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ABSTRACT

Sequential labeling addresses the classification of sequential
data and is of increasing importance for the classification and
segmentation of video data. The model traditionally used for
sequential labeling is the hidden Markov model where the se-
quence of class labels to be predicted is encoded as a Markov
chain. In recent years, hidden Markov models and other struc-
tural models have benefited from minimum-loss training ap-
proaches which in many cases lead to greater classification
accuracy. However, the loss functions available for train-
ing are restricted to decomposable cases such as the zero-one
loss and the Hamming loss. Other useful losses such as the
F1 loss, equal error rates and others are not available for se-
quential labeling. For this reason, in this paper we propose a
training algorithm that can cater for the F1 loss and any other
loss function based on the contingency table. Experimental
results over the challenging TUM Kitchen Dataset depicting
human actions in a kitchen scenario show that the proposed
training approach leads to significant improvement of differ-
ent performance metrics such as the classification accuracy
(4.3 percentage points) and the F1 measure (8.9 percentage
points).

Index Terms— Sequential labeling, hidden Markov
model, structural SVM, Hamming loss, F1 loss.

1. INTRODUCTION

Sequential labeling has been drawing increasing attention
from the image processing and machine learning commu-
nities [1, 2, 3, 4, 5]. Also known as tagging, or decoding,
sequential labeling consists of the assignment of a sequence
of class labels to a sequence of measurements. This problem
is a fundamental problem in many image and video process-
ing applications such as image segmentation, handwriting
recognition, activity recognition, pose estimation, and also in
fields as diverse as gene finding, protein secondary structure
prediction, financial analysis and many others.

A simple, yet effective, model used for sequential labeling
is the hidden Markov model (HMM) [6]. An HMM consists
of two sets of variables: a sequence of class variables linked in
a first-order Markov chain, and a sequence of measurements
each depending only on the corresponding class variable. The
parameters of this model have traditionally been learned by

maximising the likelihood function over a set of supervised
examples. However, in recent years other styles of training
have become increasingly popular; in particular, the extension
of the support vector machine (SVM) to the classification of
sequences [7, 8]. An SVM is trained by minimising the em-
pirical loss over the set of examples instead of the likelihood
function, typically leading to superior run-time performance.
However, training requires the choice of a suitable loss func-
tion. Common loss functions include the misclassification
rate, the (negative) precision at a fixed value of recall, the F1

loss and several others [9]. Depending on the application, cer-
tain loss functions prove more suited than others to reflect a
desirable performance. For instance, in the case of sparse de-
tection, a balanced combination of precision and recall such
as the F1 loss is certainly more meaningful than the sim-
ple misclassification rate. For this reason, Joachims in [10]
has provided algorithms for training an SVM under several,
diverse loss functions. However, they do not cover the tar-
geted case of sequential labeling. Therefore, in this paper we
present an algorithm for training a sequential SVM using the
F1 loss as loss function. The experimental results over a chal-
lenging sequential action dataset (the TUM Kitchen Dataset
depicting human actions in a kitchen setting [11]) show that
the proposed method achieves higher performance than the
state of the art in terms of both F1 measure and classification
accuracy.

2. SEQUENTIAL LABELING AND STRUCTURAL
SVM

2.1. Sequential labeling

The formal goal of sequential labeling is to predict a sequence
of class labels, y = (y1, . . . , yt, . . . , yT ), for a given mea-
surement sequence, x = (x1, , . . . , xt, . . . , xT ) , where xt is a
feature vector at sequence position t and yt is a corresponding
discrete label, yt ∈ 1 . . .M . In many cases, it is not restric-
tive to assume that yt is a binary label (1: positive class; 0:
negative class), obtaining multi-class classification as a com-
bination of binary classifiers. Therefore, in the following we
focus on this binary case. The most widespread model for
sequential labeling is the hidden Markov model which is a
probabilistic graphical model factorising the joint probabili-
ties of labels and measurements as:



p(y, x) = p(y1)

T∏
t=2

p(yt|yt−1)

T∏
t=1

p(xt|yt) (1)

The terms in the first product, p(yt|yt−1), are known as
transition probabilities and the terms in the latter, p(xt|yt),
are known as emission densities. By restricting the emission
densities to belong to the exponential family of distributions,
i.e. p(xt|yt) ∝ exp(wTemf(xt, yt)), and moving to a logarith-
mic scale, it is easy to see that the HMM joint log-probability
is equivalent to the score a generalised linear system:

ln p(y, x) ∝ wTφ(y, x) = winitf(y1)+

+

T∑
t=2

wTtranf(yt, yt−1) +

T∑
t=1

wTemf(xt, yt)
(2)

This generalised linear model is more suitable for dis-
criminative training and notable cases are conditional random
fields [12] and the structural SVM [8]. The inference problem
consists of determining the best class sequence for a given
measurement sequence:

ȳ = argmax
y

p(y, x) = argmax
y

(wTφ(y, x)) (3)

This problem can be efficiently solved in O(T ) time by
the Viterbi algorithm working in logarithmic scale. Viterbi is
an instance of dynamic programming where the sequence is
scanned in a left-to-right manner and partial solutions accu-
mulated. The final accumulated solution is guaranteed to be
the global optimum [6].

