
Chapter 6 

Tri-level Multi-follower Decision Making 

In a tri-level hierarchical decision problem, each decision entity at one level has its 

objective, constraints and decision variables affected in part by the decision 

entities at the other two levels. The choice of values for its variables may allow it 

to influence the decisions made at other levels, and thereby improve its own 

objective. We called this a tri-level decision problem. When multiple decision 

entities are involved at the middle and bottom levels, the top-level entity‟s 

decision will be affected not only by these followers‟ individual reactions but also 

by the relationships among the followers. We call this problem a tri-level multi-

follower (TLMF) decision. 

In this chapter, we first identify tri-level decision problems from real world 

cases in Section 6.1.We then introduce basic tri-level decision-making models in 

Section 6.2. Section 6.3 presents a framework for the TLMF decision through 

analyzing various kinds of relationships between decision entities in a tri-level 

decision problem. The TLMF decision framework contains 64 standard TLMF 

decision-making situations. To model these TLMF decision situations, we extend 

the bi-level decision entity-relationship diagram (DERD) approach introduced in 

Chapter 4 to describe tri-level decision problems. Furthermore, we establish a set 

of standard and hybrid TLMF decision models using a mathematical programming 

approach in Section 6.4. A set of case studies illustrates the development of TLMF 

decision models by DERD, as well as programming approaches, in Section 6.5. 

Section 6.6 gives solution concepts for a linear tri-level decision problem. It also 

presents a set of tri-level programming algorithms including a tri-level Kth-Best 

algorithm. Section 6.7 focuses on solution methods for the proposed 64 kinds of 

TLMF decision model. To discuss this in detail, we take the TLMF decision 

model S12 in its linear version as a representative to illustrate solution concepts 

and theoretical properties, and to describe a TLMF Kth-Best algorithm for TLMF 

decision-making. Finally, Section 6.8 summarizes this chapter.  

6.1 Problem Identification 

Some decision problems require making a compromise between the objectives of 

several interacting decision entities(DE) allocated in a three-level hierarchy. The 

execution of decisions is sequential, from top to middle and then to bottom levels. 
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Each decision entity independently optimizes (maximizes or minimizes) its own 

objective but is affected by the actions of other decision entities at the other two 

levels. Such a hierarchical decision process appears naturally in many 

organizations and business systems. 

We use a university example here to explain the nature of the problem.  

 

Example 6.1 A university is organized with three faculties (Information, 

Business, Science) and each faculty has 2-4 departments. The university aims to 

improve its research quality through creating new research development strategies 

in 2013. The strategies made at university level directly affect the research 

strategy-making in its faculties. This process continues within a hierarchy of 

decision entities, including its departments and research centers. In the meantime, 

the actions at the faculty level may affect the research development strategies 

sought by the university and the actions at department level may affect those of its 

faculty. Each related decision entity in this university wishes to optimize its 

individual research development objective in view of the partial control exercised 

at other levels. The university‟s decision makers can control this effect by 

exercising preemptive-partial control over the university through budget 

modifications or regulations, but subject to possible reactions from its faculties 

and also departments. This kind of decision problem is called a multi-level 

decision problem or multi-level optimization problem. 

 

The complexity of decision problems increases significantly when the number 

of levels (n) is greater than two (Blair 1992). The tri-level decision is the most 

typical form of multi-level decision (𝑛 > 2). In a tri-level decision, the decision 

entity at the top level is called the leader, while entities at the middle and bottom 

levels are the followers. However, a decision entity at the middle level is also the 

leader for associate entities at the bottom level. As a tri-level decision reflects the 

main features of multi-level decision problems, the models and methods 

developed for tri-level decisions can be easily extended to other multi-level 

decision problems.  

The tri-level decision problem has been studied by researchers such as White 

(1997), Bard and Falk (1982a), Lai (1996) and Shih et al. (1996). The existing 

research results are mostly limited to the one-level one-entity situation. In real 

world tri-level decision applications, decisions are often made in situations where 

several decision entities are at the middle and bottom levels and interact with one 

another in some way. Consider Example 6.1. As these three faculties may have 

different objectives and different reactions to each possible decision made by the 

university, they should be treated as multiple entities at the middle level. These 

faculties may also have various relationships between each other, such as sharing 

their decision variables or not, and sharing their constraints or not, which may 

create different decision situations. As a result, the university‟s decision will be 



6.2 Basic Tri-level Decision Models 

 

 

123 

affected not only by its faculties‟ individual optimal reactions but also by the 

relationships between faculties and related departments. Some research, such as 

Shih et al. (1996), considered tri-level decision problems with multiple followers. 

However, very few studies classify the possible relationships among these 

followers and discuss different models to handle different situations. 

Another issue related to tri-level decision-making is the relationship between 

the top-level decision entity and the bottom-level entities. In general, in a tri-level 

decision problem, the top-level decision entity‟s solution will be directly affected 

by the middle-level decision entities but indirectly affected by the bottom-level 

decision entities. However, in some cases, the solution of the top-level decision 

entity can be directly affected by the bottom-level entities‟ reactions as well. 

Considering Example 6.1, this university leader may also take a department‟s 

feedback in strategy making and in such a situation its decisions will be directly 

affected by its departments‟ reactions. 

A more complex situation occurs when different entities at the same level have 

different decision situations. Considering Example 6.1, some faculties‟ 

departments make decisions (reactions) cooperatively while others do not.  For 

example, all the departments in the Business Faculty react cooperatively to the 

decisions of the faculty, whereas the departments in the Information Faculty react 

uncooperatively to decisions made by the Faculty. 

In summary, tri-level decisions involve a variety of situations caused by 

various possible relationships among multiple decision entities at two lower 

levels. The following sections will first provide basic tri-level decision models and 

will then model TLMF decision problems in various situations. 

6.2 Basic Tri-level Decision Models 

Basic tri-level decision focuses on a one-level one-entity situation and therefore 

has only three decision entities: DE1, DE2, and DE3. It can be described as 

follows (Bard and Falk 1982a): 

min
𝑥∈𝑋

𝑓1 𝑥, 𝑦, 𝑧  DE1  

 s.t. 𝑔1 𝑥, 𝑦, 𝑧 ≤ 0,  

where 𝑦, 𝑧 solve: 

min
𝑦∈𝑌

𝑓2 𝑥, 𝑦, 𝑧  DE2  

 s.t. 𝑔2 𝑥, 𝑦, 𝑧 ≤ 0,  

where𝑧 solves: 

min
𝑧∈𝑍

𝑓3 𝑥, 𝑦, 𝑧 (DE3) 

s.t. 𝑔3 𝑥, 𝑦, 𝑧 ≤ 0,                                             (6.1) 
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where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛 ,   𝑦 ∈ 𝑌 ⊂ 𝑅𝑚 ,   𝑧 ∈ 𝑍 ⊂ 𝑅𝑝 , 𝑓𝑖 : 𝑋 × 𝑌 × 𝑍 → 𝑅 ,  𝑖 = 1,2,3 , 

variables x, y, 𝑧 are called the top-level, middle-level and bottom-level variables, 

and 𝑓1(𝑥, 𝑦, 𝑧), 𝑓2(𝑥, 𝑦, 𝑧), 𝑓3(𝑥, 𝑦, 𝑧) are the top-level, middle-level and bottom-

level objective functions respectively.  

From the tri-level decision model (6.1), we can see that this decision problem 

has three optimization sub-problems (objective functions). Each level has 

individual control variables within its optimization sub-problem, but also 

considers other levels‟ variables in its optimization sub-problem. This decision 

process is sequential: decision entity DE 1, at the top-level, selects an action 

within its specified constraint set, then DE 2, at the middle-level, responds within 

its constraint set, and lastly DE 3 responds. 

To solve the tri-level decision problem, Bard and Falk (1982a) first developed a 

cutting plane algorithm and White (1997) developed a penalty function approach. 

In the meantime, Lai (1996) and Shih et al. (1996) extended the tri-level decision 

research in two aspects. One is that they developed a fuzzy approach to solve 

multi-level programming problems. The other is that a TLMF decision model is 

proposed in which multiple followers are at both middle and bottom levels. Below 

is a TLMF model. It assumes three sub-problems as centre 𝑓1 → division 

𝑓2𝑖 →subdivision, 𝑓3𝑡 , 𝑡 = 1, 2, … , 𝑡𝑖 , 𝑖 = 1,2, … , 𝑠 (Shih et al. 1996): 

min
𝑥1

𝑓1 𝑥 =  𝑐1𝑗𝑥𝑗
𝑗

          (top level) 

where𝑥2𝑖 , 𝑥3𝑖1, … , 𝑥3𝑖𝑡𝑖
solve 

min
𝑥2𝑖

𝑓2𝑖 𝑥 =  𝑐2𝑖𝑗 𝑥𝑗
𝑗

        (middle level) 

where𝑥3𝑖1, … , 𝑥3𝑖𝑡𝑖
solve 

min
𝑥3𝑖1

𝑓3𝑖1 𝑥 =  𝑐3𝑖1𝑗𝑥𝑗
𝑗

     (bottom level) 

                     ⋮ 

min
𝑥3𝑖𝑡𝑖

𝑓3𝑖𝑡𝑖
 𝑥 =  𝑐3𝑖𝑡𝑖𝑗

𝑥𝑗
𝑗

 

s.t. 𝐴1𝑥1 + 𝐴2𝑖𝑥2𝑖 + 𝐴3𝑖1𝑥3𝑖1＋⋯＋𝐴3𝑖𝑡𝑖
𝑥3𝑖𝑡𝑖

≤ 𝑏,  

𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛,                                                         (6.2) 

In this model, there is one decision entity at the top level, s decision entities at 

the middle level and 𝑡 =  𝑡𝑖𝑖  decision entities at the bottom level. This is a 

general TLMF decision model with uncooperative relationships which adopts the 

decisions of other decision entities as references.  
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In the following section, we will provide more discussion on the TLMF 

decision models and solution methods. 

6.3 Tri-level Multi-follower Decision Framework  

This section first identifies seven issues which are related to the TLMF decision 

classification, and then presents a TLMF decision framework and a DERD 

modeling approach for TLMF decision situations.  

6.3.1 TLMF Decision Concepts 

When a tri-level decision problem has multiple followers at the middle level 

and/or the bottom level, we call it a TLMF decision problem. The model given in 

(6.1) describes a basic situation of tri-level decision, that is, each level has one 

decision entity only. Problem (6.2) presents the model for a general TLMF 

decision problem. In order to identify and classify TLMF decision situations, we 

first introduce the following concepts: 

(1) Neighborhood entity: two decision entities are at the same level, led by the 

same decision entity. All neighborhood entities under the same leader are 

called a neighborhood entity set (NES). 

(2) Cooperative entity: two neighborhood entities share their decision 

variables and have the same objective and constraint functions. In such a 

case, we consider the two entities as one.   

(3) Semi-cooperative entity: two neighborhood entities share their decision 

variables but have distinct objectives and constraint functions. 

(4) Uncooperative entity: two neighborhood entities have distinct decision 

variables, objectives, and constraints. 

(5) Reference-uncooperative entity: two neighborhood entities have distinct 

decision variables, objectives and constraints but take account of others‟ 

variables as references; that is, they include others‟ variables in their 

objective/constraint functions, but not as control variables. 

(6) Direct and secondary follower: all decision entities at the middle level are 

direct followers of the top-level decision entity (similarly, each bottom-

level entity is a direct follower of an entity at the middle level); and all 

entities at the bottom level are secondary followers of the top-level 

decision entity. 

(7) Direct leader and secondary leader: a decision entity at the top level is 

the direct leader of all decision entities at the middle level (similarly, each 

bottom-level entity has a direct leader at the middle level) and is the 

secondary leader of all decision entities at the bottom level. 
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6.3.2 TLMF Decision Problem Classification 

In a TLMF decision problem, a middle-level decision entity has two roles in 

decision-making process, that is, it reacts to each possible strategy made by the 

top-level entity and is influenced by the decisions of the followers at the bottom 

level. Different relationships between the decision entities at the middle level and 

bottom level could result in different processes for deriving an optimal solution for 

the decision entity at the top level. The top level‟s decision will also sometimes be 

affected by the reactions of its secondary followers as well as those of its direct 

followers. We therefore list the following relationships between decision entities 

for TLMF decision problems: 

(1) Leader-follower relationship: if an entity is a direct follower of another 

entity (leader), we say there is a leader-follower relationship or leadership 

relationship between the two entities.  

(2) Secondary leadership relationship: if the top-level decision entity directly 

considers the reactions of an entity at the bottom level, that is, includes a 

control variable of this bottom-level entity in its objective and/or 

constraints, we say that this top-level entity and the bottom-level entity‟s 

NES have a secondary leadership relationship. 

(3) Uncooperative relationship: if there are uncooperative entities but no 

reference-uncooperative entities in a NES, we say there is an 

uncooperative relationship in this NES.  

(4) Reference-uncooperative relationship: if there are reference-

uncooperative entities in a NES and the rest are uncooperative, we say 

there is a reference-uncooperative relationship in this NES.  

(5) Cooperative relationship at the middle level: if all entities in a NES are 

cooperative, we say there is a cooperative relationship in this NES.  

(6) Semi-cooperative relationship at the middle level: if there are semi-

cooperative entities in a NES and the rest, if any, are cooperative entities, 

we say there is a semi-cooperative relationship in this NES. 

(7) Secondary followership relationship: if a bottom-level decision entity 

includes the control variables of the top-level decision entity in its 

objective and/or constraints, we call the relationship between this bottom-

level entity‟s NES and the top-level entity a secondary followership 

relationship.  

6.3.3 TLMF Decision Framework 

Based on the above seven relationships defined, a TLMF decision framework is 

established as shown in Table6.1.The framework also presents a classification for 

TLMF decision problems. Under the eight features (SL, ML-V, ML-O, ML-R, SF, 

BL-V, BL-O, and BL-R) given in Table 6.1, “𝑌” means “yes”, “𝑁” means “no”, 
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and blank means „not applicable‟. A total of 64 standard situations of TLMF 

decision problems are identified, named S1, S2,…, and S64 (note that some 

combinations of these features are not applicable). Each situation is described by 

using these seven relationships. We can describe any complex TLMF decision 

problem by combining two or more of these standard situations. For example, in a 

TLMF decision problem, a set of bottom-level entities are in the S1 situation and 

another set of bottom-level entities match the features of S2. We describe this 

problem of the combination of S1 and S2 as a hybrid situation. 

