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Abstract 

Voronoi tessellation has been employed to characterise material features in Finite Element Method (FEM) simulation, however, 
a poor mesh quality of the voronoi tessellations causes problems in explicit dynamic simulation of forming processes. Although 
centroidal voronoi tessellation can partly improve the mesh quality by homogenisation of voronoi tessellations, small features, 
such as short edges and small facets, lead to an inferior mesh quality. Further, centroidal voronoi tessellation cannot represent 
all real micro structures of materials because of the almost equal tessellation shape and size. In this paper, a density function is 
applied to control the size and distribution of voronoi tessellations and then a Laplacian operator is employed to optimise the 
centroidal voronoi tessellations. After optimisation, the small features can be eliminated and the elements are quadrilateral in 
2D and hexahedral in 3D cases. Moreover, the mesh quality is significantly higher than that of the mesh generated on the 
original voronoi or centroidal voronoi tessellation. This work is beneficial for explicit dynamic simulation of forming processes, 
such as micro deep drawing processes. 
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1. Introduction 

Due to the growth of the micro system industry in recent decades, especially in microelectronic mechanical 
systems (MEMS), micro forming processes have drawn increasing attention. For deep understanding and precise 
control of micro forming processes, the finite element method (FEM) has been adapted based on macro forming 
simulation. However, size effects, such as deviation of material properties at a micro scale from those at a macro 
scale, become considerable and hence cannot be ignored.  

A precise description of material at a micro scale, instead of the normal material models utilised in the current 
FEM, is one solution to extend the FEM’s application scope. Voronoi structures have been employed to 
characterise material properties at micro scale owing to the similarity between their geometrical features and 
material’s micro structures (Lu et al., 2013). In a simulation model each voronoi tessellation denotes one grain with 
its own properties, and therefore, a material’s properties can be expressed at a micro level and more precisely than 
those of normal material models. However, initial voronoi structure is far from actual material’s micro structure 
and, moreover, it is almost impossible to generate mesh based on this voronoi structure. To overcome these 
obstacles, centroidal voronoi, where the generating point of each voronoi tessellation is at the corresponding mass 
centroid, has been introduced into the FEM (Fritzen et al., 2009; Lu et al., 2012). The centroidal voronoi smoothes 
the initial voronoi structure by homogenisation of each voronoi tessellation and limitation of small angles. 
Consequently, meshing on this simplified voronoi structure becomes feasible.  

Nevertheless, the centroidal voronoi is not suitable for all materials’ micro structures. For example, it is 
unsuitable for non-equiaxed crystalline materials. Furthermore, the centroidal voronoi cannot avoid small features, 
such as short edges and small facets, which cause significant mesh quality deterioration. In this paper, a mass 
density function, that adjusts voronoi tessellations’ size and distribution, is applied in order to approximate real 
materials’ micro structures. Given that forming processes simulation requires a high mesh quality, an optimisation 
program is developed based on size-controllable centroidal voronoi tessellations. This eliminates small features 
while maintaining the tessellations’ size distribution.  

 
Nomenclature 

 a set of positive integers 
 number of neighbours 
 a set of points 

 space of m dimensions ( ) voronoi tessellation of the P
th generator  

 point’s coordinates 
 centre of a point’s all neighbours 
 mass centroid of a tessellation 

 mass density 
 a set of neighbours of the P

th point  

2. Centroidal voronoi tessellation 

The voronoi tessellations are a special spatial partition where all points inside a voronoi tessellation are closer to 
their associated generating point than to any other generating points outside and there is no overlap between any 
two different voronoi tessellations. This geometrical character is comparable to the crystalline distribution of 
metals where each grain has their own region and there is not any overlap between them. Therefore, the voronoi 
tessellations are applied to represent the micro structure of materials. The definition of a voronoi tessellation is 
based on its geometrical features. Given a set of points  in a given space , the voronoi tessellation is the region 
defined by Eq. (1).  

 njii IjijipxpxxpV ,,,)( , (1) 
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where 1 2, , , , (2 ), , , , , 1, ,m
n i j np p p p R n p p i j i j I n ,  is a point in the 

space ,  and  are generating points of voronoi tessellations and  is the set of positive integers.  
These voronoi tessellations are determined by the points called generators. If the generators’ information is not 

available for a given material, randomly distributed points can be utilised as the generators. However, the voronoi 
structure will be chaotic, as shown in Fig. 1, and far from real materials’ micro structure. For this kind of voronoi 
structure, it is almost impossible to generate mesh for FEM simulation.  
 

a b

 
Fig. 1. Initial voronoi generated from randomly distributed generators in (a) 2D case and (b) 3D case. 

