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Boosting for Multi-Graph Classification
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Abstract—In this paper, we formulate a novel graph-based
learning problem, Multi-Graph Classification (MGC), which aims
to learn a classifier from a set of labeled bags each containing
a number of graphs inside the bag. A bag is labeled positive,
if at least one graph in the bag is positive, and negative
otherwise. Such a multi-graph representation can be used for
many real-world applications, such as webpage classification,
where a webpage can be regarded as a bag with texts and
images inside the webpage being represented as graphs. This
problem is a generalization of Multi-Instance Learning (MIL)
but with vital differences, mainly because instances in MIL
share a common feature space whereas no feature is available to
represent graphs in a multi-graph bag. To solve the problem, we
propose a boosting based multi-graph classification framework
(bMGC). Given a set of labeled multi-graph bags, bMGC employs
dynamic weight adjustment at both bag- and graph-levels to
select one subgraph in each iteration as a weak classifier. In
each iteration, the bag and graph weights are adjusted such
that an incorrectly classified bag will receive a higher weight
because the predicted bag label conflicts to its genuine label,
whereas an incorrectly classified graph will receive a lower weight
value if the graph is in a positive bag (or a higher weight if
the graph is in a negative bag). Accordingly, bMGC is able
to differentiate graphs in positive and negative bags to derive
effective classifiers to form a boosting model for multi-graph
classification. Experiments and comparisons on real-world multi-
graph learning tasks demonstrate the algorithm performance.

Index Terms—Graph classification, multi-instance learning,
boosting, multi-graph, subgraph mining.

I. INTRODUCTION

Graph classification, in which the object to be classified is
a graph, has found many applications in the past decade, such
as chemical compounds [1], XML documents [2], program
flows [3], and images [4]. Despite of its success in a broad
spectrum of areas, standard graph classification setting is rather
restrictive for many real-world learning problems. One of such
problems is Multi-Graph Classification (MGC), in which the
object to be classified is a bag of graphs. For example, a
webpage may consist of texts and images, where texts can be
represented as graphs to preserve contextual information [5]
and images can also be represented as graphs to describe
structural dependency between image regions [6]. As a result,
a webpage can be regarded as a bag containing a number of
graphs, each of which represents a certain part of the webpage

J. Wu is with the School of Computer Science, China University of
Geosciences, Wuhan 430074, China, and the Centre for Quantum Computation
and Intelligent Systems, Faculty of Engineering & Information Technology, U-
niversity of Technology Sydney, Australia (e-mail: jia.wu@student.uts.edu.au)

S. Pan is with Centre for Quantum Computation and Intelligent Systems,
Faculty of Engineering & Information Technology, University of Technology
Sydney, Australia (e-mail: shirui.pan@student.uts.edu.au)

X. Zhu is with Dept. of Computer and Electrical Engineering & Com-
puter Science, Florida Atlantic University, Boca Raton, USA (e-mail:
xzhu3 @fau.edu)

Z. Cai is with the School of Computer Science, China University of
Geosciences, Wuhan 430074, China (e-mail: zhcai@cug.edu.cn)

Abstract =
paper L =
Abstract —o i
Reference 1 I — V E
o—e
Abstract —
fefeieee)] A Multi-Graph Bag

Fig. 1. An example of multi-graph representation for a scientific publication.
Each paper is represented as a multi-graph bag, where each graph inside the
bag corresponds to the abstract of the paper or the abstract of the reference
cited in the paper (a graph is formed by using keywords of the abstract as
nodes and their correlations as edges). The graph construction details are
reported in Section VII-A.

content. For an information seeker, a webpage is interesting to
him/her if one or multiple parts of the webpage (texts and/or
images) draws his/her attention — A graph bag is positive if
at least one graph in the bag is positive. On the other hand,
the webpage is not interesting to the viewer if none of the
content attracts the viewer — A graph bag is negative if all
graphs inside the bag are negative.

The above multi-graph setting can be found useful in many
other domains. For bio-pharmaceutical test, labeling individual
molecules (which can be represented as graphs) is expensive
and time-consuming. Molecular group activity prediction can
be used to investigate the activity of a group (i.e. a bag) of
molecules, with the active group (i.e. positive bag), in which
at least one molecule is active, be further investigated for
individual activity test. Another MGC application is scientific
publication classification, where a paper and its references can
be represented as a bag of graphs and each graph (i.e. a paper)
is formed by using the correlations between keywords in the
paper, as shown in Figure 1. A bag is labeled positive, if the
paper or any of its references is relevant to a specific topic.
Similarly, for online review based product recommendation,
each product receives many customer reviews. For each review
composed of detailed text descriptions, we can employ a graph
to represent the review descriptions. Thus, a product can be
represented as a bag of graphs. Assume customers mainly
concern about several key properties, such as “affordability”
and “durability”, of the product. A product (i.e. a bag) can be
labeled as positive if it receives very positive review in any of
these properties, and negative otherwise. As a result, we can
use MGC learning to help recommend products to customers.

Indeed, the MGC problem is a generalization of Multi-
Instance Learning (MIL) to graph data, but with significant
complications. Existing MIL methods cannot be simply ap-
plied to the multi-graph setting because they can only handle
bags with all instances being represented in a common vecto-



rial feature space. Unfortunately, in the MGC problem setting,
graphs cannot directly provide feature vectors for learning. On
the other hand, existing graph classification methods cannot
be used to tackle the MGC problem neither, because they
require each single graph to be labeled in order to learn a
classifier. One simple solution is to represent all graphs in the
same feature space, by using some subgraph feature selection
methods [7], [8], [9] to convert graphs as instances, and then
apply existing MIL methods to the instance bags. However,
this simple solution suffers from three inherent disadvantages:

o Large subgraph feature space: the graph substructure
feature space increases, with respect to the number of
edges and nodes, in an exponential order. It is compu-
tationally inefficient, or even infeasible, to enumerate all
subgraph features, and then select some subgraph features
for classification.

o Feature filtering inefficiency: by separating subgraph
feature mining and feature selection into two steps, the
filtering process of finding salient subgraph patterns will
depend on the optimal solution of the subsequent learning
algorithm. It is very difficult to theoretically guarantee
that the statistical criterion provides good features for the
subsequent learning algorithm. This is the problem of all
filter methods (as discussed in [10]).

« Bag constraints: the bag constraints in the multi-graph
learning provide important information to differentiate
positive and negative graphs, whereas the simple solu-
tion directly extracts subgraphs from all graphs without
considering multi-graph nature for effective learning.

In summary, the multi-graph classification problem for the
aforementioned real-world applications needs to address two
essential challenges: (1) Labeling Ambiguity. Labels are only
available at bag level instead of instance level (i.e. a bag
is labeled positive if it has at least one positive graph and
negative otherwise); and (2) Structured Data Representation.
Instances in a bag are not vectors but graphs, which implies
that all instances are not represented in a common feature
space for calculating similarities or distances.