The abbreviations used in Table 6.1 for the features are explained as follows: 

(1) SL: secondary leadership relationship;  

(2) ML-V: middle-level entities have the same variables;  

(3) ML-O: middle-level entities have the same objectives and constraints; 

(4) ML-R: middle-level entities include others‟ variables as references; 

(5) SF: secondary followership relationship; 

(6) BL-V: bottom-level entities have the same variables; 

(7) BL-O: bottom-level entities have the same objectives and constraints; 

(8) BL-R: bottom-level entities include others‟ variables as references. 
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Table 6.1 TLMF decision framework with 64 standard situations 

Feature 

Situation 
SL 

ML-

V 

ML-

O 

ML-

R 
SF 

BL-

V 

BL-

O 

BL-

R 

Decision situation description 

S1 Y Y Y  Y Y Y  
Both middle and bottom levels cooperative; both secondary leadership 

and followership 

S2 Y Y Y  Y Y N  
Middle-level cooperative, bottom-level semi-cooperative; both 

secondary leadership and followership 

S3 Y Y Y  Y N  Y 
Middle-level cooperative, bottom-level reference-uncooperative; both 

secondary leadership and followership 

S4 Y Y Y  Y N  N 
Middle-level cooperative, bottom-level uncooperative; both secondary 

leadership and followership 

S5 Y Y Y  N Y Y  Both middle and bottom levels cooperative; secondary leadership only 

S6 Y Y Y  N Y N  
Middle-level cooperative, bottom-level semi-cooperative; secondary 

leadership only 

S7 Y Y Y  N N  Y 
Middle-level cooperative, bottom-level reference-uncooperative; 

secondary leadership only 

S8 Y Y Y  N N  N 
Middle-level cooperative, bottom-level uncooperative; secondary 

leadership only 

S9 Y Y N  Y Y Y  
Middle-level semi-cooperative; bottom-level cooperative; both 

secondary leadership and followership 

S10 Y Y N  Y Y N  
Both middle and bottom levels semi-cooperative; both secondary 

leadership and followership 

S11 Y Y N  Y N  Y 
Middle-level semi-cooperative, bottom-level reference uncooperative; 

both secondary leadership and followership 

S12 Y Y N  Y N  N 
Middle-level semi-cooperative, bottom-level uncooperative; both 

secondary leadership and followership 
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S13 Y Y N  N Y Y  
Middle-level semi-cooperative; bottom-level cooperative; secondary 

leadership only 

S14 Y Y N  N Y N  
Both middle and bottom levels semi-cooperative; secondary leadership 

only 

S15 Y Y N  N N  Y 
Middle-level semi-cooperative, bottom-level reference-uncooperative; 

secondary leadership only 

S16 Y Y N  N N  N 
Middle-level semi-cooperative, bottom-level uncooperative; secondary 

leadership only 

S17 Y N  Y Y Y Y  
Middle-level reference-uncooperative, bottom-level cooperative; both 

secondary leadership and followership 

S18 Y N  Y Y Y N  
Middle-level reference-uncooperative, bottom-level semi-cooperative; 

both secondary leadership and followership 

S19 Y N  Y Y N  Y 
Both middle and bottom levels reference-uncooperative; both 

secondary leadership and followership 

S20 Y N  Y Y N  N 
Middle-level reference-uncooperative, bottom-level uncooperative; 

both secondary leadership and followership 

S21 Y N  Y N Y Y  
Middle-level reference-uncooperative, bottom-level cooperative; 

secondary leadership only 

S22 Y N  Y N Y N  
Middle-level reference-uncooperative, bottom-level semi-cooperative; 

secondary leadership only 

S23 Y N  Y N N  Y 
Both middle and bottom levels reference-uncooperative; secondary 

leadership only 

S24 Y N  Y N N  N 
Middle-level reference-uncooperative, bottom-level uncooperative; 

secondary leadership only 

S25 Y N  N Y Y Y  
Middle-level uncooperative; bottom-level cooperative; both secondary 

leadership and followership 

S26 Y N  N Y Y N  Middle-level uncooperative; bottom-level semi-cooperative; both 
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secondary leadership and followership 

S27 Y N  N Y N  Y 
Middle-level uncooperative, bottom-level reference-uncooperative; 

both secondary leadership and followership 

S28 Y N  N Y N  N 
Both middle and bottom levels uncooperative; both secondary 

leadership and followership 

S29 Y N  N N Y Y  
Middle-level uncooperative; bottom-level cooperative; secondary 

leadership only 

S30 Y N  N N Y N  
Middle-level uncooperative, bottom-level semi-cooperative, secondary 

leadership only 

S31 Y N  N N N  Y 
Middle-level uncooperative, bottom-level reference-uncooperative; 

secondary leadership only 

S32 Y N  N N N  N 
Both middle and bottom levels uncooperative; secondary leadership 

only 

S33 N Y Y  Y Y Y  
Both middle and bottom levels cooperative; secondary followership 

only 

S34 N Y Y  Y Y N  
Middle-level cooperative, bottom-level semi-cooperative; secondary 

followership only 

S35 N Y Y  Y N  Y 
Middle-level cooperative, bottom-level reference-uncooperative; 

secondary followership only 

S36 N Y Y  Y N  N 
Middle-level cooperative, bottom-level uncooperative; secondary 

followership only 

S37 N Y Y  N Y Y  Both middle and bottom levels cooperative; no secondary relationships 

S38 N Y Y  N Y N  
Middle-level cooperative, bottom-level semi-cooperative; no secondary 

relationships 

S39 N Y Y  N N  Y 
Middle-level cooperative, bottom-level reference-uncooperative; no 

secondary relationships 

S40 N Y Y  N N  N Middle-level cooperative, bottom-level uncooperative; no secondary 
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relationships 

S41 N Y N  Y Y Y  
Middle-level semi-cooperative; bottom-level cooperative; secondary 

followership only 

S42 N Y N  Y Y N  
Both middle and bottom levels semi-cooperative; secondary 

followership only 

S43 N Y N  Y N  Y 
Middle-level semi-cooperative, bottom-level reference-uncooperative; 

secondary followership only 

S44 N Y N  Y N  N 
Middle-level semi-cooperative, bottom-level uncooperative; secondary 

followership only 

S45 N Y N  N Y Y  
Middle-level semi-cooperative; bottom-level cooperative; no secondary 

relationships 

S46 N Y N  N Y N  
Both middle and bottom levels semi-cooperative, no secondary 

relationships 

S47 N Y N  N N  Y 
Middle-level semi-cooperative, bottom-level reference-uncooperative; 

no secondary relationships 

S48 N Y N  N N  N 
Middle-level semi-cooperative, bottom-level uncooperative; no 

secondary relationships 

S49 N N  Y Y Y Y  
Middle-level reference-uncooperative, bottom-level cooperative; 

secondary followership only 

S50 N N  Y Y Y N  
Middle-level reference-uncooperative, bottom-level semi-cooperative; 

secondary followership only 

S51 N N  Y Y N  Y 
Both middle and bottom levels reference-uncooperative; secondary 

followership only 

S52 N N  Y Y N  N 
Middle-level reference-uncooperative, bottom-level uncooperative; 

secondary followership only 

S53 N N  Y N Y Y  
Middle-level reference-uncooperative, bottom-level cooperative; no 

secondary relationships 
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S54 N N  Y N Y N  
Middle-level reference-uncooperative, bottom-level semi-cooperative; 

no secondary relationships 

S55 N N  Y N N  Y 
Both middle and bottom levels reference-uncooperative; no secondary 

relationships 

S56 N N  Y N N  N 
Middle-level reference-uncooperative, bottom-level uncooperative; no 

secondary relationships 

S57 N N  N Y Y Y  
Middle-level uncooperative; bottom-level cooperative; secondary 

followership only 

S58 N N  N Y Y N  
Middle-level uncooperative; bottom-level semi-cooperative; secondary 

followership only 

S59 N N  N Y N  Y 
Middle-level uncooperative, bottom-level reference-uncooperative; 

secondary followership only 

S60 N N  N Y N  N 
Both middle and bottom levels uncooperative; secondary followership 

only 

S61 N N  N N Y Y  
Middle-level uncooperative; bottom-level cooperative; no secondary 

relationships 

S62 N N  N N Y N  
Middle-level uncooperative, bottom-level semi-cooperative, no 

secondary relationships 

S63 N N  N N N  Y 
Middle-level uncooperative, bottom-level reference-uncooperative; no 

secondary relationships 

S64 N N  N N N  N 
Both middle and bottom levels uncooperative; no secondary 

relationships 
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6.3.4 TLMF Decision Entity-Relationship Diagrams 

We have identified seven decision-entity relationships: a normal leader-follower 

relationship and six implicit relationships. These seven relationships are capable 

of fully reflecting the features of the TLMF decision problems identified in Table 

6.1 and any of their combinations. Based on this, we introduce a TLMF Decision 

Entity-Relationship Diagrams (TLMF-DERD) approach and use it in TLMF 

modeling. Figure 6.1 presents diagrammatic notations of the TLMF-DERD 

approach. 

 

 

Figure6.1 Notations for TLMF decision entity-relationship diagrams 

Symbol Meaning 

 Decision entity 

A 

B 

Leadership relationship: “A” is 

theLeader, “B” is its Follower. 

Secondary leadership relationship: 

“A” is the top-level entity and “C” 

is a bottom-level entity. 

A 

C 

Secondary followership relationship: 

“A” is the top-level entity, and “C” is 

a followership entity. 

A 

C 

“A1” and “A2” have a cooperative 

relationship in a NES. A1, A2 

“A1” and “A2” have a semi-cooperative 

relationship in a NES. A1 A2 

“A1” and “A2” have a reference-

uncooperative relationship in a NES. A1 A2 

“A1” and “A2” have an uncooperative 

relationship in a NES. 
A1 A2 
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This TLMF-DERD approach is a concept modeling of TLMF decision 

problems. In the following sections, we will show how a TLMF decision problem 

is first described by the DERD approach and then presented in a tri-level 

programming model.  

6.4 Tri-level Multi-follower Decision Models 

This section first describes a general TLMF decision model using multi-level 

programming. It then presents a set of specific models for some standard TLMF 

decision problems including S9, S12, S15, S18, S20, S25 and S32 selected from 

Table 6.1. We also give a hybrid TLMF decision model for a decision situation 

which is the combination of S63 and S64. 

6.4.1 General Model for TLMF Decision 

A general TLMF decision model, which covers all the 64 TLMF decision 

situations, is given as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) ≤ 0, 

where 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
(𝑖 = 1,… , 𝑛), solve the ith middle-level follower‟s and its 

bottom-level  followers‟ problems : 

min
𝑦𝑖∈𝑌𝑖

𝑓𝑖
(2)
 𝑥, 𝑦1, … , 𝑦𝑖 , … , 𝑦𝑛 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

  

s.t. 𝑔𝑖
 2 (𝑥, 𝑦1, … , 𝑦𝑖 , … 𝑦𝑛 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖 ) solves the ith middle-level follower‟s jth bottom-level 

follower‟s problem: 

min
𝑧𝑖𝑗∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑗 , … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 ,                                      (6.3) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2𝑖 , 𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 , 𝑓 1 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 × 

  𝑍𝑖𝑗
𝑚 𝑖
𝑗=1

𝑛
𝑖=1  → 𝑅, 𝑓𝑖

 2 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 ×  𝑍𝑖𝑗

𝑚 𝑖
𝑗=1 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑋 × 𝑌𝑖 ×  𝑍𝑖𝑗
𝑚 𝑖
𝑗=1 ,

𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 

In this model, there is one top decision entity 𝑓 1  and n middle decision 

entities with objectives 𝑓1
 2 , … , 𝑓𝑛

 2 
. For the ith middle decision problem, there 

are 𝑚𝑖  sub-problems 𝑓𝑖1
 3 , … , 𝑓𝑖𝑚 𝑖

 3 
 to optimize. Based on this model, we can 
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establish models, also supported by DERD for all the 64 standard TLMF decision 

situations presented in Table6.1.  

6.4.2 Typical Standard Models for TLMF Decision 

This section will present seven typical TLMF decision models from the 64 models 

proposed in Section 6.3.3 by using both DERD and tri-level programming 

approaches.  

 

(1) S9 Model 

Figure 6.2 The DERD of TLMF decision situation S9 

This model presents a TLMF decision problem which has the following features 

and is described by DERD in Figure 6.2:  

1) The top level entity takes the control variables of the decision entities at 

both middle and bottom levels into consideration in its objectives, that is, 

there is a secondary leadership relationship;  

2) The middle-level decision entities have the same variables; 

3) The middle-level decision entities have individual objective functions and 

constraints, that is, they have a semi-cooperative relationship;  

4) The bottom-level decision entities include the control variables of the top-

level entity, that is, there is a secondary followership relationship; 

5) The bottom-level decision entities have the same variables; 

6) The bottom-level decision entities have the same objective functions and 

constraints, that is, they have a cooperative relationship. 

We describe the S9 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦, 𝑧1, … , 𝑧𝑛) 

s.t. 𝑔 1 (𝑥, 𝑦, 𝑧1, … , 𝑧𝑛) ≤ 0, 

where 𝑦, 𝑧𝑖(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem and its 

bottom-level  followers‟ problems : 

A 

… B1 Bn 

C11…C1m1 … Cn1…Cnmn 
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 min
𝑦∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦, 𝑧𝑖) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦, 𝑧𝑖) ≤ 0, 

where 𝑧𝑖  (𝑖 = 1,… , 𝑛)  solves the ith middle-level follower‟s bottom-level 

follower‟s problem: 

min
𝑧𝑖∈𝑍𝑖

𝑓𝑖
 3 (𝑥, 𝑦, 𝑧𝑖) 

s.t. 𝑔𝑖
 3 (𝑥, 𝑦, 𝑧𝑖) ≤ 0,                                      (6.4) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2 , 𝑧𝑖 ∈ 𝑍𝑖 ⊂ 𝑅
𝑙3𝑖 , 𝑌 = 𝑌1 ∩⋯∩ 𝑌𝑛 , 𝑓 1 : 𝑋 × 𝑌 ×

 𝑍𝑖
𝑛
𝑖=1 → 𝑅, 𝑓𝑖

 2 : 𝑋 × 𝑌𝑖 × 𝑍𝑖 → 𝑅, 𝑓𝑖
 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖 → 𝑅, 𝑖 = 1,… , 𝑛. 

In this model, there is one top-level decision entity 𝑓 1 and n middle-level 

decision entities with objectives 𝑓1
(2)

, … , 𝑓𝑛
(2)

 respectively. Since these middle-

level entities have a semi-cooperative relationship, we describe all middle-level 

followers as sharing a decision variable 𝑦 ∈ 𝑌𝑖  and having individual objective 

functions 𝑓𝑖
(2)

 and the individual constraints 𝑔𝑖
(2)
≤ 0 . For any middle-level 

decision problem 𝑓𝑖
 2 

, there are 𝑚𝑖  sub-problems 𝑓𝑖1
(3)

, … , 𝑓𝑖𝑚 𝑖

(3)
 at the bottom level. 

As all bottom-level neighborhood decision entities attached to the ith middle-level 

follower share variables, objective functions and constraints, that is, they are in a 

cooperative relationship. We describe this feature as the shared variable 𝑧𝑖 ∈ 𝑍𝑖  

and 𝑓𝑖1
(3)

= ⋯ = 𝑓𝑖𝑚 𝑖

(3)
= 𝑓𝑖

(3)
, 𝑔𝑖1

(3)
= ⋯ = 𝑔𝑖𝑚 𝑖

(3)
= 𝑔𝑖

(3)
. To describe the secondary 

leadership relationship, we have 𝑧1, … , 𝑧𝑛  in the objective functions and 

constraints of the top-level decision entity. 

 

(2) S12 Model 

 

Figure 6.3 The DERD of TLMF decision situation S12 

This model presents a TLMF decision problem which has the following features 

and is described by DERD in Figure 6.3:  

1) There is a secondary leadership relationship;  

2) The decision entities at the middle level have the same variables; 

… C1m1 Cn1 Cnmn 

A 

B1 Bn … 

… … C11 
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3) The middle-level decision entities have a semi-cooperative relationship;  

4) There is a secondary followership relationship; 

5) The bottom-level decision entities have individual variables; 

6) The bottom-level decision entities have an uncooperative relationship. 

