[bookmark: _GoBack]"This is the peer reviewed version of the following article: Wang, W., Zhang, G. and Lu, J. (2015), Collaborative Filtering with Entropy-Driven User Similarity in Recommender Systems. Int. J. Intell. Syst., 30: 854–870. which has been published in final form at doi: 10.1002/int.21735/. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."


Collaborative Filtering with Entropy-driven User Similarity in Recommender Systems
Wei Wang, Guangquan Zhang, Jie Lu
Decision System and e-Service Intelligence Lab, Centre for Quantum Computation and Intelligence Systems, School of Software, Faculty of Engineering and Information Technology, University of Technology Sydney，POBOX 123, Broadway, NSW, Australia
e-mails: wei.wang-17@student.uts.edu.au; guangquan.zhang@uts.edu.au; Jie.lu@uts.edu.au
Abstract: Collaborative Filtering (CF) is the most popular approach in personalized recommender systems. Although CF approaches have successfully been used and have the advantage in that it is unnecessary to analyze item content when generating recommendations, they nevertheless suffer from problems with accuracy. In this paper, we propose a new CF approach to improve recommendation performance. First, a new information entropy-driven user similarity measure model is proposed to measure the relative difference between ratings. A Manhattan distance-based model is then developed to address the fat tail problem by estimating the alternative active user average rating. The effectiveness of the proposed approach is analyzed on public and private data sets. As a result of the introduction of the new similarity measure and average rating estimation, we demonstrate that the proposed new CF recommendation approach provides better recommendations.
1. Introduction
Recommender systems are designed to provide the personalized content that are widely applied in many online services, such as e-commerce, e-government, and e-learning 1-3. A problem that is often referred to is information overload, where users find it very difficult to obtain information they really require from the massive amount of information available. This limits users’ experience when they use these online services(Dianshuang, Guangquan & Jie 2014). Recommender systems are proposed as one of the most successful techniques available to address this problem by analyzing users’ information to model users’ preferences and target-related information. Both service providers and users benefit from fast and accurate recommendations because they increase revenue and save time.
Collaborative filtering 4,5 has become the most widely used method of recommending items to users. It produces recommendations according to the similarities between the active user and others, or between the target items and similar items that have been rated by the active user. Depending on how these scores are processed, two different CF approaches, memory-based and model-based, can be distinguished. In model-based approaches, to compute predictions, a model with its required parameters is learned from the scores of users. Once the model is established, the scores are not stored in memory. By contrast, in memory-based approaches, all the scores are stored in memory, and predictions are computed by exploration and heuristic. Memory-based CF approaches have been adopted in many practical systems, such as Amazon and Netflix, for their simplicity and high effectiveness. In these systems, generally there are two major procedures to make recommendations: identifying “neighbors” and rating prediction. By describing a user profile by a vector of scores, often ratings, of the user, users who have similar score vectors, or “neighbors”, are identified. Once the neighbors have been selected, an active user’s unknown rating is predicted by simply aggregating the neighbors’ ratings, and those items that have higher predicated ratings are recommended.
Despite the many advances in CF approaches, in practice, recommender systems based on memory-based CF approaches often face two important performance problems. First, all the rating differences, difference between two ratings for an item of two users, are usually treated individually without considering the correlation between them when the similarity is computed. Second, ratings that are far from the average rating of the active user are difficult to predict. In other words, the fat tail of the probability distribution of ratings of the active user cannot be properly modeled. To address this efficiency problem, we need not only more coherence similarity but also a rating prediction model.  Many works to address the performance problem have been studied, and default voting 6 has been proposed to overcome the massive missing ratings problem. Many new similarity models have been developed, such as constraint Pearson correlation coefficient 7 and fuzzy-based similarity model 8. Beyond similarity itself, reliability similarity measures have also been proposed to obtain more trustworthy rating predictions 9,10. 
This study aims to build a new memory-based CF approach based on information entropy and Manhattan distance to address two major problems in CF approaches: user coherence and fat tail rating calculation. In most memory-based CF, similarity calculation is inherently determined by the aggregation of absolute rating differences. For instance, Pearson correlation coefficient (PCC) similarity and other coherence measures are calculated either by the absolute rating differences between two users or the absolute differences between the deviations from respective average ratings. Our motivation is to incorporate the entropy evaluation and introduce user coherence by taking the relative differences between ratings into account. We will show that the information entropy of the relative rating differences between two users captures additional coherent information compared to only considering individual absolute rating differences. Furthermore, we argue that well-estimated active user average rating can alleviate the fat tail problem in rating prediction. Instead of obtaining the average rating of the active user according to all of his/her ratings, only a subset of ratings close to the target item is considered when computing the average rating. To estimate this local average rating, a Manhattan distance-based measure is proposed to identify items that are relevant to the target item. The proposed similarity model attempts to accurately measure the coherence between two users and the relevant model to estimate the trustworthy average rating when the expected ratings of the target item stand at the fat tail. By combining these two models, we propose a new memory-based CF approach based on entropy measure and Manhattan distance.