 
For the sake of mesh generation, a centroidal voronoi where the generator coincides with the mass centroid of 

corresponding voronoi tessellation is employed. This simplifies the voronoi structure through homogenisation of 
all voronoi tessellations. This smoothing process boosts the similarities in both the shape and size of each 
tessellation. Consequently, the mesh can be generated with degenerated mesh elements, such as triangular and 
tetrahedral. The basic method applied in the authors’ program to calculate centroidal voronoi tessellation is the 
Lloyd’s method, which can be expressed as Fig. 2 (Du et al., 1999). The first step is generating initial voronoi 
tessellations with a set of points, than calculating the centroids of each voronoi tessellation following Eq. (2) and 
replacing the generators with these centroids. The next step is to generate new voronoi tessellations with the new 
generators and to check convergence criteria. These two steps are repeated until the criteria are satisfied.  
 

Generate voronoi with points p

Computer centroids p*
p = p*

CriteriaNot 
satisfied Satisfied

End
 

Fig. 2. Flow diagram of Lloyd’s method. 
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where  is the mass centroid of the P
th voronoi tessellation,  is mass density and ( ) is the voronoi tessellation 

of the P
th point . 

Although the centroidal voronoi tessellation meets the requirements for mesh generation, the centroidal voronoi 
structure can only represent equiaxed crystalline materials with almost equal grain shape and size. However, by 
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choosing a proper mass density function, voronoi tessellations with different sizes can be obtained. For simplicity 
and ease of observation, Fig. 3 illustrates the centroidal voronoi with three different mass density functions in 2D. 
As shown in Fig. 3 (b) and (c), grains with different sizes can be obtained and the grain distribution is controlled by 
the density function. If a mass density function is carefully chosen, the centroidal voronoi tessellations can be seen 
to be analogous to materials’ micro structures from a statistical viewpoint. For example, grains in fully annealed 
metals are equiaxed and can be represented by the centroid voronoi with a constant density, as shown in Fig. 3 (a). 
 

a b c

 
Fig. 3. Centroidal voronoi with different mass densities: (a) = 1; (b) = sin ( ) × sin ( ); (c) = ( ). 

3. Optimisation of centroidal voronoi tessellation 

Due to significant deformation, a high mesh quality is an essential prerequisite for explicit dynamic simulation 
of micro forming processes (Sieger et al., 2010). Considering efficiency and accuracy, complete integral mesh 
elements are preferable to the degenerated mesh units. Generally, small features in the geometry will lead to 
degenerate meshes, such as triangulation meshes, being dominant and the mesh quality being poor. Therefore, an 
optimisation method is necessary to eliminate small features in the centroidal voronoi tessellations, while 
maintaining the size and distribution of tessellations. It is difficult to optimise voronoi tessellations directly as each 
voronoi tessellation is a polyhedron. A feasible approach to optimisation is to adjust Delaunay triangulations, the 
dual of voronoi tessellations. That is because that the vertexes of the voronoi tessellations are the circumcircle 
centres of the Delaunay triangulations and the vertex of each triangulation is the generator of one voronoi 
tessellation. Therefore, smoothing the Delaunay triangulations with a trend towards equilateral triangulations can 
effectively adjust the distance between two circumcircle centres of the neighbouring triangulations, and 
consequently elongate the short edges of the voronoi tessellations. Furthermore, small area facets in voronoi 
tessellations are eliminated because of the disappearance of short edges, the fundamentals of a facet. 

