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Training Initialization of Hidden Markov
Models in Human Action Recognition

Zia Moghaddar andMassimo Piccari, Senior Member, |IEEI

Abstract—Human action recognition in video is often
approached by means of sequential probabilistic mads as they
offer a natural match to the temporal dimension ofthe actions.
However, effective estimation of the models’ paranters is
critical if one wants to achieve significant recogition accuracy.
Parameter estimation is typically performed over aset of training
data by maximizing objective functions such as thedata
likelihood or the conditional likelihood. However, such functions
are non-convex in nature and subject to local maxim This
problem is major since any solution algorithm (expetation-
maximization, gradient ascent, variational methodsand others)
requires an arbitrary initialization and can only find a
corresponding local maximum. Exhaustive search isterwise
impossible since the number of local maxima is unlown.

While no theoretical solutions are available for tis problem,
the only practicable mollification is to repeat traning with
different initializations until satisfactory cross-validation
accuracy is attained. Such a process is overall eimpal and
highly time-consuming. In this paper, we propose te methods
for one-off initialization of hidden Markov models achieving
interesting trade-offs between accuracy and trainig time.
Experiments over three challenging human action vido datasets
(Weizmann, MuHAVi and Hollywood Human Actions) and with
various feature sets measured from the frames (STIBescriptors,
projection histograms, notable contour points) proe that the
proposed one-off initializations are capable of adghving accuracy
above the average of repeated random initializatich and
comparable to the best. In addition, the methods mposed are
not restricted solely to human action recognition a they suit time
series classification as a general problem.

Notes to Practitioners—This paper presents a method useful
for the development of automated video surveillancesystems.
The current generation of video surveillance systemis geared
towards recognizing actions of interest (such as t@pering with
infrastructure, drawing graffiti, looking inside a car etc)
automatically from video streams. To this aim, compter
algorithms can be employed to learn to recognize sh actions
simply from presentation of example videos. Howeverthe
learning time can prove excruciatingly high, up tothe order of
days or weeks of computing time depending on thez& of the
dataset. This paper presents two methods to dramatlly reduce
such a learning time. The main practical advantagés the rapid
re-configurability of the video surveillance systemto recognize
new and different action types arising from different scenarios of
application.
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|I. INTRODUCTION

UTOMATIC recognition of human actions in video

allows automation of many otherwise manually-inteais
tasks such as video surveillance, retrieval of esdgom large
databases, pedestrian traffic monitoring, and mathers.
Understanding human behavior is a high-level tabkig on
several, lower-level tasks such as segmentatiackittg and
pose estimation. The typical goal of automatic aacti
recognition is the classification of a given imagguence as
one of several classes of pre-defined actions.

Many different approaches for action recognitionehbeen
proposed over the past two decades. The most reaergys
in [1-3] offer a comprehensive overview. Howevdr,is a
common opinion that many open issues still affdot t
accuracy of action recognition. As a main challentie
instances of the same action by various people are
significantly different; moreover, every individuglerforms
each action in a different manner over variousaimsgs, both
in space and time. This can be formulated as algmolof
high, intrinsic within-class variability. Adding tothe
challenge, the number of samples available fomimgi is
typically limited compared to the parameters, preveg a
“brute force” training approach.

Recognition of human actions typically requires the
classification of a time series of measurementso aalled
observations,0 = {oy, ..., 0, ... 07}, extracted from the video
depicting the action. Amongst the common approadioes
classification, the hidden Markov model (HMM) [4la$h
played a special role in that it has been widelgduand has
inspired a number of other similgrobabilistic graphical
models both directed and undirected (hidden semi-Markov
models, layered HMM, conditional random fields, andny
others [5-7]). However, certain problems with th&irting of
graphical models are still partially unresolved.eTmain
principle guiding the training of a model from at sa&f
observation sequence = {0, ..., 0f, ...0%,}, e = 1.E, is to
learn its set of parameters, noted A4shereafter, with
maximum likelihood. The likelihood function contaihidden
variables and is therefore non-convex in naturéngilieu to
an undefined number of local maxima. Solution atpars
such as gradient ascent, expectation-maximizatiivi) ([8],



variational methods [9], are only guaranteed toveoge to a
local maximum of the likelihood which, in turn, datly
depends on an arbitrary initialization of the tmagalgorithm.
This problem is major as the difference in valuesoth
maxima can be extreme, with corresponding majongés in
the accuracy of the recognition task. The main wayknd for
this problem is that of repeating the training statany times
from different initializations until satisfactoryapameters are
found.

For these reasons, this paper investigates ancnies
number of approaches that can improve the traitimg of
HMMs with one-off initializations and apply them tihe
recognition of human actions in video. The advaatagught
by one-off initialization is significant as traigns generally
time-consuming and has also to be repeated marestower
various experimental setups and datasets. For nicestaa
single training session over 400 training sequemndds a 2.8
GHz CPU PC and Matlab 7.9 takes us between 8 atm3&
depending on the model's complexity. In the casdadfer
training sets, the training time is in the ordervefeks and
repeating the training is heavily time-consumindpeiefore,
one-off initialization approaches remove practighstacles to
the optimal tuning of models. The main contribusiasf this
paper can be summarized as follows:

(DTW) [10] as its main representative, while thedden
Markov model (HMM) [17-19] is the reference genamt
approach for graphical models. Other graphical riodach
as dynamic Bayesian networks and conditional ranfielts
have also been used with significant degree ofesscée.g. [1,
7]). The approaches based on classification ofobgisims
convert the time series of measurements, whichesan
length for every action instance, into a histogfmalues and
then apply any conventional classifier such as shpport
vector machine or nearest-neighbors for the classibn
stage. Such histogram-based approaches have mporte
significant empirical accuracy [14-16]: however, dan be
argued that they do not appropriately factor in tdeporal
dimension of human actions. In contrast, sequealasifiers
such as HMM can naturally classify sequences oitrarly
length and have shown good performance in adjusting
variations in the duration of instances of the samwi#on. In
addition, a generative model like HMM can be moasily
combined into complex, hierarchical models as shown
amongst others, by the work from Ikizler and Fdnsf20].
For this reason, we focus on HMM in the followinggt
providing extensive comparison with other approache

Each measurement extracted from the video is mddele
multivariate random variable of given dimensionakind is

a novel method for initializing HMM training basedcommonly referred to afeature setor feature vectar The

on time segmentation of the training sequencdeature sets used for action recognition in therditure can be

(Section 1V.B);

categorized into two main groups: global featured &cal

a novel method for initializing HMM training basedfeatures [1]. The global features represent they boid an

on an incrementally-constructed histogram of théndividual in a holistic manner, while the locaktares are a

training sequences (Section 1V.B);

collection of local patches that are centered dierggpoints in

a novel method for assigning components to mixturgPace or space-time domain. Local features enjayeso

distributions and its use in HMM training (Sectioninvariance to viewpoint changes and are more rotiast

IV.C);
a heuristic indicator of optimal initialization keson

occlusions. Popular local features are the histagraf
oriented gradients (HOG) and the histogram of oeerflow

the weighted Kullback-Leibler divergence (SectiofHOF) collected at space-time interest points ($TH]. At

V.C).

The rest of this paper is organized as follows:tiSacll
offers a brief review of the main related work aairting
initialization. Section Ill summarizes the HMM thet extent
required to understand the methods presented ipdher. In
Section IV, we present the proposed HMM initialiaat
strategies. Experimental results are reported asclissed in
Section V. Finally, conclusions are drawn in th& kection.

Il. RELATED WORK

Any action recognition approach requires the exiwacof
informative measurements from the video and thesuing
classification. Various lines of investigations haween
followed in human action recognition research dyiine last
two decades. In terms of classification approactihesge main
approaches have been adopted: 1) recognizing thienac
directly in the time domain (e.g., [10, 11]); 2kognizing the
action by graphical models [6, 12, 13]; and 3) gggring the
action by classification of histograms of the meaments
[14-16]. The time domain approach has dynamic tivaeping

the two extremes, approaches can be based on either
general-purpose feature vectors, possibly invarigmtthe
viewpoint (e.g. [22]), or minimal, fast-to-extradeature
vectors optimized for specific types of actions,[23].

