
Optimal Enumeration: Efficient Top-k Tree Matching

Lijun Chang†, Xuemin Lin£†, Wenjie Zhang†, Jeffrey Xu Yu‡, Ying Zhang§, Lu Qin§

†University of New South Wales, Australia, {ljchang,lxue,zhangw}@cse.unsw.edu.au
£East China Normal University, China

‡The Chinese University of Hong Kong, China, yu@se.cuhk.edu.hk
§University of Technology, Sydney, Australia, {Ying.Zhang,Lu.Qin}@uts.edu.au

ABSTRACT

Driven by many real applications, graph pattern matching has at-

tracted a great deal of attention recently. Consider that a twig-

pattern matching may result in an extremely large number of matches

in a graph; this may not only confuse users by providing too many

results but also lead to high computational costs. In this paper,

we study the problem of top-k tree pattern matching; that is, given

a rooted tree T , compute its top-k matches in a directed graph G

based on the twig-pattern matching semantics. We firstly present

a novel and optimal enumeration paradigm based on the principle

of Lawler’s procedure. We show that our enumeration algorithm

runs in O(nT + log k) time in each round where nT is the number

of nodes in T . Considering that the time complexity to output a

match of T is O(nT) and nT ≥ log k in practice, our enumeration

technique is optimal. Moreover, the cost of generating top-1 match

of T in our algorithm is O(mR) where mR is the number of edges

in the transitive closure of a data graph G involving all relevant

nodes to T . O(mR) is also optimal in the worst case without pre-

knowledge of G. Consequently, our algorithm is optimal with the

running time O(mR + k(nT + log k)) in contrast to the time complex-

ity O(mR log k+knT (log k+dT)) of the existing technique where dT

is the maximal node degree in T . Secondly, a novel priority based

access technique is proposed, which greatly reduces the number of

edges accessed and results in a significant performance improve-

ment. Finally, we apply our techniques to the general form of top-k

graph pattern matching problem (i.e., query is a graph) to improve

the existing techniques. Comprehensive empirical studies demon-

strate that our techniques may improve the existing techniques by

orders of magnitude.

1. INTRODUCTION
In many real applications, including social networks, informa-

tion networks, collaboration networks, XML, web search, biology,

biochemistry, etc., data are often modeled as graphs. With the pro-

liferation of graph based applications, significant research efforts

have been made towards many fundamental problems in managing

and analysing graph data.

The problem of top-k tree pattern matching over graph data is

investigated in [21]. That is, given a rooted tree T and a directed

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 5
Copyright 2015 VLDB Endowment 2150-8097/15/01.

v4(S)
(c) score=2 (e) score=3

(a) Query

(d) score=2

(b) Patent Citation Graph

u1(C)
v1(C) v2(C) v3(C)

v7(S)v6(E)v5(E)v4(S)u3(E)u2(S)

v1(C) v2(C)v3(C)

v6(E)v4(S)v5(E)v7(S)v5(E)

Figure 1: Example

graph G, find the k mappings from T to G such that in each map-

ping, the nodes in T are mapped to the nodes in G with the same

labels, the edges in T are mapped to the shortest paths in G con-

necting the corresponding nodes, and the total lengths (scores) of

the mapped shortest paths are minimized. For example, a rooted

tree and a data graph are depicted in Figures 1(a) and 1(b), respec-

tively, where the node labels are displayed in brackets. Assuming

that each edge in the data graph takes the weight 1, Figures 1(c)

and 1(d) give the top-1 and top-2 matches of the query graph with

total scores 2 and 2, respectively, while there are totally 5 matches

and the largest score is 3 - for example, see the match in Figure 1(e)

where the shortest distance from v2 to v4 is 2 .

The problem of top-k tree pattern matching is motivated by twig-

pattern matching queries [32] over XML/Graph data where a twig

query is typically a rooted tree [18] which has two types of edges,

‘/’ and ‘//’, with the classical XML parent-child (‘/’) and ancestor-

descendant (‘//’) matching semantics [32], respectively. In the ex-

ample above, the data graph in Figure 1(b) is a tinny portion of a

citation graph1, where each node vi represents a patent and its la-

bel represents the discipline category to which the patent belongs.

The categories C, E, and S stand for Computer Science, Economy,

and Social Science, respectively. Each edge represents a citation

from one patent to another (e.g., (C, E) represents that a patent

in Computer Science is cited by a patent in Economy). Assume

that the two edges in the twig query in Figure 1(a) are of the ‘//’

type. Then, the twig query in Figure 1(a) is to find the triples of

patents (nodes) x, y, and z in the data graph with labels C, E, and

S, respectively, such that for each triple (x, y, z) of nodes, there is

a path from x to y and a path from x to z. Intuitively, the closer

the citation relationship, the higher the impact; for example, a di-

rect citation is preferred over an indirect citation. Thus, among all

the results of the twig query in Figure 1(a), the triple (x, y, z) of

nodes with the smallest total length of matched paths implies that

the combination of patents y and z gets the highest impact from

x. In the above example, the patent v1 has a higher impact on the

combination of patents v4 and v5 (i.e., the match in Figure 1(c))

than the impact of v2 on the combination of v4 and v6 (i.e., the

match in Figure 1(e)). Therefore, the top-k tree pattern matching

1http://www.nber.org/patents

can be used to identify the k results of a twig query with the high-

est preference/relevance among a possibly exponential number of

results. Another example is that to launch a new product, a com-

pany may need to assemble a professional team with the people at

different levels and having various designated skills. The goal is

to assemble such a team so that people can work well with each

other in the team. The top-k tree pattern matching can also serve

for this purpose against the data graph based on LinkedIn or Xing

(https://www.linkedin.com/, https://www.xing.com/). In

such applications, a query tree may have tens of nodes. Due to

space limits, we leave the details in the full paper [4].

Efficiently computing top-k tree pattern matches not only serves

for the purpose of strengthening the relevance/preference of twig-

pattern matching results but may also serve for the purpose of top-k

graph pattern matching where query is a general graph. As pre-

sented in [7], the techniques in [21] for computing top-k tree pat-

tern matches can be used as a key building block to retrieve the

top-k graph pattern matches by decomposing a query graph into a

set of spanning trees. Motivated by these, in the paper we study the

problem of efficient top-k tree pattern matching, namely kTPM.

Existing Approach. The authors in [21] present an efficient dy-

namic programming based algorithm DP-B for kTPM with distinct

node labels in a query T . It iteratively enumerates the top-k matches

starting from the top-1 match. To enumerate the top-i (i ≤ k) match

Mi of T from the top-(i− 1) match, DP-B runs in a pull-down fash-

ion to recursively compute Mi to avoid visiting every node in G.

With a priority queue of length (up to) k maintained at each node

of G for the efficiency purpose, at each iteration DP-B runs in time

O(d2
u + log k) for each node u in T , where du is the degree of u in T .

Thus, DP-B runs in time O(nT (dT + log k)) in each round of enu-

meration and runs in O(mR log k+knT (log k+dT)) total time, where

nT is the number of nodes in T , dT is the maximal node degree in T ,

and mR is the number of edges in the run-time graph that is a very

small portion of the transitive closure of a data graph G induced by

the edges in T (i.e., an edge (v1, v2) in the transitive closure of G is

included in the run-time graph if and only if T has an edge (u1, u2)

such that the labels of u1 and v1 are the same, and the labels of u2

and v2 are also the same).

Our Approach. We propose a novel enumeration strategy based

on the principle of Lawler’s procedure. To enumerate the top-i re-

sult from the top-(i − 1) result Mi−1, it can be shown that we only

need to replace one node v in Mi−1 with its “sibling” node in G to

generate a new candidate. Thus, there are totally at most nT new

candidates generated. Moreover, we can also show that in such nT

replacements, only one node needs to be replaced by its jth (j ≤ k)

“best” sibling where j is dynamically changed (thus, O(log k) time),

while each of the others only needs to be replaced by its “best” sib-

ling (thus, O(1) time). The best match (i.e., lowest score) among

these newly generated candidates and the candidates generated in

earlier rounds is the top-i match, which can be done in O(log k)

time. Therefore, our enumeration runs in O(nT + log k) time in-

stead of O(nT (log k + dT)) in [21]. Consequently, our algorithm

runs in O(mR + k(nT + log k)) time in comparison to O(mR log k +

knT (log k + dT)) in [21]. Our algorithm is optimal regarding the

worst case, considering that nT ≥ log k in practice.

Later in Section 3, we will show that it is immediate mR = θnT on

average, where θ is the average number of edges of the same type

in the transitive closure. Two edges, (u1, u2) and (v1, v2), belong to

the same type if and only if the labels of u1 and v1 are the same, and

the labels of u2 and v2 are also the same. Thus, the time complexity

of our algorithm is O(nT (θ+k)+k log k), while the algorithm DP-B

in [21] runs in time O(nT (θ log k+k log k+kdT)). Although θ can be

quadratic to the number of nodes in G in the worst case, it is small

in practice (e.g., in DBLP data with 1.18 million nodes, θ = 5900);

that is, our algorithm behaves linearly regarding nT .

[21] also proposes an approach DP-P to run DP-B with a prior-

ity order aiming at reducing the number of edges accessed in the

run-time graph such that DP-P always extends the partial match

with the smallest current score. In this paper, we also extend our

techniques by avoiding loading in all edges of a run-time graph.

We develop a tighter trigger than that in DP-P to delay a loading

of edges in a run-time graph. As a result, our second algorithm is

orders of magnitude faster than the techniques in [21].

Contributions. Our main contributions are summarized as follows.
• We propose a novel and optimal enumeration strategy that

leads to an optimal algorithm to compute kTPM in O(mR +

k(log k + nT)) time in contrast to the existing techniques in

[21] with O(mR log k + knT (log k + dT)) running time.

• We develop novel pruning techniques to reduce the number

of retrieved edges from a run-time graph (i.e., reduce mR) and

to compute top-k matches in a priority order, which signifi-

cantly speed up the computation.

• While being immediately applicable to obtaining the top-k

results of a twig query with unique node labels and ‘/’ seman-

tics, the above techniques can also be immediately extended

to support obtaining the top-k results of a general form of

twig queries, as well as to significantly improve the perfor-

mance of the techniques [7] for top-k graph pattern matching.

We conduct empirical studies on large real and synthetic graphs.

Extensive performance studies demonstrate that the proposed al-

gorithms significantly outperform the state-of-the-art algorithms in

[21] by several orders of magnitude.

Organization. The rest of the paper is organized as follows. A

brief overview of related work is given below. Section 2 provides

the problem definition. Section 3 presents our new enumeration

paradigm, while Section 4 presents our second algorithm aiming

to reduce the access of a run-time graph. Extensions of our tech-

niques are discussed in Section 5, followed by experimental results

in Section 6. Finally, a conclusion is given in Section 7. Proofs are

omitted due to space limits and can be found in the full version [4].

Related Work. Top-k query answering for relational data has been

extensively studied. The first fundamental work may be found in

[12], and a survey is presented in [25]. Various top-k queries have

also been investigated over spatial data, such as kNN [16], RkNN

[27], etc. Nevertheless, these techniques are not applicable to com-

puting top-k graph pattern matches [7, 21].

