this problem is that of repeating the training stage many times 
from different initializations until satisfactory parameters are 
found. 

For these reasons, this paper investigates and presents a 
number of approaches that can improve the training time of 
HMMs with one-off initializations and apply them to the 
recognition of human actions in video. The advantage brought 
by one-off initialization is significant as training is generally 
time-consuming and has also to be repeated many times over 
various experimental setups and datasets. For instance, a 
single training session over 400 training sequences with a 2.8 
GHz CPU PC and Matlab 7.9 takes us between 8 and 36 hours 
depending on the model’s complexity. In the case of larger 
training sets, the training time is in the order of weeks and 
repeating the training is heavily time-consuming. Therefore, 
one-off initialization approaches remove practical obstacles to 
the optimal tuning of models. The main contributions of this 
paper can be summarized as follows: 

• a novel method for initializing HMM training based 
on time segmentation of the training sequences 
(Section IV.B); 

• a novel method for initializing HMM training based 
on an incrementally-constructed histogram of the 
training sequences (Section IV.B); 

• a novel method for assigning components to mixture 
distributions and its use in HMM training (Section 
IV.C); 

• a heuristic indicator of optimal initialization based on 
the weighted Kullback-Leibler divergence (Section 
V.C). 

The rest of this paper is organized as follows: Section II 
offers a brief review of the main related work on training 
initialization. Section III summarizes the HMM to the extent 
required to understand the methods presented in the paper. In 
Section IV, we present the proposed HMM initialization 
strategies. Experimental results are reported and discussed in 
Section V. Finally, conclusions are drawn in the last section. 

II. RELATED WORK 

Any action recognition approach requires the extraction of 
informative measurements from the video and their ensuing 
classification. Various lines of investigations have been 
followed in human action recognition research during the last 
two decades. In terms of classification approaches, three main 
approaches have been adopted: 1) recognizing the action 
directly in the time domain (e.g., [10, 11]); 2) recognizing the 
action by graphical models [6, 12, 13]; and 3) recognizing the 
action by classification of histograms of the measurements 
[14-16]. The time domain approach has dynamic time warping 

(DTW) [10] as its main representative, while the hidden 
Markov model (HMM) [17-19] is the reference generative 
approach for graphical models. Other graphical models such 
as dynamic Bayesian networks and conditional random fields 
have also been used with significant degree of success (e.g. [1, 
7]). The approaches based on classification of histograms 
convert the time series of measurements, which varies in 
length for every action instance, into a histogram of values and 
then apply any conventional classifier such as the support 
vector machine or nearest-neighbors for the classification 
stage. Such histogram-based approaches have reported 
significant empirical accuracy [14-16]: however, it can be 
argued that they do not appropriately factor in the temporal 
dimension of human actions. In contrast, sequential classifiers 
such as HMM can naturally classify sequences of arbitrary 
length and have shown good performance in adjusting to 
variations in the duration of instances of the same action. In 
addition, a generative model like HMM can be more easily 
combined into complex, hierarchical models as shown, 
amongst others, by the work from Ikizler and Forsyth [20]. 
For this reason, we focus on HMM in the following, yet 
providing extensive comparison with other approaches. 

Each measurement extracted from the video is modeled as a 
multivariate random variable of given dimensionality and is 
commonly referred to as feature set or feature vector. The 
feature sets used for action recognition in the literature can be 
categorized into two main groups: global features and local 
features [1]. The global features represent the body of an 
individual in a holistic manner, while the local features are a 
collection of local patches that are centered on salient points in 
space or space-time domain. Local features enjoy some 
invariance to viewpoint changes and are more robust to 
occlusions. Popular local features are the histogram of 
oriented gradients (HOG) and the histogram of oriented flow 
(HOF) collected at space-time interest points (STIP) [21]. At 
the two extremes, approaches can be based on either rich, 
general-purpose feature vectors, possibly invariant to the 
viewpoint (e.g. [22]), or minimal, fast-to-extract feature 
vectors optimized for specific types of actions [23, 24]. 

Since the training of graphical models with maximum 
likelihood is notoriously dependent on the initial parameter 
assignment, previous research has focused on ways to mitigate 
such a dependency. For instance, Ferrer et al. in [25] reviewed 
various HMM initializations based on random techniques and 
introduced a new method based on an equal-state frequency 
criterion. The idea is to first generate a set of HMM 
parameters as a sample from an arbitrary prior distribution. As 
next step, the Viterbi decoding algorithm is run on all the 
training sequences and the number of occurrences of each 
state is recorded. If such numbers are approximately equal, the 
parameters’ sample is retained as the initial parameters of 
maximum-likelihood training. Otherwise, a new sample is 
generated until this condition is met. While this method is 
based on a reasonable principle, the average number of 
samples to be generated until the stop condition is met may 
prove unworkable, especially for HMM with many states. In 
[26], Liu et al. proposed an HMM initialization method for 
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gesture recognition application which computes directly the 
HMM initial parameters through simple physical 
considerations. In their work, the observation sequences of 
human gestures are evenly segmented into HMM states. This 
assumption of linear correspondence between time and states 
is plausible for some applications and we exploit it for one of 
the initialization methods proposed in this paper. In [27], 
Toledano et al. have explored three different ways of 
initializing HMM: 1) by a fixed template for all classes; 2) by 
historical averages; and 3) by oracle initialization (this last 
only to establish offline upper bounds). While these methods 
remove undesired randomness, they do not adapt the initial 
model to the specific training data. In a recent paper [28], 
Aillón Clemente et al. have proposed a sophisticated adaptive 
initialization scheme based on multiple sequence alignment. 
Yet, their method is specific to the HMM with left-to-right 
topology which is a more restricted case than that considered 
in this paper. Overall, the prevalent approach for training 
initialization remains that of running multiple training sessions 
with different random initializations of λ until satisfactory 
parameters are found, in terms of either a sufficiently-high 
likelihood or sufficient accuracy from a cross-validation 
experiment. The second target is usually much preferable, 
given that maximizing the likelihood alone is prone to over-
fitting. However, such random trials can prove very time-
consuming and have no formal stop criterion. Therefore, in 
this paper we propose various one-off initialization methods, 
adaptive to the actual training data. 

III.  HMM  AND ACTION CLASSIFICATION 

The HMM is a probabilistic graphical model over a 
sequence of observations, O = {o1,...,ot,...,oT}, and a sequence 
of corresponding hidden states, Q = {q1,...,qt,...,qT} [4]. Each 
state takes values in a discrete set of N symbols, S = {s1,...,sN}, 
while the observations can be of either discrete or continuous 
nature. The HMM posits a simplified joint probability for O 
and Q that factorizes as: 
 

���, �� = ���������	|�	���

	�� ����	|�	�


	��
=:������� �,��


	�� �!����	�

	�� 	.	

(1) 
 
where term p(q1) is called the initial state probability, while 

terms p(qt | qt-1) and p(ot | qt) are known as state transition 
probabilities and observation probabilities, respectively. For 
notational convenience, these quantities are often simply noted 
as ��� , ��� �,�� , !����	�, following [4]. Given (1), the HMM 

can be fully identified by its parameter set, λ: 
 # = �$, %, ��,					$ = 
�&'�,				% = �!&����, � = ��&�							(, ) = 1…+	 (2) 
 

where A is the N x N state transition probability matrix, B 
stands for the parameters of the observation probabilities and 
π are the N x 1 initial-state probabilities. In our case, the 
observations are continuous, multivariate random variables 
and their distribution for each state si, i=1...N, is modeled as a 
Gaussian mixture model (GMM) with M components: 

!&���: = ���|�	 = ,&� =-.&/ 	0��|1&/ , 2&/�3
/�� 							 (3) 

where µil and Σil are the mean and covariance of the l-th 
Gaussian component and cil is its weight in the mixture. 
Hence, the total size of B is (N * M * (|µil | + |Σil | + |cil |)), 
where by the cardinality operator | | we mean the number of 
elements of the argument. Such a number is typically high and 
confirms that an HMM is a highly parametric model. 

