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ABSTRACT 

Excessive levels of heavy metals in water are an environmental hazard. An Australian zeolite 

with (ICZ) and without (Z) iron-coating, was used to remove five heavy metals from aqueous 

solutions using adsorption in batch and column experiments. The batch study showed that the 

Langmuir adsorption capacities of heavy metals on Z and ICZ at pH 6.5 and ionic strength 

10-3 M NaNO3 were in the order Pb > Cu > Cd > Cr, Zn for single metal (5.0-11.2 mg/g) and 

for mixed metals solution (3.7-7.6 mg/g). The data for the kinetics of adsorption satisfactory 

fitted to both the pseudo-first and second order models with fits slightly better for the latter 

model. Data fitted to a diffusion model revealed that adsorption took place in two or more 

than two different stages: a fast external surface adsorption, and a gradual adsorption 

controlled by both film diffusion and intra-particle diffusion. The column adsorption data 

were fairly well described by Thomas model, with the order of Thomas adsorption capacity 

following a similar trend as in the batch study. In both batch and column experiments, the 

adsorption capacities were higher for ICZ than for Z and were generally lower in mixed 

metals system than in single metals system. Leaching of used ICZ columns with 0.1 M HCl, 

resulted in 64-93% of adsorbed metals being desorbed, and 10% of Fe being dissolved from 

the ICZ. 

Keywords: adsorption, heavy metals, iron-coated zeolite, zeolite  
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1. Introduction 

 Heavy metals contamination of water bodies presents a significant threat to 

environment and public health because of their toxicity, accumulation in the food chain and 

persistence in nature. Strict regulations and guidelines have been imposed or recommended in 

many countries to restrict heavy metals contamination of natural water bodies [1,2]. There are 

many chemical and physical processes to remove heavy metals from water. Of these, 

adsorption is one of the promising technologies due to its high removal efficiency, and 

simplicity, provided easy availability of low-cost adsorbent can be found locally. Locally 

available zeolites have been utilised as low-cost adsorbents for the removal of heavy metals 

in many countries [3-5]. Wang and Peng [5] presented the adsorption capacities of natural 

zeolites from several countries reported in literature for Cd, Cr, Cu, Co, Mn, Ni, Pb, and Zn. 

They stated that these information were obtained from adsorption in solutions containing only 

one metal which may not be directly applicable to real wastewater system where there are 

several metal ions co-exist and they may compete with each other for adsorption. The 

difference in adsorption capacities between metals are commonly explained using hydration 

energy, hydrolysis constant, electro-negativity, and hydroxide solubility product of the metals 

[6]. 

 Some studies have shown that modification of zeolite surface by coating with iron 

(ICZ) can enhance the adsorption capacity of the zeolite for heavy metals [7-11]. In batch 

experiments, Han et al. [8] found that an iron oxide-coated zeolite had greater adsorption 

capacity than zeolite for Cu. They reported that of the three models used, Thomas model 

described the adsorption of Cu on the iron oxide-coated zeolite in fixe-bed column the best at 

all flow rates, initial Cu concentrations, and bed depths. Similarly, Kragović et al. [11] 

showed that an iron oxide-coated zeolite had higher adsorption capacity than zeolite for Pb. 

In contrast to the above single-metal adsorption studies, Doula [9] reported that an iron-

modified zeolite had higher adsorption capacities than unmodified zeolite for Cu, Zn, and Mn 

from a solution containing all these metals in batch studies. At high metals concentrations, 

Mn adsorption by both modified and unmodified zeolite decreased due to competition from 

Zn and Cu. They also found that Zn adsorption marginally decreased and Cu adsorption was 

similar to the adsorption pattern of Cu-only solution. The affinity of the metals for both 

modified and unmodified zeolite followed the order, Cu > Zn > Mn.  

 Most of the studies using zeolite or ICZ were conducted only in static batch 



  

3 

 

experiment or on individual metals. Studies using fixed-bed column which are more relevant 

to real operating systems on natural waters are necessary. Results of batch adsorption studies 

which are conducted under static condition may sometimes be different from those conducted 

in dynamic column adsorption system [12]. For example, Baker et al. [3] reported that the 

metal adsorption capacity for a Jordanian zeolite followed the order Pb > Cd > Cu > Zn but 

the order in column adsorption system was Cd > Zn > > Pb > Cu. As many metals co-exist in 

water they can compete with each other for adsorption and therefore it is important to 

consider the simultaneous removal of co-existing metals. Therefore, the aim of this research 

was to determine the adsorption behaviour of Cd, Cu, Cr, Pb, and Zn individually and 

simultaneously on an Australian natural zeolite with and without iron-coating, after their 

thorough characterisation, in batch and column experiments and determine the mechanisms 

of adsorption. Desorption of the adsorbed metals and stability of the iron-coatings were also 

determined. Simultaneous adsorption of several heavy metals in fixed-bed columns and their 

modelling, and an investigation of the iron-coatings’ stability in zeolite during desorption of 

metals are novel features of this study. 