Computing various occurrences (or matches) of a structure q in

a large data graph G has recently drawn a great deal of attention. It

may be classified into three categories: 1) subgraph isomorphism,

2) pattern matching, and 3) graph simulation.

1. Subgraph Isomorphism. A subgraph isomorphism of q in G is

a one-to-one mapping function f from nodes of q to nodes of G,

which preserves the label information and the edge information;

that is, an edge in q is mapped to an edge in G [30, 31, 22]. Sub-

graph isomorphism is NP-complete, and the existing approaches

are based on a backtracking paradigm [31] combining with the

techniques of matching ordering, connectivity enforcement, and the

neighbourhood based compression [22, 30]. Similarity matching,

which finds all approximate occurrences of q in G with the num-

ber of possible missing edges bounded by a given threshold, has

been studied (e.g., [35]). All these techniques do not aim at ranked

queries (i.e., results generated do not follow any designated order);

thus, they are not applicable to the top-k pattern matching problems

by avoiding enumerating all results.

2. Pattern Matching. Subgraph isomorphism sometimes may be

too restrictive to identify patterns in many other applications [7,

13, 21, 36]. Pattern matching relaxes subgraph isomorphism by

mapping edges of q to paths in G. The problem of enumerating

all matches of a query graph has been studied regarding differ-

ent types of query graphs, including a tree [5, 20, 34], a directed

acyclic graph [5], and a general graph [6]. The problem of retriev-

ing graph pattern matches by restricting each matching path to be

within a given threshold is investigated in [36]. The problem of

twig-pattern matching over XML is studied in [3, 19]. Neverthe-

less, the above techniques are not applicable to top-k pattern match-

ing queries since 1) they do not generate results according to any

scoring function and/or 2) they only focus on the data graphs with

a tree form (e.g., XML data in [3, 19]). The most related works

are from [7, 21], where [21] studies the top-k tree pattern match-

ing and [7] studies top-k graph pattern matching. In this paper,

we study efficient top-k tree matching and extend our techniques to

top-k graph matching, and we will show that our techniques signif-

icantly improve the existing techniques in [7, 21].

3. Graph Simulation. Another structure matching is bounded graph

simulation [14]. In the model of bounded graph simulation, the re-

sult is a binary relation, R ⊆ Vq × VG where Vq and VG are the sets

of nodes of q and G, respectively. Finding the top-k data nodes v

in VG, for a designated query node u in Vq such that (u, v) ∈ R,

is studied in [15]. Nevertheless, due to inherently different prob-

lem natures, these techniques are inapplicable to our top-k pattern

matching problems.

Others. Generalizations of graph homomorphism [24] and graph

isomorphism [17] may be found in [13], which also map edges in

a graph to paths in another graph. Nevertheless, these are based on

the whole matching of two graphs rather than the occurrences of

one subgraph in another. Another formula of evaluating the top-k

twig query on a graph may be found in [29] which maps a rooted

tree to a steiner tree in data graph and ranks the results based on the

total weights of the resulted steiner trees; this is inherently differ-

ent from our top-k tree matching problem (NP-hard vs polynomial

time solvable). Finally, finding the top-k min-cost connected trees

over a data graph for keyword search, which is NP-hard [11], is in-

vestigated in [2, 11], and a survey can be found in [33]. However,

these techniques cannot be used to compute the top-k tree matches

defined in this paper since the problems are inherently different:

NP-hard vs polynomial time solvable.

Remark. Below are the relationships among the above queries. A

twig-pattern matching over XML in [3, 19] considers matches be-

tween two trees, while the subgraph isomorphism in [30, 31, 22]

considers a one-to-one mapping from the nodes and edges of a

query graph to the nodes and edges of a data graph. Meanwhile, a

pattern matching in [5, 6, 20, 34] considers matches from a tree or

a graph to a data graph by allowing edges in a query to be mapped

to paths in a graph.

2. TREE PATTERN MATCHING
In this paper, we focus on a node-labeled directed graph G =

(V, E, l) [18]; hereafter, a data graph always refers to a node-labeled

directed graph unless otherwise specified. Here, V is the set of

nodes, E is the set of edges, and l is a labeling function assigning

each node v (∈ V) a label l(v) (∈ Σ), where Σ is a set of alphabets.

We use (v, v′) to denote an edge from v to v′ and (v, v′) is referred

to as an incoming edge to v′ and an outgoing edge from v. VG and

EG denote the node set and the edge set of graph G, respectively. A

rooted tree [18] is a directed tree with only one node that does not

have incoming edges, namely the root, such that there is always a

directed path from the root to each leaf node. Figures 2(a) and 2(b)

illustrate a rooted tree and a general directed graph, respectively,

where node labels are demonstrated in the brackets.

Definition 2.1: [Tree Pattern Matching] Given a rooted tree T

Notation Description

T/G/GR a query tree / graph / run-time graph

nT /nR/mR #nodes in T / #nodes in GR / #edges in GR

dT /dR maximum node degree in T / in GR

u ∈ T/v ∈ G a node in T / in G

l(u)/l(v) Label of u / label of v

δmin(v, v′) the shortest distance from v to v′ in G

v.children the set of all children of v in GR

v.childrenα the set of children with label α of v in GR

M a match of T in G

Tu subtree of T rooted at u

q(v) the node in T that is mapped to v in a match

bs(v) the lowest score of a match of Tq(v) containing v

Lv,α,Hv,α data structures to maintain nodes in v.childrenα

Table 1: Frequently used notations
and a data graph G, a tree pattern matching f is a mapping from

VT to VG such that 1) f preserves the label information (i.e., ∀u ∈

VT , l(u) = l(f (u))); 2) f preserves the structure information (i.e.,

∀(u, u′) ∈ ET , there is a directed path from f (u) to f (u′) in G). �

In a matching f , each edge (u, u′) in T is mapped to a path from

f (u) to f (u′) in G. Note that there could be many paths from f (u)

to f (u′) and we use the length of shortest paths to characterize the

relevance between T and the match Mf = { f (u) | u ∈ VT } of T in G.

Definition 2.2:[Penalty Score] Given a tree patten match Mf =

{ f (u) | u ∈ VT } of T in a graph G, we compute its penalty score

S (Mf) as,

S (Mf) =
∑

(u,u′)∈ET
δmin(f (u), f (u′)) (1)

where δmin(f (u), f (u′)) is the shortest distance from f (u) to f (u′) in

G. 2
�

Example 2.1: Regarding the query and the data graph in Figures

2(a) and 2(b), respectively, the matching f , mapping (u1, u2, u3, u4, u5)

to (v1, v3, v6, v7, v10), has the penalty score S (Mf) = 6, while the

matching f1, mapping (u1, u2, u3, u4, u5) to (v1, v3, v5, v7, v9), has the

penalty score S (Mf1) = 4. �

Problem Statement. We use kTPM to denote the problem of top-k

tree pattern matching; that is, computing the k tree pattern matches

with the lowest scores. In this paper, we study the problem of effi-

ciently computing kTPM.

Note that as with [21], for presentation simplicity we assume that

in a rooted tree (query graph) T , each node has a unique label (i.e.,

different nodes have different labels) and there are no wildcard (*)

nodes. This assumption makes a tree pattern matching f a one-to-

one mapping from VT to VG though generally it is not a one-to-one

mapping. In Section 5, we will show that our techniques can be im-

mediately extended to cover a general case in which different nodes

may have the same label and a node may be a wildcard node (*).

While the current definition of kTPM only covers the ‘//’ seman-

tics, in Section 5 we will show that our techniques can be immedi-

ately extended to include the ‘/’ type edge. Finally, in Section 5 we

will also show extensions of our techniques to top-k graph pattern

matching [7].

Frequently used notations are summarized in Table 1. Most of

them will be defined in the following sections.

3. OPTIMAL ALGORITHM FOR kTPM
In this section, we present a novel enumeration paradigm for

generating the top-(l + 1) match from the top-l match. This leads

to an optimal algorithm to compute kTPM. The rest of the sec-

tion is organized as follows. We first present the notation and pre-

computation. Then, we present our enumeration techniques, fol-

lowed by implementation details and the time complexity analysis.

2Note that, our techniques directly apply if node weights are also
considered in the penalty score.

u3(c)

u4(d)

u2(b)

u1(a)

u5(e)

(a) Query (tree)

v6(c)

v12(s)

v13(s)

v9(e)v7(d)

v4(b)v5(c)

v1(a) v2(a)

v3(b)

v8(d) v10(e)

v11(s)

(b) Data graph

2

1
2

2

1

3
35

1

1
1

1
2

2 321342
1

2

1

1
1

1

1
2

1

4
3

2

4 3

1
22

1

3

v2(a)

v4(b)

v13(s)

v10(e)

v5(c)

v1(a)

v8(d)
v9(e)

v7(d)

v3(b)

v11(s)

v6(c)
v12(s)

(c) Transitive closure

v9(e)

1 1 1
1 2

1 2

1 2
1 1

2 2 3

2

v6(c)v5(c)v4(b)v3(b)

v10(e)v8(d)v7(d)

v1(a) v2(a)

(d) Run-time graph

Figure 2: A rooted tree, a data graph, a transitive closure, and a run-time graph

3.1 Notation and Pre-Computation
We use T to denote a query graph which is a rooted tree, r(T) to

denote the root of T , Tu to denote the subtree of T rooted at u ∈ VT ,

and nT to denote the number of nodes in T . As stated earlier, in T ,

all node labels are distinct.

Transitive Closure. We pre-compute a transitive closure Gc =

(Vc, Ec) of G = (V, E) by the techniques in [9] in O(nGmG) time,

where nG and mG are the number of nodes and the number of edges

in G, respectively. In Gc, Vc = V , and an edge (v, v′) exists if and

only if there is a path in G from v to v′. We also record the length

of shortest path from v to v′ in G as the weight of (v, v′) in Gc.

Run-Time Graph. Instead of loading in Gc to main-memory, the

authors in [21] propose to load in a subgraph of Gc, called the run-

time graph GR regarding T . GR is defined as follows. GR consists

of the edges (v, v′) in Gc induced by T ; that is, an edge (v, v′) in Gc

is included in GR if and only if there is an edge (u, u′) in T with

l(u) = l(v) and l(u′) = l(v′). We also store the weight (length of

shortest paths) of an edge in GR. Clearly, finding the top-k matches

of T in G (or Gc) is equivalent to finding the top-k matches in GR.

Figure 2(c) shows the transitive closure of the data graph in Fig-

ure 2(b), and Figure 2(d) shows the run-time graph regarding T in

Figure 2(a). We denote the number of nodes in GR by nR and the

number of edges in GR by mR. It is immediate that mR is quadratic

to nG in the worst case but mR = θnT on average, where θ is the

average number of edges of the same type (i.e., with the same pair

of labels) in the transitive closure. We denote the set of child nodes

of a node v in GR by v.children. Regarding each non-leaf node

v ∈ GR (i.e., v has outgoing edges), we group the child nodes of

v in GR into different groups such that node labels in each group

are the same, and node labels across different groups are different;

particularly, v.childrenα denotes the child nodes of v in GR with the

label α. For example, in Figure 2(d), v1.childrenc = {v5, v6}.