Since the training of graphical models with maximum
likelihood is notoriously dependent on the init@hrameter
assignment, previous research has focused on way#itate
such a dependency. For instance, Festel in [25] reviewed
various HMM initializations based on random teclueig and
introduced a new method based on an equal-stageeney
criterion. The idea is to first generate a set dVINA
parameters as a sample from an arbitrary priorilligton. As
next step, the Viterbi decoding algorithm is run ah the
training sequences and the number of occurrencesach
state is recorded. If such numbers are approximatglal, the
parameters’ sample is retained as the initial patara of
maximum-likelihood training. Otherwise, a new saenp
generated until this condition is met. While thiethod is
based on a reasonable principle, the average number
samples to be generated until the stop conditiomés may
prove unworkable, especially for HMM with many skt In
[26], Liu et al. proposed an HMM initialization method for



gesture recognition application which computes atiyethe
HMM initial parameters through simple
considerations. In their work, the observation seges of
human gestures are evenly segmented into HMM states
assumption of linear correspondence between tindestates
is plausible for some applications and we explofbi one of
the initialization methods proposed in this paper.[27],

Toledano et al
initializing HMM: 1) by a fixed template for all asses; 2) by
historical averages; and 3) by oracle initializati¢ihis last
only to establish offline upper bounds). While #nesethods
remove undesired randomness, they do not adapinitied

model to the specific training data. In a recenpgra[28],

have explored three different ways of

whereA is theN x N state transition probability matrig

physicalstands for the parameters of the observation pifitied and

T are theN x 1 initial-state probabilities. In our case, the
observations are continuous, multivariate randomales
and their distribution for each staei=1..N, is modeled as a
Gaussian mixture model (GMM) witii components:

M

bi(0): = p(olge = 59 = ) cu N (ol )

=1

3

where 14 and 2; are the mean and covariance of tké
Gaussian component angl is its weight in the mixture.
Hence, the total size & is N* M * (| | + 5 | + B ])),

Aillon Clementeet al have proposed a sophisticated adaptivighere by the cardinality operator | | we mean theber of

initialization scheme based on multiple sequendgnaient.
Yet, their method is specific to the HMM with leafi-right

topology which is a more restricted case than toasidered
in this paper. Overall, the prevalent approach tfaining

initialization remains that of running multiple imang sessions
with different random initializations off until satisfactory
parameters are found, in terms of either a suffityehigh

likelihood or sufficient accuracy from a cross-daliion

experiment. The second target is usually much pabfe,

given that maximizing the likelihood alone is praimeover-
fitting. However, such random trials can prove véimye-

consuming and have no formal stop criterion. Thaeefin

this paper we propose various one-off initializatimethods,
adaptive to the actual training data.

I1l.  HMM AND ACTION CLASSIFICATION

The HMM is a probabilistic graphical model over
sequence of observatior3,= {0,...0,...07}, and a sequence
of corresponding hidden stateé3,= {qs,...0...-O7} [4]. Each
state takes values in a discrete se¥lafymbols,S= {s,,... s},
while the observations can be of either discreteomtinuous
nature. The HMM posits a simplified joint probatilifor O
andQ that factorizes as:

p(0,Q) = p(ql)ﬂp(qtht 1)1_[p(0t|6h)

=iTg, 1_[ Age_r.q: 1_[ bqt(ot)

)

elements of the argument. Such a number is typitédh and
confirms that an HMM is a highly parametric model.

A. Action Classification with HMM

The HMM can be used to compute the probability of a
observation sequence in problems of action clasgifin. Let
us callC a set oK action classes; = {c,...,Ck,...,Ck}, With a
corresponding HMM for each class, k = 1..K, noted by its
set of parametergy. Any action instance, can be classified
into a class by using a maximum-likelihood classifion rule:

= argmaxk:l...K(P(OMR)) (4)
where p(O|/y) is the likelihood of sequend® in the k-th
class/model, efficiently computable by marginaii@at of

statesQ in (1) via the forward-backward algorithm [4]. If
desired, priors and costs can be easily added)tm (éxtend

athe classification criterion from maximum-likelihdo to

maximum-a-posteriori or minimum expected risk.

B. HMM Training

The HMM parameters are commonly estimated by §ttin
the model to a training set of observation sequeée=
{0f,...,0f, .08}, e= 1..E, with maximum likelihood [4]:

E
A" = argmax; (1_[ p(09|1)>
e=1

Training is unsupervised with respect to the statesstates
Q° are treated as unobserved variables, causing piaulti

®)

where termp(qy) is called the initial state probability, while Maxima in the likelihood function in (5). In addifi, (5) is
terms p(q; | G.1) and p(o | q) are known as state transitionoften expressed in a logarithmic scale (log-likeditl) to

probabilities and observation probabilities, respety. For
notational convenience, these quantities are Gitaply noted
asm,,,aq, ,q, bq, (0), following [4]. Given (1), the HMM
can be fully identified by its parameter sét,

A = {A; B' T[}' A= {aij}’
m = {m;}

B = {b;(0)},

i,j=1..N (2)

replace the product by a sum. The most popular Hié&lihing
algorithm isBaum-Welchwhich obtains a maximum for the
log-likelihood by iterative maximization of a lowbound [4]:

Ai+1 —

E
= argmax, (Z

lnp(Oe,QeI/I)P(Q"IO"’J")> ©)

‘°M



The expectation in (6) can be proved a lower bdandhe
log-likelihood and therefore by maximizing it ovér(.e., the
model), we are assured to select a model of at ézpsvalent
log-likelihood. The maximization in (6) must be egped
iteratively, with parametet' in the {+1)-th iteration set to be
the model returned by the previousth iteration. This

requires an arbitrary, initial clustering of theato start from;
and it is guaranteed to converge to more compasteais than
the starting ones [30]. In [4, 29], the requiredt¥) initial
centers are chosen randomly with uniform probabilibm
the data in the super vector. In the following, neter to this
initialization method asandom centers

iterative scheme is guaranteed convergence to al loc Component dispatchings the second step of initialization,

maximum (or a saddle point) of the log-likelihocahd the
position and quality of this maximum depend heawity the
arbitrary parameters)’, that were used for the first iteration
justifying the objectives of this work.

IV. INITIALIZATION OF HMM TRAINING

While all of the HMM’s initial parameters influendhe
outcome of training, in the following we focus ordy the
parameters of the observation probabilitiBs,because their
size is typically overwhelming. For instance, inlMM with
N 5 states,M 5 components per mixture; = 10
dimensions for the multivariate observations (aseovative
figure) and full covariance matrices, the sizéBa$§ equivalent
to 1,645 scalar parameters.

A. Random Initialization Method

Before the proposed initialization approaches, Nustrate
a conventional method that will be used as referancthe
rest of this paper [4, 29]. As noted, param@&emwonsists oN
sets ofM weighted Gaussian componentgy {Zi, Ci}, | =
1..N, | = 1..M. The conventional method obtains such valu
in the following two steps (Fig. 2, top of next pxg

Cluster initialization in the first step, all the observations

from all training instancesQ®, e=1..E, are merged into a
single set that we refer to as tlseper vectar Then, a

clustering algorithm -k-means - is used to partition the

observations intoN* M) clusters which are used to initialiBe

as follows: thewy means are set as the clusters’ centersithe

covariances are set as the sample covarianceslincbaster,

the (N*M) resulting components are dispatched over Nhe
states {1 components to each state)appearance orderand
'used as the starting point of EM training.

In the following two sub-sections (IV.B and IV.Cye
propose two one-off initialization methods desigtedmend
this trial-and-error style of initialization. Altkeheuristic in
nature, the proposed methods are well foundedeiteimporal
and spatial dimensions of the time series.

B. Proposed Methods: One-Off Initialization

The sequential observation data in an HMM with GMM
observation densities are modeled based on twordiiomes:

1. Sequentiality(or proximity in time): states have a natural
duration expressed by the transition probability trira
Observations which are close in time are moreyikelbelong
to the same state and, therefore, being drawn ftemsame
GMM.