  

2. Materials and Methods 

2.1. Preparation of iron-coated zeolite (ICZ) 

 The zeolite used in this study was obtained from an Australian natural deposit at 

Werris Creek, New South Wales and supplied by Escott. Ltd. Company, Australia. The ICZ 

was prepared by a method similar to that of Doula [9] by mixing 20.0 g of zeolite, 100 mL of 

freshly prepared 1 M Fe(NO3)3, and 180 mL of 5 M KOH in a 2 L polyethylene flask. KOH 

solution was added rapidly to Fe(NO3)3 with continued stirring. The suspension was diluted 

to 2 L with deionised water and was held for 60 h in the closed polyethylene flask at 70oC. At 

the end of this period the reaction vessel was removed from the oven, and the precipitate was 

centrifuged, washed with distilled water (until free of NO3
- ions) and then dried. During the 

60 h period the suspension was observed to be converted from a red brown colour to a 

compact red-brown precipitate. This change was explained by Doula [9] to be a conversion of 

ferrihydrite to geothite. 

 

2.2. Characteristic of the materials 
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 The mineralogy of the zeolite was determined using a XRD Shimadzu S6000 (Japan) 

diffractometer on powder samples of the zeolite and ICZ. The X-ray diffractometer was 

equipped with a Cu target operated at 40 kV and 30 mA with a setting of 5–45o (2θ), step 

time 2o/min. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) 

spectroscopy, surface area, and porosity measurements were also conducted on zeolite and 

ICZ. For the SEM analysis, the samples were imaged, uncoated, in a Zeiss Evo LS15 SEM 

using its variable pressure mode and an accelerating voltage of 15 kV. FTIR pattern was 

recorded using a Nicolet 6700 FT-IR Spectrometer equipped with a room temperature 

DLaTGS detector and a Nicolet FT-IR Smart System with Smart Accessories using a 

diamond crystal HATR.  

 Surface area and porosity were determined by nitrogen-sorption measurements carried 

out at 77 K with a Micromeritics 3 Flex surface characterisation analyser. The BET method 

was used to calculate the specific surface area. The pore size distribution was derived from 

the adsorption branch of the isotherm by using the Barrett–Joyner–Halenda (BJH) method. 

  Samples of zeolite and ICZ were analysed by Energy-dispersive X-ray spectroscopy 

(EDS). An EDS system called JED-2300/2300F Analysis Station was used to determine the 

chemical elemental composition. 

 Zeta potentials were measured on the suspensions of zeolite and ICZ in deionised 

water at an ionic strength of 10-3 M NaNO3 and initial pH ranging from 3.0 to 9.0. The pH 

adjustment was made utilising 0.1 M NaOH or 0.1 M HNO3 solutions and the pH was 

measured using a portable pH meter. The suspensions were agitated in a flat shaker at a 

shaking speed of 120 rpm at room temperature (25 ± 2oC) for 8 h. At the end of the period, 

the pH (equilibrium pH) and zeta potential were determined. Zeta potential was measured 

using a zeta sizer nano instrument (Nano ZS Zen3600, Malvern, UK). 

 

2.3. Chemical analysis 

 All chemicals used were of analytical reagent grade. Heavy metal nitrates, NaOH, and 

HNO3 were supplied by Sigma-Aldrich, Australia (reagent grade) and they were used as 

received. Stock solutions of Pb, Zn, Cu, Cd and Cr were prepared using Pb(NO3)2, Zn(NO3)2 

6H2O, Cu(NO3)2 5H2O, Cd(NO3)2 4H2O, and Cr(NO3)3 9H2O, respectively. The initial pH of 

the test solutions was adjusted to the desired value by using dilute solutions of 0.1 M NaOH 
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and 0.1 M HNO3. Heavy metal analyses were made using a Microwave Plasma-Atomic 

Emission Spectrometer (MP-AES- 4100 Agilent). 

 

2.4. Batch adsorption experiment 

2.4.1. Equilibrium experiments 

 Batch mode experiments on adsorption of heavy metals on zeolite and ICZ from 

solutions containing single and mixed metals at an initial concentration of 50 mg/L and ionic 

strength of 10-3 NaNO3 was conducted at a temperature of 25 ± 2oC. Zeolite or ICZ were 

added to 100 mL metal solutions contained in glass bottles to provide adsorbent loading rates 

of 1.0 to 25.0 g/L. The bottles were sealed and agitated at 120 rpm for 24 h in an orbital 

shaker. The pH of the suspension was maintained at 6.5 ± 0.2. The suspensions were filtered 

through a 0.45 µm nylon syringe filter (Cole-Parmer) and heavy metals concentrations were 

measured using a Microwave Plasma-Atomic Emission Spectrometer (MP-AES- 4100 

Agilent). The amount of heavy metal adsorption at equilibrium, qe (mg/g), was calculated 

using equation (1), 

 

qe= 
(�o − Ce)V

M  

                                          
 

 

where, Co = initial concentration of heavy metal (mg/L); Ce = equilibrium concentration of 

the heavy metal (mg/L); V = volume of the solution (L) and M = mass of adsorbent (g). The 

adsorption experiments were duplicated and the average values were taken for data analysis. 