Motivated by the above challenges, in this paper, we propose
a boosting based learning framework, named bMGC, for
multi-graph classification. In each boosting iteration, bMGC
explores the most informative subgraph to construct a single
weak classifier, which is used to update the weights of graphs
and bags to obtain the next informative subgraph. At the
end of the boosting process, the selected weak classifiers are
combined to form a strong classifier. A unique characteristic
of bMGC is that it combines bag- and graph-level constraints
to assess the informativeness score of a subgraph. By adapting
the score as a pruning criterion, we combine subgraph mining
and informative subgraph exploration to dynamically construct
weak classifiers on the fly. As a result, the proposed learning
framework not only addresses the “labeling ambiguity” issue
by using a novel two-level (bag and graph) weighting strategy
but also addresses the “structured data representation” issue
through a dynamic subgraph selection criterion. The experi-
mental results on real-world data demonstrate that bMGC is
effective for multi-graph classification.

The remainder of the paper is organized as follows. A
brief review of related works is reported in Section II. The
problem definition and the overall framework are described
in Section III and IV, respectively. Section V introduces the
proposed subgraph selection criterion. The bMGC algorithm
is presented in Section VI, followed by the experiments in
Section VII. Section VIII discusses the properties of the
proposed bMGC, and we conclude the paper in Section IX.

II. RELATED WORK
A. Multi-Instance Learning

Multi-graph classification is a generalization of the multi-
instance learning (MIL) problem, which was first proposed
by Dietterich et al. [11] for drug activity prediction. Since
then, it has drawn increasing interest in the machine learning
community for many real-world applications, such as im-
age categorization [12], web mining [13], language recogni-
tion [14], and computer security [15]. The key assumption of
MIL formulation is that the training set is composed of some
labeled bags, each of which contains a number of instances. A
bag is labeled positive if at least one of its instances is positive
and negative otherwise. The goal of MIL is to predict the label
of an unknown bag. To aim this, several off-the-shelf methods
have been developed to solve the MIL problem, which can
roughly be divided into two categories.

1) Single-Instance Learner Based MIL: One approach to
solve MIL problems is to upgrade generic single-instance
learning methods to deal with multi-instance data. For ex-
ample, lazy learning Citation-KNN and Bayesian-KNN [16]
extend the k-nearest neighbor (KNN) algorithm for MIL. Tree
learning MITT [17] and MIRI [18] are variations of decision
trees for MIL. Rule learning RIPPER-MI adapts the RIPPER
algorithm [19] for MIL. Neural network BP-MIP extends
standard neural networks [20], and kernel method MISMO
adapts the classical support vector machine [21] for MIL.
Logistic learning MILR [22] applies the logistic regression
to MIL, and ensemble approaches [23], [24] which extend
bagging and boosting [25] to multi-instance learning.

2) Bag-Based MIL Algorithms: The first specifically de-
signed method for MIL is the axis-parallel rectangle (APR)
algorithm [11], which approximates the axis-parallel rectan-
gles constructed by the conjunction of features. Based on the
idea of APR, a number of algorithms have also been designed
for MIL. Examples include Diverse Density (DD) [26], which
searches a point in the feature space by maximizing the
diverse density function that measures a co-occurrence of
similar instances from different positive bags; MIEMDD [27],
which combines the conception of Expectation-Maximization
(EM) algorithm with DD to search the most likely concept;
and MIOptimalBall [28], another boosting optimal ball based
approach, which uses balls (with respect to various metrics)
as weak hypotheses centered at instances of positive bags.

B. Graph Classification

The MGC problem can also be viewed as a generalization of
graph classification where objects are bags of graphs (instead
of individual graphs). Existing graph classification methods
can be broadly classified into the following two categories:



1) Global distance based approaches: The global distance
based methods consider correlations [29] or similarities be-
tween two graphs and plug the kernel matrix into a off-the-
shelf learner, such as support vector machines, to learn a
model for graph classification. Examples include e.g., graph
kernels [30], [31], graph embedding [32], and graph transfor-
mation [33]. One obvious drawback of global distance based
approaches is that the distance is calculated based on the
similarity of global graph structures, such as random walks
or paths, between two graphs. Therefore, it is not clear which
substructures (or which parts of the graph) are mostly discrim-
inative for differentiating graphs between different classes.

2) Local subgraph feature based approaches: For many
graph classification tasks, such as chemical compound clas-
sification [1], research has shown that graphs within the same
class may not have high global similarity but merely share
some unique substructures. Accordingly, extracting important
subgraph features, using some predefined criteria, to represent
a graph in a vectorial space becomes a popular solution
for graph classification. The most common subgraph selec-
tion criterion is frequency, which intends to select frequent-
ly appearing subgraphs by using frequent subgraph mining
methods. For example, one of the most popular algorithms
for frequent subgraph mining is gSpan [34]. Other methods
include AGM [35], FSG [7], MoFa [36], and Gaston [37].
The subgraph feature mining approach seems applicable to
the MGC problem as a preprocessing step to transform all
graphs into feature vectors. However, one major deficiency
of this approach is that it is computationally demanding to
enumerate enormous frequent subgraphs in the target graph
set, which inhibits its ability to handle large graph sets.

To overcome this drawback, some supervised subgraph
feature extraction approaches have been developed, such as
LEAP [38], gPLS [39] and COPK [8], which search directly
for discriminative subgraph patterns for classification. More-
over, Jin et al. [40] proposes an efficient graph classification
method using evolutionary computation for mining discrim-
inative subgraphs for graph classification in large databases.
Besides, some graph boosting methods [41], [42], [43], [44]
also exist to use each single subgraph feature as a weak clas-
sifier to build boosting algorithm, including some other types
of boosting approaches [45], [46] for graph classification.

III. PROBLEM DEFINITION

In this section, we define important notations and concepts,
which will be used throughout the paper. We also formally
define the MGC problem in this section.

Definition 1. (Connected Graph) A graph is represented as
G = (V,E,L,l) where V is a set of vertices, ECV xVisa
set of edges, and L is the set of symbols for the vertices and
edges. | : VUE — L is the function assigning labels to the
vertices and edges. A connected graph is a graph such that
there is a path between any pair of vertices.

Definition 2. (Bag of Graphs) A graph bag contains a number
of graphs, denoted by B; = {G%, . .., G., }, where G; and n;
denote the jth graph and the total number of graphs in the
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Fig. 2. An example of subgraph feature representation for bags. B;r and By
are positive and negative bags, respectively. Gl+ is a positive graph and G,
G3, and G are labeled negative. The feature value of a bag corresponding
to each subgraph g1 or go is set to 1, iff there is a graph in the bag contains
the subgraph, and 0 otherwise.

ith bag, respectively. For ease of representation, we also use
G; to denote the jth graph in a given bag. A bag B;’s label
is denoted by y; € {—1,+1}. A bag is either positive (B;")
or negative (B;” ).

In this paper, we use B = {Bi,...,B,} to denote a set
of bags associated with the weights w” = {w{,..., w/},
where p denotes the number of all bags in B. We can also
aggregate all graphs in B as G = {G1,...,G,} associated
with the weights w& = {w¢, ... ,wf}, where ¢ denotes the
number of graphs in G. Similarly, the set of positive bags in B
is denoted by B*, with B~ denoting the set of negative bags.

Definition 3. (Subgraph) Let G = (V,E,L,l) and g =
(V',E',L'l") each denotes a connected graph. g is a
subgraph of G, i.e., gr C G, iff there exists an injective
function ¢ : V' — V s.t. (1) Yv € V', I'(v) = l(p()); (2)
V(u,v) € B, (p(u), p(v)) € E and U(u,0) = (), 9(0)).
If gi is a subgraph of G, then G is a supergraph of gy.