A. Action Classification with HMM 

The HMM can be used to compute the probability of an 
observation sequence in problems of action classification. Let 
us call C a set of K action classes, C = {c1,…,ck,…,cK}, with a 
corresponding HMM for each class, ck, k = 1...K, noted by its 
set of parameters, λk. Any action instance, O, can be classified 
into a class by using a maximum-likelihood classification rule: 
 .∗ = �567�89��...:;���|#9�<	 (4) 

 
where p(O|λk) is the likelihood of sequence O in the k-th 

class/model, efficiently computable by marginalization of 
states Q in (1) via the forward-backward algorithm [4]. If 
desired, priors and costs can be easily added to (4) to extend 
the classification criterion from maximum-likelihood to 
maximum-a-posteriori or minimum expected risk. 

B. HMM Training 

The HMM parameters are commonly estimated by fitting 
the model to a training set of observation sequences, �� =
��� , … , �	� , … �
�� �, e = 1...E,  with maximum likelihood [4]: 
 

#∗ = �567�8= >�����|#�?
��� @	 (5) 

Training is unsupervised with respect to the states, i.e. states 
Qe are treated as unobserved variables, causing multiple 
maxima in the likelihood function in (5). In addition, (5) is 
often expressed in a logarithmic scale (log-likelihood) to 
replace the product by a sum. The most popular HMM training 
algorithm is Baum-Welch which obtains a maximum for the 
log-likelihood by iterative maximization of a lower bound [4]: 
 #&A� = 

=	�567�8= >--ln���� , ��|#� ����D��, #&�E�
?
��� @	 (6) 
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The expectation in (6) can be proved a lower bound for the 
log-likelihood and therefore by maximizing it over λ (i.e., the 
model), we are assured to select a model of at least equivalent 
log-likelihood. The maximization in (6) must be repeated 
iteratively, with parameter λi in the (i+1)-th iteration set to be 
the model returned by the previous, i-th iteration. This 
iterative scheme is guaranteed convergence to a local 
maximum (or a saddle point) of the log-likelihood, and the 
position and quality of this maximum depend heavily on the 
arbitrary parameters, λ0, that were used for the first iteration, 
justifying the objectives of this work. 

IV.  INITIALIZATION OF HMM  TRAINING 

While all of the HMM’s initial parameters influence the 
outcome of training, in the following we focus only on the 
parameters of the observation probabilities, B, because their 
size is typically overwhelming. For instance, in an HMM with 
N = 5 states, M = 5 components per mixture, F = 10 
dimensions for the multivariate observations (a conservative 
figure) and full covariance matrices, the size of B is equivalent 
to 1,645 scalar parameters. 

A. Random Initialization Method  

Before the proposed initialization approaches, we illustrate 
a conventional method that will be used as reference in the  
rest of this paper [4, 29]. As noted, parameter B consists of N 
sets of M weighted Gaussian components, {µil, Σil, cil}, i = 
1...N, l = 1...M. The conventional method obtains such values 
in the following two steps (Fig. 2, top of next page): 

Cluster initialization: in the first step, all the observations 
from all training instances, Oe, e=1...E, are merged into a 
single set that we refer to as the super vector. Then, a 
clustering algorithm - k-means - is used to partition the 
observations into (N*M) clusters which are used to initialize B 
as follows: the µil means are set as the clusters’ centers; the Σil 
covariances are set as the sample covariances in each cluster, 
and the cil weights are set proportionally to the number of 
samples in each cluster. 

Unfortunately, the k-means algorithm requires an arbitrary 
initialization at its turn. A k-means algorithm is very much 
alike a simplified EM algorithm: it is iterative in nature; it 

requires an arbitrary, initial clustering of the data to start from; 
and it is guaranteed to converge to more compact clusters than 
the starting ones [30]. In [4, 29], the required (N*M) initial 
centers are chosen randomly with uniform probability from 
the data in the super vector. In the following, we refer to this 
initialization method as random centers.  

Component dispatching: as the second step of initialization, 
the (N*M) resulting components are dispatched over the N 
states (M components to each state) in appearance order, and 
used as the starting point of EM training.  

In the following two sub-sections (IV.B and IV.C), we 
propose two one-off initialization methods designed to amend 
this trial-and-error style of initialization. Albeit heuristic in 
nature, the proposed methods are well founded in the temporal 
and spatial dimensions of the time series. 

B. Proposed Methods: One-Off Initialization 

The sequential observation data in an HMM with GMM 
observation densities are modeled based on two dimensions: 

1. Sequentiality (or proximity in time): states have a natural 
duration expressed by the transition probability matrix. 
Observations which are close in time are more likely to belong 
to the same state and, therefore, being drawn from the same 
GMM. 

2. Proximity in feature space: each observation has a value, 
irrespectively of its occurrence in time. In general, those 
observations whose values are close to each other are more 
likely to be generated from the same state. 

Fig. 1 illustrates these concepts by plotting the observations 
from an instance of action “ClimbLadder” in the MuHAVi 
human action dataset [31]. Each observation is a multivariate 
measurement encoding the pose of the actor in one video 
frame. Fig 1.a shows two dimensions of the observations 
(dimensions 3 and 4) against the time. The progression of the 
observation values seemingly justifies the assumption that 
they could be generated from a sequence of discrete states 
such as those of an HMM. Fig. 1.b shows the same 
observations as a scatter plot after removing the time 
dimension. The plot shows how the observations tend to 
aggregate into clusters which can therefore be ascribed to the 
emissions of single states. 

  
Fig. 1. Plots of the observations for an instance of action “ClimbLadder” from the MuHAVi action dataset [31]:  

a) dimensions 3 and 4 of the observations against the time (40 ms units); b) the same dimensions as a scatter plot. 
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Fig. 2: HMM initialization using random initial centers. 

      
Fig. 3: An illustrative example: a) time-based initialization; b) histogram-based initialization. 

The role of HMM training is that of balancing the two 
dimensions of sequentiality and proximity. However, the 
trade-off is not known at initialization time and the natural 
choice is therefore to use either dimension to develop an 
initialization strategy. Accordingly, in this paper we propose 
the two following cluster initialization approaches: 1) a “time-
based” approach, exploiting sequentiality, and 2) a 
“histogram-based” approach, exploiting proximity in feature 
space. Unlike random initialization of clusters’ centers, both 
methods permit one-off training of the HMM with significant 
reduction of the training time. Before delving with the formal 
description of these initializations, we illustrate them by a 
“toy” numerical example. Let us assume that we have a short 
sequence of six one-dimensional observations, O = {12.1, 
13.6, 26.4, 31.2, 16.0, 10.2}, that we wish to explain by an 
HMM with three states and unimodal emissions; thus, N = 3 
and M = 1. This requires us to choose N*M = 3 centers, noted 
as K1, K2 and K3, for the initialization of the k-means 
algorithm.  