The difference between duplicate values was within ± 5 %. The adsorption data were fitted to 

the Langmuir adsorption isotherm which is described in Table 1. 

 

Table 1 

 

2.4.2. Kinetic experiments  

(1) 



  

6 

 

 Batch adsorption kinetic experiments were conducted on single and mixed metals 

solutions at a heavy metal concentration of 5 mg/L each in a set of glass flasks containing 

100 mL of heavy metal solution and adsorbent dosage of 2.0 g/L at an ionic strength of 10-3 

M NaNO3 and pH 6.5. The suspensions were agitated in a flat shaker at 120 rpm for 72 h at 

room temperature (25 ± 2oC). Aqueous samples were taken at different time intervals and the 

concentrations of heavy metals were measured. The amounts of heavy metals adsorption at 

time t, qt (mg/g), were calculated using an equation similar to equation (1) where Ce was 

replaced by Ct (mg/L), the concentration of heavy metal at time t (mg/g) and qe by qt.   

 The adsorption data were analysed using pseudo-first and pseudo-second order kinetic 

models and the intra-particle diffusion model of Weber and Morris [13]. The equations for 

these models and the methods of calculating the model parameters are presented in Table 1. 

 

2.5. Column adsorption experiments 

 Fixed-bed columns used in this study were made up of 2.5 cm inner diameter Pyrex 

glass tube with a stainless steel sieve attached to the bottom of the column, followed by a 

layer of glass beads in order to provide a uniform flow of the solution through the column. A 

known quantity (40 g) of the zeolite or ICZ was packed in the column to yield a bed height of 

12 cm. Heavy metals solutions containing individual or mixed metals at concentrations of 5 

mg/L, each were pumped downward through the column at a filtration velocity of 0.52 m/h (8 

mL/min) to yield a bed volume of 0.038 L and an empty bed contact time of 11.5 min, 

controlled by a peristaltic pump. The effluents at the outlet of the column were collected at 

regular time intervals and the heavy metals concentrations were measured using a Microwave 

Plasma-Atomic Emission Spectrometer (MP-AES- 4100 Agilent). 

 

2.6. Column desorption experiments 

 Metals adsorbed onto the ICZ need to be desorbed before using the ICZ again to 

remove heavy metals. An experiment was conducted by desorbing the previously adsorbed 

heavy metals (see section 2.5) by passing 0.1 M HCl at a velocity of 0.52 m/h through ICZ 

and zeolite columns. The concentrations of the desorbed metals and Fe dissolved from the 

adsorbents in the column leachate were measured periodically for 40 bed volumes (160 
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mins).  0.1 M HCl served to desorb the metals because adsorption of metals is low at very 

acidic conditions [2,6]. Han et al. [8] successfully used 1 M HCl to regenerate an iron oxide-

coated zeolite after its exhaustion with adsorption of Cu. Fe concentration in the leachate was 

measured to determine the stability of the Fe coatings in the zeolite. 

 

3. Results and discussion 

3.1. Characteristics of materials 

 The XRD and FTIR patterns of ICZ were similar to those of zeolite and therefore only 

patterns of zeolite are presented (Figure 1 and 2). The XRD spectra of zeolite showed that the 

zeolite comprised primarily of heulandite (2θ: 10.0o, 19.0o, 22.7o, 30.0o) [14,15] and small 

amount of quartz (2θ: 21.0o, 27.0o, 36.5o) [16,17] (Figure 1). X-ray diffractograms of ICZ 

revealed no notable change in the basic zeolite diffraction peaks, indicating no detectable 

damage to the zeolite framework, or the presence of additional Fe oxidic or oxo-hydroxidic 

crystalline phases resulting from the iron oxide coating of the zeolite. However, XRD cannot 

detect any amorphous Fe species that may have formed on the zeolite surface. 

 

Figure 1 and Figure 2 

 

 Figure 2 shows the FTIR spectra for zeolite. The peak at 1048 cm-1 is attributed to 

asymmetric O–T–O stretching vibration (vO-T-O) where T represent Si or Al [18]. The peak 

at 462 cm-1 is probably from the bending of the bonds inside TO4 [19]. The peaks at 3447 cm-

1 and 1638 cm-1 can be assigned to the stretching vibration mode of lattice water and 

hydroxyl groups and OH bending vibration mode of adsorbed water molecules [20]. 

 The surface area (BET) of zeolite and ICZ were 15.4 g/m2 and 7.51 g/m2, 

respectively. The lower surface area of ICZ compared to zeolite is probably due to the 

blockage of the pores in zeolite by the iron oxide coatings. EDS data showed that the Fe 

content of ICZ was 8.46% while that of zeolite was only 1.03 % (Figure 3). 
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Figure 3 

 

 A distinct difference in the surface morphology of zeolite and ICZ can be observed in 

the SEM photographs (Figure 4). The coated zeolite surfaces were apparently occupied by 

clusters of newborn iron oxides, which were formed during the iron oxide coating process.  