Definition 4. (Subgraph Feature Representation for Graph)
Let S; = {g1,...,9s} denote a set of subgraph patterns
discovered from a given set of graphs. For each graph G;, we
use a subgraph feature vector x¢ = [(z9)¢, ..., (279)9]T €
{0,1}* to represent G; in the feature space, where (z7*)¢ =
1, iff gr is a subgraph of G; (i.e. g, C G;,gr € Sy) and
(z7%)¢ = 0 otherwise.

Definition S. (Subgraph Feature Representation for Bag)
Given a set of subgraphs Sq = {g1,---,9s}, a graph
bag B; can be represented by a feature vector xP =
[(@9)B, ..., (2?)B]T € {0,1}*, where (z7%)P =1, iff gi. is
a subgraph of any graph G in bag B; (i.e. 3G; € B;AG; 2
Gk, gk € Sy) and (x9*)B = 0 otherwise.

An example of subgraph feature representation for graph
bags is illustrated in Figure 2, where two graph bags (B and
B, on the left panel) are represented as two 2-dimensional
feature vectors (on the right panel) based on two subgraph
patterns (g1 and g9).

Given a multi-graph set B with a number of labeled graph
bags, where each positive bag contains at least one positive
graph and all graphs in each negative bag are negative (i.e. the
bag constraint in MGC), the aim of multi-graph classification
is to build a prediction model from the training multi-graph



bag set B to predict some previously unseen graph bags with
unknown label with maximum bag classification accuracy.

IV. OVERALL FRAMEWORK OF bMGC

In multi-graph bags, there is no feature available to repre-
sent graphs, so existing multi-instance learning (MIL) meth-
ods, which require instances to have a vectorized feature
representation, cannot be applied to MGC. In addition, due
to lack of labeling information for individual graphs inside
positive bags, subgraph feature based graph classification
cannot be directly applied to MGC neither.

To solve the above issues, in this section we propose a
boosting based multi-graph classification framework (bMGC).
The framework applies dynamic weight adjustment at both
graph- and bag-levels to select one subgraph in each iteration
to construct a single weak classifier. In each iteration, the bag
and graph weights are adjusted by the last bag-level and graph-
level weak classifiers, respectively. By doing so, bMGC is able
to differentiate graphs in positive or negative bags to derive
effective learning models by boosting all the single subgraph
bag-level weak classifiers. The proposed bMGC framework,
as shown in Figure 3, includes the following four major steps:

o Subgraph Candidate Generation: Generating subgraph
candidates is a key step for selecting the most informative
subgraph. To find subgraph candidates with diverse struc-
tures, we aggregate graphs in multi-graph bags into three
graph sets: (1) graphs in all bags, (2) graphs in all positive
bags, and (3) graphs in all negative bags. A gSpan [34]
based subgraph mining procedure is performed on each
graph set, through which a set of diverse subgraph
candidate patterns can be discovered for validation.

+ Bag Constrained Subgraph Exploration: In the tth
iteration, an informative subgraph g, is selected to form
a weak classifier for MGC under the weighted bag- and
graph-level constraints. To obtain the ¢ + 1th informative
subgraph, the weights of bags and graphs should be
updated. After m iterations, the selected m subgraphs
will correspond to m weak classifiers for learning.

« Updating Weights of Bags and Graphs: After we find
the tth informative subgraph g¢;, a bag-level classifier
HEP and a graph-level classifier H& will be trained
respectively. For graphs, due to our assumption that we
apply bag labels to graphs, some graphs in positive bags
have been assigned wrong labels. If a graph G; in positive
bag set BT is misclassified by H, in the next iteration
we will decrease GG;’s weight to reduce its impact in the
learning process. If a graph G; in negative bag set B~ is
misclassified, its weight will be increased, such that G
in the negative bag set will play a more important role
to help the learning algorithm find better subgraphs.

« Boosting Classification: After the subgraphs are selected
in all iterations to form the corresponding single weak
classifiers, they can be weighted to construct a strong
classifier for multi-graph classification.

In the following two sections, we first propose our subgraph

exploration criterion in Section V and then introduce detailed
procedures of bMGC in Section VI.
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Fig. 3. An overview of the proposed bMGC framework.

V. SUBGRAPH EXPLORATION

Exploring optimal bag constrained subgraph in each itera-
tion of bMGC is a non-trivial task. This process has two main
challenges: (1) How to utilize the information of the labeled
graphs in negative bags? (2) How to tackle the problem that the
labels of graphs in positive bags are unknown? Assume that
a set of candidate graphs are collected from the bag set B, let
S, denote the complete set of subgraphs in 3, and g; be the
optimal subgraph selected from S, in the tth iteration. Our
bag constrained subgraph exploration aims to find the most
informative subgraph g; in each iteration with the updating
weights for both bags and graphs. Let Z(gy), the evaluation
criterion for a single subgraph g, € Sy, be a function to
measure the informativeness of g as

g¢ = arg max (Z(gx)) (D
gLESy
The objective function in Eq. (1) indicates that the optimal
bag constrained subgraph g; should have the maximum dis-
criminative capability for multi-graph classification.

A. Evaluation Criterion for Subgraphs

In order to measure the informativeness of a subgraph gy,
i.e., Z(gx), such that we can discover the most informative
subgraph for bags, we impose constraints to the labeled bags
in the multi-graph bag set B, through which the subgraph
selection criterion Z(gy) can be properly defined. For two
bags, B; and B, if they have the same class labels, there is a
pairwise must-link constraint between them. If B; and B; have
different class labels, there is a cannot-link constraint between
them. To further take the data distributions in each bag into
consideration, we also add graph-level constraints to ensure
that the selected subgraphs can make graphs in each negative



bag close to each other and make graphs in each positive bag
be maximally separated. In summary, a good subgraph should
satisfy the following constraints.

o Weighted Bag Must-Link: If there is a must-link be-
tween B; and Bj, their subgraph feature vectors x? and
xf should be close to each other. In a MGC scenario,
each bag B; is associated with a weight w?. For each pair
of bags with the same class label, the selected subgraph
should ensure that bags with similar weights (analogous
to importance) have a high similarity.

o Weighted Bag Cannot-Link: If there is a cannot-link
between B; and Bj;, the underlying subgraph feature
vectors x;” and x should be distinct from each other.
For each pair of bags in different classes, the smaller
the weight difference between the two bags, the more
impact the constraint will have for selecting subgraph to
represent the distinctness between them.

o Weighted Graph Must-Link: If there is a must-link
between G; and G}, their subgraph feature vectors x¢
and Xj should be close to each other. In bMGC, only
graphs in negative bags are known to have genuine labels,
in which the feature representations of the two weighted
graphs should have low diversity.

o Weighted Graph Separability: If genuine labels of
graphs G; and G; are unknown the corresponding sub-
graph feature vectors x$’ and xj should be different. It
is similar to the Pr1n01pa1 Component Analysis (PCA)’s
assumption [47], which aims to find the component with
largest possible variance. For graphs in positive bags, at
least one is positive, but actually we do not know which
one or more are positive. Thus, a reasonable solution is
that we make the weighted graphs in a positive bag have
more diversity. Similar assumption has also been used
in [9] to handle unlabeled graphs in a semi-supervised
learning setting.

In summary, the bag must-link and bag cannot-link con-
straints are applied to bags with the same label and different
labels, respectively. While the graph must-link and graph
separability constraints are only applied to graphs in negative
bags and graphs in positive bags, respectively.