With the time-based approach, the sequence gets evenly 
divided into three sub-sequences, S1 = {12.1, 13.6}, S2 = 
{26.4, 31.2}, and S3 = {16.0, 10.2}. Then, the initial centers 
are set as the average of the data in each sub-sequence: K1 = 
12.9, K2 = 28.8 and K3 = 13.1. Fig. 3.a shows this case.  

Conversely, with the histogram-based approach, the interval 
spanned by the data, [10.2, 31.2], is evenly divided into three 
bins of width 7.0 each:  

• B1: range = [10.2, 17.2], number of data in bin = 4, 
average value = 13.0; 

• B2: range = [17.2, 24.2] number of data in bin = 0, 
average value = 0; 

•  B3: range = [24.2, 31.2] number of data in bin = 2, 
average value = 28.8. 

The initial centers are then set as the bins’ data averages, 
repeating the same value multiple times proportionally to the 
share of data contained in each bin. This results in: K1 = 13.0, 
K2 =13.0 and K3 = 28.8. In turn, Fig. 3.b shows this case. The 

formal descriptions are presented hereafter. 

1) Time-Based Initialization 

In the time-based approach, we initialize the clusters’ 
centers by partitioning the observation data in the time domain 
(Fig. 5.a, top of next page). In this method (named average of 
training instances hereafter), we first partition the frame 
sequence of each training instance, Oe, into (N*M) consecutive 

segments, 
FG��G��H∗3
, each of equal length, Te / (N*M). Then, 

for each FG� segment, the mean value of its observations is 
taken as the segment’s representative, IG�, and averaged over 
all the instances to compose the initial center, Kp , of the p-th 
cluster: 

JG �
1
K-IG�

?

���
; 				� � 1… �+ ∗ M� (7) 

Fig. 4 shows a plot of the first three coordinates of the 
initial centers, Kp, p = 1 … (N*M), N = 5, M = 3, for action 
class “ClimbLadder” in the MuHAVi action dataset [31]. 
Despite averaging over several instances of this action of 
varying length, the centers are well separated and show the 
dynamic progression of the observation values and their 
corresponding emitting states. 

 
Fig. 4: The initial centers with the time-based initialization method  

(action class “ClimbLadder” from the MuHAVi action dataset [31]).
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(a) 

 
(b) 

Fig. 5: a) the time-based initialization; b) the histogram-based initialization.

The time-based initialization is equivalent to assuming that 
the observations of each segment belong to the same state and 
that states occur in a “left-to-right” sequence with equal 
duration. In alternative to assuming equal duration for the 
segments, we could utilize a change-point detection technique 
to detect points of significant change in the observation 
sequence and segment it accordingly [32]. However, this 
would leave us with the hard problem of creating a 
correspondence between a variable number of segments in 
each training sequence and the fixed number of states in the 
HMM. Therefore, we choose to resort to these simplifying 
assumptions, leaving the responsibility to improve the 
mapping of observations to states to the following EM 
training. 

2) Histogram-Based Initialization 

An alternative to identifying the initial clusters’ centers by 
time segmentation is that of ignoring the observations’ time 
stamps and instead exploiting their proximity in feature space. 
We therefore turn to the marginal distribution of the 
observations, p(o), and assume that each of its modes 
corresponds to a component of the observation probabilities,  
bi(o) (Fig. 5.b). While some interference between components 
from different states may occur, a reasonable expectation on 
modes’ separation in high dimensions justifies this approach. 
We therefore propose an initialization method (named 
marginal histogram of observations hereafter) based on an 
approximated histogram of the data in the super vector. The 
aim of this method is to locate the positions of the main modes 
of p(o) and use them as initial clusters’ centers. 

However, mode seeking in multi-dimensional data can 
prove inaccurate, especially when the training data are not 
sufficiently dense. To mollify this issue, we propose 
computing separate, 1-D histograms of each individual 
feature, and then constructing the initial centers incrementally, 
aggregating one feature at a time. This simplifying procedure 
is equivalent to assuming a convex shape for the clusters and 
independence between the features. This approach is similar in 
nature to that used by the FIRES clustering algorithm [33], 

with the main difference that the proposed algorithm is based 
on the distances between clusters’ centers rather than on 
cluster overlap [33]. 

Assuming the feature set to be F-dimensional, for each 
feature fi, i=1...F, the following four steps are performed (Fig. 
6): 

Step 1: A one-dimensional histogram is formed for feature 
fi: its range is divided over (N*M) equally-sized bins and their 
counts computed. 

Step 2: The bin with the highest count is selected as the first 
mode for feature fi. Then, its count is decreased by 1/(N*M) of 
the total number of the observations. This subtraction may in 
some cases lead to a negative count for the bin. 

Step 3: The procedure at the previous step is repeated 
(N*M) times. If a bin has a current negative count, it is 
excluded from the selection. Moreover, a single bin may end 
up being selected more than once if its count remains greater 
than that of all the other bins in successive iterations. At the 
end of these iterations, the selected bins account for the largest 
part of the observations and the whole procedure equates to a 
coarse quantization of the one-dimensional histogram. In 
addition, we consider the samples falling in each bin and we 
compute the average of their first i coordinates. Such i-
dimensional means are noted as 
NG�:&�, p = 1...(N*M), and 
represent the position of each bin in the space spanned by the 
first i coordinates. 

While the above three steps construct the bins 
NG�:&� of a 
one-dimensional histogram, the next step joins such bins into a 
set of clusters’ centers, 
JG�, whose dimensionality grows at 
every cycle and ends in the desired F-dimensional partition. 

Step 4: For feature i = 1, the means 
NG�� are assigned to be 
the first coordinate of the final clusters’ centers. At the i th 
iteration, i = 2...F, the 
JG� centers are already constructed up 
to their (i – 1) coordinate from the previous iterations and the 
NG�:&� vectors are currently computed. Thereafter, each JG�:&�� 
is paired with vector N/�:&��, l = 1...(N*M), with minimum 
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Euclidean distance from it: 
 O∗ = �567(P/��…�H∗3� 		||�JG�:&�� − N/�:&���||R� (8) 

Then, the value of the i-th coordinate, N/∗& , is assigned to be 
the i-th coordinate of Kp. The logic of this step is simple: to 
pair each partially-constructed Kp cluster with the closest N/�:& 
bin based on the available coordinates. This approach is 
reminiscent of incremental feature selection techniques [34]; 
like any similar heuristic approach, it is reasonably fast, yet its 
outcome will depend on the arbitrary order in which the 
features appear in the feature set. 

Fig. 7 depicts an example of the algorithm in the case of 2-
dimensional features and N*M = 6. The six histogram bins for 
each feature have been drawn alongside the two axes. The 
figure shows how the mode’s mean of bin N�� in the horizontal 
histogram (equal to 140) is used as the first coordinate of K1. 
K1 is then paired with bin N��:� in the vertical histogram since 
its first-coordinate mean, 136, is the closest to 140. Thus, the 
second coordinate of N��:� (equal to 231) is selected as the 
second coordinate of K1. 

C. Component Dispatching Methods 

The (N*M) weighted Gaussian components obtained from 
the k-means step need to be later “dispatched” as modes of the 
observation probabilities of an HMM with N states, each with 
a mixture of M Gaussian components. This action may be 
regarded as not particularly critical since it may appear that 
changes to the modes’ assignments will be compensated by 
corresponding changes to A, the state transition probabilities. 
However, there is a principled difference between data 
generated by components in the same mixture and data 
originated by components from different mixtures: the former 
are mutually independent conditioned on their state, while the 
latter depend sequentially. In addition, different combinations 
of components in the mixtures lead to different constructive 
interference between the modes, with changes to the overall 

shape of the distributions. As mentioned in subsection IV.A, 
the reference method for component dispatching is merely 
based on their appearance order in the set: certainly simple, 
yet completely arbitrary. Hence, in this subsection we propose 
two principled component dispatching methods and contrast 
them to the reference method. 
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 in the histogram-based initialization. 