 

Figure 4 

 

 The negative zeta potentials of zeolite at all pHs (pH 3.0 to 9.0) were higher than 

those of ICZ (Figure 5). The zero point of charge (ZPC, pH at which the net surface charge 

on the particle is zero) of zeolite was approximately pH 2.2 whereas that of ICZ was nearly 

pH 5.6. This shows that more negative charges were available in zeolite than in ICZ. 

Therefore, zeolite can potentially adsorb larger amounts of the positively charged heavy 

metal cations than ICZ by outer-sphere complexation through electrostatic attraction 

(coulombic forces). 

 

Figure 5 

 

3.2. Batch experiment 

3.2.1. Batch equilibrium adsorption modelling           

 The adsorption isotherms for individual and mixed metals showed that the adsorption 

capacity decreased in the following order for both zeolite and ICZ:  Pb > Cu > Cd > Zn, Cr 

(Figure 6 and 7) and the adsorption of the metals capacities on ICZ was higher than those on 

zeolite. The data for the adsorption of all metals from single metal solution as well as from 

the mixed metals solution satisfactorily fitted to the Langmuir adsorption model. This 

suggests that the adsorption sites were homogeneous with monolayer adsorption coverage. 

However, the fits were better for single metal solutions (R2 = 0.937-0.992) than for mixed 

metals solution (R2 = 0.743-0.951) probably because of competition for adsorption between 
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metals in the mixed metals solution (Table 2). Competition for adsorption of metals is 

reflected in the lower Langmuir adsorption capacity for each metal in mixed metals system 

than in single metal system. The data fits to two other adsorption models, i.e. Freundlich 

(single metal solution, R2 = 0.905-0.985; mixed metals solution, R2 = 0.450-0.876) and 

Dubinin-Radushkevich models [21] (single metal solution, R2 = 0.526-0.870; mixed metals 

solution, R2 = 0.682-0.971) [Supplementary tables ST1 and ST2] were less satisfactory than 

the Langmuir model fits. 

 

Figure 6 and Figure 7 

Table 2 

  

The adsorption capacities of zeolite (Table 2) are comparable to those reported for 

zeolites from other countries. For example, a zeolite from Greece had Langmuir adsorption 

capacities (mg/g) of 3.5, 4.1, 4.6, and 5.9 for Zn, Cr, Cd, and Cu, respectively [22]. Another 

study done in South Korea revealed that a zeolite had Langmuir adsorption capacities (mg/g) 

of 6.5, 7.1, and 8.9 for Cu, Cd, and Pb, respectively [10]. The adsorption capacities of ICZ 

(Table 2) are higher than those of zeolites and many other low-cost adsorbents. For example, 

Mishra and Patel [23] reported Langmuir adsorption capacity values (mg/g) of 4.5, 5.0, 5.5, 

and 7.6 for Pb adsorption at pH 6.0 on kaolin, fly ash, blast furnace slag, and bentonite, 

respectively. The corresponding values for Zn were 3.1, 5.8, 3.3, and 9.1, respectively. The 

values reported for Cr and Pb adsorption on fly ash in another study at pH 5 and 6 were 4.4 

and 2.5 mg/g, respectively [24]. However, the adsorption capacities of ICZ are lower than 

those of nano-sized metal oxides, carbon nanotubes and commercial ion exchangers [25-27]. 

Nevertheless, the advantages of zeolite and ICZ over the other adsorbents are their low cost 

and their ability to be conveniently used directly in fixed-bed columns, because they have 

larger particles and better physical stability. 

The Langmuir maximum adsorption capacity order for the metals in the single metal 

and mixed metals systems was Pb > Cu > Cd > Zn, Cr. The adsorption capacities for all 

metals except for Cr were higher for ICZ than for zeolite on both single metal and mixed 

metals system. Doula [9] also reported that the adsorption of Cu was higher than Zn on a 
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zeolite and a Fe-modified zeolite in single and mixed metals systems. For both metals the 

adsorption of Fe-modified zeolite was higher than that of zeolite. 

The reason for ICZ having higher adsorption capacities than zeolite, despite the 

higher ZPC of the former, is that ICZ has iron oxide which specifically adsorbs heavy metals 

[1]. The mechanism of adsorbing heavy metals on zeolite is predominantly outer-sphere 

complexation (non-specific adsorption) via the ion exchange process where the counter 

balanced alkali and alkalai earth metal ions, Ca2+, Mg2+, Na+, and K+ in the exchangeable 

sites on zeolite are replaced by heavy metal ions [7]. Some heavy metal ions can also adsorb 

onto the terminal Al-OH and Si-OH surface sites by inner-sphere complexation (specific 

adsorption) by releasing protons (H+) [7, 28]. In the case of ICZ the presence of iron oxides 

on the zeolite surface would have further increased the adsorption of heavy metals by inner-

sphere complexation due to abundant Fe-OH sites in the iron oxides. Strong affinity of iron 

oxides to heavy metals has been documented in many studies [29]. At high pH (pH 6-7, 

depending on the metal) the removal of large amounts of heavy metals is due to adsorption of 

metal hydroxide (MOH+, where M represents metal) species from solution and surface 

precipitation of metal hydroxide [1]. Metal hydroxide species have higher affinity than 

divalent metal ions for adsorption on aluminosilicate and metal oxide surfaces. 