By imposing constraints at both bag and graph levels,
our evaluation criterion can effectively capture informative
subgraphs underlying the multi-graph classification. Based on
the above considerations, we derive a criterion Z(gy) for
measuring the informativeness of a subgraph gy as follows:

1
Z(gx) =51 Z (DywPxE — D, w xf)z
viy;=—1
1
2B (Dg,wix]’ = Dy, wixj)?
e 2
1
50 Z (ngwiGXiG - ,DgrcmGXJC‘;)2
VG;,G eB-
1
t55 2 (Dyulxf - Dyufxf)
VG;,GeBT

where wlB, wf, wl , and w% are the weights for B;, Bj,

Gi, and Gj, respectively. Dy, = diag(d(gx)) is a diago-

nal matrix indicating which subgraph feature gj is selected
from S, to represent the bags or graphs, d(gx); = I(g; =
9k, 9i € Sg) with I(-) equaling to 1 if the condition inside
is true and O otherwise. A = Z%%:_l 1, B = Zy%_l
C=>¢ces Lad D=5 o g 1assess the total
pairwise sets of constraints in the bag cannot-link, bag must-
link, graph must-link and graph separability.

We define two matrices for bag-level and graph-level con-
straints, denoted by Mp = [M7]P*? and MG = [M]9%, re-
spectively, where MB = {I/A Yiy; = —1/B,yy; = 1},
and M = {-1/C, VG“G € B 1/D VG“G e Bt ).

As a result Eq. (2) can be rewritten as

Z(gr) =Z(g1)® + Z(g1)¢

ffZDwx DwJX)MZB
YiYj (3)
1
"’5 Z (ngwiGXiG —ngwfxf)2M§
Gi,Gj
For bag-level evaluation Z(g;)”, we have
1
Z(gk)B:fZ(D wPx? - D, w

2
YilYj

= tr(’DT XpWg(Dp — MB)W;X;D%>
(D, XBWBLBW;XB Dy,)

= tr
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where Lp = Dp — Mp is a Laplacian matrix, where
Dp = diag(d?P) is a diagonal matrix with d? = > ME
Qp = WBLBW]; , where Wp is a also a diagonal matrix,
with W2 = wP denoting the weight of the ith bag B;.
Xp = [xP,....x]] = [£B,-- , fB]T € {0,1}**P, where

ﬁ is an indicator vector of subgraph g with respect to all

the bags in B. Specifically, =[5 ..,f;,i 1T e{0,1}7,
where fB 1iff 3G € B; /\G O gk and f * = 0 otherwise.

Slnnlarly, the graph-level evaluation Z (gk) can be rewrit-
ten in the form of matrix. Taking both the bag-level and graph-
level evaluation functions together, we have

Z(gr) = Z(gx)” + Z(gn)°
=(F) " Qsfy + (5
T

Ik Qfgk
where Qg = WeLoW/, with Wg a diagonal matrix,
ie, WS = w¢, denoting the weight of the ith graph G;.
Ls = Dg — Mg is known as a Laplacian matrix, where
D¢ = diag(d$) is a diagonal matrix with d$ = > Mg
Meanwhile, fG is an indicator Vector of which subgraph gy

with respect to all graphs in G, and = f - fgi"]
{0,1}7, where fG =1iff g C G, and fG = O otherwise.
According to Eq (5), it is

B
f%::lf?]’ Q::L?BQg] (©6)

where f,, is an indicator vector of subgraph g, with respect
to the data combined with bag matrix Xp and graph matrix

) QcfS (5)



Xg. By denoting the function as h(gx, Q) = ngQf_qk, the
problem of maximizing Z(gi) in Eq. (1) is equivalent to
finding a subgraph that can maximize the h(gy,Q), which
can be represented as:

g+ = max h(gx, Q) @)

gLESy

Definition 6. (bScore) Given two matrices Mp and Mg
embedding the label information, respectively, and two cor-
responding weight matrices W and W, the informativeness
score of a subgraph gy, is defined in Eq. (8).

r(gk) = h(gr, Q) = £, Qf 4. (8)

In the above definition, a larger bScore r(gy) value rep-
resents a stronger dependency between this subgraph feature
and the corresponding labels. In other words, good subgraph
features should have high bScore values. To find the optimal
subgraph in each iteration, we can calculate bScore values of
all subgraphs in Sy, and then select the topmost subgraph with
the highest r(gy) value.

B. Upper Bound of bScore

Before we introduce detailed algorithm to mine the optimal
subgraph in each iteration, we derive a bScore upper bound to
help prune the subgraph search space. A convenient method
to compute a upper bound of bScore value is given as follows:

Theorem 1. Given two subgraphs gy, gr' € Sy g}, is a
supergraph of gy, (i.e. g}, 2 gx). The bScore value g, (r(g},))
is bounded by 7 (g), i.e., 7(g;,) < 7(gr):

#(gk) = f,, Qf g 9)

where Q = [OQBQO}, in which QB and QG are defined as
G
3B _ B AG _ G
i = maz(0,Q;7) and QF; = maz(0, Q7).
For any g}, 2 gk, 7(g;) < 7(gx). The corresponding proof
is given in Appendix A.

C. Mining Bag Constrained Subgraph

For subgraph selection, we employ a depth-first search
(DFS) based algorithm gSpan [34] to enumerate subgraphs.
The key idea of gSpan is that each subgraph has a unique
DFS code, which is defined by a lexicographic order of the
discovery time during the search process. Two subgraphs are
isomorphism iff they have the same minimum DFS code. By
employing a depth-first search strategy on the DFS code tree
(where each node is a subgraph), gSpan can enumerate all
frequent subgraphs efficiently.

Algorithm 1 reports the proposed bag constrained subgraph
exploration process, which starts with an empty optimal sub-
graph set and continuously enumerates subgraphs by recursive-
ly visiting the DFS code tree. If a subgraph g, is not a frequent
subgraph, both g; and its subtree will be pruned (lines 3-5), in
which freq(gx) denotes the percentage of graphs containing
the subgraph g in graph dataset G; otherwise, we calculate
gr’s bScore value 7(gi) (line 6). If r(gy) is larger than the

Algorithm 1 BSE: Bag Constrained Subgraph Exploration
Input: G: A graph dataset;
man_sup: The threshold of the frequent subgraph;
Output: g;: The optimal subgraph;
1: while Recursively visit the DFS Code Tree in gSpan do

2:  gx < current visited subgraph in DFS Code Tree of §;
3:if freq(gr) < min_sup then

4: continue;

5. end if

6:  Compute the bScore r(gy) for subgraph gx;

7. if g¢ == NULL or r(gx) > r(g:) then

8: gt < gk,

9: end if

10:  if #(gx) > r(g¢) then

11: Depth-first search the subtree rooted from node gx;
12:  end if

13: end while
14: return g;;

current optimal score 7(g;) or it is the first step (i.e. the optimal
subgraph set is empty), we regard g; as the current optimal
subgraph g; (lines 7-9). After that, the upper bound pruning
module will check if #(gy) is less than r(g;), if so, it means
that the bScore value of any supergraph g;. of gx. (i.e. g, 2 gx)
will not be greater than r(g;). Thus, we can safely prune
subtrees rooted from g, in the search space. If 7*(gy) is indeed
greater than the bScore of g;, we cannot prune this space since
there might exist a supergraph g;, O g that 7(g;.) > 7(g¢), so
the depth-first search will continue by following the children
of gi (lines 10-12), until the frequent subgraph mining process
is completed.