 

 
Fig. 7: An example of cluster’s center calculation using the marginal histogram of observations method. 
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1)  “Nearest Neighbors” Method 

The main theme of this method is to put components with 
the closest centers in a single state. First, we compute all the 
Euclidean distances between pairs of components’ centers. 
Then, we create all the possible partitions of components onto 
states and, for each partition, we accumulate the distance 
between all its component pairs. The partition with minimum 
total distance is selected as the best dispatching. The rationale 
of this dispatching is to attribute small measurement variations 
to the multiple modes of a single state, while attributing larger 
variations to switches between different states. The total 
number of possible partitions, TP, for an N-state HMM with M 
components per state is: 

SG = ;3∗H3 < ∗ ;3∗�H���3 < ∗ … ∗ ;33<+!  (9) 

where ;U9< = U!9!∗�U�9�!. As can be seen, TP is, unfortunately, 

very high and the combinatorial exploration proves extremely 
time-consuming even for reasonably low values of N and M. 

2) “Feature Sorting” Method 

The goal of this method is to approximate the nearest 
neighbors dispatching with a much lower computational load. 
The (N*M) components’ centers are F-dimensional vectors: 
therefore, they can be organized as an F x (N*M) matrix. 
Here, each row is first sorted in value order and the ranking of 
each cell in the sorted row retained. Then, the average of the 
ranks along each column is used to determine the overall rank 
of each component. Components are eventually dispatched to 
states in overall ranking order. This method enjoys a favorable 
O ((N*M)* log (N*M)) complexity. 

V. EXPERIMENTS 

In the experiments, we have extensively evaluated the 
initialization methods by using three different human action 
video datasets - Weizmann [35], MuHAVi [31] and 
Hollywood [16] – and three diverse feature sets - the mask-
based projection histograms [17, 36], the contour-based 
sectorial extreme points [37] and the popular STIP descriptors 
[21]. As software, we have used and extended Murphy’s 
HMM toolbox for Matlab [29]. All the feature sets that we 
have used in the experiments are available for download at 
http://ieeexplore.ieee.org as companion material. 

A. Feature Sets 

As mentioned in Section II, human action recognition 
requires choosing a discriminative and workable feature set. If 
the videos permit an accurate selection of the actor’ pixels (an 
operation often referred to as “mask extraction”), one can use 
computationally lightweight feature sets such as the projection 
histograms [17, 36] and the contour-based sectorial extreme 
points [37]. If such masks cannot be reliably extracted, local 
descriptors collected at spatio-temporal interest points (STIPs) 
provide an interesting, alternative feature set [21]. In the 

experiments, for two of the datasets - Weizmann and 
MuHAVi - we managed to exploit masks, while for 
Hollywood we had to rely on STIP descriptors. 

1) The Projection Histograms Feature Set 

The projection histograms features are computed by 
projecting each pixel of the actor’ mask onto the image 
coordinate axes so as to form a horizontal and vertical 
histograms [17, 36]. As an action takes place, the two 
projection histograms reflect the changes in the object’s shape 
and promise to prove action-discriminative. We have used 
histograms with 10 bins each and we have also added the 
centroid’s coordinates to the feature vector to account for the 
actor’s absolute position in the frame, for a total size F = 22. 
Fig. 8.b depicts the projection histograms for one frame of the 
Weizmann action video dataset (Fig. 8.a) [35]. 

2) The Sectorial Extreme Points Feature Set 

The sectorial extreme points feature set is extracted by first 
computing the centroid of the actor’s mask and then recording 
the coordinates of the mask pixels farthest from the centroid 
within five angular sectors in loose correspondence with 
anatomical parts [37]. We have also added the centroid’s 
coordinates to the feature vector, for a total size F = 12. Fig. 
8.c shows the extracted sectorial extreme points for the same 
frame of Fig. 8.a. 

3) The STIP Descriptors Feature Set 

STIPs are points of significant spatio-temporal change in a 
video (kind of “3D corners”) which can be automatically 
detected by specific detection algorithms [21]. Upon detection 
of a STIP, a descriptor consisting of local space-time textural 
information is computed over a small volume centered on the 
point. In our experiments, we have used the STIP detector of 
Laptev et al. [21] which is based on an extension of the Harris 
detector to space-time. Fig.8.d shows the STIPs extracted from 
the same frame of Fig. 8.a. The descriptor is a 162-
dimensional vector, obtained as the concatenation of a 72-
element histogram of oriented gradient (HOG) and a 90-
element histogram of optical flow (HOF). 

B. Human Action Video Datasets 

The Weizmann dataset includes 10 action classes of basic 
actions such as running, walking, jumping and others 
performed once or twice by 9 different subjects for a total of 
93 video sequences [35]. Manually-extracted masks for all the 
videos are also available from the authors. This dataset is 
simple, yet it has been used in many previous papers and 
allows for the most extensive comparison with the literature. 

The more recent MuHAVi dataset contains videos from 17 
surveillance action classes such as climb a ladder, jump over a 
fence, look inside a car, draw graffiti and others. Each action 
is performed several times by 7 different subjects and captured 
by 8 cameras simultaneously [31]. To the best of our 
knowledge, this is the largest public action dataset to date in 
terms of combined number of action classes, subjects and 
cameras. For this paper, we have extracted the object masks 
automatically to obtain 398 action samples from camera four.
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Fig. 8: Example of the feature sets:  (a) a frame from the Weizmann dataset; (b) its projection histograms; (c) its sectorial extreme points; (d) its STIPs. 

 

 

 

Fig. 9: Examples of frames and corresponding automated masks from the MuHAVi dataset. 
 

F1 B1 F3 B3 

F2 B2 F4 B4 

(a) (b) 
Right hand Left hand Head 

Centroid 

Right foot Left foot 
(c) (d) 



 10 

The quality of these masks is lower and more realistic than 
that of the Weizmann masks. An example is shown in Fig. 9. 

The Hollywood human action dataset is a very challenging 
action dataset of 8 action classes from commercial movies. In 
this type of video, actors are often shown only partially 
(torsos, faces, backs) and heavily occluded, with abrupt and 
frequent changes of view, camera movements and dynamic 
backgrounds [16]. The dataset consists of 475 video samples 
from 32 Hollywood movies with 8 action classes (answer 
phone, get out of car, handshake, hug, kiss, sit down, sit up 
and stand up). It comprises of a manually labeled training set 
(219 video samples for 231 action labels) and one manually 
labeled test set (211 video samples for 217 action labels), for a 
total of 448 action labels.  

C. Experiments on the Cluster Initialization Methods 

In the first set of experiments, we compared our two 
proposed cluster initialization methods, the average of 
training instances and the marginal histogram of 
observations, with the random centers cluster initialization 
method as reference. As component dispatching method, we 
applied the appearance order (subsection IV.A). For the 
random centers, we report the average accuracy and standard 
deviation over six different random starts, and also the best 
accuracy out of the six starts. The number of starts was chosen 
as the highest practicable number for the experiments, where 
each training session lasted in the order of sixteen hours and 
tens of sessions had to be run for the various combinations of 
the parameters. 