 The order of the adsorption capacities of the metals (Pb > Cu > Cd > Zn and Cr) can 

be explained by the first hydrolysis constant of the metals (MOH+ formation) and solubility 

product of the metal hydroxides. The lower the first hydrolysis constant, the greater the 

proportion of MOH+ which has stronger adsorption than M2+ among the various metal species 

in solution.  High solubility product favours precipitation of metals, especially on the surface 

of adsorbents which can occur at a pH lower than the pH of precipitation in solutions [1]. 

Lead hydroxide has the highest solubility product and lowest first hydrolysis constant; 

consequently it had the highest adsorption capacity [25]. The second metal which had the 

highest adsorption capacity was Cu. The reason for this is that it has the second highest 

solubility product and second lowest hydrolysis constant [25]. 

 

3.2.2. Batch adsorption kinetics modelling 

 Adsorption of all metals from single metal and mixed metals solutions on both zeolite 

and ICZ increased with time and reached equilibrium only at approximately 20 h. The kinetic 
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adsorption data fitted satisfactorily to both pseudo-first and pseudo-second order models for 

both single and mixed metals system (Table 3 and 4). The models predicted equilibrium 

adsorption capacities were approximately equal to the corresponding experimental values for 

both models. When the R2 values were considered, however, the pseudo-second order model 

appeared to fit the data better than the pseudo-first order model. The better fit of the pseudo-

second order model suggests that chemical process may be the rate-limiting step in the 

adsorption [20]. 

 The intra-particle diffusion model plot of the data is shown in Figure 8. According to 

Weber and Morris [13], if intra-particle diffusion occurs the plot would be linear and if the 

plot passes through the origin then the rate limiting process is only the intra-particle 

diffusion. The data, however, exhibited two or more linear portions (Figure 8). The first 

linear portion up to 4 h was a fast step which can be attributed to heavy metal transport by 

film diffusion and adsorption on the external surfaces. This is followed by a slow step where 

intra-particle diffusion of heavy metal through the pores and channels of the adsorbent occurs 

which is represented by the second straight line. As the entire plot was not linear and did not 

pass through the origin, both film diffusion and intra-particle diffusion appeared to have 

occurred simultaneously during the adsorption process. The third step which occurred beyond 

16 h was the equilibrium stage where the adsorption sites were saturated and the intra-particle 

diffusion process was nearly completed. 

 

Figure 8 

Table 3 and 4 

 

3.3. Fixed-bed column experiments 

3.3.1 Breakthrough curves and modelling  

 Adsorption of single and mixed heavy metals by zeolite and ICZ is presented in the 

form of breakthrough curves (Figures 9 and 10). The heavy metals breakthrough generally 

occurred faster and the breakthrough curve was steeper for Cr and Zn than the other metals. 

The time to reach the plateau of Ct/Co was significantly higher for Pb than Cd, Cu, Zn and Cr. 

The breakthrough was slowest and the breakthrough curve was least steep for Pb. Jeon et al. 
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[10] reported similar results for a zeolite and an iron-coated zeolite removing Cd, Cu, and Pb 

in column experiments where the breakthrough was not very different between Cu and Cd. 

However, there was no breakthrough for Pb when up to 800 bed volumes were tested. It is 

hypothesised that Pb was removed in greater quantities, compared to other metals, because of 

its solution chemistry which was discussed under batch adsorption results. The order of 

column adsorption capacities calculated from the breakthrough curves (Pb > Cd, Cu > Zn > 

Cr) agreed fairly well with that obtained from the batch adsorption experiments (Table 5). 

Furthermore, the metals removal efficiencies were higher for ICZ (1.17-2.28 mg/g for the 

single metal system and 0.76-1.03 mg/g for the mixed metals system) than for zeolite (0.81-

1.67 mg/g for the single metal system and 0.35-0.63 mg/g for the mixed metals system) as 

observed in the batch adsorption study. ICZ had higher removal efficiencies because of the 

presence of iron oxides.  

The Thomas model satisfactorily described the breakthrough behaviour of the 

different heavy metals in both zeolite and ICZ (R2 = 0.876-0.959) (Table 5). The model 

predicted adsorption capacities (qo) were approximately the same as the corresponding 

adsorption capacities calculated from the breakthrough curves. For all metals, the qo values 

were higher for single than mixed metals system reflecting the competition for adsorption 

between metals in the later system.  

Although the column adsorption capacities calculated from the breakthrough curves 

and Thomas model predicted adsorption capacities (Table 5) followed the same order as the 

batch Langmuir adsorption capacities (Table 2) for the different metals, the former were 

much lower than the latter. This is probably due to two reasons. Firstly, the metals flowing 

through the columns have not reached equilibrium unlike in the batch equilibrium 

experiment. Secondly, the column adsorption was determined at a lower influent solution 

metals concentration than the metals concentrations at which Langmuir adsorption maxima 

were determined. 