We describe the S12 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) 

s.t. 𝑔 1 (𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) ≤ 0, 

where 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem 

and its bottom-level  followers‟ problems: 

 min
𝑦∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦, 𝑧𝑖1, ⋯ , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦, 𝑧𝑖1, ⋯ , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where 𝑧𝑖𝑗 (𝑗 = 1,⋯,𝑚𝑖)  solves the ith middle-level follower‟s jth bottom-level 

follower‟s problem: 

min
𝑧𝑖𝑗∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑥, 𝑦, 𝑧𝑖𝑗 ) 

s.t. 𝑔𝑖𝑗
 3 (𝑥, 𝑦, 𝑧𝑖𝑗 ) ≤ 0,                                      (6.5) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2 , 𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 , 𝑌 = 𝑌1 ∩⋯∩ 𝑌𝑛 , 𝑓 1 : 𝑋 ×

𝑌 ×   𝑍𝑖𝑗
𝑚 𝑖
𝑗=1

𝑛
𝑖=1 → 𝑅, 𝑓𝑖

 2 : 𝑋 × 𝑌𝑖 ×  𝑍𝑖𝑗
𝑚 𝑖
𝑗=1 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, 𝑖 =

1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 
In this model, for the ith middle-level decision problem, there are 𝑚𝑖  sub-

problems 𝑓𝑖1
 3 , … , 𝑓𝑖𝑚 𝑖

 3 
 at the bottom level. As the bottom-level decision entities 

are uncooperative, that is, they have the individual decision variables 𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 , 

objective 𝑓𝑖𝑗
 3 

 and constraint 𝑔𝑖𝑗
 3 

 for 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 

 

(3) S15 Model 

 

Figure 6.4 The DERD of TLMF decision situation S15 

C11 

… 

C1m1 Cn1 Cnmn 

A 

… … 

Bn B1 

… 
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This model presents a TLMF decision problem which has the following features 

and is described by DERD in Figure 6.4:  

1) There is a secondary leadership relationship;  

2) The middle-level decision entities have the same variables; 

3) The middle-level decision entities have a semi-cooperative relationship;  

4) There is no secondary followership relationship; 

5) The bottom-level decision entities have individual variables; 

6) The bottom-level decision entities are reference-uncooperative. 

We describe the S15 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) 

s.t. 𝑔 1 (𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) ≤ 0, 

where𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 (𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem 

and its bottom-level  followers‟ problems: 

min
𝑦∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where 𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖)  solves the ith middle-level follower‟s jth bottom-level 

follower‟s problem: 

min
𝑧𝑖𝑗∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖𝑗
 3 (𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0,                                 (6.6) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2 , 𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 , 𝑌 = 𝑌1 ∩⋯∩ 𝑌𝑛 , 𝑓 1 : 𝑋 ×

𝑌 ×   𝑍𝑖𝑗
𝑚 𝑖
𝑗=1

𝑛
𝑖=1 → 𝑅, 𝑓𝑖

 2 : 𝑋 × 𝑌𝑖 ×  𝑍𝑖𝑗
𝑚 𝑖
𝑗=1 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, 𝑖 =

1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 
In this model, the bottom level has no secondary followership relationship to 

the top level entity; there are only 𝑦, 𝑧𝑖𝑗  as variables in the objectives 𝑓𝑖𝑗
 3 

 and 

constraints 𝑔𝑖𝑗
 3 

 of the bottom level. As the bottom-level decision entities attached 

to the ith middle-level follower are reference-uncooperative, we have 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 

in all objective functions 𝑓𝑖1
 3 , … , 𝑓𝑖𝑚 𝑖

 3 
 and constraints 𝑔𝑖1

 3 , … , 𝑔𝑖𝑚 𝑖

 3 
 of the bottom 

level for 𝑖 = 1,… , 𝑛. 

 

(4) S18 Model 

 

This model will present a TLMF decision problem which has the following 

features and is described by DERD in Figure 6.5: 

1) There is a secondary leadership relationship;  
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2) The middle-level decision entities have individual variables; 

3) The middle-level entities have a reference-uncooperative relationship;  

4) There is a secondary followership relationship; 

5) The bottom-level decision entities have the same variables; 

6) The bottom-level entities have a semi-cooperative relationship. 

 

 

Figure 6.5 The DERD of TLMF decision situation S18 

We describe the S18 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧1, … , 𝑧𝑛) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧1, … , 𝑧𝑛) ≤ 0, 

where 𝑦𝑖 , 𝑧𝑖(𝑖 = 1,… , 𝑛)  solve the ith middle-level follower‟s problem and its 

bottom-level  followers‟ problems: 

min
𝑦𝑖∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧𝑖) 

                                               s.t. 𝑔𝑖
 2 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧𝑖) ≤ 0, 

where 𝑧𝑖   solves the ith middle-level follower‟s jth(𝑗 = 1,2, … ,𝑚𝑖) bottom-level 

follower‟s problem: 

min
𝑧𝑖∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖) 

s.t. 𝑔𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖) ≤ 0,                                     (6.7) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 ,  𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2𝑖 ,  𝑧𝑖 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖 ,  𝑍𝑖 = 𝑍𝑖1 ∩⋯∩ 𝑍𝑖𝑚 𝑖
,  

𝑓 1 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 ×  𝑍𝑖

𝑛
𝑖=1 → 𝑅, 𝑓𝑖

 2 : 𝑋 × 𝑌𝑖 × 𝑍𝑖 → 𝑅, 𝑓𝑖𝑗
 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅,

𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 
In this model, the middle-level decision entities have a reference-uncooperative 

relationship so we have 𝑦1, … , 𝑦𝑛  in all objective functions 𝑓𝑖
 2 

 and constraints 

𝑔𝑖
 2 

 of the middle level. As all decision entities at the bottom level have a semi-

cooperative relationship, we have the shared variable  𝑧𝑖 ∈ 𝑍𝑖  for the ith middle-

level follower‟s NES, 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛. 

C11 

… 

C1m1 Cn1 Cnmn 

A 

… … 

Bn B1 

… 
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(5) S20 Model 

 

Figure 6.6 The DERD of TLMF decision situation S20 

This model will present a TLMF decision problem which has the following 

features and is described by DERD in Figure 6.6:  

1) There is a secondary leadership relationship;  

2) The decision entities at the middle level have individual variables; 

3) The middle-level entities have a reference-uncooperative relationship;  

4) There is a secondary followership relationship; 

5) The bottom-level entities have individual variables; 

6) The bottom-level entities have an uncooperative relationship. 

We describe the S20 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) ≤ 0, 

where 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem 

and its bottom-level  followers‟ problems: 

min
𝑦𝑖∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where 𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖) solves the ith middle-level follower‟s jth bottom-level 

follower‟s problem: 

min
𝑧𝑖𝑗 ∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖𝑗 ) 

s.t. 𝑔𝑖𝑗
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖𝑗 ) ≤ 0,                                      (6.8) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 ,  𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅
𝑙2𝑖 ,  𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 , 𝑓 1 : 𝑋 ×  𝑌𝑖

𝑛
𝑖=1 ×

  𝑍𝑖𝑗
𝑚 𝑖
𝑗=1

𝑛
𝑖=1 → 𝑅, 𝑓𝑖

 2 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 ×  𝑍𝑖𝑗

𝑚 𝑖
𝑗=1 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, 𝑖 =

1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 
In this model, as all decision entities at the middle level have a reference-

uncooperative relationship, we have 𝑦1, … , 𝑦𝑛  in the objective 𝑓𝑖
 2 

 and constraint 

C11 

… 

C1m1 Cn1 Cnmn 

A 

… … 

Bn B1 

… 
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𝑔𝑖
 2 

 for 𝑖 = 1,… , 𝑛 . While the bottom-level followers attached to the same 

middle-level follower have an uncooperative relationship, each bottom-level 

entity‟s objective function 𝑓𝑖𝑗
 3 

 and constraint 𝑔𝑖𝑗
 3 

 have no other counterparts‟ 

variables for 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛. 

 

(6) S25 Model 

 

Figure 6.7 The DERD of TLMF decision situation S25 

This model will present a TLMF decision problem which has the following 

features and is described by DERD in Figure 6.7: 

1) There is a secondary leadership relationship;  

2) The middle level entities have individual variables; 

3) The middle-level entities have an uncooperative relationship;  

4) There is a secondary followership relationship; 

5) The bottom-level decision entities have the same variables; 

6) The bottom-level neighborhood decision entities have a cooperative 

relationship. 

We describe the S25 model by the tri-level programming approach as follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧1, … , 𝑧𝑛) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧1, … , 𝑧𝑛) ≤ 0, 

where𝑦𝑖 , 𝑧𝑖(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem and its 

bottom-level  followers‟ problems: 

min
𝑦𝑖∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖) ≤ 0, 

where𝑧𝑖   solves the ith middle-level follower‟s bottom-level follower‟s problem: 

min
𝑧𝑖∈𝑍𝑖

𝑓𝑖
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖) 

s.t. 𝑔𝑖
 3 (𝑥, 𝑦𝑖 , 𝑧𝑖) ≤ 0,                                     (6.9) 

… 
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where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2𝑖 , 𝑧𝑖 ∈ 𝑍𝑖 ⊂ 𝑅𝑙3𝑖𝑗 ,   𝑓 1 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 ×  𝑍𝑖

𝑛
𝑖=1  

→ 𝑅, 𝑓𝑖
 2 : 𝑋 × 𝑌𝑖 × 𝑍𝑖 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖 → 𝑅, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 

In this model, as the middle-level decision entities have an uncooperative 

relationship, each middle-level entity objective function 𝑓𝑖
 2 

 and constraint 𝑔𝑖
 2 

 

have no other counterparts‟ variables for 𝑖 = 1,… , 𝑛. 

 

(7) S32 Model 

 

Figure 6.8 The DERD of TLMF decision situation S32 

This model will present a TLMF decision problem which has the following 

features and is described by DERD in Figure 6.8: 

1) There is a secondary leadership relationship;  

2) The middle-level decision entities have individual variables; 

3) The middle-level decision entities have an uncooperative relationship;  

4) There is no secondary followership relationship; 

5) The bottom-level decision entities have individual variables; 

6) The bottom-level decision entities have an uncooperative relationship. 

We describe the S32 model by the tri-level programming approach as follows: 

min
𝑥𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛 , 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

) ≤ 0, 

where 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem 

and its bottom-level  followers‟ problems : 

min
𝑦𝑖∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where 𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖) solves the ith middle-level follower‟s jth bottom-level 

follower‟s problem: 

min
𝑧𝑖𝑗 ∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) 

s.t. 𝑔𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) ≤ 0,                                    (6.10) 
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where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 , 𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2𝑖 , 𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 , 𝑓 1 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 × 

  𝑍𝑖𝑗

𝑚 𝑖

𝑗=1

𝑛

𝑖=1

→ 𝑅, 𝑓𝑖
 2 : 𝑋 × 𝑌𝑖 ×  𝑍𝑖𝑗

𝑚 𝑖

𝑗=1

→ 𝑅, 𝑓𝑖𝑗
 3 : 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, 𝑖 = 1,… , 𝑛,  

𝑗 = 1,… ,𝑚𝑖 . 

In this model, 𝑧𝑖𝑗  are included in the objective functions and constraints of the 

top-level decision entity to describe the secondary leadership relationship. As 

there is no secondary followership, however, the top-level variable 𝑥  is not 

included in the objectives 𝑓𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) and constraints 𝑔𝑖𝑗

 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) of the bottom 

level decision problem. The decision entities at both middle and bottom level are 

uncooperative, so each entity‟s objective and constraints have only its variables, 

that is, 𝑓𝑖
 2 

 and 𝑔𝑖
 2 

 have only 𝑦𝑖 , 𝑓𝑖𝑗
 3 

 and 𝑔𝑖𝑗
 3 

 have only 𝑧𝑖𝑗 , not other variables 

of the same level entities. 

6.4.3 Hybrid TLMF Decision Models 

Note that each of the 64 standard situations listed in Table 6.1 supposes that all 

entities at the same level have the same situations. For example, all the 

departments in all faculties of the university are uncooperative. However, in some 

real-world applications, the departments in the Faculty of Science are cooperative, 

and the departments in the Faculty of Business are uncooperative. We call this a 

hybrid TLMF decision problem and will describe it by a hybrid TLMF decision 

model. As an example of such hybrid problems, we present a TLMF decision 

problem in this section, which is described by DERD in Figure 6.9:  

Figure 6.9 The DERD of a hybrid TLMF decision situation 

1) The top-level decision entity is not in a secondary leadership relationship;  

2) The middle-level decision entities have individual variables; 

3) The middle-level decision entities are uncooperative;  

4) There is no secondary followership; 

5) The first NES at the bottom level are reference-uncooperative; 

C11 

… 

C1m1 Cn1 Cnmn 
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… … 
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6) The rest of the NES at the bottom level have an uncooperative 

relationship. 

This problem is described by a hybrid model combining S63 and S64 as 

follows: 

min
𝑥∈𝑋

𝑓 1 (𝑥, 𝑦1, … , 𝑦𝑛) 

s.t. 𝑔 1 (𝑥, 𝑦1, … , 𝑦𝑛) ≤ 0, 

where 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
(𝑖 = 1,… , 𝑛) solve the ith middle-level follower‟s problem 

and its bottom-level  followers‟ problems: 

min
    𝑦𝑖∈𝑌𝑖

𝑓𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) 

s.t. 𝑔𝑖
 2 (𝑥, 𝑦𝑖 , 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ≤ 0, 

where 𝑧1𝑗 (𝑗 = 1,… ,𝑚1) solves the first middle-level follower‟s jth bottom-level 

follower‟s problem in a reference-uncooperative situation: 

min
𝑧1𝑗∈𝑍1𝑗

𝑓1𝑗
 3 (𝑦1, 𝑧11 , … , 𝑧1𝑚1

) 

s.t. 𝑔1𝑗
 3 (𝑦1, 𝑧11 , … , 𝑧1𝑚1

) ≤ 0, 

where 𝑧𝑖𝑗 (𝑖 ≠ 1, 𝑗 = 1,… ,𝑚𝑖) solves the ith middle-level follower‟s jth bottom-

level follower‟s problem in an uncooperative situation:  

min
𝑧𝑖𝑗 ∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) 

s.t. 𝑔𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 ) ≤ 0,                                     (6.11) 

where  𝑥 ∈ 𝑋 ⊂ 𝑅𝑙1 ,  𝑦𝑖 ∈ 𝑌𝑖 ⊂ 𝑅𝑙2𝑖 ,  𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅𝑙3𝑖𝑗 ,  𝑓 1 : 𝑋 ×  𝑌𝑖
𝑛
𝑖=1 → 𝑅,

𝑓𝑖
 2 : 𝑋 × 𝑌𝑖 ×  𝑍𝑖𝑗

𝑚 𝑖
𝑗=1 → 𝑅, 𝑓1𝑗

 3 : 𝑌1 ×  𝑍1𝑗
𝑚1
𝑗=1 → 𝑅, 𝑓𝑖𝑗

 3 : 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, 𝑖 =

1,… , 𝑛, 𝑗 = 1,… ,𝑚𝑖 . 
In this model, as there is no secondary leadership, 𝑧𝑖𝑗  are not variables in the 

objective function and constraints of the top-level decision entity.  Similarly, as 

there is no secondary followership, 𝑥 is not in the objectives and constraints of the 

bottom level decision entity. The decision entities at the middle level have an 

uncooperative relationship, so the𝑖th entity has only its variables 𝑦𝑖  in 𝑓𝑖
 2 

 and 

constraints 𝑔𝑖
 2 

. The bottom-level entities have two kinds of relationship: the first 

NES is reference-cooperative (refer to S63) and the others are uncooperative (refer 

to S64). Therefore, we have 𝑓1𝑗

 3 (𝑦1, 𝑧11 , 𝑧12 , … , 𝑧1𝑚1
) for the first NES and 

𝑓𝑖𝑗
 3 (𝑦𝑖 , 𝑧𝑖𝑗 )(𝑖 =  2, 3, … , 𝑛) for other NESs at the bottom level. 



6.5 Case Studies for TLMF Decision Modeling 

 

 

145 

From the above analysis and discussions, using the standard and hybrid TLMF 

decision models, we can easily give the rest of the TLMF decision models 

according to the situations described in Table 6.1, as well as their hybrid models, 

based on the features of a decision problem.  