VI. bMGC

The detailed procedures of bMGC are reported in Algo-
rithm 2, which iteratively expands the candidate graph set
to exact informative subgraphs, then explores the optimal
subgraphs based on bScore. After m iterations, bMGC boosts
the m selected weak classifiers to obtain the final classification
model.
bMGC Algorithm: In Algorithm 2, bMGC differentiates and
considers graph in three sets: graphs in positive bags G,
graphs in negative bags G, and graphs in both positive and
negative bags G. The benefit of this process that considering
positive and negative bags separately will increase the can-
didate graph set for exploring subgraphs. By doing so, the
subgraph space becomes more dense, through which a good
subgraph can be discovered.

The “while” loop in Algorithm 2 represents the boosting
process of bMGC. In each iteration, the subgraph mining is
carried out on three graph sets as shown from lines 7 to 9. The
current optimal subgraph g; is the one with the highest bScore
with respect to the subgraph discovered from each individual
graph sets (line 10). In bMGC, the subgraph g; is directly
used as a weak bag classifier HZ or a weak graph classifier
HE, where HE(B;) = 1 iff (z7")% =1, and HP (B;) = —1,
otherwise. The same classification method is used in graph
based subgraph classifier HtG . Accordingly, the steps from
lines 11 to 20 use the error rates of the weak classifiers to
updated the parameters of the boosting framework.



Algorithm 2 bMGC: Boosting for Multi-Graph Classification
Input:
BB: Multi-graph bag set; G: Graph dataset in 5;
m: The number of iterations;
min_sup: The threshold of the frequent sungraph;
: Initialize Vw? € w? : wP = 1; Vol e w& :w& =1, ¢t =0;
/I Training Phase:
: {G",G ™} < Graphs in B* and B~, respectively;
: {p.a,q"} + #of bags € B,#of graphs € G,G";
: while ¢ < m do
t—t+1;
wP — wP/3P  wPB, w e wC/ T wf
g¢ < BSE(G, min_sup); //Algorithm 1
99" « BSE(G*, min_sup); //Algorithm 1
g¢ < BSE(G™,min_sup); //Algorithm 1
gt < The subgraph with highest bScore (g7, g7 +, g
// Error Calculation:
11: &P « Calculate the error of H{ corresponding to g; on B;
12:  ifef > 1/2 then
13: HE « —HE, ef 1 -¢P;
14:  end if
15 ef < Calculate the error of H{ corresponding to g; on G~ ;
16:  if e > 1/2 then
17: HE — —HE, ef —1—-€f ;
18:  end if
19: BP «— (1—ef)/els
200 BF —ef J(1—ef), ﬁG+ «— 1/(1 4+ \/2Ingt/m);
// Increase weight for incorrectly classified bag:
2 wh e wP(pB) (P B#B0) yp, ¢ B,
// Decrease weight for incorrectly classified graph in B :
2wl WSty (HE©E#eEn) ya; e gt
// Increase weight for incorrectly classified graph in 57 :
2wl e wf (8 )T EnEEn) ya, e g
24: end while
/I Testing Phase:
250y <= sign( 37, B HY (B))

—_

O XN RRN

._
4

Updating bag and graph weights: To obtain the ¢ + 1th
optimal subgraph g;+1, we must update the weights of bags
and graphs using the tth optimal subgraph g;. The error £

(line 11) on a bag set B can be defined as follows:

v wPI(HP(B)) # o(By))

el => —s (10)
i=0 =1 wy
where ¢(B;) returns the label for the ith bag and I(-) is the

indicator function. Similarly, The error 5tG ~ (line 15) on a

negative graph set can be obtained. Note that ¢ and th -
are required to be smaller than 1/2. If not, the underlying
classifier is worse than random hypothesis, and then we should
use —HE and —HE to replace the current bag- and graph-
level classifiers, respectively. As a result, the underlying errors
on bag set and negative graph set become 1—¢f and 1 —¢¢
respectively (lines 12-14 and 16-18).

According to the specific characteristics of bags and graphs,
we employ two different weighting strategies. For bags, they
are the target of the classification objective and their genuine
labels are given. Therefore, if a bag is misclassified by the
current subgraph g; classifier HZ, the bag weight is increased
by using the weight coefficient factor 32 (line 19) in order to
find more informative subgraph in the next iteration to deal

with those incorrectly predicted bags (line 21). This bag-level
weighting mechanism is similar to the AdaBoost algorithm
[25]. At individual graph level, because we propagate bag
labels to graphs at the very beginning of the algorithm, some
graphs in positive bags have been assigned with wrong labels.
Therefore, if a graph in positive bags is misclassified (i.e.
HE(G,) # c(Gy)), in the next iteration we decrease its
weight to reduce its effect through multiplying its weight by
(BG+)I(H?(GJ)¢C(G1)) € (0,1], where BY" is the underlying
weight coefficient factor for positive graph (line 20). Thus
in the next round the misclassified graphs in positive bags
will bring less impact on the learning process than the current
iteration (line 22). The graphs with large training weights will
help the learning algorithm find better subgraphs. When tack-
ling graphs in negative bags, the weight updating mechanism
is the same with bags (line 23). This graph-level weighting
mechanism is similar to the TrAdaBoost algorithm [48].

In the test phase, the test bag By will be tested using a
weighted classifier sign(>"," | B2 HE (By)) by boosting all
the m weak classifiers ’Hf,t =1,2,--- ,m to obtain its class
label y;. (line 25).

The key technical advantage of the bMGC process can be
summarized as follows:

« Bag constrained subgraph mining: the two-level weight
updating mechanism seamlessly integrates the unique
bag- and graph-level constraints into a repetitive and
progressive mining process. It helps explore informative
subgraphs to represent multi-graph bags.

o Implicit feature representation: bMGC selects a sub-
graph to directly form a weak classifier in each iteration.
This can efficiently tackle the challenge that no feature
vectors are available for MGC.

o Generic boosting framework for multi-graph clas-
sification: the proposed framework solves multi-graph
classification by exploring informative subgraphs as weak
classifiers to form a strong boosting model. The frame-
work can be easily adjusted to accommodate other types
of graph or bag classifiers for multi-graph classification.

VII. EXPERIMENTS
A. DataSets

1) DBLP Multi-graph Dataset: The DBLP dataset consists
of bibliography data in computer science. We download a D-
BLP version called “DBLP-Citation-network V5~ from Arnet-
miner (http://arnetminer.org/citation). Each record in DBLP is
associated with a number of attributes including title, abstract,
author names, year, venue, and reference names etc. [49]. To
build multi-graph bags, we select papers published in Artificial
Intelligence (AI), Computer Vision (CV), and Database (DB)
fields to form multi-graph classification tasks. The goal is to
predict which field a paper belongs to Al or CV, Al or DB,
by using abstracts of each paper and the abstracts of its refer-
ences. For each abstract, a fuzzy cognitive map (E-FCM) [50]
based approach is used to extract a number of keywords and
correlations between keywords. In our experiments, we use
keywords as nodes and correlations between two keywords as
edge weight values to build a graph. A threshold (0.005) is



TABLE I
DBLP DATASET USED IN EXPERIMENTS

Categories Selected Conferences # of Papers # of Abstracts
AL TICALAAALNIPS,UALCOLT, 300 4436
ACL,KR,ICML,ECML,IJICNN
cv ICCV, CVPR, IT:CC\./, ICPR, ICIP 300 4206
ACM Multimedia, ICME
DB SIGMOD, PODS, VLDB, ICDE, CIKM 300 4627

DASFAA, ICDT, SSD, DASFAA,

used to remove edges whose correlation values are less than
the threshold. At the last step, the graph is converted into an
unweighted graph by setting the weight values of all remaining
edges as “1”. The similar graph representation was also used
in previous works [51], [52], [53], [54].