The major contributions of this paper are as follows:
(1) We propose a novel entropy-based similarity to improve the performance of CF. Unlike the comparison of absolute rating differences, we take the relative rating differences of users into account to enhance coherency calculation.
(2) We apply Manhattan distance to capture the relevance between items to dynamically estimate the local average ratings for different target item of the active user. The local average ratings alleviate the fat tail problem that generally occurs in a practical system.
The rest of this paper is organized as follows. We review CF basic recommendation approaches and the key aspects of CF approaches in Section 2. In Section 3, we detail our new CF recommendation approach. Lastly, the experiments and results are demonstrated in Section 4. The conclusion and proposed further study are presented in Section 5.
2. Related work
Collaborative filtering (CF) has been widely used as a personalized recommendation technique in many domains 11-15. CF approaches produce recommendations according to a score of some kind; for example, in an e-commerce system, the score could be a purchase record in which a binary score is defined as 1 representing interested and 0 representing not interested; in a music recommender system, the score could be the replay history, in which the more frequently a song is played, the higher the score that song receives. For most CF-based recommender systems, however, the scores are represented as ratings. CF-based recommender systems model user preference and predict unknown ratings by reference to observed ratings with no side information such as item features. Compared to traditional content-based recommendation approaches and knowledge-based approaches, CF-based recommender systems can make recommendations without the need to understand the specific domain knowledge of item content or to analyze connection between items. Nevertheless, CF techniques still suffer from a number of issues that affect recommendation performance; for instance, data correlation, cold start, sparsity, and so on. 
The different kinds of CF approaches can be categorized into two types: memory-based approaches and model-based approaches, according to how the ratings are processed. In model-based approaches, taking observed ratings as the training data, a model with its parameters will be learned. Once the model is established, unknown ratings can be predicted by the trained model. By contrast, in memory-based approaches, unknown ratings are predicted by identifying similar rating patterns between users or items. These are named for the fact that each system maintains all the observed ratings in memory for exploration and heuristic.
2.1. Memory-based
Many practical systems, such as Amazon and Netflix, generate recommendations by adopting Memory-based CF approaches for their simplicity and effectiveness. Memory-based CF approaches describe user preference by a vector of ratings, and users with similar rating patterns, also called neighbors, can be identified by a similarity measure that represents the distance between vectors. Once neighbors have been selected, unknown ratings are predicted by aggregating the ratings of neighbors. In addition to modeling a user’s preference model by vectors, the rating pattern for items can also be represented by vectors, which means that memory-based CF approaches can be instantly classified into user-based approaches and item-based approaches. The most important tasks in memory-based CF approaches are the identification of neighbors and rating prediction.
1) Identification of neighbors 
The measure for identifying neighbors is called similarity. The key to many memory-based approaches is to estimate the similarity between two users (items) 4,10. The vectors of the user or the items do not affect the form of the equation, and we do not especially differentiate between them. Cosine and Pearson correlation coefficient (PCC) are widely used to calculate similarity. The equation of cosine similarity is shown in equation (1) and PCC similarity is shown in equation (2).
		(1)
	 	(2)
Cosine similarity does not account for user rating habits when extremely high or extremely low ratings are given. PCC utilizes deviation from average rating to avoid this issue. However, some observed shortages are shown in PCC similarity which have inspired many improved similarity measures. Breese et al. 6 proposed that items with similar ratings should have less impact on determining user similarity than items with different ratings. They suggested using inverse user frequency as the weights of items. Intuitively, if two users rate more items in common, the similarity between them will be more trustworthy. The number of items that have been co-rated by users are taken into account in some improved similarities.  Weighted PCC (WPCC) is proposed in 10 and similarity decreases when the co-rated item number is smaller than a predefined threshold.  WPCC is defined as 
	,	(3)
where  and  are items that have been rated by u and v respectively,  represent the number of co-rated items and T is the threshold, which is set to 50 in their work. A similar factor for evaluating the degree of trustworthiness of the similarity is proposed in 9 which instead uses the ratio in WPCC  of a sigmoid function. This approach can weaken the similarity of small common items among users and the equation for this similarity is defined as 
		(4)
Jaccard 16 and mean squared difference (MSD) 17 are two other widely used measures. Compared to PCC-based WPCC and SPCC, Jaccard and MSD similarity remove the PCC computation and use a number of common rated items. The basic idea in Jaccard, defined in equation (5), is that two user potentially have similar preferences when they have many co-rated items even though they have rated them different. MSD similarity, defined in equation (6), only captures the rating difference between two users. 