2. Proximity in feature space: each observation has a value,
irrespectively of its occurrence in time. In generose
observations whose values are close to each otkemare

eIT':ker to be generated from the same state.

Fig. 1 illustrates these concepts by plotting theesvations
from an instance of action “ClimbLadder” in the MAMi
human action dataset [31]. Each observation is divariate
measurement encoding the pose of the actor in deov
frame. Fig 1.a shows two dimensions of the obseEmst
(dimensions 3 and 4) against the time. The progress the
observation values seemingly justifies the asswnpthat
they could be generated from a sequence of disctetes

and thec; weights are set proportionally to the number Oguch as those of an HMM. Fig. 1.b shows the same

samples in each cluster.

observations as a scatter plot after removing timee t

Unfortunately, thek-means algorithm requires an arbitrarydimension. The plot shows how the observations tend

initialization at its turn. Ak-means algorithm is very much

alike a simplified EM algorithm: it is iterative inature; it

aggregate into clusters which can therefore balestito the
emissions of single states.
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Fig. 1. Plots of the observations for an instarfcgction “ClimbLadder” from the MuHAVi action dates[31]:
a) dimensions 3 and 4 of the observations agdiedirne (40 ms units); b) the same dimensionssasitier plot.
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The role of HMM training is that of balancing thea
dimensions of sequentiality and proximity. Howevéhe
trade-off is not known at initialization time anbet natural
choice is therefore to use either dimension to lbgven

Fig. 3: An illustrative example: a) time-basedialization; b) histogram-based initialization.

formal descriptions are presented hereatfter.

1) Time-Based Initialization
In the time-based approach, we initialize the esst

initialization strategy. Accordingly, in this papee propose centers by partitioning the observation data intitme domain

the two following cluster initialization approachdg a ‘time-

(Fig. 5.a, top of next page). In this method (naraeerage of

based approach, exploiting sequentiality, and 2) draining instanceshereafter), we first partition the frame
“histogram-basedapproach, exploiting proximity in feature S€quence of each training instan©g,into (N*M) consecutive

space. Unlike random initialization of clusters’nters, both
methods permit one-off training of the HMM with sificant
reduction of the training time. Before delving witie formal
description of these initializations, we illustratieem by a
“toy” numerical example. Let us assume that we haahort
sequence of six one-dimensional observatidDsz {12.1,

13.6, 26.4, 31.2, 16.0, 10.2}, that we wish to ekplby an
HMM with three states and unimodal emissions; tiNis; 3
andM = 1. This requires us to choos&M = 3 centers, noted

as Ki, K, and Ks, for the initialization of thek-means

algorithm.

divided into three sub-sequences, = {12.1, 13.6}, S =

E
1
K”:EZW”E; p=1..(N+*M)
e=1

segments{S;f}::T, each of equal lengthT, / (N*M) . Then,
for eachS; segment, the mean value of its observations is

taken as the segment’s representafig, and averaged over

all the instances to compose the initial ceritgr, of thep-th
cluster:

@)

Fig. 4 shows a plot of the first three coordinatdsthe

initial centers,K,, p=1 ... \*M), N = 5,M = 3, for action
With the time-based approach, the sequence geuslyevedass “ClimbLadder” in the MuHAVi action dataset1|3

Despite averaging over several instances of thisoracf

{26.4, 31.2}, andS; = {16.0, 10.2}. Then, the initial centers varying length, the centers are well separated shaw the

are set as the average of the data in each sulersemi; =
12.9,K, = 28.8 anK; = 13.1. Fig. 3.a shows this case.

Conversely, with the histogram-based approachintieeval
spanned by the data, [10.2, 31.2], is evenly diiohto three
bins of width 7.0 each:

* By range = [10.2, 17.2], number of data in bin = 4,
average value = 13.0;
B, range =[17.2, 24.2] number of data in bin = 0,
average value = 0;
*  Ba: range =[24.2, 31.2] number of data in bin = 2,
average value = 28.8.

dynamic progression of the observation values damair t
corresponding emitting states.

The initial centers are then set as the bins’ @datarages,
repeating the same value multiple times proportigria the
share of data contained in each bin. This resnit&;i = 13.0,
K, =13.0 andK; = 28.8. In turn, Fig. 3.b shows this case. The
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Fig. 4: The initial centers with the time-basedialization method
(action class “ClimbLadder” from the MuHAVi actiatataset [31]).
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Fig. 5: a) the time-based initialization; b) thetbgram-based initialization.

The time-based initialization is equivalent to asBlg that with the main difference that the proposed algaritls based
the observations of each segment belong to the stateeand on the distances between clusters’ centers rath@n bn
that states occur in a “left-to-right” sequence hwiégqual cluster overlap [33].
duration. In alternative to assuming equal duration the Assuming the feature set to Bedimensional, for each
segments, we could utilize a change-point detedgghnique featuref;, i=1..F, the following four steps are performed (Fig.
to detect points of significant change in the obaton 6):

sequence and segment it accordingly [32]. Howevlgs Step 1 A one-dimensional histogram is formed for feature
would leave us with the hard problem of creating 2

correspondence between a variable number of segnient ' its range is divided oveN(M) equally-sized bins and their

each training sequence and the fixed number oéstat the counts comput(_ed. _ ) ) )
HMM. Therefore, we choose to resort to these sifyipk Step 2 The bin with the highest count is selected adithe

assumptions, leaving the responsibility to improtiee Mode for featurd. Then, its count is decreased byNENt) of
mapping of observations to states to the followiEyl the total number of the observations. This subitvacainay in

training. some cases lead to a negative count for the bin.

. e Step 3 The procedure at the previous step is repeated
2) H|stograr.n-Bascled |n|.t|a.||zat|on. . (N*M) times. If a bin has a current negative countjsit
An alternative to identifying the initial clustersenters by oycluded from the selection. Moreover. a single roimy end

time segmentation is that of ignoring the obseoradi ime 5 heing selected more than once if its count resngreater

stamps and instead exploiting their proximity iatf@e space. han that of all the other bins in successive itena. At the

We therefore turn to the marginal distribution dfiet gonq of these iterations, the selected bins acdoutthe largest

observations,p(0), and assume that each of its modegyt of the observations and the whole procedusates to a
corresponds to a component of the observation pititis, coarse quantization of the one-dimensional histogrén

b(0) (Fig. 5.b). While some interference between com&pts  aqqition, we consider the samples falling in eachand we
from different states may occur, a reasonable &afien on  compytethe average of their first i coordinatesSuch i-

modes’ separation in high dimensions justifies #pproach. dimensional means are noted {ag‘} p = 1.(N*M), and
We therefore propose an initialization method (nrzilmere resent the position of each bin in’the S a;;:.e ”’3 the
marginal histogram of observationsereafter) based on an P P P y

. . . firsti coordinates.
approximated histogram of the data in the supetovedhe While the ab h he b of
aim of this method is to locate the positions & thain modes lle the above three steps construct the lﬁ@s} ot a

of p(0) and use them as initial clusters’ centers. one-dimensional histogram, the next step joins sk into a
However, mode seeking in multi-dimensional data caf€t Of clusters’ centergk, }, whose dimensionality grows at
prove inaccurate, especially when the training dai@ not €very cycle and ends in the desifédimensional partition.
sufficiently dense. To mollify this issue, we Pprepo  step 4 For featurd = 1, the meanfC;} are assigned to be
computing separate, 1-D histograms of each indalidutne first coordinate of the final clusters’ centefd the i"
feature, and then constructing the initial cenieesementally iteration,i = 2..F, the{K,} centers are already constructed up
aggregating one feature at a time. This simplifypngcedure to their { — 1) coordinate from the previous iterations amel t

is equivalent to assuming a convex shape for thstets and el
independence between the features. This approaamilgr in {CP } vectors are currently computed. Thereafter, gggit

nature to that used by the FIRES clustering algori{33], S Ppaired with vectorG/7t, | = 1...(N*M), with minimum



Euclidean distance from it:

®

Then, the value of thieth coordinate(/:, is assigned to be
the i-th coordinate oK. The logic of this step is simple: to
pair each partially-constructdg, cluster with the closegt"
bin based on the available coordinates. This agproa
reminiscent ofincremental feature selectiaechniques [34];
like any similar heuristic approach, it is reasdypdhst, yet its
outcome will depend on the arbitrary order in whitdte
features appear in the feature set.