6.5 Case Studies for TLMF Decision Modeling 

In this section, we consider four tri-level multi-follower decision cases concerning 

research development strategy-making within a university to illustrate both DERD 

and programming approaches for TLMF decision modeling. 

6.5.1 Case 1: S28 Model 

Assume that the university‟s research strategy involves the university, its three 

faculties and departments. All three faculties have individual objectives, 

constraints, variables and do not take each other into consideration. The 

departments within each faculty are also uncooperative. The university takes the 

responses of both faculties and departments into account. At the same time, the 

faculties and departments fully consider the research strategies of the university. 

This TLMF decision problem is described in Figure 6.10. 

 

 

Figure 6.10 Case 1 of the university research development strategy-making  

We give the variables, objectives and constraints of these decision entities as 

follows: 

1) The university (leader): Objective 𝑓 1  is to maximize research quantum 

which includes the number of publications (can be transformed to points) and 

research grant income (can be transformed to points). To achieve this aim, the 

main strategy of the university is to achieve a good balance between rewarding 

research performance and building a long-term research development 

environment. It has 

Variable 𝑥 = (𝑥1, 𝑥2): 
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𝑥1: How much is used to reward the faculties‟ research performance, with the 

aim of encouraging faculties to attract more research grants and generate more 

publications; 

𝑥2: How much is used for the university‟s long-term research investment, such 

as earlier career researcher development, campus Intranet construction and lab 

establishment; 

Constraints: 

𝑔1
(1)
≤ 0: annual research budget; 

𝑔2
(1)
≤ 0: a fixed number of students; 

𝑔3
(1)
≤ 0: a fix salary budget which is linked to total working hours. 

 

2) The three faculties (followers): 

Science Faculty: Objective 𝑓1
(2)

 is to maximize the faculty‟s research budget 

from the university.  

Variables: 𝑦 = (𝑦1, 𝑦2): 

𝑦1: the points granted to reward publication; 

𝑦2: the points granted to reward the securing of research grant income; 

Informatics Faculty: Objective𝑓2
(2)

is to maximize the research budget from the 

university. 

Variable: 

𝑧: how much is used to encourage publication; 

Business Faculty: Objective𝑓3
(2)

 is to maximize its research quantum by using 

the research budget from the university. It is developing a working load policy to 

reduce the teaching load for researchers who have a high research quantum; 

Variable: 

𝑤: how many points of research quantum per $ of research budget?  

 

3) The five departments in the three faculties (bottom followers): 

Objectives 𝑓𝑖𝑗
(3)

, 𝑖 = 1,2,3, 𝑗 = 1,2 : all departments have the same objective, 

that is, to maximize the department‟s research performance; 

Constraints 𝑔𝑖𝑗
(3)

, 𝑖 = 1,2,3, 𝑗 = 1,2: departments‟ constraints respectively; 

Variables: a, b, c, d, and e  are variables of the five departments respectively. 

Clearly, this TLMF decision case meets the features of S28 in Table 6.1.We 

give this case‟s TLMF model as follows: 

max
𝑥
𝑓 1  𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  University level  

  s.t. 𝑔 1  𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≤ 0, 

         max
𝑦
𝑓1
 2 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎) (Science faculty) 
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  s.t. 𝑔1
 2 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎) ≤ 0, 

      max
𝑎
𝑓1
 3 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎) (Mathematics department) 

s.t. 𝑔1
 3 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑎) ≤ 0, 

max
𝑧
𝑓2
 2 (𝑥1, 𝑥2, 𝑧, 𝑏, 𝑐) (Informatics faculty) 

  s.t. 𝑔2
 2 (𝑥1, 𝑥2, 𝑧, 𝑏, 𝑐) ≤ 0, 

                 max
𝑏
𝑓21
 3  𝑥1, 𝑥2, 𝑧, 𝑏 (Soft − Eng department) 

s.t. 𝑔21
 3 (𝑥1, 𝑥2, 𝑧, 𝑏) ≤ 0, 

              max
𝑐
𝑓22
 3 (𝑥1, 𝑥2, 𝑧, 𝑐) (Inf − Sys department) 

s.t. 𝑔22
 3 (𝑥1, 𝑥2, 𝑧, 𝑐) ≤ 0, 

max
𝑤

𝑓3
 2 (𝑥1, 𝑥2, 𝑤, 𝑑, 𝑒) (Business faculty) 

 s.t. 𝑔3
 2 (𝑥1, 𝑥2, 𝑤, 𝑑, 𝑒) ≤ 0, 

        max
𝑑
𝑓31
 3 (𝑥1, 𝑥2, 𝑤, 𝑑) (Acc. department) 

s.t. 𝑔31
 3 (𝑥1, 𝑥2, 𝑤, 𝑑) ≤ 0, 

                max
𝑒
𝑓32
 3 (𝑥1, 𝑥2, 𝑤, 𝑒) (Finance department) 

s.t. 𝑔32
 3 (𝑥1, 𝑥2, 𝑤, 𝑒) ≤ 0, 

where 𝑥1, 𝑥2 ∈ 𝑅  are the decision variables of the university; 𝑦1, 𝑦2 ∈ 𝑅, 𝑧 ∈
𝑅,𝑤 ∈ 𝑅  are of the three faculties respectively, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝑅 are of the five 

departments respectively, and 𝑋 =   𝑥1, 𝑥2 |𝑥1 > 0, 𝑥2 > 0 , 𝑌 =  (𝑦1, 𝑦2)|𝑦1 >
0,𝑦2>0,𝑍=𝑧|𝑧>0, 𝑊=𝑤|𝑤>0, 𝐴=𝑎|𝑎>0, 𝐵=𝑏|𝑏>0, 𝐶=𝑐|𝑐>0, 𝐷=𝑑|𝑑>0, 
𝐸 =  𝑒|𝑒 > 0 . As there is a secondary leadership relationship, both objective 

functions max𝑥 𝑓
 1 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and 

constraint 𝑔 1 (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ≤ 0  of the university include the 

decision variables of departments a, b, c, d, e. Similarly, by the secondary 

followership, 𝑥 = (𝑥1, 𝑥2)  is included in all departments‟ objectives and 

constraints. 
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6.5.2 Case 2: S27 Model 

Figure 6.11 Case 2 of the university research development strategy-making  

In this case, we suppose that all three faculties have uncooperative relationships 

and all the departments of each faculty have reference-uncooperative relationships. 

As in Case 1, the university takes into account the reactions of the faculties and of 

all departments. These departments fully consider both their faculty‟s and the 

university‟s strategies. From the TLMF decision framework in Table 1, this case 

refers to situation S27 and is described by DERD in Figure 6.11. 

We suppose that the variables, objectives and constraints of decision entities in 

this case are the same as those of Case 1. This case‟s TLMF decision model is 

written as follows: 

                             max
𝑥
𝑓 1  𝑥, 𝑦, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  

        s.t. 𝑔 1  𝑥, 𝑦, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≤ 0, 

                max
𝑦
𝑓1
 2 (𝑥, 𝑦, 𝑎) 

       s.t. 𝑔1
 2 (𝑥, 𝑦, 𝑎) ≤ 0, 

          max
𝑎
𝑓1
 3 (𝑥, 𝑦, 𝑎) 

   s.t. 𝑔1
 3 (𝑥, 𝑦, 𝑎) ≤ 0, 

                                    max
𝑧
𝑓2
 2 (𝑥, 𝑧, 𝑏, 𝑐) 

    s.t. 𝑔2
 2 (𝑥, 𝑧, 𝑏, 𝑐) ≤ 0, 

                                           max
𝑏
𝑓21
 3  𝑥, 𝑧, 𝑏, 𝑐  

  s.t. 𝑔21
 3 (𝑥, 𝑧, 𝑏, 𝑐) ≤ 0, 

                                           max
𝑐
𝑓22
 3  𝑥, 𝑧, 𝑏, 𝑐  

   s.t. 𝑔22
 3 (𝑥, 𝑧, 𝑏, 𝑐) ≤ 0, 

University  

X 

Science Faculty  

Y 

Dept. Math 

A 

Informatics Faculty  

Z 

Business Faculty 

W 

Dept. Soft-Eng 

B 
Dept. Inf-Sys 

C 

Dept. Acc. 

D 

Dept. Finance 

E 



6.5 Case Studies for TLMF Decision Modeling 

 

 

149 

                                      max
𝑤
𝑓3
 2  𝑥, 𝑤, 𝑑, 𝑒  

    s.t. 𝑔3
 2 (𝑥, 𝑤, 𝑑, 𝑒) ≤ 0, 

                                             max
𝑑
𝑓31
 3 (𝑥, 𝑤, 𝑑, 𝑒) 

  s.t. 𝑔31
 3 (𝑥, 𝑤, 𝑑, 𝑒) ≤ 0, 

                                             max
𝑒
𝑓32
 3  𝑥, 𝑤, 𝑑, 𝑒  

  s.t. 𝑔32
 3 (𝑥, 𝑤, 𝑑, 𝑒) ≤ 0. 

As there is a secondary leadership relationship, the university‟s objective 

function 𝑓 1  𝑥, 𝑦, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  and constraint 𝑔 1 (𝑥, 𝑦, 𝑧, 𝑤, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒) 

include the variables of departments 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 . Similarly, by the secondary 

followership, 𝑥  is included in all departments‟ objectives and constraints. As 

departments take into account their neighborhood decisions (reference-

uncooperative), we have variable 𝑑in the objective 𝑓32
 3 (𝑥, 𝑤, 𝑑, 𝑒) and constraint 

𝑔32
 3 (𝑥, 𝑤, 𝑑, 𝑒)  of departments 𝐸 , and 𝑒  in the objective 𝑓31

 3 (𝑥, 𝑤, 𝑑, 𝑒)  and 

constraint 𝑔31
 3 (𝑥, 𝑤, 𝑑, 𝑒) of departments 𝐷. 

6.5.3 Case 3: S54 Model 

Figure 6.12 Case 3 of the university research development strategy-making 

In this case, all three faculties have a reference-uncooperative relationship and all 

the departments of each faculty have a semi-cooperative relationship. Unlike Case 

2, the university does not take the departments‟ decisions directly into account, 

nor do all departments directly consider the university‟s research strategies during 

their decision process. It can be seen from Table 6.1 that this relates to situation 

S54. This problem‟s DERD is shown in Figure 6.12. We use the same notations of 

variables, objectives and constraints used in Case 1, but the Departments of Soft 

Eng. and Inf. Sys share variables b, and the Departments of Acc. and Finance 

share variables e. We have this case‟s TLMF decision model as follows: 
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                         max
𝑥
𝑓 1  𝑥, 𝑦, 𝑧, 𝑤  

    s.t. 𝑔 1  𝑥, 𝑦, 𝑧, 𝑤 ≤ 0, 

           max
𝑦
𝑓1
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑎) 

  s.t. 𝑔1
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑎) ≤ 0, 

     max
𝑎
𝑓1
 3 (𝑦, 𝑎) 

                           s.t. 𝑔1
 3 (𝑦, 𝑎) ≤ 0, 

                               max
𝑧

𝑓2
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑏) 

s.t. 𝑔2
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑏) ≤ 0, 

                                      max
𝑏
𝑓21
 3  𝑧, 𝑏  

                                  s.t. 𝑔21
 3 (𝑧, 𝑏) ≤ 0, 

                                       max
𝑐
𝑓22
 3  𝑧, 𝑏  

s.t. 𝑔22
 3 (𝑧, 𝑏) ≤ 0, 

                                  max
  𝑤

𝑓3
 2  𝑥, 𝑦, 𝑧, 𝑤, 𝑑  

s.t. 𝑔3
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑑) ≤ 0, 

                                         max
𝑑
𝑓31
 3 (𝑤, 𝑑) 

                                     s.t. 𝑔31
 3 (𝑤, 𝑑) ≤ 0, 

                                         max
𝑒
𝑓32
 3  𝑤, 𝑒  

                                     s.t. 𝑔32
 3 (𝑤, 𝑒) ≤ 0. 

As these faculties have a reference-cooperative relationship, their variables 𝑦, 

𝑧, 𝑤  are included in all faculties‟ objective and constraints such as 

𝑓1
 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑎) and 𝑔1

 2 (𝑥, 𝑦, 𝑧, 𝑤, 𝑎) . To describe the semi-cooperative 

relationship between departments, we have 𝑓2𝑖
 3 (𝑧, 𝑏)  and 𝑓3𝑖

 3 (𝑤, 𝑑)  where 

variables 𝑏, 𝑑  are shared by two departments respectively. This case has no 

secondary relationships, so 𝑥 is not included in department functions and 𝑎, 𝑏, 𝑑 

are not included in the university‟s objective function.  
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6.5.4 Case 4: Hybrid of S41, S45 and S48 Models 

Figure 6.13 Case 4 of the university research development strategies making 

In this case, the three faculties have a semi-cooperative relationship by sharing the 

same variable 𝑦.The departments have different relationships in different faculties. 

In the Science Faculty, the Math department has a second followership 

relationship with the university. In the Informatics Faculty, the two departments 

have a cooperative relationship and no secondary relationship. Two departments in 

the Business Faculty have an uncooperative relationship and no secondary 

relationship. The three different situations refer to S41, S45, and S48 respectively. 

This is a hybrid TLMF decision problem. Figure 6.13 describes its DERD. By 

using the same variables, objectives and constraints of decision entities used in 

previous cases, we have the following TLMF decision model:  

                              max
𝑥
𝑓 1  𝑥, 𝑦  

         s.t. 𝑔 1  𝑥, 𝑦 ≤ 0, 

                 max
𝑦
𝑓1
 2 (𝑥, 𝑦, 𝑎) 

       s.t. 𝑔1
 2 (𝑥, 𝑦, 𝑎) ≤ 0, 

          max
𝑎
𝑓1
 3 (𝑥, 𝑦, 𝑎) 

   s.t. 𝑔1
 3 (𝑥, 𝑦, 𝑎) ≤ 0, 

                                     max
𝑦

𝑓2
 2 (𝑥, 𝑦, 𝑏) 

     s.t. 𝑔2
 2 (𝑥, 𝑦, 𝑏) ≤ 0, 

                                            max
𝑏
𝑓21
 3  𝑦, 𝑏  

  s.t. 𝑔21
 3 (𝑦, 𝑏) ≤ 0, 
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                                    max
  𝑦

𝑓3
 2  𝑥, 𝑦, 𝑑, 𝑒  

  s.t. 𝑔3
 2 (𝑥, 𝑦, 𝑑, 𝑒) ≤ 0, 

                                           max
𝑑
𝑓31
 3 (𝑦, 𝑑) 

 s.t. 𝑔31
 3 (𝑦, 𝑑) ≤ 0, 

                                            max
𝑒
𝑓32
 3  𝑦, 𝑒  

                                       s.t. 𝑔32
 3 (𝑦, 𝑒) ≤ 0. 

We can see that these three faculties share the same variable 𝑦  but have 

individual objectives. To describe the cooperative relationship between the 

departments in the Informatics Faculty, the two departments share variable b, 

objective function 𝑓21
 3 (𝑧, 𝑏) and constraint 𝑔21

 3 (𝑧, 𝑏) . To describe the 

uncooperative relationship in the Faculty of Business, its two departments‟ 

objective functions 𝑓31
 3 (𝑦, 𝑑) and 𝑓32

 3 (𝑦, 𝑒), have individual variables. As only 

the Math Department has a secondary relationship with the university level, x is 

only included in the Math Department‟s functions.  

Through these four cases, we present a way to model real-world TLMF 

decision problems by both DERD and programming approaches. 

6.6 Tri-level Decision Solution Methods 

This section focuses on a linear version of tri-level decision problems with a 

single decision entity at each level. 