Note that we do not need to pre-compute GR. Instead, a run-time

graph GR can be identified at query-time from Gc if edges in Gc are

organized in tables as follows.

Run-Time Graph Identification. Similar to [7, 21], for each pair

of node labels α, β ∈ Σ in G, we store in table Lα
β

all the triples

(vi, v j, δmin(vi, v j)), where l(vi) = α, l(v j) = β, vi can reach v j in

G, and δmin(vi, v j) is the shortest distance from vi to v j in G. Then

the run-time graph can be immediately identified at query-time and

loaded in to main memory in linear I/O time regarding the run-time

graph size, by reading the tables corresponding to edges in T from

disk to main memory.

Note that we also discuss techniques to avoid computing and

storing the entire transitive closure, and to assemble only the needed

part of run-time graph on-demand, in Section 5 and Section 4, re-

spectively.

3.2 Efficient Enumeration
Our enumeration techniques are based on Lawler’s procedure.

Lawler’s Procedure. The basic idea is as follows. Starting from

the entire “solution space”, it iteratively divides a solution space

into disjoint solution subspaces, where the tree pattern match with

the lowest penalty score in a solution subspace is called the best

match in the solution subspace. At the lth round, the tree pattern

match Ml with lowest penalty score among the best tree pattern

matches in each remaining solution subspace, respectively, is the

top-l match. The iteration continues by dividing the solution sub-

space, from which Ml is generated, into disjoint solution subspaces

excluding Ml. Lawler’s procedure works as follows for kTPM.

Suppose that VT = {u1, u2, ..., unT
} is the node set of T . For each

node ui ∈ VT , let Vi denote the set of nodes in GR with the la-

bel l(ui). The entire solution space, consisting of all tree pattern

matches of T in GR, is a subset of S = V1 × V2 × · · · × VnT
. Sup-

pose that M1 = (v1, v2, ..., vnT
) is the best match (top-1 match) of

T in GR; that is, for 1 ≤ i ≤ nT , ui is mapped to vi. To obtain the

top-2 match, S is divided into nT disjoint subspaces based on M1:

S 1 = (V1−{v1})×V2×· · ·×VnT
, S 2 = {v1}×(V2−{v2})×V3×· · ·×VnT

,

. . ., S nT
= {v1} × {v2} × · · · × {vnT−1} × (VnT

− {vnT
}). Clearly,

{M1}, S 1, . . . , S nT
are mutually disjoint, and their union is S which

is no longer kept. Then, the top-2 match of T in GR is the match

with the lowest score among the best matches in these nT subspaces

{S j | 1 ≤ j ≤ nT }, respectively. Assume that the top-2 match M2

of T is obtained from S i, then the first (i − 1) nodes in M2 must be

(v1, ..., vi−1). To obtain the top-3 match, the procedure continues to

further divide S i = {v1} × · · · × {vi−1} × (Vi − {vi})×Vi+1 × · · · ×VnT

into (nT − i + 1) disjoint subspaces by fixing (v1, ..., vi−1) and divid-

ing {(Vi − {vi}),Vi+1, ...,VnT
} one by one in a similar way to that in

obtaining the top-2 match.

Generally, suppose that the top-l match Ml is obtained from a

subspace S ′j = {vl1 } × · · · × {vl j−1
} × (V j − U j) × V j+1 × · · · × VnT

,

where U j denotes the subset of V j to be excluded in obtaining Mi

for 1 ≤ i ≤ l, (vl1 , . . . , vl j−1
) are fixed in the subspace S ′j and mapped

from (u1, . . . , uj−1). Note that we use l j to denote the subscript of a

node in GR. Suppose that Ml is {vl′
1
, ..., vl′nT

}, then vl′
j
� U j and for

1 ≤ x ≤ j − 1, vl′x
= vlx (i.e., l′x = lx) since Ml is obtained from S ′j.

In order to compute the top-(l+ 1) match, S ′j is further divided into

(nT− j+1) subspaces: {vl1 }×· · ·×{vl j−1
}×(V j−U j−{vl′

j
})×V j+1×· · ·×

VnT
, {vl1 }× · · ·× {vl j−1

}×{vl′
j
}× (V j+1−{vl′

j+1
})×V j+2×· · ·×VnT

, . . .,

{vl1 }×· · ·×{vl j−1
}×{vl′

j
}×· · ·×{vl′

nT −1
}×(VnT

−{vl′nT
}). Clearly, {Ml} and

these newly generated (nT − j+ 1) subspaces are disjoint, and their

union is S ′j. Assume there are N subspaces left in total; that is, the

subspaces divided in generating the top-1, 2, ..., l matches but not

used for any of those top-l matches. Then, the top-(l + 1) match is

the one with the lowest score among the best matches, respectively,

in those N subspaces and the newly divided (nT − j+ 1) subspaces.

Example 3.1: Consider the query tree in Figure 2(a) over the run-

time graph in Figure 2(d). V1 = {v1, v2},V2 = {v3, v4},V3 =

{v5, v6}, V4 = {v7, v8},V5 = {v9, v10}. The top-1 match of T is

(v1, v3, v5, v7, v9); thus, in the expression of (v11
, v12
, . . . , v15

), 11 =

1, 12 = 3, 13 = 5, 14 = 7, and 15 = 9. Then, the entire solu-

tion space is divided into 5 subspaces, S 1 = (V1 − {v1})×V2 × · · · ×

V5, S 2 = {v1}×(V2−{v3})×V3×· · ·×V5, . . . , S 5 = {v1}×· · ·×{v7}×

(V5 − {v9}). The top-2 match of T is (v1, v4, v5, v7, v9), thus, in the

expression of (v21
, v22
, . . . , v25

), 21 = 1, 22 = 4, 23 = 5, 24 = 7, and

25 = 9, which is the best match in S 2. S 2 is further divided into 4

subspaces, S ′
1
= {v1}×(V2−{v3, v4})×V3×· · ·×V5, S ′

2
= {v1}×{v4}×

(V3−{v5})×V4×V5, . . . , and S ′
4
= {v1}×{v4}×{v5}×{v7}×(V5−{v9}).

Then, the top-3 match of T is the one with lowest score among the

best matches, respectively, in subspaces S 1, S 3, S 4, S 5, S
′
2
, S ′

3
, S ′

4

where S ′
1
= ∅ and is excluded from further consideration; in this

case, the top-3 match of T is (v1, v3, v5, v8, v9) obtained from S 4. �

In [28], it shows that Lawler’s procedure can correctly gener-

ate the top-k solutions in O(k(log k + nT t(nT))) time, where t(nT) is

the time to compute the best solution in a subspace. If we use the

techniques in [21] to compute the best match in a subspace, then

t(nT) = O(mR); thus, an immediate application of Lawler’s pro-

cedure for generating top-k matches runs in time O(knT mR) and

is much more expensive than the techniques of DP-B and DP-

P [21]. Below, we show that obtaining the best match in a sub-

space only needs to replace one node; consequently, we can achieve

O(nT t(nT)) = O(nT + log k) once the top-1 match is computed.

Replacing with Connected Nodes Only. To make an execution

more efficient in applying Lawler’s procedure, we need the property

in Lemma 3.1 below. This requires the nodes in T to be sorted in a

sequence in a top-down and breadth-first fashion. That is, the root

node of T is put the first, followed by its children, then move to the

next level. This can be done in linear time, O(nT). For example, the

nodes in Figure 2(a) are sub-indexed/ordered in this fashion; that is,

u1, u2, u3, u4, and u5 are in such an order. The following lemma,

Lemma 3.1, is immediate.

Lemma 3.1: Suppose that the nodes, u1, . . . , unT
, of T are ordered

in a top-down and breadth-first fashion. Then, the parent u j of ui

must have the property such that j < i. �

Below, we characterize the property of best match in a newly

generated subspace where the property in Lemma 3.1 will be used.

Note that in Lawler’s procedure, the top-(l + 1) solution (match)

is obtained against two types of subspaces: type 1) the previously

divided subspaces that have not contributed to any top-i solution

(match) for i ≤ l, type 2) the newly divided subspaces using the

top-l solution. For example, in computing the top-3 match in Ex-

ample 3.1, S 1, S 3, S 4, S 5 are type 1 subspaces, and S ′
1
, S ′

2
, S ′

3
, S ′

4

are type 2 subspaces. The top-(l + 1) solution (match) is the one

with lowest score among all best matches in these type 1 and type

2 subspaces. Assume the best match in each type 1 subspace has

already been computed, the key for computing the top-(l+1) match

is to efficiently compute the best match in each of these newly gen-

erated subspaces; that is, type 2 subspaces.

As presented above, each newly generated subspace (i.e., type-2

subspace) by the top-l match Ml = (vl1 , vl2 , . . . , vlnT
) in Lawler’s

procedure belongs to one of the following two cases, where l > 1.

Case 1: S ′ = {vl1 }×· · ·×{vl j−1
}×(V j−U j−{vl j

})×V j+1×· · ·×VnT
.

Case 2: S ′′ = {vl1 } × · · · × {vlx−1
} × (Vx − {vlx }) ×Vx+1 × · · · ×VnT

.

Here, j + 1 ≤ x ≤ nT . Note that our enumeration techniques only

deal with enumerating the top-(l + 1) match from the top-l match;

thus l ≥ 1. When l = 1, all newly generated subspaces fall into

Case 2; otherwise, Case 1 exists and U j � ∅. There are only one

newly generated subspace in Case 1 and (nT − j) subspaces in Case

2. Below, Theorem 3.1 states that for the subspace S ′ in Case 1,

we need to find the (|U j| + 1)th best “sibling” node of vl j
to replace

vl j
in Ml to obtain the best match in S ′, while Theorem 3.2 states

that for a subspace S ′′ in Case 2, we only need to find the best

“sibling” node of vlx to replace vlx in Ml to obtain the best match in

S ′′. If no such siblings exist for a subspace in Case 1 or 2, then the

subspace have no matches; this is stated in Lemma 3.2. Recall that

v.childrenα denotes the set of child nodes of v in GR with label α.

Lemma 3.2: Regarding Case 1 above, suppose that vlp
∈ Ml is the

parent of vl j
and vlp

.childrenl(vl j
) = U j ∪ {vl j

}, then there is no tree

pattern match in S ′ for T . Regarding Case 2 above, suppose that

vly ∈ Ml is the parent of vlx and vly .childrenl(vlx) = {vlx }, then there

is no tree pattern match in S ′′ for T . �

We need the notations below to present Theorems 3.1 and 3.2.

For each node v in GR, we can always use q(v) to denote the node

u in T that is mapped to v in a tree pattern match since node labels

in T are distinct and l(u) = l(v). At each node v ∈ GR, we record

bs(v), the lowest score of a match of Tq(v) containing v in GR, where

Tq(v) is the subtree of T rooted at q(v).