A conceptual view of building a multi-graph bag is shown
in Figure 1. Notice that Al and CV, Al and DB are overlapped
in many aspects, such as machine learning, optimization and
data mining, which make them challenging MGC tasks. The
original DBLP dataset contains a significant number of papers
without references. We choose 2400 papers, each of which
containing 1 to 10 references, to form two MGC tasks:
DBLP(AI vs. CV) with positive (Al) and negative (CV) bags,
and DBLP(AI vs. DB) with positive (Al) and negative (DB)
bags. The last two columns in Table I report the number of
bags (papers) and graphs (abstracts) in each category.

2) NCI Chemical Compound Multi-graph Dataset: The
NCI cancer screening database is commonly used as
the benchmark for graph classification. We download t-
wo NCI datasets with ID 1 and 109 from PubChem
(http://pubchem.ncbi.nlm.nih.gov). Each NCI dataset belongs
to a bioassay task for anticancer activity prediction, where
each chemical compound is represented as a graph, with atoms
representing nodes and bonds denoting edges. A chemical
compound is positive if it is active against the corresponding
cancer, or negative otherwise. The original NCI datasets are
highly imbalanced, with about 5% positive graphs, which is
reasonable to generate our multi-graph bags. To build multi-
graph bags, we randomly select 1 to 4 positive graphs and
several negative graphs to form a positive bag, and randomly
select a number of negative graphs to form a negative bag. To
reflect different specific circumstances of real-world problems,
we design two NCI multi-graph datasets. One is NCI(1), which
is generated from NCI dataset with ID 1, and the other is
NCI(109), which is generated from NCI dataset with ID 109.
The number of graphs in each bag may vary from 1-10.

Table II summarizes the NCI(1) and NCI(109) datasets used
in our experiments, where columns 4-5 show the numbers
of positive and negative graphs in all multi-graph bags. In
the NCI multi-graph classification, a bag of graphs can be
regarded as a molecular group. Investigating the activity of a
molecular group is meaningful in the bio-pharmaceutical field.
Because labeling individual compounds is expensive and time-
consuming, it is desirable to design effective methods (bMGC)
to label the bag (molecular group).

TABLE II
NCI CANCER SCREEN DATASETS: NCI(1) AND NCI(109).

Dataset ID  # of Bag # of Positive Graphs # of Negative Graphs

NCI() 1 800
NCI(109) 109 800

1593
1600

6614
6998

B. Baseline Methods

To demonstrate the effectiveness of our multi-graph classifi-
cation framework, we compare the proposed bMGC with both
supervised and unsupervised bag constrained subgraph selec-
tion methods in the traditional multi-instance (MI) learning
framework, which are summarized as follows:

o Information gain based approach (IG+MI): In these
methods, a set of frequent subgraph from graphs in all
bags are first mined by gSpan [34]. A supervised feature
selection based on Information Gain (IG) is used to select
m subgraphs with the highest IG scores. After obtain-
ing the m subgraphs, IG based multi-instance approach
(IG+MI) utilizes the selected subgraphs to represent
graphs in bags, so a bag of graphs are converted into a bag
of instances, through which the existing multi-instance
learning methods can be applied for MGC learning.

o Top-k based approach (Topk+MI): We also compare
with the unsupervised feature selection methods, which
use frequency as evaluation criterion for subgraph selec-
tion based on gSpan [34]. The Top-k subgraphs with the
highest frequency from graphs in bags are selected. Top-
k based multi-instance approach (Topk+MI) transforms
each bag of graphs into a bag of instances for learning.

To compare our multi-graph classification framework b-
MGC'’s performance with multi-instance learning, two types
of benchmark multi-instance classifiers, including boosting
based (MIBoost and MIOptimallBall) and four different kinds
of general approaches (CitationKNN, MIRI, MIEMDD, and
MISMO), are used in our experiment. In the following, C-
itationKNN denotes a lazy learning based method, MIRI is
an improvement of tree learning based approach, MIEMDD
is an improved diverse density [26] based way, and MISMO
is an implementation of support vector machine for MIL.
The baseline MIL method used in our experiments and their
abbreviations are listed as follows.

1) Boosting for MI Learning Approaches:

o MIBoost is an algorithm [24] inspired by AdaBoost that
builds a series of weak classifiers (Decision Stump is used
in our experiment) using a single instance learner based
on appropriately reweighted versions of the input data.

« MIOptimalBall treats the weak hypotheses for AdaBoost
as balls [28] and the classification is based on the distance
to a reference point. More specifically, this method at-
tempts to find a ball in instance space so that all instances
of all negative bags are outside the ball and at least one
instance of each positive bag is inside the ball.

2) General MI Learning Approaches:

« CitationKNN, a nearest-neighbor-based approach, mea-
sures the distance between bags using Hausdorff dis-



TABLE III
PAIRWISE ¢-TEST RESULT OF bMGC vs. BOOSTING BASED MI LEARNING METHODS ON DBLP (a) AND NCI (b) DATASETS. A, B, AND C DENOTE bMGC,
IG+MI, AND TOPK+MI, RESPECTIVELY. H1 AND Ho DENOTE MIBOOST AND MIOPTIMALBALL, RESPECTIVELY.

(a) t-test on DBLP dataset

(b) t-test on NCI dataset

DBLP(AI vs CV) DBLP(AI vs DB) NCI(1) NCI(109)

H A-B A-C B-C H A-B A-C B-C H A-B A-C B-C H A-B A-C B-C
Hi1 1.65E-04 7.83E-05 4.35E-01 || H1 9.97E-05 6.54E-04 6.53E-06 Hi 1.87E-03 1.03E-07 3.85E-10 || H1 5.79E-03 8.21E-09 1.53E-08
Ho 1.73E-08 1.74E-12 5.21E-13 || Ho 2.15E-11 2.39E-09 6.02E-01 Ho 1.84E-12 8.63E-12 2.08E-01 Ho 9.38E-13  1.94E-11 6.80E-02

(A) bMGC vs M learning M1Boost (B) bMGC vsMI learning MIOptimalBall (A) bMGC vs M learning M1 Boost (B) bMGC vsMI learning MIOptimalBall
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Fig. 4. Accuracy on DBLP(AI vs. CV) by using proposed bMGC and

boosting based MI learning methods: (A) MIBoost and (B) MIOptimalBall.
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Fig. 5. Accuracy on DBLP(AI vs. DB) by using proposed bMGC and
boosting based MI learning methods: (A) MIBoost and (B) MIOptimalBall.

tance [16]. The nearest neighbor example to be classified
is the one nearest to both references and citers.