2.2. Loss function

A loss function quantifies the loss, or cost, carried by a mis-
classification. If we assume that each sample carries a single
class label, we can note the true label of sample i as yi, our
prediction as y, and the loss function as ∆(yi, y). The sim-
plest loss function is the zero-one loss, assigning a unit loss to
every misclassification and a zero loss to every correct classi-
fication:

∆0−1(yi, y) =

{
1 for y 6= yi

0 for y = yi
(4)

In this case, the average loss over a sample set is just
equivalent to the misclassification, or error, rate. However,
other loss functions are required for differentiating between
different types of error. This is particularly important in se-
quential labeling, where a sequence of labels is predicted at
once: we certainly wish to differentiate between major errors,
where many labels may be predicted wrongly, and minor er-
rors with only a few, incorrect labels. In this case, the most

common loss function is the Hamming loss that adds a loss
fraction for every incorrect label [9]:

∆Hamming(y
i, y) =

1

T

T∑
t=1

yit ⊕ yt (5)

where operator ⊕ is the modulo-2 sum, or XOR boolean
operator.

Although the Hamming loss is a more appropriate loss
function than the zero-one loss for sequences as it accounts
for gradual losses, it does not reflect desirable performance
in some important cases. Let us consider a simple example:
the ground truth, yi, having 3 positive labels and 97 negative
labels. In this case, a trivial classifier with constant negative
output would carry a loss of only 3%. This asymmetric situ-
ation is very common in detection, where positive labels are
generally less frequent than negative ones. A useful perfor-
mance figure that accounts specifically for false positive and
false negative errors is the F1 measure:

F1(yi, y) =
2 TP

2 TP + FN + FP
(6)

where TP is the number of correctly classified positive
samples, FN the number of false negatives and FP the num-
ber of false positives. The F1 measure is a figure of merit
ranging between 0 (worst performance) and 1 (best) and it is
then straightforward to define a loss function based on the F1

measure as:

∆F1
(yi, y) = 1− F1(yi, y) (7)

In the case of the trivial classifier with constant negative
output, the F1 loss reaches its maximum value (100%) since
TP is equal to zero. Other important loss functions are based
on: a) the precision (TP/(TP + FP )) at a fixed value of re-
call (TP/(TP +FN)), b) the recall at a fixed value of preci-
sion, c) precision and recall at equal value, d) the Fβ measure
(a variant of the F1 measure weighing FP and FN differ-
ently). All such losses can be similarly computed from the
values of TP , FP , FN (the contingency table of prediction
y versus ground truth yi).

2.3. Structural SVM

SVM has been used widely in classification problems mainly
thanks to its remarkable experimental accuracy [13]. The con-
ventional SVM is a classifier for independent data, i.e. data
where the {label, measurement} pairs are assumed indepen-
dent of each other. However, the SVM has also been extended
to the prediction of structured labels, i.e. multiple labels that
have mutual dependencies in the form of sequences, trees
and graphs and that possibly co-depend on multiple measure-
ments [7, 8]. Given a set of N training instances {yi, xi}, i =
1 . . . N , structural (or structured-output) SVM finds the op-
timal model’s parameters by constrained minimisation of the
following objective function:



N∑
i=1

ξi +
1

C
‖w‖2 s.t.

wTφ(yi, xi)− wTφ(y, xi) ≥ ∆(yi, y)− ξi,
ξi ≥ 0, i = 1 . . . N, ∀y

(8)

The first term in the objective function (
∑N
i=1 ξ

i) can be
proven a convex upper bound for the loss over the training
set, showing that the SVM is a minimum-empirical-loss clas-
sifier. The second term (‖w‖2) is a regulariser that disam-
biguates the scale of the w parameters. Parameter C is an
arbitrary, positive coefficient that balances the two terms in
the objective. In the constraints, function wTφ(y, x) assigns
a generalised linear score to a {y, x} pair. In the case of se-
quential labeling, it is given by Eq. (2). Eventually, ∆(yi, y)
is the chosen loss function.