Theorem 3.1: Regarding Case 1, let vlp
be the parent of vl j

in Ml

and there is at least a tree pattern match in S ′ for T , then the best

match in S ′ is to replace vl j
∈ Ml with the node v ∈ vlp

.childrenl(vl j
)

such that bs(v)+ δmin(vlp
, v) has the (|U j|+2)th lowest value among

all nodes in vlp
.childrenl(vl j

). �

Theorem 3.2: Regarding Case 2, let vly be the parent of vlx in Ml

and there is a tree pattern match in S ′′ for T , then the best match

in S ′′ is to replace vlx ∈ Ml with the node v ∈ vly .childrenl(vlx) such

that bs(v)+δmin(vly , v) has the second lowest value among all nodes

in vly .childrenl(vlx). �

Regarding Case 2 (Theorem 3.2), due to the connectivity require-

ment and the ordering of the nodes in T , there is always such a par-

ent vly of vlx in Ml since the tree has only one root. Nevertheless,

for case 1 (Theorem 3.1), j could be 1; that is, the subspace divi-

sion starts from V1, in this case the best match in S ′ has another

root node v in GR such that bs(v) is the (|U1| + 2)th lowest.

Theorems 3.1 and 3.2 give the key observations of our enumera-

tion algorithm. Once the best match in each newly generated sub-

space is obtained, we select the match with the lowest score among

these newly generated best matches and the best matches in type 1

subspaces, respectively. This is the central idea of our top-k enu-

meration algorithm for computing kTPM, which is outlined in Al-

gorithm 1. The computation of top-1 (best) match in a subspace

(Lines 3,10,13), the efficient maintenance of Q, and the implemen-

tation details will be discussed in Section 3.3. The correctness of

Algorithm 1 immediately follows from Theorems 3.1 and 3.2. Ex-

ample 3.2 below demonstrates the algorithm.

Algorithm 1 kTPM

Input: A query rooted tree T , a run-time graph GR, and k.
Output:M: Top-k matches of T in GR.

1: M← ∅; l← 0;
2: Initialize an empty collection Q;
3: Compute the top-1 match, M, in the subspace S = V1 × · · · × VnT

;
4: Put the pair (M, S) into Q;
5: while l < k and Q � ∅ do
6: Get the entry (M′, S ′) with the lowest score from Q;
7: l← l + 1; Output M′ as the top-l match;M←M∪ {M′};
8: Divide(l,M′, S ′);

Procedure Divide(l,M′, S ′)
9: Let M′ be (vl1 , . . . , vlnT

) obtained from S ′ = {vl1 } × · · · × {vl j−1
} × (V j −

U j) × V j+1 × · · · × VnT
;

{/∗ if l = 1, then j = 1, U j = ∅, and skip Lines 10-11 ∗/}
10: Compute the best match M j in subspace S ′

j
= {vl1 } × · · · × {vl j−1

} ×

(V j − U j − {vl j
}) × V j+1 × · · · × VnT

, as described in Theorem 3.1.

11: Put (M j, S
′
j
) into Q;

12: for x← j + 1 to nT do {/∗ x starts from 1 if l = 1 ∗/}
13: Compute the best match Mx in subspace S ′x = {vl1 } × · · · × {vlx−1

} ×

(Vx − {vlx }) × Vx+1 × · · · × VnT
, as described in Theorem 3.2;

14: Put (Mx, S
′
x) into Q;

Example 3.2: Figure 3(b) shows a running example of kTPM re-

garding the run-time graph in Figure 3(a), where the query tree T

is shown in Figure 2(a). Each rectangle shows an entry in Q, where

1
v5(c)v4(c)

v2(b)

v6(d) v9(e)v8(e)v7(d)

1 1 31
v1(a)

1 2 2 31
v3(b) 2

(a) Run-time graph

Type 2 sub-spaces

Type 1 sub-spaces

∅

(V1 − v1)× · · · × V5

∅ S1

v1 × (V2 − v2)× · · · × V5

(v1, v2, v4, v7, v8)
S4

∅ S5

(v1, v3, v4, v6, v8)
S2

(v1, v2, v5, v6, v8)
S3

V1 × · · · × V5

Top-1 match

(v1, v2, v4, v6, v8)

v1 × v2 × (V3 − v4)× · · · × V5

Type 1 sub-spaces

Type 2 sub-spaces

(v1, v2, v5, v6, v8)
v1 × v2 × (V3 − v4)× · · · × V5

S3

v1 × v2 × v4 × (V4 − v6)× V5

(v1, v2, v4, v7, v8)
S4

v1 × (V2 − v2 − v3)× · · · × V5

∅ S2,1

v1 × v3 × (V3 − v4)× · · · × V5

(v1, v3, v5, v6, v8)
S2,2

v1 × v3 × v4 × (V4 − v6)× V5

(v1, v3, v4, v7, v8)
S2,3

v1 × v3 × v4 × v6 × (V5 − v8)
∅ S2,4

bestscore = 7

bestscore = 5

v1 × v2 × v4 × (V4 − v6)× V5

bestscore = 7

v1 × v2 × v4 × v6 × (V5 − v8)
bestscore = 5

bestscore = 5

bestscore = 7

bestscore = 4
bestscore = 4

Top-2 match is in S2
Top-3 match is in S4

(b) Running example

Figure 3: Example of kTPM

the first row represents a subspace, the second row is the best match

in it, and the third row is the score of the match. Initially, Q con-

tains only the entire solution space, S = V1 × · · · × V5, where

V1 = {v1},V2 = {v2, v3},V3 = {v4, v5},V4 = {v6, v7},V5 = {v8, v9},

as shown in the left of Figure 3(b). After M1 = (v1, v2, v4, v6, v8) is

output as the top-1 match, S is divided into 5 subspaces, Case 1:

(∅), Case 2: (S 1, . . . , S 5), as shown in the middle of Figure 3(b),

based on M1. S 1 is empty since V = {v1}, then V1 − {v1} = ∅; thus

S 1 is excluded from further considerations. The best match in S 2

is computed from M1 by replacing v2 with a “sibling” node that is

connected to v1, the parent of v2 in M1, while minimizing the score;

in this case only one choice v3. Regarding S 3, v5 is the best replace-

ment of v4 in M1, while regarding S 4, v7 is the best replacement of

v6. Although V5 − {v8} � ∅, v9 is not connected to any node in M1;

thus, S 5 = ∅ by the connectivity requirement. Therefore, the top-2

match of T is the top-1 match in S 2, (v1, v3, v4, v6, v8), with score 4.

To compute top-3 match of T , S 2 is further divided into 4 sub-

spaces, Case 1: (S 2,1), Case 2: (S 2,2, S 2,3, S 2,4), as shown in the

right of Figure 3(b), which are the type 2 subspaces. Here, the type

1 subspaces are the set of subspaces we have when computing top-

2 match of T excluding S 2 which is divided further. From the two

type 1 subspaces and the four type 2 subspaces, we can compute

the top-3 match of T , which is (v1, v2, v4, v7, v8) in S 4. �

Next, we will present a minimum priority queue based data struc-

ture such that line 13 (corresponding to Theorem 3.2) can be run in

constant time, and line 10 (corresponding to Theorem 3.1) can be

run in O(log k) time. We choose the data structure of minimum pri-

ority queue because it can be built in linear time [9], and insertion

or deletion can be run in logarithmic time regarding k. We also

show that Line 6 can be done in logarithmic time regarding k.

3.3 Implementation and Complexity
For each distinct label α of the children of a node v, we keep a

list Lv,α = {(v
′, bs(v′) + δmin(v, v′)) | v′ ∈ v.childrenα}. bs(v) can

be recursively calculated as follows, assuming Πq(v) is the set of

distinct child labels of q(v) in T and ∀α ∈ Πq(v), Lv,α � ∅.

bs(v) =
∑
α∈Πq(v)

min{bs(v′) + δmin(v, v′) | v′ ∈ Lv,α} (2)

Theorem 3.1 states that in Line 10 in Algorithm 1, we get the

node with the (|U j| + 2)th lowest value from Lv,l(vl j
) where v is the

parent of vl j
in M′, while Theorem 3.2 states that in Line 13 in

Algorithm 1, we get the node with the second lowest value from

Lv′ ,l(vlx) where v′ is the parent of vlx in M′. Moreover, in each round

of subspace division, Line 10 is only executed once, while Line

13 is executed O(nT) times. Motivated by these, we want to 1)

execute the replacement in Line 10 of Algorithm 1 by O(log k)

time, and 2) execute the replacement in Line 13 of Algorithm 1

by constant time. If Lv,α is built as a sorted list on the values of

(bs(v′)+ δmin(v, v′)), then 1) and 2) can be both satisfied. Neverthe-

less, creating a sorted list Lv,α requires O(|Lv,α| log |Lv,α|) time; this

could significantly increase the whole processing cost.

Data Structure. We propose to initially create a minimum prior-

ity queue (say, Binary Heap or Fibonacci Heap) [9] to store Lv,α;

we use a binary minimum priority queue in our implementation.

It shows in [9] that creating a binary minimum priority queue Lv,α

takes linear time O(|Lv,α|). It is immediate that retrieving the ele-

ment with the lowest value from a binary minimum priority queue

takes constant time; nevertheless, retrieving the element with the

ith lowest value (the operation in Theorem 3.1) may have to visit

O(2i − 1) elements in a binary minimum priority queue. There-

fore, we create a sorted list Hv,α according to a non-decreasing

order on the values of (bs(v′) + δmin(v, v′)); then each time when

we execute Line 10 in Algorithm 1, we retrieve the top element

(v′, bs(v′) + δmin(v, v′)) of Lv,α, and remove it from Lv,α to Hv,α.

Note that removing the top to retain a binary minimum priority

queue Lv,α takes O(log |Lv,α|) time. In our implementation, we scan

Lv,α once in initialization to get the element with the minimum

score, and put it into Hv,α, then organize the remaining elements

into Lv,α; that is, now the top of Lv,α has the second lowest value of

bs(v′) + δmin(v, v′) among all elements in Lv,α ∪ Hv,α. In the follow-

ing, we call Lv,α and Hv,α as L lists and H lists, respectively.

Initially Building the Data Structure and Top-1 Match. We

build the data structure in a bottom-up fashion on GR as follows.

Starting from the lowest level of GR, we iteratively create and ini-

tialize H and L lists. For each node v of GR, we compute bs(v);

this can be conducted by combining the top values in Hv,α for each

distinct child label α of q(v) in T as shown in Equation 2. Note

that if v has an empty Hv,α for a child label α of q(v) in T , we can

safely remove v from GR and then recursively remove its decedents

with no parents. Note that, since we build the data structure in a

bottom-up fashion, we have already computed bs(v′) for every v′

in Lv,α ∪ Hv,α when initializing Hv,α and Lv,α. Immediately, the cost

of building the data structure is O(mR) and the score of the top-1

(best) match of T can be obtained from the lowest value among all

bs scores at the roots of GR. The correctness of the obtained top-1

match can be immediately verified by induction.

Example 3.3: Regarding the tree query T in Figure 4(a) over the

run-time graph GR in Figure 4(b), the data structure is built for

nodes in GR level by level. Firstly, for the nodes at level 2 - v3, v4, v5,

v6, each has only one child with label d. Thus, (v7, δmin(vi, v7)) is

put into Hvi ,d for 3 ≤ i ≤ 6 as shown in the left part of Figure 4(c),

and the corresponding Lvi ,ds are empty and omitted. For the node

v1 at level 3, Hv1 ,b = {(v2, 1)} and Lv1 ,b = ∅. v1 has four chil-

dren with label c, v3, v4, v5, and v6. Among them, v5 has the lowest

(bs(v5) + δmin(v1, v5)); thus, v5 is put into Hv1 ,c and the other three

nodes are put into Lv1 ,c as shown in the right part of Figure 4(c).