 

Figures 9 and 10 

Table 5 
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3.3.2. Desorption of metals and regeneration of zeolite and ICZ 

 Desorption of metals previously adsorbed on zeolite and ICZ columns by elution with 

0.1 M HCl removed 62-90% and 58-85% of adsorbed metals on zeolite in the first and 

second cycles of adsorption/desorption, respectively (Table 6). The corresponding values for 

ICZ were 64-93% and 49-85%, respectively. Desorption peaked at around 10-15 bed volumes 

(40-60 min) and was completed in less than 40 bed volumes (Supplementary Figure 1, SF 1). 

Despite a large percentage of adsorbed metals being desorbed, the adsorption capacities 

declined in the second cycle, particularly for ICZ. Han et al. [8] reported that the adsorption 

capacity of an iron oxide-coated zeolite for Cu decreased in the second cycle after desorption 

of Cu by 1 M HCl. The reason for the higher reduction in adsorption capacities of ICZ 

compared to zeolite is probably because some iron oxide coatings in ICZ dissolved in the 

acidic condition of 0.1 M HCl. The Fe concentration in the leachate from the ICZ column 

was about 80 times higher compared to that in zeolite (Table 6). Fe dissolved from the iron 

coatings in the first cycle was 10% of Fe originally present in ICZ (Fe content in ICZ = 8%, 

total Fe in desorbed solution = 0.081 mg/g ICZ). In comparison, Fe dissolved in the second 

cycle was much lower (0.75%). Although the regeneration of ICZ reduced the adsorption 

capacity, partly because of the iron coatings being dissolved, the adsorption capacity of the 

regenerated ICZ was still higher than that of the original zeolite. 

 

4. Conclusions  

 Iron oxide coating of an Australian zeolite (ICZ) increased the heavy metal adsorption 

capacity compared to natural zeolite in both batch and column adsorption experiments 

whether adsorption was from individual or mixed metals solution. The adsorption reaction 

can be satisfactorily described by both the pseudo-first-order and the pseudo-second-order 

kinetic models with the data fit slightly better for the latter model, suggesting a chemical 

adsorption. Data fit to a diffusion model suggested that adsorption was also governed by 

intra-particle diffusion. The Langmuir adsorption capacity of the metals for both ICZ and Z at 

pH 6.5 was Pb > Cu > Cd > Cr, Zn. The column adsorption capacity followed the order of Pb 

> Cd > Cu > Zn > Cr as calculated from the breakthrough curves as well as using Thomas 

model. In the mixed metals adsorption the adsorption capacity decreased at high 

concentrations of metals probably due to competition between metals for adsorption. Overall, 

both zeolite and ICZ displayed a high affinity for Pb, Cd and Cu, but were less effective at 
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removing Zn and Cr. Leaching of used ICZ and zeolite columns with 0.1 M HCl, desorbed a 

large percentage of the adsorbed metals and dissolved 10% Fe from the ICZ. However, the 

adsorption capacities fell in the second adsorption/desorption cycle, more so for ICZ, 

probably due to the dissolution of some iron coatings in the acidic conditions of HCl. 
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Figures captions 

Figure 1. XRD patterns of zeolite and ICZ  

Figure 2. FTIR spectra of zeolite and ICZ  

Figure 3. EDS results of (a) zeolite and (b) ICZ  

Figure 4. SEM images of zeolite (left) and ICZ (right) at 40.000 X magnification 

Figure 5. Zeta potential of zeolite and ICZ suspensions at an ionic strength 10-3M NaNO3 

Figure 6. Batch adsorption isotherms for individual metals on zeolite and ICZ at ionic 

strength 10-3 M NaNO3 and pH 6.5  

Figure 7. Batch adsorption isotherms for metals mixture on zeolite and ICZ at ionic strength 

10-3 M NaNO3 and pH 6.5  

Figure 8. Intra-particle diffusion model fit to adsorption data 

Figure 9. Breakthrough curves of column experiments for individual metals at pH 6.5 

Figure 10. Breakthrough curves of column experiments for metals mixture at pH 5.0
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Table 1.  

The models and equations used for the description of batch and column adsorption of heavy 

metals (HM) by zeolite and ICZ 

Method Model Equation Graphical method used to calculate 

model constant 

Batch Langmuir 
q� =

q�	
K�C�

1 +	K�C�
 

C�

q�
= 	

1

q�	
K�
+	

C�

q�	


 

C� = equilibrium concentration of HM (mg/L), C� = equilibrium 

concentration of HM (mg/L), q� = amount of HM adsorbed (mg/g), 

q�	
  = maximum amount of HM adsorbed (mg/g); KL = Langmuir 

constant related to the energy of adsorption (L/mg) 

Pseudo-first order kinetic dq�

dt
= k�(q� − q�) 

ln	(q� − q�) = lnq� − k�t 

q� = amount of HM adsorbed at equilibrium (mg/g); q� = amount of HM 

adsorbed at time, t (min) (mg/g) and k� = equilibrium rate constant of 

pseudo-first order sorption (1/min) 