As validation approach over Weizmann and MuHAVi 
datasets, we have used the “leave-one-subject-out” cross 
validation method; i.e. in each run we leave one subject out 
during training and we use it for testing. This validation 

procedure is realistic since in real applications subjects would 
not have been seen during training. The final accuracy result is 
the average over the various subjects, with 9 folds for 
Weizmann and 7 folds for MuHAVi. For the Hollywood 
dataset, we have used the dictated training and test sets for 
comparability. 

Since the number of HMM states, N, and the number of 
components per state, M, are hyperparameters in the Baum-
Welch algorithm and cannot be determined by maximum 
likelihood estimation, we simply adopt exhaustive search over 
a plausible range, N, M ∈ {1…6}, and choose the best 
combination based on cross-validation accuracy. 

1) Experiments over the Weizmann Dataset 

Tables I and II report the classification accuracy over the 
Weizmann dataset by using the sectorial extreme points and 
projection histograms feature sets, respectively. In the tests 
with the sectorial extreme points feature set, the average of 
training instances and the marginal histogram of observations 
obtained the highest accuracies, 96.8% and 95.7%, 
respectively, higher than the average of the six runs of random 
centers, 94.6% and comparable to their best, 96.8%. Similar 
results were achieved with the projection histograms feature 
set, with 87.1% and 88.2% as the highest accuracies of 
average of training instances and marginal histogram of 
observations, respectively, compared to 85.8% and 88.2% as 
the average and best of the 6 runs of random centers. This 
proves that one single training sessions with the methods 
proposed in this paper can be equally effective as multiple 
training sessions with random trials. If applied an unbounded 
number of times, it is almost certain that the random 
initializations would eventually provide the highest accuracy

 

TABLE I 
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS  

WITH THE SECTORIAL EXTREME POINTS FEATURE SET AND THE WEIZMANN DATASET. 
 

   
Random centers (average and std. dev. of 6 runs)  Random centers (best of 6 runs) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 94.6±0.0 91.2±1.1 92.5±0.0 93.5±0.7 93.9±0.9 93.9±1.3  N=1 94.6 92.5 92.5 94.6 94.6 94.6 

N=2 94.1±0.9 94.1±1.8 93.5±1.5 90.7±2.0 91.8±2.9 90.9±1.5  N=2 95.7 96.8 95.7 93.5 93.5 92.5 

N=3 93.5±2.2 92.3±2.3 92.8±1.1 89.8±1.5 90.0±2.3 90.7±1.5  N=3 94.6 96.8 94.6 91.4 93.5 92.5 

N=4 93.7±0.8 91.2±2.6 89.4±2.0 88.0±2.4 89.1±2.5 88.4±1.9  N=4 94.6 92.5 91.4 91.4 92.5 91.4 

N=5 92.7±1.3 90.7±1.8 90.7±1.9 90.0±2.0 87.6±1.3 87.8±2.5  N=5 93.5 92.5 93.5 93.5 89.2 90.3 

N=6 92.1±1.3 89.6±2.5 88.5±1.9 88.7±2.0 88.2±2.8 87.6±2.2  N=6 94.6 91.4 91.4 91.4 92.5 91.4 

   

Average of training instances  Marginal histogram of observations 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 94.6 91.4 92.5 89.2 96.8 93.5  N=1 94.6 91.4 94.6 91.4 95.7 95.7 

N=2 93.5 92.5 93.5 90.3 95.7 91.4  N=2 93.5 93.5 94.6 90.3 90.3 89.2 

N=3 93.5 92.5 88.2 89.2 91.4 86.0  N=3 93.5 93.5 91.4 87.1 91.4 91.4 

N=4 93.5 91.4 90.3 89.2 91.4 89.2  N=4 92.5 92.5 88.2 87.1 88.2 87.1 

N=5 91.4 91.4 90.3 91.4 89.2 79.6  N=5 93.5 90.3 88.2 91.4 90.3 89.2 

N=6 94.6 89.2 88.2 90.3 78.5 76.3  N=6 91.4 88.2 89.2 87.1 87.1 86.0 
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for any combination of N, M. However, such a brute force 
approach is just impractical. While the best accuracy of the 
average of training instances is higher than that of the 
marginal histogram of observations in the test with the first 

feature set (sectorial extreme points), the situation is reversed 
when using the other (projection histograms). However, the 
differences in accuracy are small and either method can be 
vetted as a suitable one-off, initialization solution. 

 
 

TABLE II 
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS  

WITH THE PROJECTION HISTOGRAMS FEATURE SET AND THE WEIZMANN DATASET. 
 

Random centers (average and std. dev. of 6 runs)  Random centers (best of 6 runs) 
 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 

N=1 75.3±0.0 72.0±0.0 72.0±0.0 72.0±0.0 72.0±0.0 72.0±0.0  N=1 75.3 72.0 72.0 72.0 72.0 72.0 

N=2 83.7±1.1 80.8±2.7 81.0±2.2 80.6±1.0 80.8±1.3 81.4±1.1  N=2 84.9 84.9 83.9 81.7 82.8 82.8 

N=3 82.8±0.7 81.0±0.9 80.5±1.9 82.1±1.9 84.1±1.7 81.0±2.2  N=3 83.9 81.7 83.9 84.9 87.1 83.9 

N=4 83.2±2.1 84.4±1.1 83.0±1.9 82.8±2.3 83.9±1.4 83.5±2.2  N=4 84.9 86 84.9 84.9 86.0 87.1 

N=5 83.9±1.0 85.1±1.4 83.7±3.6 84.9±1.7 84.2±0.6 83.7±2.5  N=5 84.9 87.1 88.2 86.0 84.9 86.0 

N=6 85.3±1.1 84.4±0.9 85.8±2.0 85.8±1.9 85.7±2.4 83.7±1.6  N=6 87.1 84.9 87.1 88.2 88.2 86.0 

   

Average of training instances  Marginal histogram of observations 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 75.3 73.1 72.0 72.0 72.0 72.0  N=1 75.3 72.0 72.0 72.0 72.0 72.0 

N=2 84.9 81.7 76.3 81.7 79.6 80.6  N=2 83.9 80.6 84.9 80.6 81.7 80.6 

N=3 79.6 83.9 81.7 83.9 81.7 87.1  N=3 81.7 81.7 80.6 83.9 80.6 79.6 

N=4 82.8 84.9 82.8 83.9 82.8 80.6  N=4 81.7 83.9 81.7 79.6 84.9 83.9 

N=5 84.9 86.0 81.7 87.1 84.9 79.6  N=5 83.9 87.1 83.9 81.7 83.9 88.2 

N=6 84.9 86.0 86.0 80.6 82.8 80.6  N=6 87.1 84.9 84.9 83.9 86.0 88.2 

 

TABLE III 
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS  

WITH THE SECTORIAL EXTREME POINTS FEATURE SET AND THE MUHAV I DATASET. 
 