Fig. 7 depicts an example of the algorithm in theecof 2-
dimensional features amdtM = 6. The six histogram bins for
each feature have been drawn alongside the two. &es
figure shows how the mode’s mean of Bihin the horizontal
histogram (equal to 140) is used as the first doatd ofK;.
K, is then paired with bil€}*? in the vertical histogram since
its first-coordinate mean, 136, is the closest40.IThus, the

Ir= argmini_y_(n«m) ||(Kz}:i_1 - Czl:i_l)”Lz

second coordinate af? (equal to 231) is selected as the

second coordinate &;.

C. Component Dispatching Methods

The (N*M) weighted Gaussian components obtained fro
thek-means step need to be later “dispatched” as mufttbe
observation probabilities of an HMM witK states, each with

a mixture of M Gaussian components. This action may be

regarded as not particularly critical since it negpear that
changes to the modes’ assignments will be compedday
corresponding changes #9 the state transition probabilities.
However, there is a principled difference betweestad

generated by components in the same mixture and dat

originated by components from different mixturdee former
are mutually independent conditioned on their statgle the
latter depend sequentially. In addition, differenmbinations
of components in the mixtures lead to different starctive
interference between the modes, with changes tmvteeall

280
270

260

250

[ 240

{ 230
| 220
210

C}2=(136,231)

shape of the distributions. As mentioned in sulisedV.A,

the reference method for component dispatching ésem
based on their appearance order in the set: clgrtsimple,
yet completely arbitrary. Hence, in this subsecti@npropose
two principled component dispatching methods andtrest
them to the reference method.

dataf,) dataf;)

N*M histogram bins
creation
v
Choose bin with higheg
density as a mode
v
Label the bin’s mean as
C,*" and update its
density

N*M histogram bins
creation
v
Choose bin with higheg
density as a mode

v

Label the bin’s mean as
C, and update its density

—
—

Repeat

. Repeat
p=(N*M) times

p=(N*M) times

\ 4
For each cluster’s cent&p 1,
find modeC*~1with minimum
Euclidean distance and then|
assignC; to K

\ 4
Use {C;} as the first
co-ordinate of
clusters’ centers

3

Histogram-based
cluster initialization

A 4

k-means l_>

Fig. 6: Algorithm for the formation of the clustecenters
in the histogram-based initialization.

to Component
dispatching

C{=(140)

130

150 160 170

»
140

Fig. 7: An example of cluster’s center calculatising the marginal histogram of observations method



1) “Nearest Neighbors” Method

The main theme of this method is to put componeuitis
the closest centers in a single state. First, wapcte all the
Euclidean distances between pairs of componentstece
Then, we create all the possible partitions of congmts onto
states and, for each partition, we accumulate fiseartte
between all its component pairs. The partition witimimum
total distance is selected as the best dispatchiing.rationale
of this dispatching is to attribute small measurenvariations
to the multiple modes of a single state, whileitatiting larger
variations to switches between different statese Thtal
number of possible partition$p, for anN-state HMM withM
components per state is:

B G R G Rt )

P N! ©)

ny _ n!
where (k) = R
very high and the combinatorial exploration proegremely

time-consuming even for reasonably low valuebl @ndM.

2) “Feature Sorting” Method
The goal of this method is to approximate thearest

As can be seen is, unfortunately,

experiments, for two of the datasets - Weizmann and
MuHAVi - we managed to exploit masks, while for
Hollywood we had to rely on STIP descriptors.

1) The Projection Histograms Feature Set

The projection histograms features are computed by
projecting each pixel of the actor’ mask onto thmeage
coordinate axes so as to form a horizontal andicatrt
histograms [17, 36]. As an action takes place, the
projection histograms reflect the changes in thedails shape
and promise to prove action-discriminative. We hased
histograms with 10 bins each and we have also added
centroid’s coordinates to the feature vector tooant for the
actor’'s absolute position in the frame, for a taiaeF = 22.
Fig. 8.b depicts the projection histograms for tnaene of the
Weizmann action video dataset (Fig. 8.a) [35].

2) The Sectorial Extreme Points Feature Set

The sectorial extreme points feature set is extrhbly first
computing the centroid of the actor’'s mask and tlesording
the coordinates of the mask pixels farthest from ¢bntroid
within five angular sectors in loose correspondemdth
anatomical parts [37]. We have also added the aiefgr
coordinates to the feature vector, for a total §ize 12. Fig.

neighborsdispatching with a much lower computational load8.c shows the extracted sectorial extreme pointshie same

The (N*M) components’ centers afedimensional vectors:
therefore, they can be organized asFax (N*M) matrix.

Here, each row is first sorted in value order drerainking of
each cell in the sorted row retained. Then,dlerage of the
ranksalong each column is used to determine the oveaak

of each component. Components are eventually dispdtto
states in overall ranking order. This method en@yavorable
O ((N*M)* log (N*M)) complexity.

V.EXPERIMENTS

frame of Fig. 8.a.

3) The STIP Descriptors Feature Set

STIPs are points of significant spatio-temporalng®in a
video (kind of “3D corners”) which can be automatig
detected by specific detection algorithms [21]. bpletection
of a STIP, adescriptorconsisting of local space-time textural
information is computed over a small volume certese the
point. In our experiments, we have used the STlieatler of
Laptevet al [21] which is based on an extension of the Harris
detector to space-time. Fig.8.d shows the STIR=etetd from
the same frame of Fig. 8.a. The descriptor is a- 162

In the experiments, we have extensively evaluateei tdimensional vector, obtained as the concatenatfon @2-

initialization methods by using three different hammaction
video datasets - Weizmann [35], MuHAVi
Hollywood [16] — and three diverse feature sethe mask-
based projection histograms [17, 36], the contased

sectorial extreme poin{87] and the popular STIP descriptors
[21]. As software, we have used and extended Musphy

HMM toolbox for Matlab [29]. All the feature sethdt we
have used in the experiments are available for tmadhat
http://ieeexplore.ieee.org as companion material.

A. Feature Sets

[31] and

element histogram of oriented gradient (HOG) an®Ca
element histogram of optical flow (HOF).

B. Human Action Video Datasets

The Weizmanndataset includes 10 action classes of basic
actions such as running, walking, jumping and ather
performed once or twice by 9 different subjects daiotal of
93 video sequences [35]. Manually-extracted magksilf the
videos are also available from the authors. Thitas# is
simple, yet it has been used in many previous paped
allows for the most extensive comparison with ftegadture.