		(5)
		(6)
Lu et al. 8 proposed a similarity measure by incorporating fuzzy set theory to allocate different weighting to rating differences. The absolute ratings are converted to semantic terms and the distance between the vectors is then transformed to the distance between terms. This fuzzy similarity (FS) is defined as 
		(7)
By ordering users (items) according to obtained similarities, the neighbors can be selected out either by the top-K method with predefined K or by all the users (items) with higher similarity than a given threshold.
2) Rating prediction
After determining neighbors, we can aggregate their ratings to predict the unknown ratings of an active user. The most popular equation for rating prediction is 
		(8)
This prediction performs extremely well when the target rating is close to the active user’s average rating. Predicting the fat tail is harder because target ratings far from the average rating are difficult to predict.
The limitation for most memory-based CF approaches is that the similarity can only be computed based on common items and therefore performance is reduced when data become sparse and the common items are few. To achieve better prediction performance and overcome the shortcomings of memory-based CF approaches, a number of model-based CF approaches have been investigated.
2.2. Model-based
Model-based approaches aim to build a model that will represent the preferences of users to predict their unknown rating. Observed ratings are used to estimate parameters and learn the model, but the rating data is not maintained in memory once the model is established. Most models are related to data mining and machine learning. Well-known model-based CF techniques include Bayesian 6,18, clustering 19, graphs 20 and latent factor 21.
Although model-based approaches aim to improve CF approaches, they are rarely adopted in practical systems because of the high computational cost of establishing and updating the model.
3. A New CF-based Recommendation Approach
In this section, we describe our proposed approach step by step. We first introduce an entropy-driven user similarity model which aims to improve the accuracy of the similarity computation. Then, to address the fat tail rating prediction problem, a local average rating based on Manhattan distance is proposed. Our approach combines these two models to predict unknown ratings. The flowchart of our approach is demonstrated in Figure 1, which contains four steps.
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Figure 1 Flowchart of our approach
3.1. Step 1 Entropy-driven User Similarity
PCC and cosine-based user similarity are widely applied in collaborative filtering approaches to compute user similarity 5 and PCC is more accurate than cosine similarity. The enhancement of PCC similarity calculation is the key to improving recommendation performance. The difference between the co-ratings of two users for the same item represents a degree of preference similarity. Many approaches improve similarity calculation by assigning various weights for these differences. As mentioned in Section 2, most of improvements to similarity computation only consider absolute rating differences.
[image: ]Every user has personal habits when expressing opinions, which means that the ratings are usually centralized around a particular average attitude. The closer the ratings given by two users for one item, the more similar are the two users. We argue that it is necessary to additionally consider the relative difference of deviations as well as their absolute difference. If the absolute difference of deviation is large but occurs only rarely on a small number of items, similarity should not be affected significantly. By contrast, if there are always differences on most items, the similarity should be less, even if these differences are small. Figure 2 Similarity example

To illustrate the effect of using absolute difference in PCC, we give an example shown in Figure 2. The PCC similarity of two rating vectors a and b is 0.4714. We change the last rating of b from 5 to 1 and we then have PCC similarity of a and  equal to 0. It is clear that we overweight the difference of the last rating pair. Based on rare rating differences, we cannot conclude that the preferences of these two users are similar or dissimilar. On the other hand, if the rating is totally different from the average attitude, it will provide more discriminative information to determine whether the user preferences are similar. Intuitively, users have given rarely-given ratings for a few items do not provide enough information to distinguish them from others. In contrast, if a user maintains rating differences from the other user, we can easily distinguish him/her from other users. This is the motivation for adopting information entropy on the relative difference of ratings on items to measure the similarity of two users rather than assigning different weights to absolute differences9,10,17,22, which is done in many improved similarity models.