Pseudo-second order kinetic dq�

dt
= k�(q� − q�)

� 
t

q�
= 	

1

k�q�
�
+	

t

q�
 

q� = amount of HM adsorbed at equilibrium (mg/g); q� = amount of HM 

adsorbed at time, t (min) (mg/g) and  k� = equilibrium rate constant of 

pseudo-second order (1/min) 

 Weber and Morris q� = k�t
�.� + C 

q�  = amount of HMs adsorbed at time t (min) (mg/g); 

k� = intra-particle diffusion rate constant; C = a constant 

Column Thomas ln(C�/ C� − 1) = k� q�M/Q − k� C�t 

k� 	= Thomas rate constant (mL/min mg), q�= column adsorption 

capacity (mg/g), C�	= inlet HM concentration (mg/L), C�= outlet HM 

concentration at time t (mg/L), M = mass of adsorbent (g),       

Q = filtration velocity (mL/min) and t = filtration time (min) 
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Table 2.  

Langmuir adsorption isotherm parameters for heavy metals (HM) adsorption on zeolite and 

ICZ at pH 6.5 and ionic strength 10-3 M NaNO3 (n= the number of data points) 

 HM 

Individual metal 

(Ce = 0 – 50 mg/L) 

Metals mixture 

(Ce = 0 – 30 mg/L) 

Qmax 

(mg/g) 

KL 

(L/mg) 
R2

 

n Qmax 

(mg/g) 

KL 

(L/mg) 
R2

 

n 

Zeolite Pb 9.97 0.083 0.985 10 6.54 0.139 0.922 6 

Cu 8.53 0.200 0.937 10 4.34 0.417 0.743 6 

Cd 6.72 0.840 0.992 10 4.20 0.810 0.897 6 

Zn 5.83 0.095 0.985 10 3.72 0.163 0.847 6 

Cr 5.03 0.103 0.990 10 4.01 1.001 0.821 6 

ICZ Pb 11.16 0.157 0.982 10 7.63 0.059 0.938 6 

Cu 9.33 0.095 0.946 10 6.11 0.099 0.780 6 

Cd 7.24 0.110 0.976 10 4.42 0.442 0.951 6 

Zn 6.22 0.095 0.985 10 4.61 0.105 0.859 6 

Cr 5.47 0.092 0.983 10 3.89 0.594 0.932 6 
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Table 3.  

Pseudo-first order and pseudo-second order kinetics models parameters for the adsorption of 

heavy metals (HM) onto zeolite and ICZ from single metal solutions at pH 6.5 and ionic 

strength 10-3 M NaNO3 

 

HM 

Initial 

conc. 

(mg/L) 

qe 

exp. 

Pseudo-first order Pseudo-second order 

qe 

(mg/g) 

k1x10-2 

(min-1) 
R2 

qe 

(mg/g) 

k2x10-2 

(min-1) 
R2 

Pb 5.04 4.6 5.39 0.27 0.893 6.17 0.19 0.998 

Cu 5.23 4.0 2.90 0.15 0.924 4.61 0.27 0.997 

Cd 5.12 4.6 4.57 0.24 0.962 5.32 0.39 0.999 

Zn 5.10 4.0 3.25 0.25 0.953 4.54 0.46 0.999 

Cr 4.87 2.5 3.15 0.20 0.992 4.04 0.42 1.000 

 

 

HM 

Initial 

conc. 

(mg/L) 

qe 

exp. 

Pseudo-first order Pseudo-second order 

qe 

(mg/g) 

k1x10-2 

(min-1) 
R2 

qe 

(mg/g) 

k2x10-2 

(min-1) 
R2 

Pb 4.89 5.1 4.08 0.16 0.984 5.29 0.21 1.000 

Cu 5.23 4.9 3.05 0.21 0.983 4.92 0.35 0.992 

Cd 5.10 4.6 3.79 0.23 0.951 4.13 0.67 0.991 

Zn 5.09 4.0 3.22 0.24 0.954 3.96 0.81 0.943 

Cr 5.11 3.6 2.01 0.21 0.783 2.56 0.99 0.984 

Zeolite 

ICZ 
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Table 4.  

Pseudo-first order and pseudo-second order kinetics models parameters for the adsorption of 

heavy metals (HM) onto zeolite and ICZ from mixed metal solutions at pH 6.5 and ionic 

strength 10-3M NaNO3  

 

HM 

Initial 

conc. 

(mg/L) 

qe 

exp. 

Pseudo-first order Pseudo-second order 

qe 

(mg/g) 

k1x10-2 

(min-1) 
R2 

qe 

(mg/g) 

k2x10-2 

(min-1) 
R2 

Pb 4.86 4.7 4.32 0.20 0.922 5.57 0.067 0.994 

Cu 4.89 3.5 3.14 0.20 0.882 3.61 0.094 0.983 

Cd 4.85 3.7 3.45 0.23 0.983 4.30 0.067 0.981 

Zn 4.78 3.2 2.88 0.19 0.961 3.96 0.20 0.941 

Cr 5.01 2.5 1.51 0.17 0.964 2.42 0.067 1.000 

 

 

HM 

Initial 

conc. 