As mentioned in Section I, human action recognitio The more recenmluHAVI dataset contains videos from 17

requires choosing a discriminative and workabléuieaset. If
the videos permit an accurate selection of therapixels (an
operation often referred to as “mask extractioonf)e can use
computationally lightweight feature sets such a&sgtojection
histograms [17, 36] and the contour-based sectesitieme
points [37]. If such masks cannot be reliably ectied, local
descriptors collected apatio-temporal interest poin{STIPS)
provide an interesting, alternative feature set].[2h the

surveillance action classes such as climb a lagigd®p over a
fence, look inside a car, draw graffiti and othdtach action
is performed several times by 7 different subjects captured
by 8 cameras simultaneously [31]. To the best of ou
knowledge, this is the largest public action ddtaselate in
terms of combined number of action classes, subjead
cameras. For this paper, we have extracted thectobjasks
automatically to obtain 398 action samples from eafour.
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The quality of these masks is lower and more réalihan procedure is realistic since in real applicationbjascts would
that of the Weizmann masks. An example is showFign9. not have been seen during training. The final ammyresult is

The Hollywood human action dataset is a very challenginthe average over the various subjects, with 9 fdiois
action dataset of 8 action classes from commens@lies. In  Weizmann and 7 folds for MuHAVi. For the Hollywood
this type of video, actors are often shown onlytiply dataset, we have used the dictated training artdsets for
(torsos, faces, backs) and heavily occluded, wittugt and comparability.
frequent changes of view, camera movements andntigna Since the number of HMM stateBl, and the number of
backgrounds [16]. The dataset consists of 475 viabeoples components per stat®), are hyperparameters in the Baum-
from 32 Hollywood movies with 8 action classes (@@s Welch algorithm and cannot be determined by maximum
phone, get out of car, handshake, hug, kiss, sitndait up likelihood estimation, we simply adopt exhaustiearsh over
and stand up). It comprises of a manually labetaihing set a plausible rangeN, M O {1...6}, and choose the best
(219 video samples for 231 action labels) and oa@ually combination based on cross-validation accuracy.
labeled test set (211 video samples for 217 addibels), for a
total of 448 action labels. 1) Experiments over the Weizmann Dataset
C. Experiments on the Cluster Initialization Methods Taples | and I report the cIaSS|f|cat|qn accuraner t.he

) i Weizmann dataset by using the sectorial extrematpaind

In the first set of experiments, we compared OUD Wy qiection histograms feature sets, respectivalythe tests
proposed cluster initialization methods, theverage of it the sectorial extreme points feature set, derage of
training instances and the marginal histogram of qining instancesand themarginal histogram of observations
observations with the random centerscluster initialization  pizined the highest accuracies, 96.8% and 95.7%,
method as reference. As component dispatching mete | ogpectively, higher than the average of the sis mfrandom
applied theappearance order(subsection IV.A). For the centers 94.6% and comparable to their best, 96.8%. Simila

random centerswe report the average accuracy and standagdsiis were achieved with the projection histograemture
deviation over six different random starts, and dlse best set, with 87.1% and 88.2% as the highest accuracfes

accuracy out of the six starts. The number of St&#s chosen yerage of training instancesnd marginal histogram of
as the highest practicable number for the expeltispevhere
each training session lasted in the order of sixtesurs and
tens of sessions had to be run for the various gwatibns of proves that one single training sessions with thethods

the parameters. proposed in this paper can be equally effectivemasdtiple

As validation approach over Weizmann and MuHAViining sessions with random trials. If appliediwarbounded
datasets, we have used the ‘leave-one-subject-oSS  ,mper of times, it is almost certain that the rand

validation method; i.e. in each run we leave onljesit out  jpjtializations would eventually provide the highescuracy
during training and we use it for testing. This igation

observationsrespectively, compared to 85.8% and 88.2% as
the average and best of the 6 runsraidom centersThis

TABLE |
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS
WITH THE SECTORIAL EXTREME POINTS FEATURE SET ANDHE WEIZMANN DATASET.

Random centers (average and std. dev. of 6 runs) Random centers (best of 6 runs)

M=1 M=2 M=3 M=4 M=5 M=6 M=1 | M=2 |M=3 |M=4 | M=5 | M=6
94.6+£0.0| 91.2+1.1| 92.5+0.0| 93.5+0.7| 93.9+0.9| 93.9+1.3 946 | 925| 925 944 94. 946
94.1+0.9| 94.1+1.8| 93.5+1.5| 90.7+2.0| 91.8+2.9| 90.9+1.5 95.7 | 96.8 | 95.7 | 935| 935 925
93.5+2.2| 92.3+2.3| 92.8+1.1| 89.8+1.5| 90.0+2.3| 90.7+1.5 946 | 96.8 | 946 | 914 0935 925
93.7+0.8| 91.2+2.6| 89.4+2.0| 88.0+2.4| 89.1+2.5| 88.4+1.9 946 | 925| 914| 914 925 914
92.7+1.3| 90.7+1.8| 90.7+1.9| 90.0+2.0| 87.6+1.3| 87.8+2.5 935 | 925| 935/ 935 89.2 90,
92.1+1.3| 89.6+2.5| 88.5+1.9| 88.7+2.0| 88.2+2.8| 87.6+2.2 946 | 91.4| 914 914 925 914

W

ZZ%ZZZ
OO~ W|IN|F

ZZ%ZZZ
ol bW NP

Average of training instances Marginal histogram of observations

M=1 | M=2 | M=3 | M=4 M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 94.6 91.4 92,5 89.2| 96.8 93.5 N=1 | 94.6 91.4 94.6 91.4| 95.7 95.7
N=2 93.5 92.5 93.5 90.3 95.7 91.4 N=2 | 935 93.5 94.6 90.3 90.3 89.2
N=3 93.5 92,5 88.2 89.2 91.4 86. N=3 | 935 93.5 91.4 87.1 914 91.4
N=4 93.5 91.4 90.3 89.2 91.4 89.2 N=4 | 925 92.5 88.2 87.1 88.2 87.1
N=5 914 91.4 90.3 91.4 89.2 79.6 N=5 | 935 90.3 88.2 91.4 90.3 89.2
N=6 94.6 89.2 88.2 90.3 78.5 76. N=6 | 914 88.2 89.2 87.1 87.1 86.0
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for any combination olN, M. However, such a brute forcefeature set (sectorial extreme points), the sitwmais reversed
approach is just impractical. While the best accyraf the when using the other (projection histograms). Havethe
average of training instancess higher than that of the differences in accuracy are small and either metbanl be
marginal histogram of observations the test with the first vetted as a suitable one-off, initialization sabuti

TABLE Il
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS
WITH THE PROJECTION HISTOGRAMS FEATURE SET AND TH&/EIZMANN DATASET.

Random centers (average and std. dev. of 6 runs) Random centers (best of 6 runs)

M=1 M=2 M=3 M=4 M=5 M=6 M=1 | M=2 |M=3 |M=4 |M=5 |M=6
N=1 | 75.3%0.0| 72.0+0.0| 72.0+0.0| 72.0+0.0| 72.0+0.0| 72.0+0.0 N=1 | 753 | 72.0| 720 720 720 720
N=2 | 83.7+1.1| 80.8+2.7| 81.0+2.2| 80.6+1.0| 80.8+1.3| 81.4+1.1 N=2 | 849 | 849| 839 817 828 828
N=3 | 82.8+0.7| 81.0+0.9| 80.5+1.9| 82.1+1.9| 84.1+1.7| 81.0+2.2 N=3 | 839 | 817| 839 849 871 839
N=4 | 83.2+2.1| 84.4+1.1| 83.0+1.9| 82.84+2.3| 83.9+1.4| 83.5+2.2 N=4 | 84.9 86 849 849 86.0 87.L
N=5 | 83.9+1.0| 85.1+1.4| 83.7+£3.6| 84.9+1.7| 84.2+0.6| 83.7+2.5 N=5| 849 | 87.1| 882 | 86.0| 84.9| 86.0
N=6 | 85.3+1.1| 84.4+0.9| 85.8+2.0| 85.8+1.9| 85.7+2.4| 83.7+1.6 N=6 | 87.1| 84.9| 87.1 88.2| 88.2| 86.0

Average of training instances Marginal histogram of observations

M=1 | M=2 | M=3 | M=4 | M=5 | M=6 | M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 75.3 73.1 72.0 72.0 720 72.0 N=1| 753 72.0 72.0 72.0 72.0 72.0
N=2 84.9 81.7 76.3 81.7 79.6 80.¢ N=2| 83.9 80.6 84.9 80.6 81.7 80.6
N=3 79.6 83.9 81.7 83.9 817 87.1 N=3| 81.7 81.7 80.6 83.9 80.6 79.6
N=4 82.8 84.9 82.8 83.9 82.8 80.6 N=4| 81.7 83.9 81.7 79.6 84.9 83.9
N=5 84.9 86.0 81.7| 87.1 84.9 79.6 N=5| 83.9 87.1 83.9 81.7 83.9 88.2
N=6 84.9 86.0 86.0 80.6 82.8 80.¢ N=6| 87.1 84.9 84.9 83.9 86.0 88.2

TABLE IlI
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS
WITH THE SECTORIAL EXTREME POINTS FEATURE SET ANDHE MUHAV | DATASET.