The final data structure is shown in Figure 4(c). As there is only

one root, v1, in GR, the top-1 match of T is the best match rooted at

v1, with bs(v1) = 1 + 2 = 3 obtained from Hv1 ,b and Hv1 ,c. �

Implementing Replacement in Algorithm 1 - Lines 10 and 13.

Regarding the situation in Theorem 3.2 - Line 13 in Algorithm

1, we just use the top in the binary minimum priority queue Lv,α,

where v is the parent of vlx in M′ and the label α defines Vx, since

v2(b)

(v7,3)Hv3,d

(v7,1)

(v7,1)

(v7,1)

(v2,1)

(v5,2)

(v6,3)Lv1,c

Hv1,b

Hv1,cHv4,d

Hv5,d

Hv6,d

(v3,4)

(v4,5)

(a) T (b) GR (c) L and H lists

1113

1 4 1
21

v1(a)

v6(c)

v7(d)u4(d)

u3(c)

u1(a)

u2(b)
v5(c)v4(c)v3(c)

Figure 4: Example of building data structure
this is the node with the second lowest value in Lv,α ∪Hv,α. Clearly,

this takes O(1) time.

Regarding the situation in Theorem 3.1 - Line 10 in Algorithm

1, there are two cases: 1) |U j| = 1, and 2) |U j| > 1. When |U j| = 1,

Line 10 is getting the second lowest value from Lv,α (i.e., the third

lowest value in Lv,α ∪Hv,α) and then moving the lowest and second

lowest elements in Lv,α to Hv,α. When |U j| > 1, Line 10 is getting

the top element in Lv,α and then removing it to Hv,α. Note that

we treat |U j| = 1 specially since we do not remove the top of Lv,α

when executing Line 13 to avoid increasing the time complexity.

Note that to deal with the situation that vl j
is a root, we only need

to choose the root with the (|U j| + 2)th lowest bs score among all

roots in GR, which are organized in a similar way as L and H lists,

with bs scores as key.

Example 3.4: Consider the tree query T in Figure 4(a) over the

run-time graph GR in Figure 4(b). Figure 4(c) illustrates the L and

H lists constructed. V1 = {v1}, V2 = {v2}, V3 = {v3, v4, v5, v6}, and

V4 = {v7}. The top-1 match of T in GR is M1 = (v1, v2, v5, v7). After

dividing the entire solution space by M1, we get only one nonempty

subspace S 3 = {v1} × {v2} × (V3 − {v5}) × V4. The best match in

S 3 is computed from M1 by replacing v5 with the node that has

2nd lowest value (bs(v) + δmin(v1, v)) among all nodes adjacent to

v1 with the label c. This corresponds to the situation (Line 13) in

Theorem 3.2. Then, v5 is replaced by v6 obtained from the top of

Lv1 ,c. Therefore, the top-2 match of T is M2 = (v1, v2, v6, v7). By

dividing S 3, we get only one nonempty subspace S 3,1 = {v1}×{v2}×

(V3 − {v5, v6}) × V4. The best match in S 3,1 is computed from M2

by replacing v6, and this corresponds to the situation (Line 10) in

Theorem 3.1. Since |U3| = 1 (U3 = {v5}), we get the second lowest

from Lv1 ,c (i.e., v3), and then remove (v6, 3) and (v3, 4) from Lv1 ,c

and put it to H1,c. Therefore, the best match in S 3,1 is (v1, v2, v3, v7),

and it is the top-3 match of T . This continues and falls into the case

that we only need to use and remove the top of Lv1 ,c. �

Recovering the Match from Score. In Algorithm 1, for each top-

1 match Mj computed in a newly generated subspace S ′j, to save

space, we do not store the details of the match. Instead, we record

the score and link Mj to the top-l solution M′ that generates the

subspace S ′j, together with the detailed replacement information,

say, vx is replaced by vy. The score of Mj can be calculated in

O(1) time after node replacement since it can be calculated as the

score of M′ plus the local score difference at the replacement. For

example, consider the top-1 match, (v1, v2, v5, v7) with score 3, of

T in Example 3.4. After v5 is replaced by v6, the score of the new

match (v1, v2, v6, v7) is 3 + (3 − 2) = 4.

Once Mj is selected to be one of the top-k matches of T , we only

need to replace the subtree rooted at vx in M′ with the best match of

Tq(vy) rooted at vy to generate Mj; note l(vx) = l(vy). To get the best

match of Tq(vy) rooted at vy, we only need to iteratively travel down

from vy to its best decedents following the link information built

in the initialization phase when building L and H lists. Therefore,

recovering the match from score takes O(nT) time which is linear

regarding the size of the match.

Computing Top-k Matches from Subspaces. To control the main-

tenance complexity of Q in Algorithm 1, instead of inserting the

computed best match in each newly generated subspace into Q, we

additionally maintain k binary minimum priority queuesQ1, . . .,Qk.

In each round of generating a top-l match of T , we use Ql to store

the best matches over the newly obtained subspaces (Lines 10 &

11, Lines 13 & 14) except the match with the lowest score which

is inserted into Q; that is, Ql does not contain the match with the

lowest score against these newly generated subspaces. While cre-

ating Ql takes O(|Ql|) time and popping-up the best match from Ql

for inserting into Q takes O(log |Ql|) time, inserting a match into Q

takes O(log |Q|) time.

Moreover, when the top match M inQ is popped as a top-l match,

we need to pop up the top of Q j, to which M belongs, and insert it

into Q. This takes O(log |Q| + log |Q j|) time.

Complexity. It can be shown that the time complexity of Algorithm

1 is O(mR+k(log dR+nT +log nT +log k)) where dR is the maximum

degree of nodes in GR. If k is given, then the time complexity of

Algorithm 1 is reduced to O(mR + k(nT + log k)) that is optimal,

while DP-B [21] runs in O(mR log k + knT (dT + log k)) time. Our

algorithm takes space O(min{mR, knRdT } + knT), while DP-B [21]

takes space O(min{mR, knRdT }+ knT dT), where dT is the maximum

node degree in T .

For details of complexity deduction, please refer to the section

of “Complexity Analysis” in Section 3.3 in the full paper [4]. As

discussed in Sections 1 and 3.1, mR = θnT on average, where θ

is the average number of edges of the same type in the transitive

closure. Therefore, the space complexity of our algorithm is linear

regarding nT (query size) if θ is bounded.

4. PRIORITY BASED ALGORITHM
Following the framework of Algorithm 1, in this section we present

a priority order based algorithm to reduce the access of unnecessary

information from a run-time graph GR; that is, reduce the number

of edges to be loaded in from disk. In comparison to DP-P in [21],

our pruning bound is tighter and may achieve a speed-up towards

orders of magnitude.

The rest of the section is organized as follows. We first present

the framework and data structures. Then, we introduce our algo-

rithm for computing the top-1 match, followed by our enumeration

techniques. Finally, we analyse the complexities of our algorithms.

4.1 Framework and Data Structures
To represent the closure Gc of a data graph G, we further orga-

nize each table Lα
β

(Section 3.1) into different groups based on the

nodes pointed to; that is, for each node v ∈ Gc, the incoming edges

to v are grouped according to the labels of the parents of v such that

the incoming edges (v′, v) with the same label l(v′) = α are put in

Lαv . Edges in the group Lαv are stored together in a non-decreasing

order based on their shortest distances by (possibly) multiple blocks

and exclusively from edges in other groups. Note that, for an edge

in Lαv , we only need to store in Lαv the adjacent node v′ coming to

v and the corresponding shortest distance δmin(v′, v). In practice,

an Lαv may contain many nodes; for example, an Lαv contains over

1700 nodes in DBLP data with one million nodes and two million

edges. To reduce the access of a run-time graph, for each node v

in Gc, we also keep in Ev the subset of outgoing edges from v per

distinct label with the minimum value of the shortest distances to v.

Regarding each Lαv , we also keep the information dαv , the mini-

mum value of the shortest distances from nodes in Lαv to v (i.e., dαv
= min{δmin(v′, v) | v′ ∈ Lαv }); note that dαv s are not stored with Lαv .

Example 4.1: For the data graph in Figure 2(b), we store its closure

(Figure 2(c)) as follows. For example, for v5, La
v5
= {(v1, 1), (v2, 2)},

where da
v5
= δmin(v1, v5) = 1; Ev5

= {(v5, v7, 1), (v5, v9, 1), (v5, v11, 1)}

since v5 reaches 3 distinct labels d (= l(v7)), e (= l(v9)) , and s (=

l(v11)) where δmin(v5, v7) = 1, δmin(v5, v9) = 1, and δmin(v5, v11) = 1.

Similarly, La
v6
= {(v1, 1), (v2, 2)}, da

v6
= 1, and Ev6

= {(v6, v12, 1),

(v6, v7, 1), (v6, v9, 2)}. �

In our algorithm, all dαv s are stored based on α and the label of v.

For a pair of node labels α and β, all dαv s with l(v) = β are allocated

in the same group Dα
β
. In Dα

β
, for each dαv , we record v and the value

of dαv . Note that, most of the values of dαv s are 1; thus, we only store

such dαv s with values greater than 1 to save storage space and the

costs to be loaded in to main-memory in initialization. Similarly,

all Evs are also grouped into Eα
β

such that edges (v, v′) in Ev with

l(v) = α and l(v′) = β are put in Eα
β
; that is, Eα

β
consists of the entries

(v, v′, δmin(v, v′)) with l(v) = α and l(v′) = β. Note that for each pair

of α and β, we put Dα
β

in one data block and allocate more blocks

if one is not large enough; Eα
β

is physically stored in the same way.

The data structures are summarized in the following table.

Dα
β
= {(v, dαv) | l(v) = β}; Lα

β
= {(v, Lαv) | l(v) = β}

E
α
β
= {(v, v′, δmin(v, v′)) | l(v) = α, l(v′) = β, and (v, v′, δmin(v, v′)) ∈ Ev}

For example, in Example 4.1, since dc
v7
= 1, dc

v7
is not stored

in Dc
d
. Consequently, Dc

d
stores only one element (v8, 2); that is,

Dc
d
= {(v8, 2)}. In Ec

d
, we store {(v5, v7, 1), (v6, v7, 1)}, while in Ec

e

we store the information of {(v5, v9, 1), (v6, v9, 2)}.

Initialization. Although the priority order based algorithm pre-

sented in this section follows the framework of Algorithm 1, differ-

ent than Algorithm 1, we aim to load in as few edges as possible

to minimize I/Os and to achieve scalability (i.e., allow large graphs

to be processed in main-memory). Therefore, instead of loading in

GR in the initialization phase, we only load in to main-memory the

Dα
β
s and Eα

β
s such that for each loaded Dα

β
, there must be an edge

(u, u′) in T with l(u) = α and l(u′) = β, and for each loaded Eα
β
,

there must be an edge (u, u′) in T with l(u) = α, l(u′) = β, and u′

is a leaf. For example, consider the query in Figure 2(a) over the

closure in Figure 2(c); in initialization, we load in the blocks of Da
b
,

Da
c , Dc

d
, and Dc

e, as well as load in the blocks of Ec
d
, Ec

e, and Ea
b
.