6.6.1 Solution Concepts 

According to the basic tri-level decision model (6.1) in a one-level one-entity 

situation, we present a linear tri-level programming (decision model) as follows. 

For 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛 , 𝑦 ∈ 𝑌 ⊂ 𝑅𝑚 , 𝑧 ∈ 𝑍 ⊂ 𝑅𝑝 , 𝑓 1 , 𝑓 2 , 𝑓 3 : 𝑋 × 𝑌 × 𝑍 ⟶ 𝑅, 

min
𝑥∈𝑋

𝑓 1  𝑥, 𝑦, 𝑧 = 𝛼1𝑥 + 𝛽1𝑦 + 𝜇1𝑧 

s.t. 𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 ≤ 𝑏1, 

                min
𝑦∈𝑌

𝑓 2  𝑥, 𝑦, 𝑧 = 𝛼2𝑥 + 𝛽2𝑦 + 𝜇2𝑧 

s.t. 𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 ≤ 𝑏2, 

                                    min
𝑧∈𝑍

𝑓 3  𝑥, 𝑦, 𝑧 = 𝛼3𝑥 + 𝛽3𝑦 + 𝜇3𝑧 

s.t. 𝐴3𝑥 + 𝐵3𝑦 + 𝐶3𝑧 ≤ 𝑏3,                          (6.12) 

where 𝛼𝑖 ∈ 𝑅
𝑛 , 𝛽𝑖 ∈ 𝑅

𝑚 , 𝜇𝑖 ∈ 𝑅
𝑝 , 𝑏𝑖 ∈ 𝑅

𝑞𝑖 , 𝐴𝑖 ∈ 𝑅
𝑞𝑖×𝑛 , 𝐵𝑖 ∈ 𝑅

𝑞𝑖×𝑚 , 𝐶𝑖 ∈ 𝑅
𝑞𝑖×𝑝 , 
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𝑖 = 1,2,3. 
The variables 𝑥, 𝑦, 𝑧  are called the top-level, middle-level, and bottom-level 

variables respectively, and 𝑓 1  𝑥, 𝑦, 𝑧 , 𝑓 2  𝑥, 𝑦, 𝑧 , 𝑓 3  𝑥, 𝑦, 𝑧  the top-level, 

middle-level, and bottom-level objective functions, respectively. In this model, the 

decision problem consists of three optimization sub-problems (represented by 

three objective functions) in a three-level hierarchy. Each level has individual 

control variables, but also takes account of other levels in its optimization function. 

To obtain an optimal solution to the Linear Tri-level Programming (LTLP) 

problem (6.12) based on the solution concept of bi-level programming (Bard 

1998), a solution definition is first proposed as follows: 

 

Definition6.1 

(a) Constraint region of the LTLP: 

𝑆 = { 𝑥, 𝑦, 𝑧 |𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍, 𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 , 𝑖 = 1,2,3}. 

(b) Constraint region of the middle level for each fixed 𝑥 ∈ 𝑋: 

𝑆(𝑥) = { 𝑦, 𝑧 ∈ 𝑌 × 𝑍|𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 − 𝐴𝑖𝑥, 𝑖 = 2,3}. 

(c) Feasible set for the bottom level for each fixed  𝑥, 𝑦 ∈ 𝑋 × 𝑌: 

𝑆 𝑥, 𝑦 =  𝑧 ∈ 𝑍|𝐶3𝑧 ≤ 𝑏3 − 𝐴3𝑥 − 𝐵3𝑦 . 

(d) Projection of S onto the top level‟s decision space: 

𝑆 𝑋 =  𝑥 ∈ 𝑋|∃ 𝑦, 𝑧 ∈ 𝑌 × 𝑍,  𝑥, 𝑦, 𝑧 ∈ 𝑆 . 

(e) Projection of S onto the top and middle levels‟ decision space: 

𝑆 𝑋, 𝑌 =   𝑥, 𝑦 ∈ 𝑋 × 𝑌|∃𝑧 ∈ 𝑍,  𝑥, 𝑦, 𝑧 ∈ 𝑆 . 

(f) Rational reaction set of the bottom level for  𝑥, 𝑦 ∈ 𝑆(𝑋, 𝑌): 

𝑃 𝑥, 𝑦 =  𝑧|𝑧 ∈ arg min⁡[ 𝑓3 𝑥, 𝑦, 𝑧  |𝑧 ∈ 𝑆 𝑥, 𝑦  . 

(g) Rational reaction set for the middle level for 𝑥 ∈ 𝑆 𝑋 : 

𝑃 𝑥 = { 𝑦, 𝑧 | 𝑦, 𝑧 ∈ arg min⁡[ 𝑓2 𝑥, 𝑦 , 𝑧  |(𝑦 , 𝑧 ) ∈ 𝑆 𝑥 , 

𝑧 ∈ 𝑃 𝑥, 𝑦  ]}. 

(h) Inducible region (IR): 

𝐼𝑅 =   𝑥, 𝑦, 𝑧 | 𝑥, 𝑦, 𝑧 ∈ 𝑆,  𝑦, 𝑧 ∈ 𝑃 𝑥  . 

Therefore, problem (6.12) is equivalent to the following problem: 

min 𝑓1 𝑥, 𝑦, 𝑧 | 𝑥, 𝑦, 𝑧 ∈ 𝐼𝑅 .                                       (6.13) 
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6.6.2 Theoretical Properties 

The three assumptions stated below serve as an introduction to the solution 

existence theorem. 

 

Assumption 6.1 

(1) 𝑆 is non-empty and compact. 

(2) IR is non-empty. 

(3) 𝑃 𝑥 and 𝑃 𝑥, 𝑦 are point-to-point maps with respect to 𝑥  and  𝑥, 𝑦  
respectively. 

 

Three important LTLP theorems are proposed here. Theorem 6.1 proves the 

existence of an optimal solution of the LTLP model. Theorem 6.2 presents a way 

to obtain a solution to the LTLP problem. Theorem 6.3 provides the necessary 

foundations for developing a tri-level 𝐾th-Best algorithm. 

 

Theorem 6.1 If the above assumptions are satisfied, there exists an optimal 

solution to the linear tri-level decision model (6.13). 

 

Proof: Since neither S or IR is empty, there is at least one parameter value 

𝑥∗ ∈ 𝑆(𝑋) and 𝑃 𝑥∗ ≠ ∅. Consider a sequence  (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) 𝑡=1
∞ ⊆ 𝐼𝑅 converging 

to (𝑥∗, 𝑦∗, 𝑧∗). Then, by the well-known results of linear parametric optimization, 

(𝑦∗, 𝑧∗) ∈ 𝑃 𝑥∗ . Hence, (𝑥∗, 𝑦1
∗, … , 𝑦𝑘

∗) ∈ 𝐼𝑅  that shows IR is closed. By 

Assumption 6.1(1) and 𝐼𝑅 ⊆ 𝑆 , IR is also bounded. IR is non-empty, so the 

problem (6.13) consists of minimizing a continuous function over a compact non-

empty set, which implies that the problem has an optimal solution. 

 

Theorem 6.2 The inducible region can be written equivalently as a piecewise 

linear equality constraint comprised of support hyper-planes of 𝑆. 

 

Proof: Using the notations in the proof of Theorem 6.1, the inducible region 𝐼𝑅 

can be rewritten as follows: 

𝐼𝑅 = { 𝑥, 𝑦, 𝑧 ∈ 𝑆|𝛽2𝑦 + 𝜇2𝑧 = min 𝛽2𝑦 + 𝜇2𝑧 |𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 − 𝐴𝑖𝑥, 𝑦 ≥ 0,
  𝑧≥0,𝑖=2,3,𝜇3𝑧=min𝜇3z|𝐶3z≤𝑏3−𝐴3𝑥−𝐵3𝑦, z≥0}.    (6.14) 

Let   

Q 𝑥 = min[ 𝛽2𝑦 + 𝜇2𝑧 |(𝑦 , 𝑧 ) ∈ 𝑆 𝑥 , 𝑧 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛⁡[ 𝜇3𝑧 |𝑧 ∈ 𝑆 𝑥, 𝑦  ]],      (6.15) 

𝑄 𝑥, 𝑦 = 𝑚𝑖𝑛 𝜇3𝑧 |𝑧 ∈ 𝑆 𝑥, 𝑦  .                             (6.16) 

It is then necessary to prove that 𝑄 𝑥  is a piecewise linear equality constraint.  
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According to the expressions for 𝑄 𝑥  and 𝑄 𝑥, 𝑦 , the first step is to prove 

that 𝑄 𝑥, 𝑦  is a piecewise linear equality constraint for any given 𝑥  and 𝑦 . 

Because 𝑄 𝑥, 𝑦  can be seen as a linear programming problem with parameters 𝑥 

and y, the dual problem of 𝑄 𝑥, 𝑦  is 

max{𝑢 𝐴3𝑥 + 𝐵3𝑦−𝑏3 |𝑢𝐶3 ≥ −𝜇3, 𝑢 ≥ 0}.                   (6.17) 

This problem has the same optimal values as 𝑄 𝑥, 𝑦  at the solution 𝑢∗ . Let 

𝑢1, … , 𝑢𝑡  be a listing of all the vertices of the constraint region of the dual problem 

given by 𝑈 = {𝑢|𝑢𝐶3 ≥ −𝜇3}. Because a solution of the dual problem occurs at a 

vertex of 𝑈, the equivalent problem is 

max 𝑢 𝐴3𝑥 + 𝐵3𝑦 − 𝑏3 |𝑢 ∈  𝑢
1, … , 𝑢𝑡  .                     (6.18) 

This means that 𝑄 𝑥, 𝑦  is a piecewise linear function.  

Next, it will be proved that 𝑄 𝑥  is a piecewise linear function. Suppose that 

𝑧1, 𝑧2, … , 𝑧𝑠  are solutions of problem 𝑄 𝑥, 𝑦 . For each 𝑧𝑖 , 𝑄 𝑥  becomes a 

programming problem with parameters 𝑥  and 𝑧𝑖 . Therefore, there are 𝑠 
parameterized programming problems, 𝑄 𝑥 |𝑧1 , … , 𝑄 𝑥 |𝑧𝑠 . Similarly, each 

𝑄 𝑥 |𝑧 𝑖  is a piecewise linear function. Hence, the set IR can be rewritten as 

𝐼𝑅 =  { 𝑥, 𝑦, 𝑧𝑖 |𝛽2𝑦 = 𝑄 𝑥 |𝑧 𝑖 − 𝜇2𝑧
𝑖}𝑠

𝑖=1                    (6.19) 

which is a piecewise linear equality constraint. 

 

Corollary 6.1 A solution to the LTLP problem (6.12) occurs at a vertex of the 𝐼𝑅. 

 

Theorem 6.3 The solution (𝑥∗, 𝑦∗, 𝑧∗) of the linear tri-level programming problem 

occurs at a vertex of 𝑆. 

 

Proof: Let  𝑥1, 𝑦1, 𝑧1 , … , (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) be the distinct vertices of 𝑆. Because any 

point in 𝑆  can be written as a convex combination of these vertices, let 

 𝑥∗, 𝑦∗, 𝑧∗ =  𝛿𝑖(𝑥
𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑡 

𝑖=1 , where  𝛿𝑖
𝑡 
𝑖=1 = 1, 𝛿𝑖 > 0, 𝑖 = 1,… , 𝑡  and 𝑡 ≤ 𝑡. 

It must be shown that 𝑡 = 1. Let us write the constraints of (6.12) at (𝑥∗, 𝑦∗, 𝑧∗) in 

their piecewise linear form (6.19): 

                           0 = 𝑄 𝑥∗ |𝑧∗ − 𝛽2𝑦
∗ − 𝜇2𝑧

∗ 

                             = 𝑄   𝛿𝑖𝑥
𝑖

𝑡 

𝑖=1

 |𝑧∗ − 𝛽2   𝛿𝑖𝑦
𝑖

𝑡 

𝑖=1

 − 𝜇2   𝛿𝑖𝑧
𝑖

𝑡 

𝑖=1

  

                             ≤  𝛿𝑖𝑄 𝑥
𝑖 |𝑧∗

𝑡 

𝑖=1

− 𝛿𝑖𝛽2𝑦
𝑖

𝑡 

𝑖=1

− 𝛿𝑖𝜇2𝑧
𝑖

𝑡 

𝑖=1
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                            =  𝛿𝑖(𝑄 𝑥
𝑖 |𝑧∗

𝑡 

𝑖=1

− 𝛽2𝑦
𝑖 − 𝜇2𝑧

𝑖) 

by the convexity of 𝑄(𝑥). However, by definition𝑄 𝑥𝑖 |𝑧∗, 

𝑄 𝑥𝑖 |𝑧∗ = min
 𝑦,𝑧 ∈𝑆 𝑥 𝑖 

𝑧∈𝑝(𝑥 𝑖 ,𝑦)

(𝛽2𝑦 + 𝜇2𝑧) ≤𝛽2𝑦
𝑖 + 𝜇2𝑧

𝑖 . 

Therefore, 𝑄 𝑥𝑖 |𝑧∗ − 𝛽2𝑦
𝑖 − 𝜇2𝑧

𝑖 ≤ 0, 𝑖 = 1,… , 𝑡 . Noting that 𝛿𝑖 > 0, 𝑖 =
1,… , 𝑡 , the equality in the preceding expression must hold, or else a contradiction 

would result in the sequence above. Consequently, 𝑄 𝑥𝑖 |𝑧∗ − 𝛽2𝑦
𝑖 − 𝜇2𝑧

𝑖 = 0 

for all 𝑖 . These statements imply that  𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ 𝐼𝑅, 𝑖 = 1,… , 𝑡 , and that 

(𝑥∗, 𝑦∗, 𝑧∗) can be written as a convex combination of points in the IR. Because 

(𝑥∗, 𝑦∗, 𝑧∗) a vertex of the 𝐼𝑅 by Corollary 6.1 and 𝑃(𝑥) and 𝑃(𝑥, y) are single-

valued, a contradiction results unless 𝑡 = 1. 

 

Corollary 6.2 If (𝑥, 𝑦, 𝑧) is a vertex of 𝐼𝑅, then it is also a vertex of 𝑆. 

6.6.3 Tri-level Kth-Best Algorithm 

This section will introduce the tri-level Kth-Best algorithm for solving the linear 

tri-level programming problem (6.12). 

Theorem 6.3 in Section 6.6.2 provides a theoretical foundation and a suitable 

way to solve problem (6.12). Therefore, it is necessary only to search the extreme 

points of the constraint region 𝑆 to find an optimal solution for the LTLP problem 

(6.12). The main principle of the tri-level Kth-Best algorithm is shown as follows. 

Consider the linear programming problem below: 

min 𝛼1𝑥 + 𝛽1𝑦 + 𝜇1𝑧| 𝑥, 𝑦, 𝑧 ∈ 𝑆 .                              (6.20) 

The N-ranked basic feasible solutions to (6.20) are: 

 𝑥[1], 𝑦[1], 𝑧[1] ,  𝑥[2], 𝑦[2], 𝑧[2] ,… ,  𝑥[𝑁], 𝑦[𝑁], 𝑧[𝑁] , 

such that 𝛼1𝑥[𝑖] + 𝛽1𝑦[𝑖] + 𝜇1𝑧[𝑖] ≤ 𝛼1𝑥 𝑖+1 + 𝛽1𝑦 𝑖+1 + 𝜇1𝑧 𝑖+1 , 𝑖 = 1, … , 𝑁 − 1. Then 

solving the problem (6.12) is equivalent to finding the index 

𝐾∗ = min{𝑖 ∈  1,⋯𝑁 | 𝑥[𝑖], 𝑦[𝑖], 𝑧[𝑖] ∈ 𝐼𝑅}. 