 

Random centers (average and std. dev. of 6 runs)  Random centers (best of 6 runs) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 84.9±0.0 88.2±0.5 90.7±0.4 91.4±0.5 91.4±0.3 91.8±0.7  N=1 84.9 88.9 91.2 92.2 91.7 92.7 

N=2 88.5±0.5 91.7±0.4 91.9±0.4 92.2±0.6 91.8±0.8 91.6±0.9  N=2 89.4 92.2 92.5 93.2 93.0 92.7 

N=3 91.5±0.5 92.0±0.6 92.4±0.6 92.1±1.3 91.8±0.5 91.8±0.7  N=3 92.2 93.2 93.2 94.0 92.5 92.5 

N=4 91.9±0.7 92.1±0.6 92.1±0.5 91.8±0.9 91.3±0.6 91.5±0.4  N=4 92.7 92.7 92.7 92.7 92.0 92.2 

N=5 92.2±1.1 92.3±0.3 92.2±0.9 91.7±0.7 91.3±1.1 90.6±0.8  N=5 93.7 92.7 93.2 92.7 92.5 91.5 

N=6 92.3±0.9 92.0±0.6 91.9±0.9 91.4±0.8 90.2±0.4 90.4±1.3  N=6 93.2 92.7 93.2 92.5 90.7 92.2 
   

Average of training instances  Marginal histogram of observations 
 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 

N=1 84.9 88.9 90.5 90.7 92.5 93.7  N=1 84.9 87.7 89.7 91.7 91.0 91.7 

N=2 89.4 91.5 92.2 91.7 90.7 91.7  N=2 88.4 92.0 91.7 92.5 92.2 92.2 

N=3 91.2 93.7 91.7 93.0 92.5 92.2  N=3 91.5 93.0 91.7 91.5 91.7 91.7 

N=4 91.7 91.7 92.5 93.2 90.2 92.2  N=4 92.7 92.0 91.0 92.5 90.5 89.7 

N=5 92.5 91.2 92.0 91.7 91.7 91.2  N=5 91.0 93.2 92.0 92.7 91.7 90.7 

N=6 93.0 93.5 91.7 91.2 91.2 89.7  N=6 92.5 91.7 92.2 89.9 90.7 89.7 
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2) Experiments over the MuHAVi Dataset 

The classification accuracy results with the various cluster 
initialization methods over the MuHAVi dataset are shown 
in Tables III and IV. Again, the results show that the highest 
accuracies achieved with the average of training instances 
and the marginal histogram of observations are higher than 

the average of the six runs with the random centers and 
comparable with their best. With the projection histograms 
feature set, the maximum accuracy of the average of 
training instances method (92.0%) proved even higher than 
the best of six random starts (91.7%). 

TABLE IV 
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS  

WITH THE PROJECTION HISTOGRAMS FEATURE SET AND THE MUHAV I DATASET. 
 

Random centers (average and std. dev. of 6 runs)  Random centers (best of 6 runs) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 83.2±0.0 88.0±0.3 88.1±0.1 88.8±0.3 89.0±0.5 89.0±0.3  N=1 83.2 88.4 88.2 89.2 89.7 89.4 

N=2 87.3±0.3 88.1±0.9 89.7±0.6 89.4±0.7 89.1±0.4 89.5±0.6  N=2 87.7 89.4 90.5 90.2 89.7 90.2 

N=3 87.3±0.4 89.3±0.7 89.8±1.0 89.4±0.8 90.2±0.6 89.7±0.6  N=3 87.7 90.2 91.7 90.5 91.2 90.7 

N=4 87.7±0.4 89.2±0.6 89.3±0.5 89.4±0.6 88.8±0.7 88.9±0.7  N=4 88.2 89.9 89.9 90.2 89.4 89.7 

N=5 88.0±0.9 88.5±0.5 89.3±1.2 89.6±0.9 89.0±0.6 89.6±0.5  N=5 89.4 89.2 91.7 91.0 89.7 90.5 

N=6 88.6±0.4 88.7±0.8 89.2±1.2 89.1±0.7 89.4±0.8 88.9±0.2  N=6 89.2 89.7 90.2 90.2 90.5 89.2 

    
Average of training instances  Marginal histogram of observations 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 83.2 87.9 88.4 88.7 88.9 88.7  N=1 83.2 87.9 87.7 88.4 89.2 88.7 

N=2 87.2 87.9 89.2 88.7 87.9 89.9  N=2 86.9 89.9 90.7 88.4 88.7 91.5 

N=3 87.2 90.2 89.2 89.7 92.0 89.7  N=3 86.9 88.7 89.9 90.7 89.7 88.7 

N=4 88.4 88.7 88.2 89.2 91.0 89.4  N=4 88.4 89.9 90.2 90.5 89.4 90.5 

N=5 88.9 89.2 89.4 90.2 88.7 88.7  N=5 89.2 89.4 87.9 89.2 88.2 87.9 

N=6 88.7 88.7 91.0 89.4 89.9 89.7  N=6 87.4 88.9 89.4 88.7 89.7 88.9 

TABLE V 
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS  

WITH THE STIP FEATURE SET AND THE HOLLYWOOD DATASET. 
   

Random centers (average and std. dev. of 6 runs)  Random centers (best of 6 runs) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 17.1±0.0 26.8±1.6 26.0±1.6 25.0±0.6 26.0±0.7 26.0±2.0  N=1 17.1 28.6 28.6 25.8 26.7 29.9 
N=2 17.1±1.7 26.2±0.9 25.8±1.1 25.8±0.8 25.3±0.7 25.6±0.9  N=2 19.4 26.7 26.7 26.7 26.3 26.7 

N=3 17.1±0.7 25.9±1.1 25.0±1.2 25.6±0.7 25.4±1.6 24.7±1.1  N=3 18.0 27.6 26.7 26.3 27.2 25.8 

N=4 18.7±1.4 25.9±0.3 25.4±1.0 25.0±0.6 24.7±1.1 24.4±0.9  N=4 20.3 26.3 27.2 25.8 26.3 25.3 

N=5 21.7±2.9 25.7±1.3 25.5±0.6 24.5±0.9 24.8±1.0 24.0±0.7  N=5 26.3 27.6 26.3 25.8 26.7 24.9 

N=6 21.4±1.9 25.6±1.1 24.4±1.6 24.7±1.0 24.7±0.6 23.7±1.2  N=6 24.4 27.2 26.7 25.8 25.3 25.8 

      
Average of training instances  Marginal histogram of observations 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 17.1 26.7 24.9 26.7 26.3 24.9  N=1 17.1 25.8 25.8 25.8 27.6 28.1 
N=2 15.7 26.3 25.3 25.3 16.1 14.3  N=2 19.4 25.3 26.3 25.8 24.4 25.8 

N=3 13.8 25.3 14.7 12.4 14.3 17.5  N=3 18.9 27.2 25.8 25.8 24.9 24.9 

N=4 18.9 25.3 13.4 16.6 15.7 7.4  N=4 16.6 25.3 25.8 26.3 24.4 25.3 

N=5 20.7 17.5 12.4 16.6 8.8 10.6  N=5 19.8 22.6 24.9 24.0 24.4 26.7 

N=6 20.7 14.3 18.0 7.4 10.6 10.6  N=6 22.1 25.3 24.9 23.5 25.3 24.9 
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3) Experiments over the Hollywood Dataset 

The Hollywood human action dataset is one of the most 
challenging action datasets released to date. As mentioned in 
Section V.A, it is virtually impossible to extract sufficiently 
accurate actor masks from Hollywood and we have 
therefore resorted to STIP descriptors. The number of 
detected STIPs for each video frame may be zero, one or 
more than one. For frames with multiple STIPs, we have 
chosen to adopt the method from [38] to combine and 
average all the extracted descriptors into one feature vector. 
For frames with no STIPs, no feature vector is generated. 

Table V reports the classification accuracies with the 
various cluster initialization methods. The achieved results 
are in line with the results from the other datasets 
(Weizmann and MuHAVi). The maximum achieved 
accuracy with the average of training instances and the 
marginal histogram of observations methods are 26.7% and 
28.1%, respectively, compared to 26.8% and 29.9% as the 
average and the highest achieved accuracy over 6 runs with 
the random centers method. For this dataset, the result from 
the marginal histogram of observations method is more 
noticeable. Chance accuracy (the accuracy of assigning a 
class by a uniformly random decision) for this dataset is 
approximately 12% and results in the current range are in 
line with the state of the art as will be shown in subsection 
V.F. 