After initialization our algorithm follows two steps: Step 1) gen-

erate the top-1 match and initialize data structure for enumeration,

and Step 2) enumerate the top-k matches one by one.

4.2 Computing the Top-1 Match
Different than our Algorithm 1, since GR is not fully loaded in,

we need to 1) detect when edges need to be loaded in, and 2) detect

when we can claim that the top-1 match is already obtained. As a

byproduct, we also need to efficiently build the Lv,α and Hv,α lists.

The central idea of our priority order based algorithm for com-

puting the top-1 match of T is to iteratively maintain a minimum

priority queue Qg, which controls the access of edges of GR. Each

element in Qg is currently an “active” node (defined below) v in GR

associated with a lower bound score lb(v) of the best match (i.e.,

lowest score) of T containing v in GR, and Qg uses lb(v) as the key.

Then, we iteratively pop the top element (v, lb(v)) from Qg and load

in to main-memory the incoming edges to v in Lαv where α is the

parent node label of q(v) in T (Since T is a tree, such α is unique).

As computing a nontrivial lb(v) is hard, inspired by the A* al-

gorithm [23] we store (v, lb(v)) in Qg with the property that lb(v)

is a combination of an upper-bound on bs(v) (i.e., bs(v)), and a

lower-bound on the remaining edges of any match of T containing

v. Here, bs(v) is the score of the best match of Tq(v) containing v in

GR. As with A* algorithm, for the top (v, lb(v)) of Qg at any time

we pursue two properties that 1) the score bs(v) is already calcu-

lated (i.e., bs(v) = bs(v)) and is contained in lb(v) (i.e., lb(v) now

becomes a lower bound score of the best match of T containing v

in GR), and 2) the top of Qg is popped up in a non-decreasing order

of its lb value. Thus, the best match of T is obtained when a root

v ∈ GR becomes the top of Qg for the first time. An outline of the

algorithm is shown in Algorithm 2.

Algorithm 2 ComputeFirst

1: Initialize: load in Dα
β

and Eα
β

as described above;

2: ∀ loaded edges (v, v′), insert (v′, δmin(v, v′)) into Lv,l(v′);

3: ∀ active v, compute bs(v) & lb(v), and insert v into Qg with key lb(v);
4: while Qg � ∅ do

5: (v, lb)← Qg.pop();
6: if v has the same label as the root of T then
7: Return the score of the best match rooted at v;
8: else
9: Expand(v);

Procedure Expand(v)
10: Load a block of incoming edges to v;
11: for each loaded edge (v′, v) do

12: Insert (v, bs(v) + δmin(v′, v)) into Lv′ ,l(v);

13: Update bs(v′) (and lb(v′)) in Qg if v′ is active;
14: if an estimation of the next block of incoming edges to v still makes v

the top of Qg then
15: goto Line 10;
16: else
17: Insert v into Qg with an updated key lbnew(v);

Details of Algorithm 2. We first present bs and lb. Note that in

Algorithm 2, it appears that we insert (v, bs(v) + δmin(v′, v)) into

Lv′ ,l(v), instead of inserting (v, bs(v) + δmin(v′, v)) into Lv′ ,l(v) as done

in Section 3.3. Nevertheless, later we will prove that when we do

such an insertion, bs(v) already becomes bs(v). Moreover, similar

to that in Section 3.3, we also put the element with the lowest value

of (bs(v) + δmin(v′, v)) in Hv′ ,l(v) instead of in Lv′ ,l(v).

Active Node. A node v in GR is active if for each child node label α

of q(v) in T , the current Lv,α ∪ Hv,α � ∅; that is, at least one edge

(v, v′) ∈ GR with l(v′) = α is loaded in. Note that due to the initial-

ization in Line 1 of Algorithm 2, the nodes in GR whose children

are all leaf nodes are active; otherwise inactive. For example, re-

garding Figure 2(d), if (v5, v7) and (v5, v9) are loaded in then v5 is

active (even if (v5, v8) is not loaded in). On the other hand, if none

of (v2, v3) and (v2, v4) is loaded in, v2 is inactive even if (v2, v5) and

(v2, v6) are loaded in. To detect if a node in GR is active, we keep

at each node v the number nv of distinct child labels of q(v) in T ;

once the number of nonempty Lv,α ∪ Hv,α reaches nv, v is active.

Upper-bound bs(v). For each active node v ∈ GR,

bs(v) =
∑
α∈Πq(v)

min{bs(v′) + δmin(v, v′) | v′ ∈ Lv,α ∪ Hv,α}, (3)

where Πq(v) is the set of distinct child node labels of q(v) in T .

Unlike Algorithm 1, here Lv,α ∪ Hv,α may be incomplete; thus,

bs(v) can only serve as an upper-bound of the score of the best

match of Tq(v) containing v even if the best match of Tq(v′) contain-

ing v′ is already computed for each v′ in Lv,α ∪ Hv,α. Later we will

show in Theorem 4.2 that even though Lv,α ∪ Hv,α is incomplete,

we are still able to determine whether bs(v) can be obtained, i.e.,

determine whether the current value of bs(v) is bs(v).

Lower-bound on Remaining Edges. For each node u ∈ T , we use

L(u) to denote a lower bound of the score of the best match of

T − (Tu ∪ (up, u)) where up is the parent of u in T . Let ev′ denote a

lower bound of δmin(v, v′) for all unloaded incoming edges (v, v′) to

v′, where ev′ = d
l(v)

v′
if none of the incoming edges to v′ is loaded in

or ev′ is the maximum weight of the already loaded incoming edges

to v′. Thus, we use lb(v′) = bs(v′) + ev′ + L(q(v′)) to estimate the

lowest score of any match containing (v, v′) regarding all unloaded

incoming edges (v, v′) to v′, and put (v′, lb(v′)) into Qg to wait for a

pop-up from Qg to load in to main-memory the unloaded incoming

edges to v′. Due to incomplete information of GR, we are only able

to identify a trivial lower bound L(u); that is, L(u) = nT − 1 − |Tu|

where |Tu| is the number of nodes in Tu. Clearly, lb(v′) is neither an

upper bound nor a lower bound, and becomes a lower bound when

v′ becomes the top of Qg as proved in theorem 4.2. In Line 14, we

use lb(v) to determine if the incoming edges to v can be still loaded

in (i.e., if lb(v) is not greater than the second top in Qg, then the

incoming edges to v can be still loaded in).

Although lb values inQg may change after more edges are loaded

in, we show below that the lb values of popped tops ofQg are mono-

tonic.

Theorem 4.1: Suppose that (v′, lb(v′)) is the top after (v, lb(v)) has

been popped. Then, lb(v) ≤ lb(v′). �

Next, we can show that once a node v is at the top of the queue

Qg, we have bs(v) = bs(v); consequently, lb(v) becomes a lower

bound score of the best match of T containing v.

Theorem 4.2: Suppose that (v, lb(v)) is the current top of Qg and v

becomes the top for the first time. Then, regarding each child node

label α of q(v) in T , the edge (v, v′), making (bs(v′) + δmin(v, v′))

the minimum among all children of v with the label α, is already

loaded in and bs(v′) is already calculated. Consequently, bs(v) is

also calculated. �

Theorem 4.2 also implies that the bs values that we insert to

Lv,α and Hv,α lists in Algorithm 2 are actually bs values. Based on

Theorems 4.1 and 4.2, together with the fact that the nodes in GR

with the same label as the root of T do not have incoming edges, it

is immediate that the returned score by Algorithm 2 is the score of

the top-1 match of T . We can recover the match corresponding to

the score in the same way as described in Section 3.3.

v2(b) v6(c)v5(c)v3(c) v4(c)

v7(d)

3 1 1

v1(a)
1 1

1

Figure 5: The part of GR that is loaded into main memory

Example 4.2: Consider the tree query T in Figure 4(a) over the run-

time graph GR in Figure 4(b). Initially, we load in edges (v1, v2),

(v3, v7), (v4, v7), (v5, v7), (v6, v7), and Hv1 ,b,Hv3 ,d,Hv4 ,d,Hv5 ,d,Hv6 ,d are

initialized as shown in Figure 4(b) while both Hv1 ,c and Lv1 ,c are

empty. Therefore, Qg contains four active nodes v3, v4, v5, v6 with

lb values 5, 6, 3, 4, respectively. Then, v5 is popped up fromQg, and

bs(v5) = 1. Since v5 is not a root node, the incoming edge (v1, v5)

to v5 is loaded in through Expand. Now, v1 becomes active with

lb(v1) = 3, and Qg contains {v1, v3, v4, v6}. In the next iteration, v1

is popped up from Qg, and the top-1 match of T is computed as

the best match rooted at v1 with bs(v1) = 3. Here, we compute the

top-1 match of T without loading in the incoming edges to v3, v4,

and v6, and the part of GR that is loaded in is shown in Figure 5. �

4.3 Top-k Enumeration
Our top-k enumeration algorithm for computing top-k matches

based on partially available information (i.e., Lv,α and Hv,α) also

follows the same framework as that in Algorithm 1. Nevertheless,

the match obtained in each subspace S by Theorems 3.1 or 3.2 has

no guarantee that it will be the best match in S due to incomplete

information in Lv,α and Hv,α. While we still use the same method

to generate the match from each subspace based on the current Lv,α

and Hv,α, we will use the current top of Qg to determine if the cor-

responding incomplete Lv,α and Hv,α are enough to guarantee that

the obtained match is the best match in the subspace.

As with Algorithm 1, we use a minimum priority queue Q to

store the candidates for top-k matches. Consider the monotonicity

theorem, Theorem 4.1. If the score of an obtained current best

match M in S , computed from the current partial Lv,α and Hv,α lists,

is not greater than the score of the current top of Qg, Theorem 4.1

can guarantee that any match obtained in S involving an unloaded

edge in S will not be better than M; consequently, M is the best

match of T in S , and we insert M to Q. Otherwise, we delay the

insertion of M to Q and link M to the top of Qg till the top of Qg

pops and expands to load in more edges. Once the top of Qg pops,

we update the involved M and detect if M can be inserted to Q.

Note that we pop the top of Qg only if it has a key value smaller

than the top of Q. That is, we pop the top of Q as one of the top-k

matches of T only when its score is not larger than the current top

of Qg and the number of currently popped matches is smaller than

k. Our enumeration algorithm is shown in Algorithm 3. Note that,

in Algorithm 3 we conceptually take GR as input, however, instead

of taking the entire GR as input we only load the needed part from

disk to main memory as discussed in Section 4.2.

Algorithm 3 Enhanced-TopK

Input: A query rooted tree T , a run-time graph GR stored on disk, and k.
Output:M : Top-k matches of T in GR.