Therefore, a global solution is 𝑥[𝐾∗], 𝑦[𝐾∗], 𝑧[𝐾∗] . Similarly, for fixing 𝑥 = 𝑥[𝑖], we 

have the middle-level and bottom-level problem (6.21) as follows: 

min
𝑦∈𝑌

𝛽2𝑦 + 𝜇2𝑧                      

s.t. 𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 ≤ 𝑏2,                                 (6.21) 
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                                                            min
𝑧∈𝑍

𝜇3𝑧 

s.t. 𝐴3𝑥 + 𝐵3𝑦 + 𝐶3𝑧 ≤ 𝑏3. 

Clearly, problem (6.21) is a general bi-level programming scenario which has 

been discussed in Chapter 3. We can use the Kth-Best algorithm, the Kuhn-Tucker 

approach or the Branch-and-bound algorithm to solve this problem.  

The procedure of the tri-level Kth-Best algorithm is described as follows: 

 

Algorithm 6.1: Tri-level Kth-Best Algorithm 

[Begin] 

Step 1: Set 𝑖 ← 1. Solve problem (6.20) using the simplex method to obtain 

the optimal solution,  𝑥[1], 𝑦[1], 𝑧[1] . Let 𝑊 = { 𝑥[1], 𝑦[1], 𝑧[1] }  and 𝑇 = ∅ . 

Go to Step 2. 

Step 2: Treat the problem as a top- (middle-, bottom-) level problem. This step 

is equivalent to solving the follower‟s (middle-, bottom-) decision problem 

(6.21) for 𝑥 = 𝑥[𝑖]. Let  𝑦 , 𝑧   denote the optimal solution to (6.21). If 𝑦 = 𝑦[𝑖] 

and 𝑧 = 𝑧[𝑖], stop, and  𝑥[𝑖], 𝑦[𝑖], 𝑧[𝑖]  is the globally optimal solution of (6.12) 

with 𝐾∗ = 𝑖; otherwise, go to Step 3. 

Step 3: Let 𝑊[𝑖]  denote the set of adjacent vertices of  𝑥[𝑖], 𝑦[𝑖], 𝑧[𝑖]  such 

that  𝑥, 𝑦, 𝑧 ∈ 𝑊[𝑖] implies 𝛼1𝑥 + 𝛽1𝑦 + 𝜇1𝑧 ≥ 𝛼1𝑥[𝑖] + 𝛽1𝑦[𝑖] + 𝜇1𝑧[𝑖] . Let 

𝑇 = 𝑇 ∪   𝑥 𝑖 , 𝑦 𝑖 , 𝑧 𝑖    and 𝑊 = (𝑊 ∪𝑊[𝑖])\𝑇. Go to Step 4. 

Step 4: Set 𝑖 ← 𝑖 + 1 and choose  𝑥[𝑖], 𝑦[𝑖], 𝑧[𝑖]  so that 

𝛼1𝑥[𝑖] + 𝛽1𝑦[𝑖] + 𝜇1𝑧[𝑖] = min{𝛼1𝑥 + 𝛽1𝑦 + 𝜇1𝑧| 𝑥, 𝑦, 𝑧 ∈ 𝑊}. 

Go to Step 2.  

 [End] 

 

The tri-level Kth-Best algorithm uses two sub-algorithms: (1) the simplex 

algorithm, which can obtain an optimal solution for a linear programming problem, 

and (2) the algorithm for finding the adjacent vertices of a selected vertex. 

According to the results given by Bard (1984), a vertex is a geometrical 

interpretation of a feasible solution. Hence, enumerating the adjacent vertices is 

equivalent to enumerating all the basic feasible solutions for the decision problem.  

6.6.4 A Numerical Example 

We give an example to illustrate how the tri-level Kth-Best algorithm can be used 

to solve a tri-level decision problem. 
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Example 6.2 For 𝑥 ∈ 𝑋 =  𝑥 𝑥 ≥ 0 , 𝑦 ∈ 𝑌 =  𝑦 𝑦 ≥ 0 , 𝑧 ∈ 𝑍 = {𝑧|𝑧 ≥ 0},  
𝑓(1), 𝑓(2), 𝑓(3): 𝑋 × 𝑌 × 𝑍 → 𝑅, 

min
𝑥∈𝑋

𝑓(1) = 𝑥 + 𝑦 + 2𝑧 

                  s.t. 2𝑥 + 𝑦 + 𝑧 ≥ 14, 

min
𝑦∈𝑌

𝑓(2) = 𝑥 + 𝑦 + 3𝑧           

                                       s.t. 𝑥 + 𝑦 ≥ 4, 

                 𝑦 ≤ 6, 

        min
𝑧∈𝑍

𝑓(3) = 𝑥 + 𝑦 − 𝑧 

                    s.t. 𝑦 + 𝑧 ≤ 8, 

                                                    𝑦 + 4𝑧 ≥ 8, 

                                                    𝑦 + 2𝑧 ≤ 13. 

Now it is possible to use the tri-level Kth-Best algorithm to obtain a solution 

for this problem. According to the tri-level Kth-Best algorithm, solving this 

problem first requires consideration of the middle level and the bottom level as a 

whole (middle, bottom) and then solving the problem using the bi-level Kth-Best 

algorithm. 

From (6.20), let us consider a linear programming problem as follows: 

min
𝑥∈𝑋

𝑓(1) = 𝑥 + 𝑦 + 2𝑧 

                                s.t. 2𝑥 + 𝑦 + 𝑧 ≥ 14, 

      𝑥 + 𝑦 ≥ 4, 

          𝑦 ≤ 6, 

                                      𝑦 + 𝑧 ≤ 8, 

                                      𝑦 + 4𝑧 ≥ 8, 

                                      𝑦 + 2𝑧 ≤ 13. 

Now we go through the tri-level Kth-Best algorithm from Step 1 to Step 4. 

Step 1: Set 𝑖 ← 1. Solve the above problem using the simplex method to obtain 

the optimal solution,  𝑥[1], 𝑦[1], 𝑧[1] = (6,0,2) . Let 𝑊 = { 𝑥[1], 𝑦[1], 𝑧[1] }  and 

𝑇 = ∅. Go to Step 2. 

Step 2: By the problem (6.21), we have the problem: 
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min
𝑦∈𝑌

𝑓(2) = 𝑥 + 𝑦 − 𝑧 

                        s.t. 𝑥 + 𝑦 ≥ 4, 

          𝑦 ≤ 6, 

                                       𝑥 = 6, 

      min
𝑧∈𝑍

𝑓(3) = 𝑥 + 𝑦 − 𝑧 

                                       s.t. 𝑦 + 𝑧 ≤ 8, 

     𝑦 + 4𝑧 ≥ 8, 

     𝑦 + 2𝑧 ≤ 13, 

                                             𝑥 = 6. 

Using the bi-level Kth-Best algorithm, we have  𝑦 [1], 𝑧 [1] =  6,2 ≠

 𝑦 1 , 𝑧 1   and go to Step 3. 

Step 3: Find the adjacent vertices of  𝑥[1], 𝑦[1], 𝑧[1] and we have 𝑊[1] =

{ 3.75,6,0.5 , (4,0,6)}, T={(6,0,2)} and W=  3.75,6,0.5 ,  4,0,6  . Go to Step 4. 

Step 4: Update i=i+1, choose  𝑥[2], 𝑦[2], 𝑧[2] = (3.75,6,0.5) and go back to 

Step 2. 

Step 2: By the problem (6.21), we have the problem: 

min
𝑦∈𝑌

𝑓(2) = 𝑥 + 𝑦 − 𝑧 

                               s.t. 𝑥 + 𝑦 ≥ 4, 

                                 𝑦 ≤ 6, 

                                     𝑥 = 3.75, 

min
𝑧∈𝑍

𝑓(3) = 𝑥 + 𝑦 − 𝑧 

                                    s.t. 𝑦 + 𝑧 ≤ 8, 

                                          𝑦 + 4𝑧 ≥ 8, 

                                          𝑦 + 2𝑧 ≤ 13, 

                                          𝑥 = 3.75. 

Using the bi-level Kth-Best algorithm, we have  𝑦 [2], 𝑧 [2] =  6,2 ≠

 𝑦 2 , 𝑧 2   and go to Step 3. 

Step 3: Find the adjacent vertices of  𝑥[2], 𝑦[2], 𝑧[2]  and we have 𝑊[2] =

{(3,6,2)}, T={(6,0,2),(3.75,6,0.5)} and 𝑊 =   4,0,6 , (3,6,2) . Go to Step 4. 

Step 4: Update i=i+1, choose  𝑥[3], 𝑦[3], 𝑧[3] = (3,6,2) and go back to Step 2. 
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Step 2: By the problem (6.21), we have the problem: 

min
𝑦∈𝑌

𝑓(2) = 𝑥 + 𝑦 − 𝑧 

                        s.t. 𝑥 + 𝑦 ≥ 4, 

         𝑦 ≤ 6, 

                                      𝑥 = 3, 

     min
𝑧∈𝑍

𝑓(3) = 𝑥 + 𝑦 − 𝑧 

                s.t. 𝑦 + 𝑧 ≤ 8, 

     𝑦 + 4𝑧 ≥ 8, 

     𝑦 + 2𝑧 ≤ 13, 

                                             𝑥 = 3. 

Using the bi-level Kth-Best algorithm, we have  𝑦 [3], 𝑧 [3] =  6,2 =

 𝑦 3 , 𝑧 3  . Therefore,  𝑥[3], 𝑦[3], 𝑧[3]  is an optimal solution of Example 6.2 with 

𝐾∗ = 𝑖 = 3 . For the global solution, the objective value of 𝑓1  is 13, and the 

objective function values of 𝑓2  and 𝑓3  are 15 and 7 respectively. Therefore, the 

Kth-Best algorithm provides an useful way to solve the linear tri-level decision 

problem. 

6.7 Tri-level Multi-follower Decision Solution Methods 

We have proposed 64 kinds of TLMF decision model and this section aims to 

present solution methods for these models. We take the TLMF decision model 

S12 in its linear version as representative, to illustrate solution concepts and 

theoretical properties, and describe a TLMF Kth-Best algorithm for TLMF 

decision. 

6.7.1 Solution Concepts 

According to the general modelS12shownin Section 6.4, the model in linear 

version can be expressed as follows. 

For 𝑥 ∈ 𝑋 ⊂ 𝑅𝑘 ,  𝑦 ∈ 𝑌𝑖 ⊂ 𝑅𝑘0 ,  𝑌 = 𝑌1 ∩⋯∩ 𝑌𝑛 ,  𝑦 ∈ 𝑌,  𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 ⊂ 𝑅
𝑘𝑖𝑗 , 

𝑓(1): 𝑋 × 𝑌 × 𝑍11 × ⋯𝑍1𝑚1
× ⋯× 𝑍𝑛1 × ⋯× 𝑍𝑛𝑚𝑛

→ 𝑅, 𝑓𝑖
 2 : 𝑋 × 𝑌𝑖 × 𝑍𝑖1 × ⋯ 

× 𝑍𝑖𝑚 𝑖
→ 𝑅, 𝑓𝑖𝑗

 3 : 𝑋 × 𝑌𝑖 × 𝑍𝑖𝑗 → 𝑅, and 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛, 
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min
𝑥∈𝑋

𝑓(1) 𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 = 𝑐𝑥 + 𝑑𝑦 +  𝑒𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

𝑛

𝑖=1

(6.22a) 

s.t.  𝐴𝑥 + 𝐵𝑦 +   𝐶𝑖𝑗 𝑧𝑖𝑗
𝑚 𝑖
𝑗=1

𝑛
𝑖=1  ≤ 𝑏,                                                         (6.22b) 

where  (𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
) (𝑖 = 1,… , 𝑛)  is the solution to the ith middle-level 

follower‟s problem and its bottom-level followers‟ problems (6.22c-6.22f): 

min
𝑦∈𝑌𝑖

𝑓𝑖
 2  𝑥, 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

 = 𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

                        (6.22c) 

           s.t. 𝐴𝑖𝑥 + 𝐵𝑖𝑦 +  𝐷𝑖𝑗 𝑧𝑖𝑗
𝑚 𝑖
𝑗=1  ≤ 𝑏𝑖 ,                                                   (6.22d) 

where  𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖) is the solution to the ith middle-level follower‟s jth 

bottom-level follower‟s problem (6.22e-6.22f): 

min
𝑧𝑖𝑗 ∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3  𝑥, 𝑦, 𝑧𝑖𝑗  = 𝑐𝑖𝑗 𝑥 + 𝑑𝑖𝑗 𝑦 + 𝑕𝑖𝑗 𝑧𝑖𝑗                                            (6.22e) 

s.t. 𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗𝑦 + 𝐸𝑖𝑗 𝑧𝑖𝑗  ≤ 𝑏𝑖𝑗 ,                                                           (6.22f) 

where 𝑐, 𝑐𝑖 , 𝑐𝑖𝑗 ∈ 𝑅
𝑘 , 𝑑, 𝑑𝑖 , 𝑑𝑖𝑗 ∈ 𝑅

𝑘0 , 𝑒𝑖𝑗 , 𝑔𝑖𝑗 , 𝑕𝑖𝑗 ∈ 𝑅
𝑘𝑖𝑗 , 𝐴 ∈ 𝑅𝑠×𝑘 , 𝐴𝑖 ∈ 𝑅

𝑠𝑖×𝑘 ,  

𝐴𝑖𝑗 ∈ 𝑅
𝑠𝑖𝑗 ×𝑘 , 𝐵 ∈ 𝑅𝑠×𝑘0 , 𝐵𝑖 ∈ 𝑅

𝑠𝑖×𝑘0 , 𝐵𝑖𝑗 ∈ 𝑅
𝑠𝑖𝑗 ×𝑘0 , 𝐶𝑖𝑗 ∈ 𝑅

𝑠×𝑘𝑖𝑗 , 𝐷𝑖𝑗 ∈ 𝑅
𝑠𝑖×𝑘𝑖𝑗 , 

𝐸𝑖𝑗 ∈ 𝑅
𝑠𝑖𝑗 ×𝑘𝑖𝑗 , 𝑏 ∈ 𝑅𝑠 , 𝑏𝑖 ∈ 𝑅

𝑠𝑖 , 𝑏𝑖𝑗 ∈ 𝑅
𝑠𝑖𝑗 , 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛. 

 

To find an optimal solution for the decision model, relevant solution concepts 

are proposed as follows, based on definitions of bi-level programming and tri-

level programming. 

 

Definition 6.1 

(a) Constraint region of the TLMF decision model: 

        𝑆 = { 𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 ∈ 𝑋 × 𝑌 × 𝑍11 × ⋯𝑍1𝑚1
× ⋯× 

                   𝑍𝑛1 × ⋯× 𝑍𝑛𝑚𝑛
|𝐴𝑥 + 𝐵𝑦 +   𝐶𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖
𝑗=1

𝑛
𝑖=1  ≤ 𝑏, 

                   𝐴𝑖𝑥 + 𝐵𝑖𝑦 +  𝐷𝑖𝑗 𝑧𝑖𝑗
𝑚 𝑖
𝑗=1  ≤ 𝑏𝑖 , 𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗 𝑦 + 𝐸𝑖𝑗 𝑧𝑖𝑗  ≤ 𝑏𝑖𝑗 , 

           𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛}. 

(b) Constraint region of the ith middle-level follower for each fixed 𝑥 ∈ 𝑋: 

          𝑆𝑖 𝑥 = {(𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
) ∈ 𝑌𝑖 × 𝑍𝑖1 × ⋯× 𝑍𝑖𝑚 𝑖

|𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 

                    𝐷𝑖𝑗 𝑧𝑖𝑗
𝑚 𝑖
𝑗=1  ≤ 𝑏𝑖 , 𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗𝑦 + 𝐸𝑖𝑗 𝑧𝑖𝑗  ≤ 𝑏𝑖𝑗 , 𝑗 = 1,… ,𝑚𝑖}. 