4) Divergence Analysis 

Given that the time-based and histogram-based 
initialization methods lead to different initializations and 
eventual accuracy outcomes, in this paper we also attempt to 
identify a heuristic method to choose between them straight 
after the determination of the initial parameters, prior to 
performing HMM training and cross-validation. 

To this aim, we have assumed that a satisfactory 
initialization should provide us with a set of Gaussian 
components which are as separated as possible. Separation 
between components is likely in feature spaces of such 
dimensionality and leads to more reliable mode 
identification. We have therefore adopted a divergence 
measure for measuring the separation between all possible 
pairs of Gaussian components and select the initialization 
method producing the smallest overlap between 
components. A common divergence measure between two 
density functions is the Kullback-Leibler divergence [39], 
which is defined as follows: 

 

V:R��||�� = W ��8� OP X��8���8�Y 	Z8A[
�[  (10) 

 
where p and q are two distributions of a continuous random 
variable, x. For two multivariate F-dimensional Gaussian 

densities, 0�8|µ� , Σ�� and 0�8|µ�, Σ��, this divergence 

has a well-known closed-form solution [40]: 
 

V:R�0G||0�� = 12 ]OP ^Z_`;2�<Z_`;2G<a + `5;2���2G<
+ ;1G − 1�<
2���;1G − 1�< − cd (11) 

 
However, a weighted Gaussian component, noted as ./0�8|µ/ ,Σ/�, is a denormalized density in that its total 

probability adds up to its weight, cl, with cl ≤ 1. Therefore, 
we make use of the extended Kullback-Leibler divergence as 
defined in [41] which can be applied to denormalized 
density functions: 

 

V�:R��||�� = W ^��8� − ��8�A[
�[
+ ��8� OP X��8���8�Ya Z8 

(12) 
 
The extended Kullback-Leibler divergence for two 

weighted Gaussian components, ��8� = .G0�8|µG,ΣG� 
and ��8� = .�0�8|µ� , Σ��, is therefore derived here as 

follows: 
 V�:R��||�� =
= W e.�0f8gµ� ,Σ�h – 	.G0 f8gµG,ΣGhA[

�[
+ .G0f8gµG ,ΣGh OPj.G0f8gµG ,ΣGh.�0f8gµ� ,Σ�hkl 	Z8 =
=.� − .G + .G ^OP X.G.�Y + V:R�0G||0��a (13) 

We have used (11) to compute the pair-wise divergence 
between all components after cluster initialization. We have 
then defined an arbitrary threshold, TKL, (set to 1 in the 
experiments) and counted the number of pairs for which 
divergence was below such a threshold. These pairs are 
regarded as “undesirable”, and the initialization method 
providing their smallest number is selected. 

This selection approach was tested over the four 
parameter combinations with the highest accuracies from 
Tables III and IV. Results are shown in Table VI: the 
selection approach offers a successful prediction if the 
higher of the two accuracies (in boldface) is achieved in 
correspondence with the smallest number of undesirable 
pairs (also in boldface). As can be seen, in three cases out of 
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four the divergence criterion provided us with a correct 
prediction of the more accurate of the two initialization 
methods (a lower number of undesirable pairs led to higher 
accuracy). However, the reader ought to keep in mind the 
heuristic nature of this criterion and that it can only be seen 
as a precursor of the cross-validation accuracy. 

D. Experiments on the Component Dispatching Methods 

The second set of experiments was designed to explore 
the best component dispatching method among those 
described in subsection IV.C. As explained before, the 
computational complexity of the nearest neighbors 
dispatching method is unmanageable. Therefore, we decided 
to run the experiment only between feature sorting and the 
baseline method appearance order. The experiments were 
cross-run with all the cluster initialization methods: random 
centers, average of training instances and marginal 
histogram of observations. The achieved accuracies over the 
MuHAVi dataset using the feature sorting dispatching 

method and the sectorial extreme points feature set are 
shown in Table VII. For ease of comparison, in the left 
column we have reported the accuracies of the appearance 
order dispatching method from Table III. 

The results in Table VII show that using feature sorting 
for dispatching the components to states improves the 
highest accuracy of the marginal histogram of observations 
initialization method by 1.3% (from 93.2% to 94.5%) and 
the best accuracy of the random centers initialization 
method by 0.7% (from 94.0% to 94.7%). No improvement 
was instead achieved for average of training instances. Even 
more notably, the combination of a one-off cluster 
initialization (marginal histogram of observations) with an 
“intelligent” dispatching (feature sorting) achieved 94.5% 
accuracy which is higher than the highest accuracy of the six 
random starts (94.0%). 

 

 

TABLE VI 
DIVERGENCE ANALYSIS FOR THE TWO ONE-OFF INITIALIZATION METHODS. 

 

Feature set 
Total 
pairs 

Average of training instances Marginal histogram of observations 

Accuracy Undesirable pairs Accuracy Undesirable pairs 

sectorial extreme points 
3570 93.7% 137 91.7% 141 
10710 91.2% 1319 93.2% 1215 

projection histograms 
15708 89.9% 1346 91.5% 1031 
24990 92.0% 2548 89.7% 1985 

 

TABLE VII 
ACCURACY COMPARISON (%) BETWEEN COMPONENT DISPATCHING METHODS:  

APPEARANCE ORDER (LEFT COLUMN); FEATURE SORTING (RIGHT COLUMN), FOR VARIOUS CLUSTER INITIALIZATION METHODS. 
   

Appearance order  Feature sorting 
Random centers (best of 6 runs) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 84.9 88.9 91.2 92.2 91.7 92.7  N=1 84.9 88.2 91.2 92.2 92.5 92.2 

N=2 89.4 92.2 92.5 93.2 93.0 92.7  N=2 88.9 92.5 93.5 92.7 94.0 93.0 

N=3 92.2 93.2 93.2 94.0 92.5 92.5  N=3 91.5 92.7 92.5 92.2 92.5 92.5 

N=4 92.7 92.7 92.7 92.7 92.0 92.2  N=4 93.2 92.7 94.7 92.7 92.7 91.5 

N=5 93.7 92.7 93.2 92.7 92.5 91.5  N=5 92.7 93.7 93.0 91.7 92.0 91.7 

N=6 93.2 92.7 93.2 92.5 90.7 92.2  N=6 93.2 92.7 92.0 92.5 90.2 90.5 

 
Average of training instances 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 84.9 88.9 90.5 90.7 92.5 93.7  N=1 84.9 88.9 90.5 90.7 92.5 93.7 

N=2 89.4 91.5 92.2 91.7 90.7 91.7  N=2 89.4 91.5 92.5 91.5 90.5 92.7 

N=3 91.2 93.7 91.7 93.0 92.5 92.2  N=3 91.2 92.7 92 92.5 92.2 91.2 

N=4 91.7 91.7 92.5 93.2 90.2 92.2  N=4 91.7 92.7 93.5 91.7 91.7 91.2 

N=5 92.5 91.2 92.0 91.7 91.7 91.2  N=5 92.5 92 92 90.5 90.5 91.2 

N=6 93.0 93.5 91.7 91.2 91.2 89.7  N=6 93 92.7 91.5 91.5 91.5 90.7 
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Marginal histogram of observations (continued) 