Random centers (average and std. dev. of 6 runs) Random centers (best of 6 runs)
M=1 M=2 M=3 M=4 M=5 M=6 M=1 | M=2 | M=3 |M=4 | M=5 | M=6

84.9+0.0| 88.2+0.5| 90.7x0.4 91.4%0. 91.4+03 91.8+0.7 84.9 88.9| 912 92.2 91.7 92.7

\SZamel

88.5+0.5| 91.7+0.4| 91.9+0.4 92.2+0. 91.8+0.8 91.6+0.9 89.4 922 | 925| 932 93.4 92.7

91.5+0.5| 92.0+0.6| 92.4+0.6| 92.1+1.3| 91.8+0.5 91.8+0.f 92.2 93.2| 93.2| 94.0 | 925 92.5

91.9+0.7| 92.1+0.6| 92.1+0.5 91.8+40.9 91.3+0.6 91.5+0.4 92.7 92.7| 927 92.7 92.4 92.2

92.2+#1.1| 92.3+0.3| 92.2+0.9 91.7+0.J 91.3+1l1 90.6%0.8 93.7 92.7| 932 92.7 92.5 915

ZZ%ZZZ
OO Bh|WIN|F

ZZ%ZZZ
OO Bh|WIN|F

=6 | 92.3+0.9| 92.0+¢0.6| 91.9+0.9 91.4+0.8 90.2+04 90.4+1.3 = 93.2 | 92.7| 93.2| 925/ 90.7 92.2
Average of training instances Marginal histogram of observations
M=1 | M=2 | M=3 | M=4 M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 | 84.9 88.9 90.5 90.7 92.5 93.7 N=1 | 84.9 87.7 89.7 91.7 91.Q 91.7
N=2 | 894 915 92.2 91.7 90.7| 91.7 N=2 | 884 92.0 91.7 92.5 92.2 92.2
N=3 | 91.2 93.7 91.7 93.0 92.5 92.2 N=3 | 915 93.0 91.7 915 91.7 91.7
N=4 | 91.7 91.7 925 93.2 90.2 92.2 N=4 | 92.7 92.0 91.0 92.5 90.5 89.7
N=5 | 925 91.2 92.0 91.7 91.7 91.2 N=5 | 91.0 93.2 | 92.0 92.7 91.7 90.7
N=6 | 93.0 935 91.7 91.2 91.2 89.7 N=6 | 92.5 91.7 92.2 89.9 90.7 89.7
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2) Experiments over the MuHAVi Dataset the average of the six runs with th@ndom centersand
The classification accuracy results with the vasicluster comparable with their best. With the projectiontdggams
initialization methods over the MuHAVi dataset ateown feature set, the maximum accuracy of theerage of
in Tables Il and IV. Again, the results show tta highest training instancesmethod (92.0%) proved even higher than
accuracies achieved with tlerage of training instances the best of six random starts (91.7%).
and themarginal histogram of observatiormse higher than

TABLE IV
CLASSIFICATION ACCURACY (%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS
WITH THE PROJECTION HISTOGRAMS FEATURE SET AND THAUHAV | DATASET.

Random centers (average and std. dev. of 6 runs) Random centers (best of 6 runs)
M=1 M=2 M=3 M=4 M=5 M=6 M=1 | M=2 |M=3 |M=4 | M=5 | M=6
N=1 | 83.2+0.0| 88.0+0.3| 88.1+0.1| 88.8+0.3| 89.0+0.5| 89.0+0.3 N=1 | 83.2 | 884 | 882 89.2 89.7 894
N=2 | 87.3+0.3| 88.1+0.9| 89.7+0.6| 89.4+0.7| 89.1+0.4| 89.5+0.6 N=2 | 87.7 | 89.4| 905/ 90.2 89.7 90.2
N=3 | 87.3+0.4| 89.3+0.7| 89.8+1.0| 89.4+0.8| 90.2+0.6| 89.7+0.6 N=3 | 87.7 | 90.2| 91.7 | 90.5 | 91.2| 90.7
N=4 | 87.7+0.4| 89.2+0.6| 89.3+0.5| 89.4+0.6| 88.8+0.7| 88.9+0.7 N=4 | 88.2 | 89.9| 89.9| 902 894 897
N=5 | 88.0+0.9| 88.5+0.5| 89.3+1.2| 89.6+0.9| 89.0+0.6| 89.6+0.5 N=5 | 89.4 | 89.2| 91.7 | 91.0 | 89.7| 905
N=6 | 88.6+0.4| 88.7+0.8| 89.2+1.2| 89.1+0.7| 89.4+0.8| 88.9+0.2 N=6 | 89.2 | 89.7| 90.2| 90.2 90.4 89.2
Average of training instances Marginal histogram of observations
M=1 | M=2 | M=3 | M=4 M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 | 83.2 87.9 88.4 88.7 88.9 88.7 N=1 | 83.2 87.9 87.7 88.4 89.2 88.7
N=2 | 87.2 87.9 89.2 88.7 87.9 89.9 N=2 | 86.9 89.9 90.7 88.4 88.1 91.5
N=3 | 87.2 90.2 89.2 89.7| 92.0 89.7 N=3 | 86.9 88.7 89.9 90.7 89.7 88.7
N=4 | 884 88.7 88.2 89.2 91.0 89.4 N=4 | 88.4 89.9 90.2 90.5 894 90.%
N=5 | 88.9 89.2 89.4 90.2 88.7 88.7 N=5 | 89.2 89.4 87.9 89.2 88.2 87.9
N=6 | 88.7 88.7 91.0 89.4 89.9 89.7 N=6 | 87.4 88.9 89.4 88.7 89.7 88.9
TABLE V
CLASSIFICATION ACCURACY(%) FOR THE VARIOUS CLUSTER INITIALIZATION METHODS
WITH THE STIPFEATURE SET AND THEHOLLYWOOD DATASET.
Random centers (average and std. dev. of 6 runs) Random centers (best of 6 runs)
M=1 M=2 M=3 M=4 M=5 M=6 M=1 | M=2 | M=3 |M=4 | M=5 | M=6
N=1 | 17.1+0.0| 26.8+1.6| 26.0+1.6| 25.0+0.6| 26.0+0.7| 26.0+2.0 N=1 | 17.1| 28.6| 28.6/ 258 26. 29.9
N=2 | 17.1+1.7| 26.2+0.9| 25.8+1.1| 25.8+0.8| 25.3+0.7| 25.6+0.9 N=2 | 19.4| 26.7| 26.7| 26.1 268 26
N=3 | 17.1+0.7| 25.9+1.1| 25.0+1.2| 25.6+0.7| 25.4+1.6| 24.7+1.1 N=3 | 18.0| 27.6| 26.7 26.3 272 258
N=4 | 18.7+1.4| 25.9+0.3| 25.4+1.0| 25.0+0.6| 24.7+1.1| 24.4+0.9 N=4 | 20.3| 26.3| 2720 258 263 253
N=5 | 21.7+£2.9| 25.7+1.3| 25.5+0.6| 24.5+0.9| 24.8+1.0| 24.0+0.7 N=5 | 26.3| 27.6| 26.3 258 26.f 249
N=6 | 21.4+1.9| 25.6+1.1| 24.4+1.6| 24.7+1.0| 24.74+0.6| 23.7+1.2 N=6 | 24.4| 27.2| 26.7 258 253 258
Average of training instances Marginal histogram of observations
M=1 M=2 M=3 M=4 M=5 M=6 M=1 M=2 | M=3 M=4 M=5 M=6
N=1 17.1 26.7 24.9 26.7 26.3 24.9 N=1 | 171 25.8 258 25.8 27.6| 28.1
N=2 15.7 26.3 25.3 25.3 16.1 14.3 N=2 | 194 253 26.3 258 244 25.8
N=3 13.8 25.3 14.7 124 14.3 17.5 N=3 | 18.9 27.2 25.8 25.8 24.9 244
N=4 18.9 25.3 134 16.6 15.7 7.4 N=4 | 16.6 25.3 258 26.3 24 .4 25.3
N=5 20.7 17.5 124 16.6 8.8 10.6 N=5 | 19.8 22.6 24.9 24.0 24 .4 26.7
N=6 20.7 14.3 18.0 7.4 10.6 10.6 N=6 | 22.1 25.3 24.9 235 25.3 244
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3) Experiments over the Hollywood Dataset densities,N(x|,up, ) and N(xlﬂq, X,), this divergence
The Hollywood human action dataset is one of thestmo has a well-known closed-form solution [40]:
challenging action datasets released to date. Aiomed in