(c) Feasible set of the ith middle-level follower‟s jth bottom-level follower for 

each fixed (𝑥, 𝑦) ∈ 𝑋 × 𝑌𝑖: 

𝑆𝑖𝑗  𝑥, 𝑦 = {𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 |𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗 𝑦 + 𝐸𝑖𝑗 𝑧𝑖𝑗  ≤ 𝑏𝑖𝑗 }. 
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(d) Projection of S onto the leader‟s decision space: 

𝑆 𝑋 = {𝑥 ∈ 𝑋|∃ 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 , 

                                       𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 ∈ 𝑆}. 

(e) Projection of S onto the top-level leader‟s and the ith middle-level follower‟s 

decision space: 

𝑆𝑖 𝑋, 𝑌 = { 𝑥, 𝑦 |∃(𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

),         

                                           𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 ∈ 𝑆}. 

(f) Rational reaction set of the ith middle-level follower‟s jth bottom-level 

follower for (𝑥, 𝑦) ∈ 𝑆𝑖 𝑋, 𝑌 : 

𝑃𝑖𝑗  𝑥, 𝑦 = {𝑧𝑖𝑗 ∈ 𝑍𝑖𝑗 |𝑧𝑖𝑗 ∈ argmin 𝑓𝑖𝑗
 3  𝑥, 𝑦, 𝑧 𝑖𝑗  : 𝑧 𝑖𝑗 ∈ 𝑆𝑖𝑗  𝑥, 𝑦  }. 

(g) Rational reaction set of the ith middle-level follower for 𝑥 ∈ 𝑆 𝑋 : 

𝑃𝑖 𝑥 = { 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 |(𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

) ∈ argmin[𝑓𝑖
 2  𝑥, 𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖

 | 

                 𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 ∈ 𝑆𝑖 𝑥 , 𝑧 𝑖𝑗 ∈ 𝑃𝑖𝑗  𝑥, 𝑦  , 𝑗 = 1,… ,𝑚𝑖]}. 

(h) Inducible region: 

  𝐼𝑅 = { 𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 | 

      𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 ∈ 𝑆,  𝑦, 𝑧𝑖1 , … , 𝑧𝑖𝑚 𝑖
 ∈ 𝑃𝑖 𝑥 , 

     𝑖 = 1,… , 𝑛}． 

Therefore, based on the notations, the TLMF decision model (6.22) can be 

written as: 

min
𝑥,𝑦,𝑧11 ,…,𝑧1𝑚1 ,…,𝑧𝑛1 ,…,𝑧𝑛𝑚𝑛

𝑓 1  𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

  

s.t.  𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 ∈ 𝐼𝑅.                      (6.23) 

6.7.2 Theoretical Properties 

For the sake of assuring that an optimal solution to the model (6.22) exists, we 

give the following assumption. 

 

Assumption 6.2 

(1) S is non-empty and compact. 

(2) IR is non-empty. 

(3) 𝑃𝑖 𝑥  and 𝑃𝑖𝑗  𝑥, 𝑦  are point-to-point maps with respect to x and (𝑥, 𝑦) 

respectively, where 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛. 
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Theorem 6.4 If the TLMF decision model (6.22) meets Assumption 6.2, then 

there exists an optimal solution. 

 

Proof: Let  

𝑃(𝑥) = { 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 : (𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
) ∈ 𝑃𝑖 𝑥 , 𝑖 = 1,… , 𝑛}. 

Since neither S nor IR is empty, there is at least one parameter value 

𝑥∗ ∈ 𝑆 𝑋  and 𝑃 𝑥∗ ≠ ∅.   

Consider a sequence  (𝑥𝑡 , 𝑦𝑡 , 𝑧11
𝑡 , … , 𝑧1𝑚1

𝑡 , … 𝑧𝑛1
𝑡 , … , 𝑧𝑛𝑚𝑛

𝑡 ) 
𝑡=1

∞
⊆ 𝐼𝑅 converging 

to (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ). Then, by the well-known results of linear 

parametric optimization, we have (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) ∈ 𝑃 𝑥∗ . 

Hence, (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) ∈ 𝐼𝑅  which shows that IR is 

closed. By Assumption 6.2(1) and 𝐼𝑅 ⊆ 𝑆, IR is therefore also bounded, and IR is 

nonempty, so the problem (6.22) consists of minimizing a continuous function 

over a compact nonempty set, which implies that the problem has an optimal 

solution. 

 

Theorem 6.5 The inducible region IR can be expressed equivalently as a 

piecewise linear equality constraint comprised of supporting hyperplanes of S. 

 

Proof: First, denote the optimal value of the ith middle-level follower‟s jth 

bottom-level follower by 

𝐹𝑖𝑗  𝑥, 𝑦 = min 𝑕𝑖𝑗 𝑧 𝑖𝑗 |𝑧 𝑖𝑗 ∈ 𝑆𝑖𝑗  𝑥, 𝑦  , 𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1,… , 𝑛, 

and define 

𝐹𝑖 𝑥 = min 𝑑𝑖𝑦 + 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

| 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 ∈ 𝑆𝑖 𝑥 ,  

           𝑕𝑖𝑗 𝑧𝑖𝑗 = 𝐹𝑖𝑗  𝑥, 𝑦 , 𝑗 = 1,… ,𝑚𝑖}, 𝑖 = 1,… , 𝑛. 

Since 𝐹𝑖𝑗  𝑥, 𝑦  can be seen as a linear programming problem with parameters 𝑥 

and𝑦, the dual problem of 𝐹𝑖𝑗  𝑥, 𝑦  can be written as 

max (𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗𝑦 − 𝑏𝑖)𝑢𝑖𝑗 |𝐸𝑖𝑗𝑢𝑖𝑗 ≥ −𝑕𝑖𝑗 , 𝑢𝑖𝑗 ≥ 0 .   (6.24) 

If both 𝐹𝑖𝑗  𝑥, 𝑦  and problem (6.24) have feasible solutions, by the dual theorem 

of linear programming, both have optimal solutions and the same optimal 

objective function value. Since a solution to problem (6.24) occurs at a vertex of 

its constraint region 𝑈𝑖𝑗 =  𝑢𝑖𝑗 |𝐸𝑖𝑗𝑢𝑖𝑗 ≥ −𝑕𝑖𝑗 , 𝑢𝑖𝑗 ≥ 0 , adopting 𝑢𝑖𝑗
1 , … , 𝑢

𝑖𝑗

𝑘𝑖𝑗
 to 

express all the vertices of 𝑈𝑖𝑗 , then problem (6.24) can be written as: 

 max  (𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗𝑦 − 𝑏𝑖)𝑢𝑖𝑗 |𝑢𝑖𝑗 ∈ {𝑢𝑖𝑗
1 , … , 𝑢

𝑖𝑗

𝑘𝑖𝑗 } .    (6.25) 
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Clearly, 𝐹𝑖𝑗  𝑥, 𝑦  is a piecewise linear function according to problem (6.25).  

Next, we prove that 𝐹𝑖 𝑥  is also a piecewise linear function. Assume that 

(𝑧𝑖1
1 , … , 𝑧𝑖𝑚 𝑖

1 ), … , (𝑧𝑖1
𝑝𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑝𝑖 )  are solutions to the problem 𝐹𝑖𝑗  𝑥, 𝑦  for 𝑖 =

1,… , 𝑛. For each fixed i and a solution (𝑧𝑖1
𝑡𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑡𝑖 ) where 𝑡𝑖 = 1,… , 𝑝𝑖 , 𝐹𝑖 𝑥  

becomes a programming problem with parameters 𝑥 and (𝑧𝑖1
𝑡𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑡𝑖 ), and there 

are 𝑝𝑖  parameterized programming problems such as 

𝐹𝑖 𝑥 |(𝑧𝑖1
1 ,…,𝑧𝑖𝑚 𝑖

1 ), … , 𝐹𝑖 𝑥 |(𝑧
𝑖1

𝑝𝑖 ,…,𝑧
𝑖𝑚 𝑖

𝑝𝑖 )
. Considering different combinations of 

(𝑧𝑖1
𝑡𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑡𝑖 ) for 𝑖 = 1,… , 𝑛,  there are  𝑝𝑖
𝑛
𝑖=1  parameterized programming 

problems 𝐹𝑖 𝑥 |(𝑧
𝑖1

𝑡𝑖 ,…,𝑧
𝑖𝑚 𝑖

𝑡𝑖 )
. Therefore, 𝐹𝑖 𝑥  is also a piecewise linear function as 

𝐹𝑖𝑗  𝑥, 𝑦 .  

Lastly, according to the above definition of 𝐹𝑖 𝑥 , the inducible regionIR can 

be rewritten as  

𝐼𝑅 = {(𝑥, 𝑦, 𝑧11
𝑡1 , … , 𝑧1𝑚1

𝑡1 , … , 𝑧𝑛1
𝑡𝑛 , … , 𝑧𝑛𝑚𝑛

𝑡𝑛 ) ∈ 𝑆|𝑑𝑖𝑦 + 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

 

 = 𝐹𝑖 𝑥 |(𝑧
𝑖1

𝑡𝑖 ,…,𝑧
𝑖𝑚 𝑖

𝑡𝑖 )
, 𝑡𝑖 = 1,… , 𝑝𝑖 , 𝑖 = 1,… , 𝑛}.                             (6.26) 

and it can be seen as a piecewise linear equality constraint. 

 

Corollary 6.3 The TLMF decision model (6.22) is equivalent to optimizing𝑓(1) 

over a feasible region comprised of a piecewise linear equality constraint. 

 

Corollary 6.4 An optimal solution to the TLMF decision model (6.22) occurs at 

a vertex of IR. 

 

Proof: According to the equivalent form (6.23) of the TLMF decision model, 

and since 𝑓(1) is linear, an optimal solution to the problem must occur at a vertex 

of IR if it exists.  

 

Theorem 6.6 The optimal solution (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ )  to the 

TLMF decision model (6.22) occurs at a vertex of S. 

 

Proof: Let  𝑥1, 𝑦1, 𝑧11
1 , … , 𝑧1𝑚1

1 , … 𝑧𝑛1
1 , … , 𝑧𝑛𝑚𝑛

1  , … , (𝑥𝑡 , 𝑦𝑡 , 𝑧11
𝑡 , … , 𝑧1𝑚1

𝑡 , … 𝑧𝑛1
𝑡 , 

… , 𝑧𝑛𝑚𝑛
𝑡 ) indicate the distinct vertices of S. Since any point in S can be written 

as a convex combination of these vertices, we have   

       (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) 

=  𝛿𝑟 𝑥
𝑟 , 𝑦𝑟 , 𝑧11

𝑟 , … , 𝑧1𝑚1
𝑟 , … 𝑧𝑛1

𝑟 , … , 𝑧𝑛𝑚𝑛
𝑟  

𝑡 

𝑟=1  

where  𝛿𝑟 = 1,𝑡 
𝑟=1 𝛿𝑟 > 0, 𝑟 = 1,… , 𝑡  and 𝑡 ≤ 𝑡. 
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We can write the constraints of (6.22) in the piecewise linear form (6.26) 

discussed in Theorem 6.6: 

  0 = 𝐹𝑖 𝑥
∗ |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) − 𝑑𝑖𝑦

∗ − 𝑔𝑖𝑗 𝑧𝑖𝑗
∗

𝑚 𝑖

𝑗=1

 

  = 𝐹𝑖   𝛿𝑟𝑥
𝑟

𝑡 

𝑟=1

 |(𝑧𝑖1
∗ ,…,𝑧𝑖𝑚 𝑖

∗ ) − 𝑑𝑖 𝛿𝑟𝑦𝑖
𝑟

𝑡 

𝑟=1

− 𝑔𝑖𝑗  𝛿𝑟𝑧𝑖𝑗
𝑟

𝑡 

𝑟=1

𝑚 𝑖

𝑗=1

, 𝑖 = 1, . . , 𝑛. 

Because of the convexity of 𝐹𝑖 𝑥
∗ , we have 

0 ≤ 𝛿𝑟

𝑡 

𝑟=1

𝐹𝑖 𝑥
𝑟 |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) − 𝛿𝑟

𝑡 

𝑟=1

𝑑𝑖𝑦𝑖
𝑟 − 𝛿𝑟

𝑡 

𝑟=1

 𝑔𝑖𝑗 𝑧𝑖𝑗
𝑟

𝑚 𝑖

𝑗=1

 

=  𝛿𝑟

𝑡 

𝑟=1

[𝐹𝑖 𝑥
𝑟 |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) − 𝑑𝑖𝑦𝑖

𝑟 − 𝑔𝑖𝑗 𝑧𝑖𝑗
𝑟 ]

𝑚 𝑖

𝑗=1

, 𝑖 = 1, . . , 𝑛.     (6.27) 

By the definition of 𝐹𝑖 𝑥 |(𝑧
𝑖1

𝑡𝑖 ,…,𝑧
𝑖𝑚 𝑖

𝑡𝑖 )
, we have 

𝐹𝑖 𝑥
𝑟 |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) = min⁡(𝑑𝑖𝑦 + 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

) ≤ 𝑑𝑖𝑦𝑖
𝑟 − 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑟 ,

𝑚 𝑖

𝑗=1

𝑖 = 1, . . , 𝑛. 

Thus, 𝐹𝑖 𝑥
𝑟 |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) − 𝑑𝑖𝑦𝑖

𝑟 − 𝑔𝑖𝑗 𝑧𝑖𝑗
𝑟 ≤ 0,

𝑚 𝑖
𝑗=1 𝑟 = 1,… , 𝑡 , 𝑖 = 1, . . , 𝑛. 

Since the above expression (6.27) must be held with 𝛿𝑟 > 0, 𝑟 = 1,… , 𝑡 ,, there 

exist 𝐹𝑖 𝑥
𝑟 |(𝑧𝑖1

∗ ,…,𝑧𝑖𝑚 𝑖
∗ ) − 𝑑𝑖𝑦𝑖

𝑟 − 𝑔𝑖𝑗 𝑧𝑖𝑗
𝑟 ≤ 0,

𝑚 𝑖
𝑗=1 𝑟 = 1,… , 𝑡 , 𝑖 = 1, . . , 𝑛. 

These statements imply that  𝑥𝑟 , 𝑦𝑟 , 𝑧11
𝑟 , … , 𝑧1𝑚1

𝑟 , … 𝑧𝑛1
𝑟 , … , 𝑧𝑛𝑚𝑛

𝑟  ∈ 𝐼𝑅 , 𝑟 =

1,… , 𝑡  and that (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) can be denoted as a convex 

combination of the points in the IR. Since (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) is 

a vertex of the IR according to Corollary 6.4 and Assumption 6.2(3), there must 

exist 1t , which means (𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗ ) is a vertex of S. 

 

Corollary 6.5 If  𝑥∗, 𝑦∗, 𝑧11
∗ , … , 𝑧1𝑚1

∗ , … 𝑧𝑛1
∗ , … , 𝑧𝑛𝑚𝑛

∗   is a vertex of the IR, it is 

also a vertex of S. 