 M=1 M=2 M=3 M=4 M=5 M=6   M=1 M=2 M=3 M=4 M=5 M=6 
N=1 84.9 87.7 89.7 91.7 91.0 91.7  N=1 84.9 87.7 89.7 91.7 91 91.7 

N=2 88.4 92.0 91.7 92.5 92.2 92.2  N=2 88.4 91.7 92 91.2 91.7 92 

N=3 91.5 93.0 91.7 91.5 91.7 91.7  N=3 91.5 94.5 92.5 93.2 91.7 92.2 

N=4 92.7 92.0 91.0 92.5 90.5 89.7  N=4 92.7 92 91.7 91.7 91 90.2 

N=5 91.0 93.2 92.0 92.7 91.7 90.7  N=5 91 91.2 91.5 91.7 91.2 91.5 

N=6 92.5 91.7 92.2 89.9 90.7 89.7  N=6 92.5 91.7 92.2 89.9 90.7 89.7 

 
E. Computational time analysis 

Given the interesting accuracy reported by the proposed 
methods, we have proceeded to measure their execution 
time to assess if they introduce any remarkable 
computational overhead compared to the conventional 
initialization. Table VIII reports a break-down of the 
average execution times over repeated runs for the various 
algorithms. We have chosen to run a small-size training 
session to be able to include the nearest-neighbors 
dispatching method in the comparison. With any larger size 
of the training session (in terms of number of samples, 
states, or components), the execution time of nearest-
neighbors dispatching becomes unmanageable. Table VIII 
shows that the execution times of all initialization 
components are negligible with respect to an EM run, with a 
maximum of 2.9% for the marginal histograms clustering. 
Therefore, using the proposed initializations in place of 
multiple EM runs saves an amount of training time directly 
proportional to their number, without incurring any 
noticeable overhead. As Table VIII shows, the execution 
time of Nearest neighbors dispatching is by far larger than 
that of EM itself (828.2%) and therefore impractical in any 
scenario. 

TABLE VIII 
EXECUTION TIMES (IN SECONDS) FOR THE VARIOUS INITIALIZATION 

COMPONENTS IN COMPARISON WITH EM. 
 

Algorithm Execution 
time (s) 

Percentage 
vs. EM 

Random centres 0.14 0.0 
Time-based segmentation 1.22 0.1 
Marginal histograms 48.6 2.9 
Appearance order 0.005 0.0 
Feature sorting 0.3 0.0 
Nearest neighbors 14,162 828.2 
EM training 1,710 (100.0) 
 

F. Comparison with Other Recognition Approaches 

HMM has been utilized for many years as an effective 
sequential classifier not only for action recognition, but also 
in domains as diverse as speech recognition and genomics. 
However, many alternative approaches have reported high 
accuracy, with Bag-of-Features (BoF) certainly the most 

prominent [15]. BoF was originally inspired by the Bag-of-
Words model for document classification which computes a 
histogram of words for each document and uses it as a 
measurement for its classification. BoF uses a similar idea 
for the classification of images and videos, yet using local 
descriptors (such as the STIP descriptors presented in 
subsection V.A) in place of words. However, local 
descriptors belong to vector spaces and require a 
quantization step before histograms can be computed. To 
this aim, a training stage is run by extracting all the 
descriptors of a training video set and forming D bins by a 
k-means clustering algorithm. At run time, for each video, 
all the descriptors are extracted and associated to bins, their 
histogram computed, and eventually used for classification 
of the video by using any well-known classifier such as the 
support vector machine (SVM), nearest neighbors, 
AdaBoost or others [15]. 

In our experiments, the number of clusters, D, was 
selected over a logarithmic range, {16, 32, 64, 128, 256}. 
Since the k-means algorithm generates different results at 
each run, we also repeated the cluster formation 6 times. For 
classification, we have used SVM and AdaBoost. For SVM, 
we have used the LIBSVM library [42] with two different 
kernels: the linear kernel and the radial basis function, with 
a grid-search over parameter nu in {0.05÷ 0.35, step 0.05}. 
For AdaBoost, we have used BFTree as weak classifier. 
Table IX compares the best accuracy achieved over the 
MuHAVi dataset (with sectorial extreme points) and 
Hollywood (using the STIP descriptors). 

Table IX shows that the accuracy achieved by HMM and 
BoF over these two datasets is generally comparable. HMM 
achieved a higher accuracy over the MuHAVi dataset 
(94.0%), while HMM and BoF achieved the same best 
accuracy over Hollywood (29.9%). In all experiments with 
BoF, SVM outperformed AdaBoost, with increases ranging 
between 3.3% and 6.8%. Again, in all experiments with BoF 
the accuracy depended significantly on the outcome of the 
clustering step, with significant differences between the best 
accuracy and the average accuracy over the 6 trials (from 
1.6% to 5.6%). The best results for SVM were achieved 
with the RBF kernel for MuHAVi and with the linear kernel 
for Hollywood. 
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TABLE IX 
COMPARISON OF CLASSIFICATION ACCURACY (%) FOR VARIOUS CLASSIFIERS OVER THE MUHAV I AND HOLLYWOOD DATASETS. 

 

Dataset Feature set Accuracy 
HMM 

BoF/ 
SVM 

BoF/ 
AdaBoost Reference 

method 
Average of training 
instances 

Marginal histogram 
of observations 

MuHAVi Sectorial 
extreme points 

Best 94.0% 
93.7% 93.2% 

86.7% 79.9% 
Average 92.1% 81.7% 78.3% 

Hollywood STIP 
descriptors 

Best 29.9% 
26.7% 28.1% 

29.9% 24.9% 
Average 26.0% 24.3% 21.0% 

 

VI.  CONCLUSION 

In this paper, we have reconsidered the long-standing problem 
of parameter initialization in model training. Given that the 
objective functions are affected by multiple maxima, varying 
the initialization has a substantial impact on the learned model 
and, in turn, cross-validation performance. In the paper, we 
have proposed two one-off initialization methods for the 
training of HMM in contrast to the usual approach of repeated, 
random initializations. The two methods are based on a 
different rationale: in the first (sequentiality), each training 
sequence is divided into N segments of equal length. The 
mean value of each segment is computed and averaged over 
corresponding segments across the training sequences. Such 
averages are then used as the initial centers. The underlying 
assumption is a linear progression of the human action, 
leaving the discovery of non-linearities to the subsequent 
HMM training phase. The second approach (proximity in 
feature space) is based on the marginal histogram of the 
observations and makes use of an incrementally-built 
histogram to mollify the issues associated with histograms in 
high-dimensional spaces. Either approach is followed by a 
cluster dispatching step based on a heuristic feature sorting 
procedure. In addition, an empirical measure of divergence 
has been proposed as an indicator of the quality of the 
initialization. 

The proposed one-off approaches achieve high recognition 
accuracy from a single model training, thus saving substantial 
learning time compared to multiple-starts methods. 
Experimental results over three human action recognition 
datasets have showed that the proposed initializations are 
capable of achieving better accuracy than the average of 
multiple (six) random initializations and comparable to their 
best. In our experiments, reducing the training sessions from 
six to one has permitted a reduction in training time of over 
83%, from approximately four days down to sixteen hours 
(this figure varies depending on the configurations used in the 
experiment). We also argue that the proposed approaches are 
general and can be usefully applied to HMM classification in 
other domains including genomics, speech recognition, 
network traffic categorization and others. In addition, the 
approach can be extended to more complex, discrete latent-
state models such as switching HMMs and more general 
dynamic Bayesian networks which also suffer from an 

equivalent problem of local maxima and resort to comparable 
initialization heuristics. Such extensions are the scope of our 
current work. 
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