For users u and v, the co-rated items are represented as {} and . N is the number of items that users u and v rated in common. The respective average rating is  and , and the deviation from mean rating is  and . The absolute difference between two deviations is denoted as  and . We can obtain a serial normalized ratio on all co-rating items, given  represents the sum of all differences that 

By definition of , we can easily obtain:
1) For any , we have .
2) We have 
Then  can be seen as probability function of a random variable. Furthermore, we can use information entropy to measure the disorder of this variable. The greater the disorder of this variable, the less similarity we consider there to be.
,
and  if .
Lastly, we define the entropy-driven user relevance as 
	,	(9)
where N is the numbers of items that users u and v rated in common. According to the definition and condition, we have the following property of entropy similarity. Evidently, we still have  if users u and v have the same ratings. As previously mentioned, we measure the relative rating difference rather than the absolute difference which means that if users u and v only have different differences, deviations from the respective average rating in PCC, the similarity is still close to 1. For example, if we have  for , the maximum value of  is  ,which is close to 0 and the similarity, , is close to 1. The similarity continues to get smaller when we have greater different deviations.
3.2. Step 2 Hybrid User Similarity
Taking both PCC and entropy-driven similarity into account, we combine two similarities by the weighted average defined in equation (10) to calculate the final similarity between users. 
		(10)
The parameter  determines the extent to which the similarity relies on PCC similarity and entropy similarity. With , it indicates that the prediction depends completely on PCC similarity such as the classical user-based CF approach, and with , it indicates that the neighbors are determined by entropy similarity.  can be determined experimentally using cross-validation.
In this step, those neighbors that are the most similar to the active user are selected out to generate the prediction. Two methods are currently employed in recommender systems: the top-N method (i.e., a predefined number of users with higher similarity are selected), and the threshold method (i.e., all users with a similarity correlation exceeding a certain threshold are selected). We use the top-N method as recommended by 13.
3.3. Step 3 Manhattan Distance-based Local Average Rating Estimation
Although the ratings of a specific item by most users are centralized around an average attitude, some users still exist who give much higher (or lower) ratings than the average rating. In other words, the distribution of the ratings has fat tails.
We propose a model to estimate an active user’s local average rating with respect to the target item instead of computing the global average rating on the whole item space. A subset of items for calculating the local average rating can be obtained if we identify the potential neighbors of the target item. Like user similarities, item relevance can be used to identify relevant items the local average rating of an active user can be estimated by aggregating the corresponding ratings from those items that are more relevant to the target item.  Therefore, local average rating on subset of items close to the target item can be used in rating prediction to address the fat tail problem. In brief, after computing the item relevant, we select part of ratings with higher relevant that to compute local average rating.
In our recent work 23, we proposed the Manhattan distance-based function to measure the relevance between two users. We use same method to measure the relevance of two items. The  and ,  represents the rating vectors of items i and j on common k items. Let  be the absolute difference of  and , as . The Manhattan distance of these two vectors is . One limitation of this distance is that it is difficult to achieve a unified threshold for different systems, because one might choose a rating scale of 1 to 5 while another might choose a scale of 1 to 10. We first normalize  before calculating relevance. We divide the possible  into three relevance levels with respect to the different systems. If the system allows a user to rate an item from  to  , then  ranges from 0 to   - and the three levels are ,  and . Clearly, if   is more close to 0, i and j are more relevant to user p. We define a subsection function to represent the relevance for each level.
		(11)
The Manhattan distance of items i and j becomes . Evidently,  can vary from 0 to k, the number of dimensions of the rating vector, and different k make these distances have different scale among all users. We address this problem by averaging the Manhattan distance as the final relevance of items i and j. 
		(12)
Neighbor selection A threshold T is set to determine whether items i and j are sufficiently close and whether  is taken into consideration to compute the average rating of user u for item i.  The local average rating of active user u is calculated by averaging all the ratings relevant to target item i, where the relevance is greater than T.
		(13)
3.4. Step 4 Calculating Predicted Rating
After obtaining the similarity of the active user and the average rating, we can calculate the predicted rating by using the weighted sum of deviation from the average rating of similar neighbors. The equation to predict the rating of user u for item i is shown in
	,	(14)
where  denotes the average rating of user u obtained by the Manhattan distance-based model, and active user neighbors are selected according to entropy-driven hybrid similarity. User v is one of the neighbor users of active user u and  is the corresponding average rating of v.