Due to the exponential number of values for y in Eq. (8),
exhaustive verification of the constraints is infeasible. How-
ever, [8] has shown that it is possible to find ε-correct solu-
tions in polynomial time by using only the “most violated”
constraint for each sample, i.e. the class labels with the high-
est sum of score and loss:

ȳ = argmax
y

(wTφ(y, xi) + ∆(yi, y)) (9)

This problem is commonly referred to as “augmented in-
ference”. In the case of the zero-one loss or the Hamming
loss, the augmented inference for sequences can be easily re-
solved by an appropriately weighted Viterbi algorithm. How-
ever, when the required loss is the F1, or any other non-
decomposable loss functions, the Viterbi algorithm is not ap-
plicable anymore. An algorithm for these cases is the main
contribution of this paper and is presented in the following
section.

3. AUGMENTED INFERENCE FOR BINARY
SEQUENTIAL LABELING UNDER THE F1 LOSS

The solution of Eq. (9) is the crux of structural SVM for se-
quential labeling. Since the F1 loss is not additive over the se-
quence’s frames, substantial changes to conventional dynamic
programming algorithms are required. We start by re-writing
Eq. (7) as:

∆F1(yi, y) = 1− 2(P − FN)

2P + FP − FN
(10)

Given any arbitrary ground-truth label sequence, yi, the
number of positive labels, P , in Eq. (10) is fixed. Therefore,
the value of the F1 loss only further depends on the number of
false positives, FP , and false negatives, FN , in the predicted
sequence, y. We present our strategy herewith: by making the
prediction in left-to-right order along the sequence, the val-
ues of FP and FN can only increment or remain unchanged.

We can thus still approach the solution of Eq. (9) by dynamic
programming by extending the state of a partial solution to
include: a) the label of the current class, yt, as in conven-
tional Viterbi; b) the number of false positives, FP , in sub-
sequence y1:t; and c) the number of false negatives, FN , in
sub-sequence y1:t. We use notation ψ(FP, FN, yt) to indi-
cate the y1:t sub-sequence with the highest score for the given
extended state, and we note its score as p(ψ). The generic in-
duction step is as follows: at any time step, t, a partial solution
is obtained by extending two of the partial solutions of time
t−1 with the current prediction, yt, and the corresponding in-
crement of either FP or FN if the prediction is incorrect, or
neither if correct. After the final time step, T , Eq. (9) is com-
puted over all the stored sequences and the argmax returned.
Algorithm 1 describes the solution formally.

During the computation of Algorithm 1, the number of
stored sequences increases at every time step and reaches its
maximum at the last time step, T . Given that FP and FN
are bound by the number of negative and positive labels, N
and P , respectively (with N + P = T ), the number of stored
sequences is upper bound by 2(P + 1)(N + 1). The final
loop of Algorithm 1 runs over all values of FP, FN to find
the maximum for Eq. (9): with obvious modifications, the
final loop can be adapted to search for the maximum over
fixed values of FP or FN , at equal rates FP = FN or, in
general, any loss functions based on the contingency table.

4. EXPERIMENTAL RESULTS

The recognition of human activities in video is a major appli-
cation of sequential labeling [14]. In this section, we evaluate
our method on the TUM Kitchen Dataset which is a collec-
tion of activity sequences recorded in a kitchen environment
equipped with multiple sensors [11]. In the kitchen environ-
ment, various human subjects were asked to set a table in
different ways, performing actions such as Reaching, Carry-
ing, TakingSomething and several others. The dataset con-
tains multiple, simultaneous types of data: video data from 4
fixed overhead cameras, motion capture data extracted from
the videos, RIFD tag readings from 3 fixed readers embedded
in the environment, magnetic sensors readings from objects
and the environment, and their annotated action labels. For
our experiments, we have used the motion capture data (3-D
body joint locations) which include 19 sequences for the left
and right hands separately, each ranging in length between
1, 000 and 6, 000 frames. Each measurement is a 45-D vec-
tor.

We developed our software in MATLAB 2011 using the
original SVMstruct from Thorsten Joachims and its MAT-
LAB wrapper from Andrea Vedaldi [15, 16]. All experiments
were performed on a PC with an Intel i7 2.4GHz CPU with 8
GB RAM. As data set, we divided the 19 left hand sequences
into a training set with 6 sequences and a test set with the
remaining 13, and we considered all the actions that had pos-



Table 1: Comparison of the average accuracy and average F1 measure on TUM kitchen dataset with different loss functions.