1: M← ∅; l← 0;
2: Compute the score (lb) of top-1 match of T in the subspace S = V1 ×

· · · × VnT
by invoking ComputeFirst (i.e., Algorithm 2);

3: Initialize Q with (S , lb);
4: while l < k and Q � ∅ do
5: (M′, S ′)← Next();
6: l← l + 1; Output M′ as the top-l match;M←M∪ {M′};
7: Divide′(l,M′, S ′);

Procedure Next()
8: if Qg � ∅ then
9: while Q = ∅ or the top of Qg has a value no less than that of Q do

10: Get the top entry (v, lb) from Qg;
11: Expand(v) and update M of S that is linked to the top of Qg;
12: Get the top entry (S ′, lb′) from Q;
13: Return (the current best match M′ of T in S ′, S ′);

Procedure Divide′(l,M′, S ′);
14: Same as Divide(l,M′, S ′) in Algorithm 1 except that we might delay

the insertion of M j and Mx to Q at Line 11 and Line 14 of Algorithm 1
as what described in Section 4.3;

Unlike Algorithm 1, in Algorithm 3 an empty match M in a sub-

space S computed according to the current Lv,α and Hv,α lists may

become nonempty later after loading in more edges. Thus, we as-

sign∞ as the lowest score of a current empty match in S . Theorems

4.2 and 4.1 ensure the correctness of Algorithm 3.

4.4 Implementation and Complexity
All Lv,α and Hv,α lists are defined and maintained in the same

way as in Algorithm 1, as well as Q and the way to insert the match

obtained from each S i to Q. We also maintain Qg by a minimum

priority queue. The advantages of implementing a minimum pri-

ority queue by a Fibonacci heap [9] are that it takes O(1) time for

insertion, O(1) time for updating if the involved key is decreased,

and linear time for building the priority queue, while taking loga-

rithmic time for delete-min.

Regarding time complexity, the following Theorem is proved in

Section 4.4 of the full paper [4].

Theorem 4.3: Algorithm 3 computes top-k matches of T in O(m′R+

n′R log n′R + k(log d′R + log k + nT)) time, where m′R is the number of

retrieved edges from GR, n′R is the total number of active nodes, and

d′R is the maximum size of a Lv,α ∪ Hv,α, in running Algorithm 3. �

As with Algorithm 1, Algorithm 3 takes O(m′R+knT) space. Note

that in practice, m′R mR and n′R nR. This is validated by our

experiments. Our experiments also demonstrate that Algorithm 3

can achieve a speedup orders of magnitude over Algorithm 1, DP-

B, and DP-P.

5. EXTENDING OUR TECHNIQUES
Below we brief various extensions of our techniques; more de-

tails can be found in [4].

Supporting Top-k Twig-Pattern Matching. The currently pre-

sented techniques only cover twig queries with unique node labels

and the ‘//’ type edges but without wildcard nodes (i.e., nodes with

label *). Below, we extend them to cover the general case.

Firstly, our algorithms can be immediately extended to cover a

twig-pattern query with different nodes having the same label in

T . To extract a run-time graph, for each label α in T we make

(possibly) multiple copies of a node with the label α in G at the

levels of GR corresponding to the levels of nodes with the label α

in T . Then our algorithms can be immediately run against such a

run-time graph in the same way as the case that each node in T has

a unique label. Thus, the complexity remains the same regarding

mR, T , and k. In general, the size of a run-time graph is determined

by the size of T ; that is, mR = θnT still holds on average. That is,

the average performance of our algorithms for such queries will be

not worse than that for queries with distinct labels. However, the

worst case is that if T contains all labels in G, then the number nR

of nodes in GR may be larger than the number of nodes in G.

Secondly, our techniques can be immediately extended to cover

wildcard (*) nodes as follows. For each non-wildcard node, the

treatment is the same as above. For a wildcard (*) node in T , in GR

every node v in G may be copied at the level that has the wildcard

node in T . Then we run our algorithms against such a run-time

graph by allowing mapping a wildcard (*) node to any node in GR

at the same level (i.e., a node with any label); the time complexity

also remains the same regarding the run-time graph. Nevertheless,

a wildcard node has different semantics: the presence of a wild-

card node makes the graph unlabeled; that is, a wildcard node may

be mapped to any node in the data graph. This will significantly

increase the run-time graph size since in the run-time graph, each

wildcard node may require a copy of all nodes in the data graph.

The good news is that in practice, there are no (or very few) wild-

card nodes; for example, XML benchmark queries 3 have no wild-

card nodes. Meanwhile, it could be an interesting problem in theory

as our future work - how to deal with wildcard nodes efficiently.

Thirdly, our techniques can be immediately extended to cover

label containment. In principle, we can immediately modify our

algorithms by testing containment instead of equality. The run-

time graph may be constructed in a similar way to the above; that

is, a node v in G may be duplicated to correspond to nodes of T

with labels contained by v.

Fourthly, our techniques can also be immediately extended to

include the ‘/’ type edges [32], by restricting the retrieval of edges

(v, v′) of length 1 (i.e., corresponding to edges in data graph G)

when retrieving mappings for a ‘/’ type edge. Then, our techniques

are immediately applicable with the same complexity.

Managing Closure Size. In the worst case, the transitive closure

may be extremely large due to possible O(n2
G) size. Managing the

size of transitive closure of a graph has been studied for decades.

One of the promising techniques is the 2-hop node-labeling ap-

proach [1, 8, 26], which computes a small in-memory index for

efficiently computing the shortest path between any pair of nodes.

As proposed in [21], we could pre-compute and store in the transi-

tive closure Gc only the ‘hot’ lists based on these techniques, while

3http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt

others may be computed on the fly by using the 2-hop node labeling

techniques in [1, 8, 26] to compute shortest paths.

Supporting Top-k Graph Pattern Matching. [7] investigates the

problem of top-k graph pattern matching, namely, kGPM; that is,

we replace a rooted tree T in kTPM with a general labeled undi-

rected graph and replace a labeled directed data graph with a la-

beled undirected graph, while the others remain the same.

The authors in [7] propose a query decomposition approach to

computing top-k matches of a graph pattern q. The central idea is to

decompose q into a set of spanning trees and then run top-k (undi-

rected) tree pattern matching algorithms. Note that our techniques

can be immediately extended to support top-k undirected tree pat-

tern matching by using an undirected tree T as a query. To do this,

we choose a node in T to be the root node and make T as a rooted

tree. For each edge in the data graph, we make it bidirectional.

Thus, our algorithms are immediately applicable. Consequently,

such extended techniques for kTPM with an undirected tree can be

immediately embedded into the framework proposed in [7].

6. EXPERIMENTS
We report the results of our empirical studies. For kTPM with

distinct node labels in T , the following algorithms are evaluated:

• DP-B and DP-P: the two state-of-the-art algorithms [21],

used as baseline algorithms.

• Topk: Algorithm 1 in Section 3.

• Topk-EN: Algorithm 3 in Section 4.

For kTPM with different nodes having the same label in T , we ex-

tend Topk-EN as discussed in Section 5, referred to as Topk-GT.

Regarding kGPM, we evaluate the following two algorithms:

• mtree: the state-of-the-art algorithm for kGPM [7].

• mtree+: as discussed in Section 5, extend our Topk-EN algo-

rithm and embed it into the framework in [7].

Java bytecodes of DP-B and DP-P are obtained from the authors

of [21]. We implement our algorithms, Topk, Topk-EN, Topk-GT,

in the same environment (i.e., Java 1.5.0) to conduct a fair com-

parison. C++ source code of mtree is obtained from the authors

of [7], and we also implement our mtree+ in the same codebase in

C++. All experiments are conducted on a set of PCs, each with an

Intel(R) Xeon(R) 2.66GHz CPU and 4GB memory running Linux.

We evaluate the performance of the algorithms on both real and

synthetic datasets as follows.

Real Datasets. We use DBLP as the real dataset in our exper-

iments, which is a computer science bibliography network4. In

DBLP, each node represents a paper, each edge represents a ci-

tation relationship between two papers, and the label of a node is

either the conference name or the journal name in which the paper

appears. There are 1, 180, 072 nodes, 2, 564, 678 edges, and 3, 136

different labels. From DBLP, we randomly extract five connected

induced subgraphs by random walks, GD1, GD2, GD3, GD4, and GD5,

with 104, 5 × 104, 105, 2 × 105, and 106 nodes, respectively. We use

GD3 as the default real dataset.

Synthetic Datasets. A synthetic graph is a power-law graph gener-

ated from the Boost Graph Library [10] with average out-degree 3,

where node labels are randomly assigned from a set of 200 different

labels. We generate six connected synthetic graphs GS 1, GS 2, GS 3,

GS 4, GS 5, and GS 6, with 104, 5 × 104, 105, 2 × 105, 106, and 2 × 106

nodes, respectively. The default synthetic dataset is GS 3.

Query Set. For each real data graph and synthetic data graph, we

use random walks to randomly generate five query sets, T10, T20,

T30,T50, and T70. Each generated Ti has 100 rooted trees that are

4http://dblp.uni-trier.de/

subtrees of the run-time graph, and each query tree has i nodes with

distinct node labels. The default query set is T50. Since in real data

graphs, we cannot generate T100, we generate T100 in addition to the

five query sets above for the synthetic data graphs.

k varies from 10 to 100 with default value 20. Unless otherwise

specified, default settings are adopted in our experiments. Note that

in the experiments, total time means average total time, including

both CPU and I/O time.

6.1 Experimental Results

Eval-I: Pre-Computation Cost of Transitive Closure. The com-

putation time and sizes of transitive closures (i.e., organized in the

form of tables Lα
β

as discussed in Sections 3.1 and 4.1) are shown

in Table 2, where the first three columns show that for real datasets

and the last three columns for synthetic datasets. Note that the pre-

computation is conducted off-line.

Time of Size of Time of Size of
Graph TC (s) TC (GB) Graph TC (s) TC (GB)

GD1 80 0.123 GS 1 26 0.261

GD2 335 0.877 GS 2 181 1.004

GD3 631 1.8 GS 3 843 2.5

GD4 945 4.5 GS 4 2, 438 7.3

GD5 39, 305 98 GS 5 23, 785 77

GS 6 69, 688 247

Table 2: Computational costs of transitive closures

DP-B DP-P Topk Topk-EN

10
-2

10
-1

10
0

10
1

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(a) Total time w.r.t. GD3

10
-3

10
-2

10
-1

10
0

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(b) Total time w.r.t. GS 3
Topk-EN I/O time Topk DP-P DP-B

2-5

2-3

2-1

21

10 20 100

To
p-

1
Ti

m
e

(s
)

k =

0.213 0.213 0.213

0.192 0.192 0.192

(c) Top-1 time w.r.t. GD3

2-6

2-4

2-2

10 20 100

To
p-

1
Ti

m
e

(s
)

k =

0.016 0.016 0.016
0.015 0.015 0.015

(d) Top-1 time w.r.t. GS 3

DP-B DP-P Topk Topk-EN

2
-12

2
-10

2
-8

2
-6

10 20 100

En
um

era
tio

n T
im

e (
s)

k =

(e) Enumeration time w.r.t. GD3

10
-4

10
-3

10
-2

10 20 100

En
um

era
tio

n T
im

e (
s)

k =

(f) Enumeration time w.r.t. GS 3

Figure 6: Comparing with DP-B and DP-P (T = T20, vary k)

Eval-II: Evaluating Topk & Topk-EN over DP-B & DP-P. We

use default data graphs and T20 (i.e., query trees with 20 nodes).