In summary, the proposed approach improves collaborative filtering performance by unfolding and utilizing the information entropy to evaluate the similarity between two users. In addition, the proposed approach focuses on alleviating the fat tail issue by adopting alternative average ratings by relevant users according to the Manhattan distance measure. The next section presents the comprehensive empirical results of the proposed approach.
4. Experiment
This section introduces the data sets in our experiments, as well as the evaluation metric and design. The results of our experiments are then presented by comparing state-of-the-art CF approaches with different parameters in our approach.
4.1. Data Set
We conduct our experiments on two data sets to examine the performance of the proposed CF approach. One is from the public data set Movielens and the other is a set of data collected by the BizSeeker system.
· We employ a MovieLens data set (http://www.grouplens.org) as the benchmark dataset to develop the offline experiments and assess the performance of our proposed approach. MovieLens data sets are related to a movie recommender service and are collected by the GroupLens Research Project at the University of Minnesota. The data sets are publicly available and have been widely used to evaluate recommender systems, thus we chose this option because we can compare our approach with other similar approaches. We used the 100 K ratings data set which contains 1682 movies, 943 users and a total of 100000 ratings on a scale of 1–5 (where 1 = Awful, 2 = Fairly bad, 3 = It’s OK, 4 = Will enjoy, 5 = Must see). Each user has rated at least 20 movies. The sparsity level of the MovieLens data set is 93.7% (sparsity level = 1-(100000/ (943×1682)) = 0.937).
· The SmartBizSeeker data set, shown in Figure 3, has been extracted from the SmartBizSeeker system and contains 1602 ratings of 332 businesses from 100 users. The SmartBizSeeker system is designed for business users to enable them to obtain a recommendation list of potential business partners. The data are combined by two kinds of ratings: first, ratings by suppliers who comment on providers, and second, ratings by providers who comment on suppliers. We do not distinguish between these ratings in our experiments. The ratings are also on a scale from 1 to 5, representing the degree of relatedness, in which 5 represents highly related and 1 represents not related. The sparsity level of the SmartBizSeeker data set is 95.2% (sparsity level=1–(1,602/ (100×332))=0.952).
[image: ]
Figure 3 List of businesses recommended to a user
4.2. Experiment Design
To measure the improvement of our approach, we implemented several successful and state-of-the-art CF approaches and compared the results with ours. Below are the label descriptions we use to denote each of these algorithms.
· IBC: the basic item-based CF approach with PCC similarity 4.
· UBC: the basic user-based CF approach with PCC similarity 5.
· SPCC: the user-based CF approach with sigmoid function-based PCC similarity 9.
· FS: the item-based CF approach with fuzzy semantic similarity. 8 argue that hybrid the item category similarity with PCC to calculate similarity. For we assume there are no side information, item category information, in our experiments, we did not implement this part of the work. 
· FU: the user-based CF approach with fuzzy importance similarity and user relevance rating prediction. Our previous work and one parameter, user relevance threshold, is needed to select user neighbors. In our experiments, this parameter is set to 0.2 23.
· Proposed approach: the user-based CF approach with information entropy similarity and local average rating estimation. Instead of assigning a unique label for our approach, we use parameter values used in the approach to represent it.
To evaluate the performance of all approaches, we conducted a k-folder validation, which is widely used to evaluate the performance of recommender approaches, on two data sets. Five-folder validation is adopted and the two data sets are each split into five sub sets. In each round, one of the sub sets is selected out as test data and the rest as training data. 
As in the most recent research papers, we use Mean Absolute Error (MAE) to measure recommendation performance: 
	.	(15)
In the equation above,  is the actual rating of user u for item i in the test data,  is the predicted rating generated by the recommender approach, and N is the total number of ratings that need to be predicted in the test data. The smaller the value of MAE, the more precise a recommender approach. The final MAE for an approach is the mean of all MAEs from all folders.
4.3. Experiment Result
In this subsection, we first present a comparison of the experiment results of different approaches. We then present the results of using different parameters in our approach,  to hybrid PCC and entropy-driven similarity and T to estimate active user’s local average rating. Lastly, the results between approaches with varying neighbor size are also compared.