Section V.A, it is virtually impossible to extrastifficiently 1 det(Z )

accurate actor masks from Hollywood and we have,, (I,||N,) = —{ln [—q +tr(2,7'5,)

therefore resorted to STIP descriptors. The numbfer 2 det(Zp)

detected STIPs for each video frame may be zere,an T _1

more than one. For frames with multiple STIPs, veseh + (p = 1) Zg ™ (i = H) = F} (11)
chosen to adopt the method from [38] to combine and

average all the extracted descriptors into oneufeatector. However, a weighted Gaussian component, noted as

For frames with no STIPs, no feature vector is gaed.
Table V reports the classification accuracies witle
various cluster initialization methods. The achikvesults
are in line with the results from the other datsset
(Weizmann and MuHAVi). The maximum achieved

CzN(XI/ll, 2}), is a denormalized density in that its total
probability adds up to its weight;, with ¢, < 1. Therefore,
we make use of thextended Kullback-Leibler divergenas
defined in [41] which can be applied to denormalize

accuracy with theaverage of training instanceand the density functions:

marginal histogram of observatiomsethods are 26.7% and +oo

28.1%, respectively, compared to 26.8% and 29.9%heas Doxi(pll9) = f [q(x) —p(x)

average and the highest achieved accuracy ovenswith —

therandom centersnethod. For this dataset, the result from p(x)

the marginal histogram of observationsethod is more +p()In <q?>] dx (12)

noticeable. Chance accuracy (the accuracy of asgign
class by a uniformly random decision) for this datais The extended Kullback-Leibler divergence for two

approximately 12% and results in the current raagein weighted Gaussian components(x) = c. N (xlu . =
line with the state of the art as will be showrsirbsection g ponentp(x) = ¢,V (xlu4y, %)

V.E. and q(x) = cq]\f(xmq,zq), is therefore derived here as

follows:
4) Divergence Analysis

Given that the time-based and histogram-based Dexi(®lla) =
initialization methods lead to different initialitans and +oo
eventual accuracy outcomes, in this paper we dtemat to = f g (x|yq,2q) - N (x|,up,2p)
identify a heuristic method to choose between ts&aight -
after the determination of the initial parametguspr to
. . L cp.N'(x|,u ,Ep)
performing HMM training and cross-validation. Y (x|# oz ) In P
To this aim, we have assumed that a satisfactory b PP ch(x|u,2q)
initialization should provide us witta set of Gaussian 1
components which are as separated as poss8#paration =c,— ¢y +6p [ln <C_P> + Dy, (Np”]\fq)]
between components is likely in feature spaces uwhs Cq
dimensionality and leads to more reliable mode
identification. We have therefore adopted a divecge ~ We have used (11) to compute the pair-wise divergen
measure for measuring the separation between sflilgle between all components after cluster initializatigve have
pairs of Gaussian components and select the indtidn  then defined an arbitrary threshol@,, (set to 1 in the
method producing the smallest overlap betwee@xperiments) and counted the number of pairs foichvh
components. A common divergence measure between twivergence was below such a threshold. These [ga@s
density functions is the Kullback-Leibler divergenf39], regarded as “undesirable”, and the initializatioretmod
which is defined as follows: providing their smallest number is selected.
This selection approach was tested over the four
+oo p(x) parameter combinations with the highest accurafries
Dy, (pllg) =f p(x) In <@> dx (10)  Tables Il and IV. Results are shown in Table Miet
% selection approach offers a successful predictiorihé
higher of the two accuracies (in boldface) is aehikin
correspondence with the smallest number of undadsira
pairs (also in boldface). As can be seen, in tbeses out of

dx =

(13)

wherep andq are two distributions of a continuous random
variable, x. For two multivariateF-dimensional Gaussian
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four the divergence criterion provided us with areot
prediction of the more accurate of the two initiation
methods (a lower humber of undesirable pairs ledigber
accuracy). However, the reader ought to keep indntive
heuristic nature of this criterion and that it canly be seen
as a precursor of the cross-validation accuracy.

method and thesectorial extreme pointfeature set are
shown in Table VII. For ease of comparison, in tef
column we have reported the accuracies ofajgearance
order dispatching method from Table IlI.

The results in Table VII show that usifigature sorting
for dispatching the components to states improves t

. . . highest accuracy of thmarginal histogram of observations
D. Experiments on the Component Dispatching Methods initialization method by 1.3% (from 93.2% to 94.5%n)d

The second set of experiments was designed to ®xplohe pest accuracy of theandom centersinitialization

the best component dispatching method among tho§gethod by 0.7% (from 94.0% to 94.7%). No improvemen

described in subsection IV.C. As explained befdf®& 55 instead achieved faverage of training instanceEven
computational complexity of thenearest neighbors 15re notably, the combination of a one-off cluster

dispatching method is unmanageable. Therefore,es@led  jnisiglization (marginal histogram of observations)ith an
to run the experiment only betwetgature sortingand the  «elligent” dispatching feature sorting achieved 94.5%

baseline metho@dppearance orderThe experiments were accuracy which is higher than the highest accucitie six
cross-run with all the cluster initialization metisorandom  5nqom starts (94.0%).

centers average of training instancesand marginal
histogram of observationghe achieved accuracies over the
MuHAVi dataset using thefeature sorting dispatching

TABLE VI
DIVERGENCE ANALYSIS FOR THE TWO ONEDFF INITIALIZATION METHODS.

Total | Average of training instance®/arginal histogram of observations
Feature set . . - - -
pairs | Accuracy| Undesirable paifs Accuracy Undesirable pairs
sectorial extreme points 3570 | 93.7% 137 91.7% 141
P 10710 91.2% 1319 93.2% 1215
roiection histoarams 15708| 89.9% 1346 91.5% 1031
proj g 24990 92.0% 2548 89.7% 1985
TABLE VII

ACCURACY COMPARISON(%) BETWEEN COMPONENT DISPATCHING METHODS
APPEARANCE ORDERLEFT COLUMN); FEATURE SORTING(RIGHT COLUMN), FOR VARIOUS CLUSTER INITIALIZATION METHODS

Appearance ord¢ Feature sortin

Random centers (best of 6 runs)

M=1| M=2 | M=3 | M=4 | M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 | 849 88.9 91.2 92.2 91.7 92.7 N=1 84.9 88.2 91.2 92.2 92.5 92.2
N=2 | 89.4 92.2 92.5 93.2 93.0 92.7 N=2 88.9 92,5 93.5 92.7 94.0 93.0
N=3 | 92.2 93.2 93.2 | 94.0 92,5 925 N=3 91.5 92.7 92.5 92.2 92.5 92.5
N=4 | 92.7 92.7 92.7 92.7 92.0 92.2 N=4 93.2 92.7 | 94.7 92.7 92.7 915
N=5 | 93.7 92.7 93.2 92.7 92.5 91.5 N=5 92.7 93.7 93.0 91.7 92.0 91.y
N=6 | 93.2 92.7 93.2 92,5 90.7 92.2 N=6 93.2 92.7 92.0 92.5 90.2 90.5