A flow diagram explaining the optimisation process is shown in Fig. 4. The optimisation algorithm applied in 
this research is the Laplacian calculator as shown in Eq. (3). The basic idea of the Laplacian calculator is to move 
one point to the centre of all its neighbours (Chen, 2004,;Chen and Holst, 2011). In this study, as the centroidal 
voronoi tessellations are clipped to a special shape to model a deformed part, the boundary points are fixed and 
only inside points are traversed by the Laplacian calculator. Once satisfied with the termination criteria, the loop of 
the Laplacian traversal is ended. After the centroidal voronoi smoothing, the distribution of the fixed boundary 
points is acceptable, thus, it is suitable to maintain these boundary points.  

 ixjxijx jx
k

x
,

1
, (3) 

where  is the centre of the P
th point ’s all neighbours,  is the number of neighbours and  and  are 

generators of the centroidal voronoi tessellations.  
After optimisation the mesh on the voronoi tessellations is quadrilateral in 2D and hexahedral in 3D cases and 

the mesh quality is significantly higher than that of normal centroidal voronoi tessellations. Furthermore, this 
optimisation does not significantly change the size and distribution of the centroidal voronoi tessellations. Fig. 5 
displays a comparison between the centroidal voronoi tessellations before and after optimisation, where there are 
500 generators in a circle with radius of 0.8mm and the density function is = ( ). From their partial 
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enlarged views, ultra short edges can be found in the centroidal voronoi tessellations without optimisation while 
these short edges are enlarged after optimisation. An edge ratio which is the ratio of maximum to minimum edge 
length is chosen as an index of voronoi tessellation quality. The closer the edge ratio value is to one, the better the 
voronoi tessellations. Fig. 6(a) and (b) demonstrate the edge ratio distribution of the voronoi tessellations before 
and after optimisation. The key geometrical data are selected and listed in Table 1. 
 

Boundary points

Transfer centroidal voronoi tessellations to 
Delaunay triangulations

Obtain geometrical information

Insides points

Fixed Lapacian smoothing

CriteriaSatisfied Not
satisfied

End
 

Fig. 4. Optimisation process. 
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Fig. 5. Centroidal voronoi tessellations before (a) and after (b) optimisation. 
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Fig. 6. Edge ratio distribution of voronoi tessellations (a) before and (b) after optimisation. 

 
Table 1. Geometrical data of the centroidal voronoi tessellations before and after optimisation. 

Comparing items Before optimisation After optimisation 
Average edge ratio 5.5291 1.7256 
Maximum edge ratio 284.6862 4.3361 
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The average edge ratio of the centroidal voronoi tessellations decreases from 5.53 to 1.7 after optimisation and 
the maximum edge ratio drops significantly from 284.7 before optimisation to 4.3 after optimisation. These results 
indicate that this optimisation can effectively eliminate short features in the voronoi tessellations. 

After optimisation the geometry information is exported to an ANSYS command file which can be executed 
directly in the ANSYS environment. With exactly the same meshing methods, mesh is generated on the centroidal 
voronoi tessellations before and after optimisation respectively. Table 2 lists this mesh information. In terms of 
element quantity, the optimised centroidal voronoi tessellations need fewer mesh elements than the centroidal 
voronoi tessellations without optimisation. Moreover, the mesh qualities of these two voronoi tessellations are quite 
different. Element quality, which is the ratio of element area to edge length, and Skewness, which is an index of 
distortion is chosen to indicate mesh quality. For the element quality, a closer value to 1 is better, while as to the 
Skewness, a smaller value is better. The lowest element quality of the optimised centroidal voronoi tessellations is 
about 0.46, while that of the original centroidal voronoi tessellations is less than 0.02. The largest Skewness also 
validates that mesh quality of the optimised voronoi tessellations is higher as its maximum Skewness is smaller 
than that of the voronoi tessellations without the Laplacian optimisation.  
 

Table 2. Mesh qualities of centroidal voronoi tessellations before and after optimisation. 

State Number of elements Minimum element quality Maximum Skewness 

Before optimisation 35372 0.018 0.739 
After optimisation 34535 0.455 0.555 

4. Conclusions 

This research provides an efficient method of optimising the centroidal voronoi tessellations for mesh generation. 
With a proper mass density function, special tessellation sizes and their distribution can be obtained and it is 
statistically similar to real materials’ micro structures. Further, high quality mesh can be generated based on the 
optimised centroidal voronoi as small features in the voronoi tessellations are eliminated. The presented method 
offers access to precise simulation of micro forming processes, such as micro deep drawing.  
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