Accuracy (%) F1 measure (%)
Loss function 0-1 loss Hamming loss F1 loss 0-1 loss Hamming loss F1 loss

Reaching 20.02 61.39 52.68 9.83 29.21 28.30
TakingSomething 21.27 61.59 52.81 2.87 28.80 29.15

LoweringAnObject 48.51 49.43 62.90 52.18 38.53 53.95
ReleasingGrasp 22.91 49.31 60.30 12.14 21.37 27.30

Carrying 40.89 53.36 57.91 39.10 51.63 72.09
Average 30.72 52.96 57.28 25.04 33.53 42.44

Algorithm 1: Algorithm for computing argmax in Eq. (9)

Input: model w, measurements x = (x1, . . . , xT ),
ground-truth classes yg = (yg1 , . . . , y

g
T )

Output: predicted classes ȳ = (ȳ1, . . . , ȳT )
Initialize: FPmax = FNmax = 0

// NB: [ ]: string concatenation operator,
// ψ(invalidarg) = NULL, p(NULL) = −∞

for t = 1 : T {
if ygt = 0 then {FPmax = FPmax + 1}
else {FNmax = FNmax + 1}

for FP = 0 : FPmax {
for FN = 0 : FNmax {
if ygt = 0 then {

ψ(FP, FN, yt = 0) = argmax(p([ψ(FP, FN, yt−1 = 0), 0]),

p([ψ(FP, FN, yt−1 = 1), 0]))

ψ(FP, FN, yt = 1) = argmax(p([ψ(FP − 1, FN, yt−1 = 0), 1]),

p([ψ(FP − 1, FN, yt−1 = 1), 1]))}
else {

ψ(FP, FN, yt = 0) = argmax(p([ψ(FP, FN − 1, yt−1 = 0), 0]),

p([ψ(FP, FN − 1, yt−1 = 1), 0]))

ψ(FP, FN, yt = 1) = argmax(p([ψ(FP, FN, yt−1 = 0), 1]),

p([ψ(FP, FN, yt−1 = 1), 1]))}}}}

// final loop:
best = −∞, ȳ = NULL
for FP = 0 : FPmax {

for FN = 0 : FNmax {
temp = max(p(ψ(FP, FN, yT = 0)),

p(ψ(FP, FN, yT = 1))) + ∆F1(yg, FP, FN)

if temp > best then {
ȳ = argmax(p(ψ(FP, FN, yT = 0)),

p(ψ(FP, FN, yT = 1)))

best = temp } } }
return ȳ

itive samples in the training set. For the SVM module, we
used C = 0.1 and ε = 0.01, and a linear kernel. As loss
functions for training, we compared a) the zero-one loss, b)
the Hamming loss, and c) the F1 loss based on the algorithm
proposed in Section 3. The zero-one loss is the most popular
loss function for independent data and the Hamming loss is
the most common for structured data. Table 1 reports the re-
sults using two different figures of merit: a) accuracy at frame
level (equivalent to the Hamming loss measured on the test se-
quences) and b) the F1 measure at the sequence level. Given
that actions are sparse over time (i.e., there are fewer posi-
tive than negative frames in each sequence), the F1 measure
is arguably a more desirable way to describe performance.

Table 1 shows that, in most cases and on average, the best
F1 measure is achieved by training structural SVM with our
F1 loss algorithm, with an average improvement of 8.9 per-
centage points. This could be expected to some extent given
the analogy between the test measure and the training loss.
However, Table 1 also shows that, in most cases and on av-
erage, training the sequential labeling under the F1 loss also
leads to improvements in the frame-level (Hamming) accu-
racy over the test set, with an average improvement of 4.3 per-
centage points. This result shows that the F1 loss can simply
prove more effective for training sequential labeling SVM.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an algorithm for training
structural SVM for sequential labeling under an F1 loss. Such
a loss is a more appropriate performance measure than the
frame-level accuracy when a balance between precision and
recall is sought and is particularly useful in detection scenar-
ios. The proposed algorithm leverages the notion of a state
extended with accumulated errors and retains the efficiency of
dynamic programming. Experiments conducted on the chal-
lenging TUM Kitchen Dataset have reported an improvement
of 8.9 percentage points in F1 measure and 4.3 percentage
points in frame-level accuracy over the runner-up (Hamming
loss training). In addition, the proposed algorithm can be used
for any other loss functions similarly derived from the con-
tingency table of the predicted sequence versus the ground
truth. In the near future, we plan on extending the proposed
approach to the case of joint multi-label sequential labeling.
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