« MIEMDD is the expectation-maximization version of
diverse density (DD) with the most-likely-cause mod-
el [26], which is used to find the most likely target points
based on the DD model that has been learned [27].

o« MIRI is a multi-instance classifier that utilizes partial
MITI trees [17] with a single positive leaf to learn and
represent rules. MIRI [18] is a simple modification to
MITI to yield a rule learner for MIL.

o« MISMO constructs a support vector machine classifier
for multi-instance data [21], where the standard sequential
minimization algorithm is used for support vector learn-
ing in conjunction with an MI kernel as described in [55].

C. Experimental Settings

In our experiments, all reported results are based on 10
times 10-fold cross-validation with classification accuracy
being used as the performance metric. Unless specified other-
wise, the default parameter settings are as follows: minimum
support threshold min_sup = 4% for DBLP datasets and
min_sup = 15% for NCI datasets. All the above classifiers for
traditional multi-instance learning utilize the versions provided

100
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100

20 40 20
# of iterations/subgraphs # of iterations/subgraphs

Fig. 6. Accuracy on NCI(1) by using proposed bMGC and boosting based
MI learning methods: (A) MIBoost and (B) MIOptimalBall.
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Fig. 7. Accuracy on NCI(109) by using proposed bMGC and boosting based
MI learning methods: (A) MIBoost and (B) MIOptimalBall.

in WEKA machine learning workbench [56], with default
parameter settings. Besides, all experiments are conducted on
a Linux cluster computing node with an Interl(R) Xeon(R)
@3.33GHZ CPU and 3GB memory.

D. Accuracy on Multi-Graph Classification

In this section, we report experimental results on DBLP
and NCI datasets, by comparing the performance of bMGC
with two types of multi-instance learning methods, including
boosting based and general approaches under the supervised
and unsupervised feature selection methods, respectively. We
compare all methods in the setting that they have the same
number of subgraphs. For our boosting based bMGC, one
subgraph is selected in each iteration until the total number
reaches m, whereas for those baseline methods, a number of
m subgraphs are selected in one time. As expected, bMGC
clearly outperforms existing traditional MIL methods on both
DBLP and NCI multi-graph datasets with different number of
subgraphs (varying from 1 to 100).

1) bMGC vs. Boosting for MI Learning Approaches:
We compare bMGC to MIBoost and MIOptimalBall, where
the two boosting based baselines are two variants of the
well known AdaBoost algorithm [25] with the objective of
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Fig. 11. Accuracy on NCI(109) by using bMGC and generic MI learning methods: (A) CitationKNN; (B) MIRI; (C) MIEMDD, and (D) MISMO.

TABLE IV
PAIRWISE ¢-TEST RESULT OF bMGC vs. GENERAL MI LEARNING METHODS ON DBLP (a) AND NCI (b) DATASETS. A, B, AND C DENOTE bMGC,
IG+MI, AND TOPK+MI, RESPECTIVELY. H1, Ho, H3 and H4 DENOTE CITATIONKNN, MIRI, MIEMDD AND MISMO, RESPECTIVELY.

(a) t-test on DBLP dataset (b) t-test on NCI dataset
DBLP(AI vs CV) DBLP(AI vs DB) NCI(1) NCI(109)
H A-B A-C B-C H A-B A-C B-C H A-B A-C B-C H A-B A-C B-C

Hy 5.73E-08 9.41E-07 2.10E-04 || H1 4.71E-10 6.76E-03 3.31E-11 Hi 296E-11 1.59E-07 1.44E-01 || H, 2.11E-13 2.95E-07 7.03E-02
Ho 1.97E-11 2.53E-15 4.76E-01 || Ho 1.12E-03 2.24E-09 3.63E-03 Ho 4.68E-05 3.45E-11 4.99E-12 || Ho 3.52E-02 3.90E-10 3.10E-11
Hs 3.95E-12 3.04E-15 2.66E-01 || H3 297E-11 4.60E-16 5.08E-03 Hs 4.42E-13 5.08E-12 1.19E-02 || H3 8.64E-16 1.66E-12 2.06E-04
H4 2.01E-02 3.99E-07 1.18E-01 || H4 3.64E-03 2.38E-03 1.25E-01 Ha 1.49E-02 2.79E-07 1.03E-07 || H4 9.54E-04 5.21E-06 7.87E-04

minimizing the exponential loss for bags of instances. Like for MIBoost, Ball for MIOptimalBall) is applied to generate

other boosting schemes, these two algorithms greedily fit an one component of the underlying additive model.
additive model to the training data. In each iteration of the
sequential boosting process, a “weak” learner (Decision Stump

Results in Figures 4(A) to 7(A) show that both bMGC and
MIBoost can achieve a high accuracy on DBLP (Al vs. CV,



Al vs. DB) and NCI (1, 109) datasets. Meanwhile, bMGC
consistently outperforms MIBoost when the number of select-
ed subgraphs is 20 or more. On the other hand, comparing
our bMGC with MIOptimallBall, significant performance gain
can be observed in Figures 4(B) to 7(B) on both datasets. The
superior performance of bMGC is due to the optimal subgraph
mining strategy combined with AdaBoost and TrAdaBoost
algorithms. Further more, it seems that MIOptimallBall fails
to adapt to the feature space composed of subgraphs.

Our results also show that bMGC has a very low accuracy in
early iterations, and its accuracy may be worse than baselines
such as MIBoost in some cases. This is mainly because that
the boosting model of bMGC relies on weak classifiers to
achieve better performance. As a result, when the number
of weak classifiers is small (normally happens at the early
stage of the boosting process), the accuracy of bMGC is
noticeably low. In order to show that this situation will not
affect the performance of bMGC, we summarize the pairwise
t-test results (with confidence level a = 0.05) of bMGC and
boosting MI learning methods on both datasets in Table III.
Each entry (value) denotes the p-value for a t-test between
two algorithms, and a p-value less than o = 0.05 indicates
that the difference is statistically significant. From Table III,
bMGC statistically outperforms boosting based MI learning
baselines in all cases.

2) bMGC vs. General MI Learning Approaches: We carry
out another experimental comparison to demonstrate the per-
formance of bMGC, with other four different types of general
MI learning approaches (CitationKNN, MIRI, MIEMDD and
MISMO). From the results in Figures 8(C) to 11(C), MIEMDD
shows ineffective performance for multi-graph classification,
and increasing number of subgraphs may not obtain any
additional accuracy gain.

Although the performance of CitationKNN, MIRI, and
MISMO based methods improve as the number of subgraphs
increases, they still cannot reach the best performance achieved
by bMGC except for IG+MIRI on NCI(109) dataset as shown
in Figure 11(B). It is also worth mentioning that bMGC may
achieve comparable performances over other baselines in some
cases, such as Topk+CitationKNN (Figure 9(A)) and MISMO
(Figures 8(D) and 9(D)) on DBLP dataset, IG+MISMO (Fig-
ures 10(D) and 11(D)) on NCI dataset.

To furthermore validate the statistical performance of b-
MGC, in Table IV, we also report the pairwise t-test to validate
the statistical significance between two methods. From Table
IV, bMGC statistically outperforms general MI learning base-
lines in all cases. This is mainly attributed to the effectiveness
of the proposed bag constrained subgraph exploration criterion
and the specially designed boosting strategy, which weights
a set of single weak classifiers under our specially designed
weighting mechanism.