Average of training instances

M=1| M=2 | M=3 | M=4 | M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6
N=1 | 84.9 88.9 90.5 90.7 925 93.7 N=1 84.9 88.9 90.5 90.7 92. 937
N=2 | 89.4 91.5 92.2 91.7 90.7 91.y N=2 89.4 91.5 92.5 91.5 90.5 922.y
N=3 | 91.2 93.7 | 91.7 93.0 925 92.2 N=3 91.2 92.7 92 92.5 92.2 91.2
N=4 | 91.7 91.7 92.5 93.2 90.2 92.2 N=4 91.7 92.7 93.5 91.7 91.7 91.2
N=5 | 925 91.2 92.0 91.7 91.7 91.2 N=5 92.5 92 92 90.5 90.5 91.2
N=6 | 93.0 93.5 91.7 91.2 91.2 89.7 N=6 93 92.7 91.5 91.5 91.5 90.7
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Marginal histogram of observations (continued)

M=1 | M=2 | M=3 | M=4 | M=5 | M=6 M=1 | M=2 | M=3 | M=4 | M=5 | M=6

N=1 84.9 87.7 89.7 91.7 91.0 91.7 N=1 84.9 87.7 89.7 91.7 91 91.7
N=2 88.4 92.0 91.7 92.5 92.2 92.2 N=2 88.4 91.7 92 91.2 91.7 92
N=3 91.5 93.0 91.7 91.5 91.7 91.7 N=3 91.5 94.5 92.5 93.2 91.7 92.2
N=4 92.7 92.0 91.0 92.5 90.5 89.7 N=4 92.7 92 91.7 91.7 91 90.4
N=5 91.0 93.2 | 92.0 92.7 91.7 90.7 N=5 91 91.2 91.5 91.7 91.2 91.%
N=6 92.5 91.7 92.2 89.9 90.7 89.7 N=6 92.5 91.7 92.2 89.9 90.7 89.7

E. Computational time analysis prominent [15]. BoF was originally inspired by tBag-of-

Given the interesting accuracy reported by the psed Words model for document classification which cotegua
methods, we have proceeded to measure their eaacutihistogram of words for each document and uses it as
time to assess if they introduce any remarkabl&easurement for its classification. BoF uses alainiiea
computational overhead compared to the conventiondr the classification of images and videos, yehgidocal
initialization. Table VIII reports a break-down dahe descriptors (such as the STIP descriptors preseirted
average execution times over repeated runs fovahieus Subsection V.A) in place of words. However, local
algorithms. We have chosen to run a small-sizenitrgi  descriptors belong to vector spaces and require a
session to be able to include theearest-neighbors duantization step before histograms can be compted
dispatchingmethod in the comparison. With any larger sizethis aim, a training stage is run by extracting tie
of the training session (in terms of number of sisp descriptors of a training video set and formidgins by a
states, or components), the execution timenefrest- k-means clustering algorithm. At run time, for eadtieo,
neighborsdispatchingbecomes unmanageable. Table Vil all the descriptors are extracted and associatéiht) their
shows that the execution times of all initializatio histogram computed, and eventually used for cliassion
components are negligible with respect to an EM with a of the video by using any well-known classifier Buas the
maximum of 2.9% for thenarginal histogramslustering.  support vector machine (SVM), nearest neighbors,
Therefore, using the proposed initializations iracel of AdaBoost or others [15].
multiple EM runs saves an amount of training tinreatly In our experiments, the number of clusteB, was
proportional to their number, without incurring any Selected over a logarithmic range, {16, 32, 64,,12%5}.
noticeable overhead. As Table VIII shows, the etieou Since thek-means algorithm generates different results at
time of Nearest neighbors dispatchirig by far larger than €ach run, we also repeated the cluster formatiomés. For
that of EM itself (828.2%) and therefore impradticaany classification, we have used SVM and AdaBoost. $6M,

scenario. we have used the LIBSVM library [42] with two diffant
TABLE VIl kernels: the linear kernel and the radial basistion, with
EXECUTION TIMES(IN SECONDY FOR THE VARIOUS INITIALIZATION a grid-search over parametar in {0.05+ 0.35, step 0.05}.
COMPONENTS IN COMPARISON WITHEM. For AdaBoost, we have used BFTree as weak classifie
Table IX compares the best accuracy achieved dver t
Algorithm Execution Percentage MuHAVi dataset (with sectorial extreme points) and
time (s) vs. EM Hollywood (using the STIP descriptors).
Random centres . 0.14 0.0 Table IX shows that the accuracy achieved by HMM an
Time-based segmentation 1.22 0.1 BoF over these two datasets is generally comparabiv
Marginal histograms 48.6 29 achieved a higher accuracy over the MuHAVi dataset
égg;?;aggiiggder 06025 8'8 (94.0%), while HMM and BoF achieved the_ same best
Nearest neighbors 14,.162 8é8.2 accuracy over Hollywood (29.9%). In _aII _expenmemm
EM training 1710 (100.0) BoF, SVM outperformed AdaBoost, with increases nagg

between 3.3% and 6.8%. Again, in all experimenth BoF

the accuracy depended significantly on the outcofthe
F. Comparison with Other Recognition Approaches clustering step, with significant differences bedwehe best
HMM has been utilized for many years as an effectivaccuracy and the average accuracy over the 6 {fras

sequential classifier not only for action recogmitibut also  1.6% to 5.6%). The best results for SVM were achiev

in domains as diverse as speech recognition andngies.  With the RBF kernel for MuHAVi and with the linekernel

However, many alternative approaches have repdrigi  for Hollywood.

accuracy, withBag-of-Features (BoFxertainly the most
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COMPARISON OF CLASSIFICATION ACCURAC\(%) FOR VARIOUS CLASSIFIERS OVER THMUHAV | AND HOLLYWOOD DATASETS.

HMM
Dataset Feature set AccuracRef A f traini Marainal hi BoF/ BoF/
CReference / verage of training Margina !stogram SUM | AdaBoost
method instances of observations

MuHAVi Sectorial Best 94.0% 86.7% 79.9%
. > 93.7% 93.2% > >

extreme pointy Average 92.1% 81.7% 78.3%

Hollywood Best 29.9% 29.9% 24.9%
yw STIP ° 26.7% 28.1% 0 0
descriptors | Average 26.0% 24.3% 21.0%

VI. CONCLUSION
In this paper, we have reconsidered the long-stgnplioblem

equivalent problem of local maxima and resort tmparable
initialization heuristics. Such extensions are seepe of our

of parameter initialization in model training. Givehat the currentwork.

objective functions are affected by multiple maxjmarying

the initialization has a substantial impact onlésned model
and, in turn, cross-validation performance. In gaper, we [1]
have proposed two one-off initialization methods the
training of HMM in contrast to the usual approadhepeated, [2]
random initializations. The two methods are based ao
different rationale: in the firstsequentiality, each training
sequence is divided intdl segments of equal length. Thes
mean value of each segment is computed and aveagsd
corresponding segments across the training segsieSceh
averages are then used as the initial centers.umbderlying [4]
assumption is a linear progression of the humarnoract
leaving the discovery of non-linearities to the seduent
HMM training phase. The second approagrokimity in [5]
feature spaceis based on the marginal histogram of the
observations and makes use of an incrementally-buil
histogram to mollify the issues associated witlidgigams in (61
high-dimensional spaces. Either approach is foltbvby a
cluster dispatching step based on a heuristic feagorting
procedure. In addition, an empirical measure ofdjence (7]
has been proposed as an indicator of the qualitythef
initialization.

The proposed one-off approaches achieve high réomgn (8]
accuracy from a single model training, thus sawafgstantial
learning time compared to multiple-starts methods.
Experimental results over three human action reitiogn (9]
datasets have showed that the proposed initiaizatiare
capable of achieving better accuracy than the geeraf
multiple (six) random initializations and compamtb their [10]
best. In our experiments, reducing the trainingises from
six to one has permitted a reduction in trainingetiof over [11]
83%, from approximately four days down to sixteesuis
(this figure varies depending on the configuratiosed in the
experiment). We also argue that the proposed appesaare [12]
general and can be usefully applied to HMM clasatfon in
other domains including genomics, speech recognitio
network traffic categorization and others. In aiddit the
approach can be extended to more complex, distattat-
state models such as switching HMMs and more genef&"
dynamic Bayesian networks which also suffer from an

[13]
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