 	Table 1 MAE with different approaches
	
	IBC
	UBC
	SPCC
	FS
	FU
	EU

	MovieLens
	0.792
	0.7625
	0.753
	0.743
	0.741
	0.731

	SmartBizSeeker
	0.904
	0.8878
	0.886
	0.881
	0.866
	0.862



Table 1 shows the MAE result obtained by IBC, UBC, SPCC, FS, FU, and our approach. The rows entitled with data sets present the results obtained by our approach over the other approaches. As shown in Table (1), our approach has a lower rate of error than all the other approaches on both data sets. On Movielens, our new approach improves the MAE by 7% compared to the item-based CF approach with PCC similarity, and improves about the MAE 4% compared to the UBC approach. Comparing the SPCC, our new approach improves accuracy by about 3%. Comparing the most recent FS and FU approaches, our EU approach still outperforms them by 1.68% and 1.37% respectively. In contrast, the results on SmartBizSeeker show a greater percentage of error when compared with the same approach on MovieLens. This is mainly because items in MovieLens concern only movies, whereas items in SmartBizSeeker consist of many kinds of products provided by companies. This means that MovieLens data are relatively more coherent than SmartBizSeeker data. The results show that the performances of the IBC, UBC, SPCC and FS approaches, which are only based on absolute ratings, are similar to one another. Our EU approach is slightly better than other approaches. An interesting fact is that the result from our previous work, the FU approach, which also considers relative rating differences and combines them with a weight defined in a fuzzy set, shows similar performance to EU. This clearly shows that relative difference is sometimes able to measure item connection more precisely.
In Figures 4 and 5, we show the impact of the parameters we used to control the approach in terms of MAE. As discussed above, we employed the parameter α in equation (10) to balance the similarities of PCC and entropy, and T is the parameter used in equation (13) to identify target item neighbors to estimate the local average rating of an active user. To determine the impact of the two parameters, we varied α from 0.9 to 0.4 and T from 0.6 to 0.1. 
[image: ][image: ]

Figure 4 Different parameters vs MAE on MovieLens
As shown in Figure 4, entropy-driven similarity slightly improves performance when T is fixed, and estimated local average rating improves performance when α is fixed. Too small T means that only a small number of items can be used to estimate the average rating and too loose T also causes MAE to increase significantly. These results show that MAE is mainly affected by average rating estimation rather than similarity calculation. This can also be observed in Figure 5. The results show that T affects performance significantly more than α, and we can further infer that global error is mainly caused by the fat tail rating problem, which means it is more important to deduce prediction error.
To exam the sensitivity of performance with different neighbor size, we performed several experiments in which we varied the number of neighbors to generate the predicted rating. The MAE results of the proposed approach are also compared with others. Figure 6 shows the result when different numbers of neighbors are considered for predicting target rating on Movielens, and Figure 7 shows the equivalent result on SmartBizSeeker. From Figure 6, we observe that the size of neighborhood affects performance. SPCC outperforms IBC and UBC, and the accuracy of prediction is improved as the neighborhood size increases from 5 to 30. For greater values, the curve flattens. Again, FU and FS outperform SPCC, and our approach outperforms both of them when the neighbor size greater than 50. In addition, it can be seen that our approach results in stable than other methods when there is no neighbor constraint. The reason is that our approach has access to more accurate contributions from each item from which to compute similarity. From Figure 7, we observe that a lower error rate can be obtained when we set T to 0.5, and great error occurs when we set T to 0.2. This shows that when T is too strictly defined, prediction error cannot be deduced when items are inherently different.Figure 5 Different parameters vs MAE on SmartBizSeeker
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[image: ]Figure 6 Neighbors vs MAE on MovieLens
[image: ]
Figure 7 Neighbors vs MAE on SmartBizSeeker
5. Conclusion and further study
In this paper, we first presented the advantages of current CF-based approaches as personalization techniques and the limitations of those approaches. To improve the performance of CF-based approaches, we proposed a novel similarity measure based on information entropy to analyze the relative difference in ratings. The new similarity measures the degree of disorder of difference and make co-ratings with higher different contribute much to similarity only when the number of these items increased. The new similarity is not sensitive to rare impulse differences but is sensitive to continued differences. We also proposed a novel rating estimation function based on Manhattan distance. The model is to alleviate the fat tail problem that the unknown rating is difficult to predict when using average rating on whole item space. We dynamically estimate the local active user average ratings by collecting ratings from neighbor item, by Manhattan distance-based relevant model. The local average ratings are then used to predict the unknown ratings. From the experimental results, we can see that the new approach combining the new similarity measure and aggregation function obtains more accurate prediction than most other approaches. 
Our future study will include the extension of our approach to make it practical when rating is really sparse and neither the user similarity nor item relevant can be calculated. Another possible improvement is incorporating side information, such as tags and domain knowledge to precisely refine the model. 
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