We do not vary the sizes of query and data graphs since the byte-

codes obtained for DP-B and DP-P cannot run for large queries and

graphs. Figure 6(a) and Figure 6(b) show the total running time of

the four algorithms. As demonstrated, Topk and Topk-EN are sig-

nificantly faster than DP-B and DP-P, and Topk-EN achieves up

to 2 orders of magnitude speed-up against DP-B and DP-P. The

experiment also shows that when k is small, our techniques are not

quite sensitive to the values of k. This is because the query process-

ing time is dominated by the time for computing the top-1 match

when k is small.

Figures 6(c) and 6(d) report the time to generate the top-1 result

by the four algorithms, respectively, including I/O time and CPU

time. Since DP-B and Topk include the total I/O time (i.e., in load-

ing in the run-time graph) in generating the top-1 result, we use

the blank bars in Topk to illustrate the I/O time for loading in the

run-time graph. As depicted, our algorithms significantly outper-

form DP-B and DP-P, and Topk-EN performs the best. Figure 6(e)

and Figure 6(f) show the total time for generating the top-l results

after generating the top-1 result. It shows that DP-P and Topk-EN

are slower than DP-B and Topk, respectively. This is because that

during the computation, both DP-P and Topk-EN involve I/O costs

but DP-B and Topk do not. When k gets larger, the time of DP-P

and Topk-EN is closer to that of DP-B and Topk, respectively. This

is because that the CPU costs of DP-P and Topk-EN are lower than

those of DP-B and Topk in practice; thus, when k gets larger, the

I/O costs in DP-P and Topk-EN become less significant.

In fact, for small queries (e.g., with 5 - 20 nodes), our techniques

Topk and Topk-EN also outperform DP-B and DP-P by up to two

orders of magnitude, due to space limits we do not report the re-

sults here. Thus, next we will only evaluate the scalability of our

techniques and discard comparisons with DP-B and DP-P.

Topk Topk-EN

10
-2

10
-1

10
0

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(a) Vary k w.r.t. GD3

10
-3

10
-2

10
-1

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(b) Vary k w.r.t. GS 3

10
-2

10
-1

10
0

T10 T30 T50 T70

Pr
oc

es
sin

g T
im

e (
s)

(c) Vary T w.r.t. GD3

10
-3

10
-2

10
-1

T10 T30 T50 T70 T100

Pr
oc

es
sin

g T
im

e (
s)

(d) Vary T w.r.t. GS 3

10
-2

10
-1

10
0

10
1

GD1 GD2 GD3 GD4 GD5

Pr
oc

es
sin

g T
im

e (
s)

(e) Vary GD

10
-3

10
-2

10
-1

10
0

10
1

GS1GS2GS3GS4 GS5GS6

Pr
oc

es
sin

g T
im

e (
s)

(f) Vary GS

Figure 7: Running time for kTPM

Eval-III: Scalability Testing for kTPM. We evaluate the scalabil-

ity of Topk and Topk-EN against k, and the sizes of T and G.

Figure 7(a) and Figure 7(b) demonstrate the impacts of k with

T50 that are similar to those in Figure 6(a) and Figure 6(b).

Figure 7(c) and Figure 7(d) evaluate the impacts of query sizes.

Note that for real data graphs, we are unable to retrieve T100 due to

graph characteristics; thus maximal query is T70. While Topk-EN

still significantly outperforms Topk, the running time of Topk-EN

grows faster on real data graph than that on synthetic data graph.

This is because that when the size of T increases, the ratio of av-

erage degree of run-time graph of real graph over that of synthetic

graph increases; subsequently, the ratio of number of edges loaded

in by Topk-EN for real graph over that for synthetic graph also in-

creases. Table 3 shows the sizes of run-time graphs for real graph

and synthetic graph, respectively.

GD3 GS 3

#nodes of GR #edges of GR #nodes of GR #edges of GR

T10 39.5 × 103 1, 826 × 103 5 × 103 32 × 103

T30 45.5 × 103 2, 361 × 103 15 × 103 107 × 103

T50 51.4 × 103 2, 840 × 103 25 × 103 178 × 103

T70 55.4 × 103 3, 007 × 103 35 × 103 250 × 103

T100 50 × 103 394 × 103

Table 3: Average sizes of run-time graphs (i.e., GR)
Figure 7(e) and Figure 7(f) demonstrate the impacts of data graph

sizes. Topk-EN still significantly outperforms Topk. Moreover,

Topk even cannot run on GD5 due to running out of memory.

Eval-IV: General Top-k Twig-Pattern Matching. Query sets are

generated in a similar way except that node labels are not enforced

to be distinct. In fact, each query tree generated has multiple nodes

with the same label, and the average label duplication ratios (i.e.,

1 − #distinct labels
#nodes

) are 17.2% (for T10), 42.3% (T30), 50.2% (T50), and

54.5% (T70) regarding GD3, and 2.2% (for T10), 7.3% (T30), 13.8%

(T50), 18.6% (T70), and 24.9% (T100) regarding GS 3. Figure 8 re-

ports the evaluation result where the default settings remain un-

changed. Similar trends to Topk-EN are obtained.

Topk-GT on GD3 Topk-GT on GS3

10
-3

10
-2

10
-1

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(a) Vary k

10
-3

10
-2

10
-1

T10 T30 T50 T70 T100

Pr
oc

es
sin

g T
im

e (
s)

(b) Vary T

10
-2

10
-1

10
0

10
1

GD1 GD2 GD3 GD4 GD5

Pr
oc

es
sin

g T
im

e (
s) Topk-GT

(c) Vary GD

10
-3

10
-2

10
-1

10
0

10
1

GS1GS2GS3GS4 GS5GS6
Pr

oc
es

sin
g T

im
e (

s) Topk-GT

(d) Vary GS

Figure 8: Running time for general twig-pattern matching

Eval-V: kGPM. Figure 9(a) and Figure 9(b) show the evaluation

results by comparing mtree+ with mtree against different settings.

As expected, mtree+ significantly outperforms mtree.

mtree (existing) mtree
+
 (ours)

10
-2

10
-1

10
0

10
1

10 20 100

Pr
oc

es
sin

g T
im

e (
s)

k =

(a) Vary k (Query is Q2)

10
-2

10
-1

10
0

10
1

Q1 Q2 Q3 Q4

Pr
oc

es
sin

g T
im

e (
s)

(b) Vary query (k = 20)

Figure 9: Running time for kGPM

7. CONCLUSION
In this paper, we proposed a novel and optimal enumeration

paradigm for kTPM with distinct labels on query nodes. We also

proposed a priority order based algorithm, by avoiding loading in

the entire run-time graph, to improve the performance of computing

top-k matches in practice. We have shown that our approaches can

be extended to general top-k twig-pattern matching, and general

top-k graph pattern matching. Our extensive experiments demon-

strate the efficiency and scalability of our techniques, and our tech-

niques outperform the existing techniques by several orders of mag-

nitude. As possible future work, selecting the “best” node as a root

from an undirected tree to use our techniques might be an interest-

ing issue to be investigated. Another interesting issue is to generate

the “diverse” top-k results.

Acknowledgements. Lijun Chang is supported by ARC DE150100563.

Xuemin Lin is supported by NSFC61232006, ARC DP120104168,

ARC DP140103578, and ARC DP150102728. Wenjie Zhang is

supported by ARC DE120102144, DP120104168, ARC DP150103071

and DP150102728. Jeffrey Xu Yu is supported by Research Grants

Council of the Hong Kong SAR, China, 14209314 and 418512.

Ying Zhang is supported by ARC DE140100679 and DP130103245.

Lu Qin is supported by ARC DE140100999.

8. REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. In Proc. of
SIGMOD’13, 2013.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In Proc.
of ICDE’02, 2002.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal
xml pattern matching. In Proc. of SIGMOD’02, 2002.

[4] L. Chang, X. Lin, W. Zhang, J. X. Yu, and Y. Zhang. Optimal
enumeration: Efficient top-k tree matching. In
UNSW-CSE-TR-201417, http://goo.gl/r8CIwa.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for
pattern matching on dags. In Proc. of VLDB’05, 2005.

[6] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph
pattern matching. In Proc. of ICDE’08, 2008.

[7] J. Cheng, X. Zeng, and J. X. Yu. Top-k graph pattern matching over
large graphs. In Proc. of ICDE’13, 2013.

[8] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels. In Proc. of SODA’02, 2002.

[9] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

[10] B. Dawes and D. Abrahams. Boost c++ libraries.
http://www.boost.org/.

[11] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding
top-k min-cost connected trees in databases. In Proc. of ICDE’07,
2007.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In Proc. of PODS’01, 2001.

[13] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism
revisited for graph matching. PVLDB, 3(1), 2010.

[14] W. Fan, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching:
From intractable to polynomial time. PVLDB, 2010.

[15] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern
matching. PVLDB, 6(13), 2013.

[16] V. Gaede and O. Günther. Multidimensional access methods. ACM
Comput. Surv., 30(2), 1998.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[18] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,
1985.

[19] G. Gottlob, C. Koch, and R. Pichler. The complexity of xpath query
evaluation. In Proc. of PODS’03, 2003.

[20] G. Gou and R. Chirkova. Efficiently querying large xml data
repositories: A survey. IEEE Trans. Knowl. Data Eng., 19(10), 2007.

[21] G. Gou and R. Chirkova. Efficient algorithms for exact ranked
twig-pattern matching over graphs. In Proc. of SIGMOD’08, 2008.

[22] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast and
robust subgraph isomorphism search in large graph databases. In
Proc. of SIGMOD’13, 2013.

[23] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Systems
Science and Cybernetics, 4(2), 1968.

[24] P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford Lecture
Series in Mathematics and Its Applications, 2004.

[25] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4), 2008.

[26] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu. Hop doubling
label indexing for point-to-point distance querying on scale-free
networks. PVLDB, 7(12), 2014.

[27] F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In Proc. of SIGMOD’00, 2000.

[28] E. L. Lawler. A procedure for computing the k best solutions to
discrete optimization problems and its application to the shortest path
problem. Management Science, 18(7), 1972.

[29] Y. Qi, K. S. Candan, and M. L. Sapino. Sum-max monotonic ranked
joins for evaluating top-k twig queries on weighted data graphs. In
Proc. of VLDB’07, 2007.

[30] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification
hardness: an efficient algorithm for testing subgraph isomorphism.
PVLDB, 1(1), 2008.

[31] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,
23(1), 1976.

[32] W3C. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, 1999.

[33] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases.
Morgan & Claypool, 2009.

[34] Q. Zeng, X. Jiang, and H. Zhuge. Adding logical operators to tree
pattern queries on graph-structured data. PVLDB, 5(8), 2012.

[35] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu. Treespan: efficiently
computing similarity all-matching. In Proc. of SIGMOD’12, 2012.

[36] L. Zou, L. Chen, and M. T. Özsu. Distancejoin: Pattern match query
in a large graph database. PVLDB, 2(1), 2009.