(mg/L) 

qe 

exp. 

Pseudo-first order Pseudo-second order 

qe 

 (mg/g) 

k1x10-2 

(min-1) 
R2 

qe 

(mg/g) 

k2x10-2 

(min-1) 
R2 

Pb 5.12 5.0 4.65 0.18 0.972 6.03 0.06 0.994 

Cu 5.23 3.7 2.93 0.19 0913 4.18 0.05 0.982 

Cd 5.10 4.0 4.38 0.19 0.932 4.81 0.08 0.991 

Zn 4.89 4.0 5.41 0.24 0.731 5.36 0.16 0.981 

Cr 5.07 3.01 2.84 0.17 0.972 3.55 0.13 0.993 

 

Zeolite 

ICZ 
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Table 5.  

Breakthrough adsorption capacities and Thomas model parameters for column adsorption of 

heavy metals (HM) from single (pH 6.0) and mixed metals solution (pH 5.0) 

 

HM 

Individual metal Metals mixture 

Breakthrough 

adsorption 

capacity  

qe (mg/g) 

qo 

(mg/g) 

kTh 

(mL/min.mg) 
R2 

Breakthrough 

adsorption 

capacity  

qe (mg/g) 

qo  

(mg/g) 

kTh 

(mL/min.mg) 
R2 

Zeolite Pb 1.67 1.61 0.62 0.924 0.63 0.61 1.16 0.899 

Cd 1.32 1.29 0.66 0.894 0.52 0.52 1.06 0.876 

Cu 1.15 1.14 0.88 0.949 0.48 0.49 1.20 0.879 

Zn 1.19 1.10 0.70 0.959 0.45 0.41 1.28 0.917 

Cr 0.81 0.74 1.12 0.945 0.35 0.32 1.72 0.924 

ICZ Pb 2.28 2.03 0.54 0.959 1.03 0.95 1.04 0.954 

Cd 1.89 1.82 0.58 0.933 0.93 0.86 1.08 0.940 

Cu 1.70 1.70 0.66 0.948 0.89 0.83 1.04 0.946 

Zn 1.66 1.61 0.50 0.919 0.83 0.75 1.06 0.933 

Cr 1.17 1.08 0.92 0.949 0.76 0.67 1.14 0.957 
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Table 6.  

Heavy metals adsorption and their desorption by 0.1 M HCl in zeolite and ICZ fixed-bed 
columns and leaching of Fe during desorption (column height 12 cm, adsorption and 
desorption flow velocity 0.52 m/h, adsorption after 300 bed volumes, desorption after 40 bed 
volumes) 

* % desorption = Amount desorbed/Amount adsorbed × 100 

  

Zeolite (Z) 

Metals 

1st cycle 2nd cycle 

Adsorption 
(mg/g) 

Desorption 
(mg/g) 

Desorption 
(%) * 

Fe in 
leachate 
(mg/g Z) 

Adsorption 
(mg/g) 

Desorption 
(mg/g) 

Desorption 
(%) * 

Fe in 
leachate 
(mg/g Z) 

Pb 0.63 0.57 90 0.001 0.52 0.44 85 0.001 
Cu 0.48 0.31 65 0.001 0.34 0.21 62 0.001 
Cd 0.52 0.37 71 0.001 0.37 0.23 62 0.001 
Zn 0.45 0.28 62 0.001 0.34 0.21 62 0.001 
Cr 0.35 0.23 66 0.001 0.26 0.15 58 0.001 

  
  

ICZ 

Metals 

1st cycle 2nd cycle 

Adsorption 
(mg/g) 

Desorption 
(mg/g) 

Desorption 
(%) * 

Fe in 
leachate 

(mg/g ICZ) 

Adsorption 
(mg/g) 

Desorption 
(mg/g) 

Desorption 
(%) * 

Fe in 
leachate 

(mg/g ICZ) 
Pb 1.03 0.96 93 0.081 0.61 0.52 85 0.006 
Cu 0.89 0.69 78 0.081 0.53 0.33 62 0.006 
Cd 0.93 0.65 70 0.081 0.54 0.35 65 0.006 
Zn 0.83 0.62 75 0.081 0.48 0.33 69 0.006 
Cr 0.76 0.49 64 0.081 0.47 0.23 49 0.006 
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HIGHLIGHTS 

• Iron-coated zeolite (ICZ) had higher adsorption than zeolite for Cd, Cr, Cu, Pb, Zn 

• Adsorption capacity for Cu, Cd, Zn, Cr decreased at high mixed metals concentration 

• Adsorption capacity in batch and column studies: Pb > Cu, Cd > Zn, Cr 

• 0.1 M HCl efficiently desorbed metals from ICZ with a small % Fe dissolution 

• Data fitted to Langmuir, pseudo-first order, pseudo-second order, and Thomas models 

 

 