E. Effectiveness of Subgraph Candidate Generation in bMGC

As discussed above, one main component of bMGC is the
utilization of generating subgraph candidates (as described
in Section IV). More specifically, in addition to aggregating
graphs in all bags G, we also aggregate (1) graphs in all
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Fig. 12. Accuracy comparisons by using bMGC and bMGC-G on DBLP and
NCI datasets, respectively.

positive bags GT, and (2) graphs in all negative bags G~.
As a result, a set of diverse subgraph candidate patterns can
be discovered for validation. In order to further illustrate the
effectiveness of the proposed strategy for subgraph candidate
generation and validate whether using the two extra graph sets
G* and G~ can indeed improve the performance of bMGC,
we compare bMGC with an approach which only uses the
G to generate the subgraphs for learning, namely bMGC-
G. In Figures 12(A) and 12(B), we report the accuracy with
respect to different iterations on DBLP(AI vs. CV) and NCI(1)
datasets, respectively. The results show that the classification
accuracy of bMGC using all three graph sets is normally 3%-
5% higher than bMGC-G which only uses the G. This is due to
the fact that the separation of graphs into Gt and G~ can help
find some unique subgraph patterns, which do not appear in the
whole graph set G. Indeed, because the subgraph exploration
essentially relies on a threshold (i.e. the support value) to
discover frequent subgraphs. When aggregating all graphs in
one set G, it is possible that a good subgraph in G may not
be discovered from G, simply because the frequency of the
subgraph is below the given threshold in G. The separation
of graphs into three sets G, G, and G will therefore help
discover a rich set of subgraph candidates, through which
bMGC can fine the ones with the highest informative scores.

F. Convergence Study

Figure 13 reports the error rate curves of bMGC in terms
of the number of iterations on four multi-graph datasets. The
curves are quite smooth, but converge well, which is consistent
with the theoretical analysis and the existing observations from
Adaboost [25]. The error rates of bMGC, after the algorithm
reaches the convergence, are higher on DBLP datasets than on
the NCI datasets. Overall, bBMGC on all four datasets receives
a fast convergence speed.

For NCI datasets, the convergence is reached within 10
iterations, whereas for DBLP datasets, bMGC’s convergence
is reached after 20 or more iterations. Notice that each weak
classifier in bMGC denotes one subgraph, this indicates that
more subgraph features are needed in order to differentiate
the object classes in the DBLP dataset. Indeed, because
DBLP tasks involve some overlapping domains (such as Al
vs. CV), using more subgraph features (which correspond to
keywords and their correlations) can constantly help improve
the classification accuracy. For NCI graphs, the positive vs.
negative graphs are mostly separated by some unique subgraph
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features. So as long as such unique patterns are discovered,
the algorithm can quickly converge.

G. Effectiveness Results

To evaluate the effectiveness of the pruning module of
bMGC in reducing the search space (as described in Section
V-C), we compare bMGC with an approach which does not
have pruning module in the subgraph search space (denoted
by ubMGC). In our implementation, ubMGC first uses gSpan
to find a set of frequent subgraphs, and then selects the
optimal subgraph by using the same criteria as bMGC in
each iteration. In Figures 14(A) and 14(B), we report the
average CPU runtime performance with respect to different
minimum support values min_sup (the number of selected
subgraphs is fixed to 100) on DBLP(AI vs. CV) and NCI(1)
datasets, respectively. The results show that as the min_sup
values increase, the runtime of both pruning and unpruning
bMGC decrease, this is mainly because a larger min_sup
value will reduce the number of candidates for validation.
Accordingly, by incorporating the proposed pruning strategy,
bMGC can improve the runtime performance. The reason is
that the bScore upper bound of bMGC can effectively help
prune the subgraph search space without decreasing the quality
of classification.

VIII. DISCUSSION

In this paper, we focus on using subgraph based boosting
framework for multi-graph classification. Indeed, the idea
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Fig. 14. Average CPU runtime for bMGC vs unpruned ubMGC with different
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datasets, respectively.

of exploiting subgraphs for graph classification has been
studied in a number of existing works, including a recent
ensemble based semi-supervised graph stream classification
approach [9]. The core of the proposed bMGC approach
is to combine two types of boosting strategies: AdaBoost
[25] for bag-level boosting and TrAdaBoost [48] for graph-
level boosting, to integrate graph- and bag-level learning
for multi-graph classification. Boosting algorithms for graph
classification have already been studied in number of previous
works. For example, Kudo et al. [41] proposes an AdaBoost
based graph classification approach, which is the original and
the best known algorithm among many variants [42], [43],
[44]. Meanwhile, LPBoost [57], namely linear programming
Boosting, is another type of boosting algorithm for graph
classification. The proposed bMGC follows similar subgraph
search approaches as used in these existing works. For bMGC,
it uses gSpan algorithm [34] in each boosting iteration, togeth-
er with the proposed pruning strategy, to explore subgraphs.

The main complication of multi-graph classification is that
the genuine labels of graphs inside a positive bag are unknown.
To tackle uncertainty inside positive bags, bMGC takes the
bag constraints into consideration and explores subgraphs to
represent graphs with maximum diversity, as defined in Eq.
(2). This is similar to the way of handling unlabeled graphs
in an existing semi-supervised graph stream -classification
method [9]. In [9], an instance weighting mechanism has also
been proposed but is different from the weighting approach in
bMGC, where the weights are directly associated to the graphs
and bags. In addition, the weight updating strategy in [9] is
based on AdaBoost [25], which only considers labeled graphs.
In bMGC, we borrow the weighting strategy from TrAdaBoost
[48] to update the graph weighs in both labeled and unlabeled
graph sets. In summary, the idea in [9] provides inspirations
to motivate the proposed multi-graph classification design.

We believe that the proposed bMGC opens a new opportu-
nity to expand existing multi-instance learning to increasingly
popular graph applications. Although bMGC proposes to use
subgraph mining to tackle the MGC challenges, the principle
of combining graph and bag level constraints can be extended
to many other types of approaches to handle MGC problems.
For example, for kernel based methods, MGC problem can
be solved by two subtasks: (1) add multi-graph constraints
to traditional graph kernel, and (2) propose a new multi-
graph kernel framework. In addition, one can also impose
multi-graph constrains to graph embedding methods (e.g.
the one in [32]) to directly calculate the distance between
two graphs or between two graph bags. With the calculated
distances between graphs and between bags, standard learning
algorithms (including MIL algorithms) can be applied to solve
multi-graph classification tasks.

IX. CONCLUSION

In this paper, we investigated a novel Multi-Graph Classifi-
cation (MGC) problem, in which a number of graphs form
a bag, with each bag being labeled as either positive or
negative. Multi-graph representation can be used to represent
many real-world applications, where label is only available



for a bag of objects with complex structures. To build a
learning model for multi-graph classification, we proposed a
boosting based multi-graph classification framework (bMGC),
which employs dynamic weight adjustment, at both graph-
and bag-levels, to select one subgraph in each iteration to
form a set of weak graph classifiers. The multi-graph clas-
sification is achieved by using weighted combination of weak
graph classifiers. Experiments on two real-world multi-graph
classification tasks, including DBLP citation network and
NCI chemical compound classification, demonstrate that our
method is effective in finding informative subgraph, and its
accuracy is significantly better than baseline methods.

APPENDIX A
PROOF OF THE THEOREM 1

According to Eq. (8), for any g}, D g we have
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