6.7.3 TLMF Kth-Best Algorithm 

The above theorems and corollaries provide a theoretical foundation to extend the 

tri-level Kth-Best algorithm proposed in Section 6.6.3 for solving the TLMF 

decision problem (6.22). The main principle of the TLMF Kth-Best algorithm is 

showed as follows. 
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First, consider the following linear programming problem: 

min
(𝑥,𝑦,𝑧11 ,…,𝑧1𝑚1 ,…,𝑧𝑛1 ,…,𝑧𝑛𝑚𝑛 )∈𝑆

𝑓 1  𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1 , … , 𝑧𝑛𝑚𝑛

           (6.28)
 

and let 

 𝑥1, 𝑦1, 𝑧11
1 , … , 𝑧1𝑚1

1 , … 𝑧𝑛1
1 , … , 𝑧𝑛𝑚𝑛

1  , … , (𝑥𝑁 , 𝑦𝑁 , 𝑧11
𝑁 , … , 𝑧1𝑚1

𝑁 , … 𝑧𝑛1
𝑁 , … , 𝑧𝑛𝑚𝑛

𝑁 ) 

denote the N-ranked basic feasible solutions to (6.28), such that 

        𝑓 1  𝑥𝐾 , 𝑦𝐾 , 𝑧11
𝐾 , … , 𝑧1𝑚1

𝐾 , … 𝑧𝑛1
𝐾 , … , 𝑧𝑛𝑚𝑛

𝐾   

            ≤  𝑓 1  𝑥𝐾+1, 𝑦𝐾+1, 𝑧11
𝐾+1, … , 𝑧1𝑚1

𝐾+1, … 𝑧𝑛1
𝐾+1, … , 𝑧𝑛𝑚𝑛

𝐾+1 , 𝐾 = 1,… ,𝑁 − 1. 

Then solving the problem (6.28) is equivalent to searching the index 𝐾∗ =

min 𝐾 𝐾 ∈  1,… ,𝑁 ,  𝑥𝐾 , 𝑦𝐾 , 𝑧11
𝐾 , … , 𝑧1𝑚1

𝐾 , … 𝑧𝑛1
𝐾 , … , 𝑧𝑛𝑚𝑛

𝐾  ∈ IR , which ensures 

that  𝑥𝐾
∗
, 𝑦𝐾

∗
, 𝑧11
𝐾∗ , … , 𝑧1𝑚1

𝐾∗ , … 𝑧𝑛1
𝐾∗ , … , 𝑧𝑛𝑚𝑛

𝐾∗   is the global solution to the TLMF 

problem. 

To get  𝑥𝐾
∗
, 𝑦𝐾

∗
, 𝑧11
𝐾∗ , … , 𝑧1𝑚1

𝐾∗ , … 𝑧𝑛1
𝐾∗ , … , 𝑧𝑛𝑚𝑛

𝐾∗  ,  we must obtain 

 𝑦𝐾
∗
, 𝑧11
𝐾∗ , … , 𝑧1𝑚1

𝐾∗ , … 𝑧𝑛1
𝐾∗ , … , 𝑧𝑛𝑚𝑛

𝐾∗   by solving a set of uncooperative linear multi-

follower bi-level (MFBL) decision problems at the middle and bottom level, so 

next, for 𝑖 = 1,… , 𝑛 and the fixing 𝑥 = 𝑥𝐾
∗
, the middle-level and bottom-level 

problem becomes: 

min
𝑦∈𝑌𝑖

𝑓𝑖
 2  𝑥, 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

 = 𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝑔𝑖𝑗 𝑧𝑖𝑗

𝑚 𝑖

𝑗=1

                                  

                    s.t. 𝐴𝑖𝑥 + 𝐵𝑖𝑦 +  𝐷𝑖𝑗 𝑧𝑖𝑗
𝑚 𝑖
𝑗=1  ≤ 𝑏𝑖 ,    

where  𝑧𝑖𝑗 (𝑗 = 1,… ,𝑚𝑖)  is the solution to the ith middle-level follower‟s jth 

bottom-level follower‟s problem: 

min
𝑧𝑖𝑗 ∈𝑍𝑖𝑗

𝑓𝑖𝑗
 3  𝑥, 𝑦, 𝑧𝑖𝑗  = 𝑐𝑖𝑗 𝑥 + 𝑑𝑖𝑗 𝑦 + 𝑕𝑖𝑗 𝑧𝑖𝑗  

s.t. 𝐴𝑖𝑗 𝑥 + 𝐵𝑖𝑗𝑦 + 𝐸𝑖𝑗 𝑧𝑖𝑗  ≤ 𝑏𝑖𝑗 .                                (6.29) 

Clearly, problem (6.29) is an uncooperative MFBL decision problem. It can be 

solved by the multi-follower (uncooperative) Kth-Best algorithm given in Chapter 

4.4.3, or the multi-follower (uncooperative) Kuhn-Tucker approach given in 

Chapter 4.4.4.  

Detailed procedures of the TLMF Kth-Best algorithm are presented as follows: 
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Algorithm 6.2: TLMF Kth-Best Algorithm 

[Begin] 

Step 1: Set 𝑘 = 1, adopt the simplex method to obtain the optimal solution 

 𝑥1, 𝑦1, 𝑧11
1 , … , 𝑧1𝑚1

1 , … 𝑧𝑛1
1 , … , 𝑧𝑛𝑚𝑛

1   to the linear programming problem (6.28). 

Let 𝑊 =   𝑥1, 𝑦1, 𝑧11
1 , … , 𝑧1𝑚1

1 , … 𝑧𝑛1
1 , … , 𝑧𝑛𝑚𝑛

1    and 𝑇 = ∅. Go to Step 2. 

Step 2: Put 𝑥 = 𝑥𝑘  and 𝑖 = 1, solve the uncooperative BLMF decision problems 

(6.29) and obtain the optimal solution  𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
  using the BLMF Kth-Best 

algorithm shown as the following subroutine Step 2.1-Step 2.5. Then go to Step 

3. 

Step 2.1: Set 𝑥 = 𝑥𝑘  and 𝑘𝑖 = 1, adopt the simplex method to obtain the 

optimal solution (𝑦𝑖1, 𝑧𝑖1
𝑖1, … , 𝑧𝑖𝑚 𝑖

𝑖1 )  to the linear programming problem 

(6.30): 

min{𝑓𝑖
 2  𝑥, 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

 | 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 ∈ 𝑆𝑖 𝑥 }.           (6.30) 

Let 𝑊𝑖
′ =   𝑦𝑖1, 𝑧𝑖1

𝑖1, … , 𝑧𝑖𝑚 𝑖

𝑖1    and 𝑇𝑖 = ∅. Go to Step 2.2. 

Step 2.2: Put 𝑥 = 𝑥𝑘 ,𝑦 = 𝑦𝑖𝑘 , and 𝑗 = 1. Adopt the simplex method to 

solve the problem (6.31): 

min{ 𝑓𝑖𝑗
 3  𝑥, 𝑦, 𝑧𝑖𝑗  |𝑧𝑖𝑗 ∈ 𝑆𝑖𝑗  𝑥, 𝑦 }.                           (6.31) 

and obtain the optimal solution 𝑧 𝑖𝑗 .  

Step 2.3: If 𝑧 𝑖𝑗 ≠ 𝑧𝑖𝑗
𝑖𝑘𝑖 , go to Step 2.4. If 𝑧 𝑖𝑗 = 𝑧𝑖𝑗

𝑖𝑘𝑖  and 𝑗 ≠ 𝑚𝑖 , set 𝑗 = 𝑗 + 1 

and go to Step 2.2. If 𝑧 𝑖𝑗 = 𝑧𝑖𝑗
𝑖𝑘𝑖  and 𝑗 = 𝑚𝑖 , stop the subroutine, 𝐾𝑖

∗ = 𝑘𝑖  

and go to Step 2 with  𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 =  𝑦𝑖𝑘𝑖 , 𝑧𝑖1

𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖  . 

Step 2.4: Let 𝑊𝑘𝑖
 denote the set of adjacent vertices of  𝑦𝑖𝑘𝑖 , 𝑧𝑖1

𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖   

such that  𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 ∈ 𝑊𝑘𝑖

 implies 

{𝑓𝑖
 2  𝑥𝑘 , 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

 ≥ 𝑓𝑖
 2  𝑥𝑘 , 𝑦𝑖𝑘𝑖 , 𝑧𝑖1

𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖  . 

Let 𝑇𝑖 = 𝑇𝑖 ∪ { 𝑦𝑖𝑘𝑖 , 𝑧𝑖1
𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖  }   and 𝑊𝑖
′ = 𝑊𝑖

′ ∪𝑊𝑘𝑖
/𝑇𝑖 . Go to Step 

2.5. 

Step 2.5: Set 𝑘𝑖 = 𝑘𝑖 + 1 and choose  𝑦𝑖𝑘𝑖 , 𝑧𝑖1
𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖   such that  

               𝑓𝑖
 2  𝑥𝑘 , 𝑦𝑖𝑘𝑖 , 𝑧𝑖1

𝑖𝑘𝑖 , … , 𝑧𝑖𝑚 𝑖

𝑖𝑘𝑖  = 

                       min{𝑓𝑖
 2  𝑥𝑘 , 𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖

   𝑦, 𝑧𝑖1, … , 𝑧𝑖𝑚 𝑖
 ∈ 𝑊𝑖

′ . 

Go to Step 2.2. 

Step 3: If  𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 ≠  𝑦𝑘 , 𝑧𝑖1

𝑘 , … , 𝑧𝑖𝑚 𝑖

𝑘  , go to Step 4. If 

 𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 =  𝑦𝑘 , 𝑧𝑖1

𝑘 , … , 𝑧𝑖𝑚 𝑖

𝑘   and 𝑖 ≠ 𝑛, set 𝑖 = 𝑖 + 1 and go to Step 2. If 

 𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 =  𝑦𝑘 , 𝑧𝑖1

𝑘 , … , 𝑧𝑖𝑚 𝑖

𝑘   and 𝑖 = 𝑛 , stop and 

 𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘  is the optimal solution to the TLMF 

decision problem (6.22) and 𝐾∗ = 𝑘. 
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Step 4: Let 𝑊𝑘  denote the set of adjacent vertices of 

 𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘   such that (𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, 

… , 𝑧𝑛𝑚𝑛
) ∈ 𝑊𝑘  implies 

                 𝑓 1  𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

  

  ≥ 𝑓 1  𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘  .                                 

Let 𝑇 = 𝑇 ∪   𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘    and 𝑊 = 𝑊 ∪𝑊𝑘/𝑇 . Go 

to Step 5. 

Step 5: Set 𝑘 = 𝑗 + 𝑘  and choose  𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘   such 

that  

 𝑓 1  𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , … , 𝑧1𝑚1

𝑘 , … 𝑧𝑛1
𝑘 , … , 𝑧𝑛𝑚𝑛

𝑘  = 

        = min
(𝑥,𝑦,𝑧11 ,…,𝑧1𝑚1 ,…,𝑧𝑛1 ,…,𝑧𝑛𝑚𝑛 )∈𝑊

𝑓 1  𝑥, 𝑦, 𝑧11 , … , 𝑧1𝑚1
, … , 𝑧𝑛1, … , 𝑧𝑛𝑚𝑛

 . 

Go to Step 2. 

[End] 

6.7.4 A Numerical Example 

A numerical example is adopted to illustrate how the TLMF Kth-Best algorithm 

works.  

 

Example 6.3 Consider a TLMF decision problem in a linear version shown as 

follows with 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 , 𝑧𝑖𝑗 ∈ 𝑅  and𝑋 = {𝑥|𝑥 ≥ 0} , 𝑌𝑖 = {𝑦|𝑦 ≥ 0} , 𝑍𝑖𝑗 =

 𝑧𝑖𝑗  𝑧𝑖𝑗 ≥ 0 , 𝑖 = 1,2,𝑚𝑖 = 2, 𝑗 = 1,… ,𝑚𝑖 . 

min
𝑥∈𝑋

𝑓 1  𝑥, 𝑦, 𝑧11 , 𝑧12 , 𝑧21 , 𝑧22 = −1.5𝑥 − 𝑦 + 2𝑧11 + 𝑧12 − 𝑧21 − 1.5𝑧22 

      s.t. 𝑥 + 𝑦 + 𝑧11 + 𝑧12 + 𝑧21 + 𝑧22 ≥ 10, 

            𝑥 ≤ 1.5, 

             min
𝑦∈𝑌1

𝑓1
(2) 𝑥, 𝑦, 𝑧11 , 𝑧12 = 𝑥 + 𝑦 + 𝑧11 + 𝑧12 

            s.t. 𝑥 + 𝑦 + 𝑧11 + 𝑧12 ≥ 6.5, 

                   min
𝑧11∈𝑍11

𝑓11
(3) 𝑥, 𝑦, 𝑧11 = 𝑥 + 𝑦 + 3𝑧11 

                 s.t. 𝑥 + 𝑦 + 𝑧11 ≥ 3.5, 

                       𝑧11 ≤ 2,                                                                        

                  min
𝑧12∈𝑍12

𝑓12
(3) 𝑥, 𝑦, 𝑧12 = 𝑥 + 𝑦 + 2𝑧12 

                 s.t. 𝑥 + 𝑦 + 𝑧12 ≥ 5, 

𝑧12 ≤ 4,                                                                       
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              min
𝑦∈𝑌2

𝑓2
(2) 𝑥, 𝑦, 𝑧21 , 𝑧22 = 𝑥 − 𝑦 + 2𝑧21 + 3𝑧22 

             s.t. 𝑥 + 𝑦 + 𝑧21 + 𝑧22 ≥ 5.5, 

                   𝑥 + 𝑦 ≤ 2, 

                     min
𝑧21∈𝑍21

𝑓21
(3) 𝑥, 𝑦, 𝑧21 = 𝑥 + 𝑦 + 2𝑧21 

                   s.t. 𝑥 + 𝑦 + 𝑧21 ≥ 3, 

                         𝑧21 ≤ 2,                                                                       

                     min
𝑧22∈𝑍22

𝑓22
(3) 𝑥, 𝑦, 𝑧22 = 𝑥 + 𝑦 + 𝑧22 

                   s.t. 𝑥 + 𝑦 + 𝑧22 ≥ 4.5, 

                         𝑧22 ≤ 3. 

We can adopt the TLMF Kth-Best algorithm to solve the linear semi-

cooperative decision problem. First, we have to solve a linear programming 

problem in the format (6.28) of the leader. 

Step 1: Set 𝑘 = 1 and adopt the simplex method to obtain the optimal solution 

to the problem (6.28). The optimal solution to (6.28) is  𝑥1, 𝑦1, 𝑧11
1 , 𝑧12

1 , 𝑧21
1 , 𝑧22

1  =
(1.5,0.5,1.5,3,2,3) and now 𝑊 =  (1.5,0.5,1.5,3,2,3)  and 𝑇 = ∅. Go to Step 2 

and iteration 1 will start. 

Step 2: Put 𝑥 = 1.5 and 𝑖 = 1, and solve the BLMF decision problem in the 

form of (6.29). We can obtain the optimal solution  𝑦 , 𝑧 11 , 𝑧 12 = (0.5,1.5,3) to 

(6.29) and go to Step 3. 

Step 3: Evidently,  𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 =  𝑦𝑘 , 𝑧𝑖1

𝑘 , … , 𝑧𝑖𝑚 𝑖

𝑘  , 𝑖 = 1  and 𝑛 = 2 , so 

𝑖 ≠ 𝑛, set 𝑖 = 2 and go to Step 2. 

Step 2: Put 𝑥 = 1.5 and 𝑖 = 2, and solve the BLMF decision problem (6.29). 

We can obtain the optimal solution  𝑦 , 𝑧 21 , 𝑧 22 = (0.5,1,2.5) to (6.29) and go to 

Step 3. 

Step 3: Now,  𝑦 , 𝑧 𝑖1, … , 𝑧 𝑖𝑚 𝑖
 ≠  𝑦𝑘 , 𝑧𝑖1

𝑘 , … , 𝑧𝑖𝑚 𝑖

𝑘   and go to Step 4. 

Step 4: Find the adjacent vertices of  𝑥1, 𝑦1, 𝑧11
1 , 𝑧12

1 , 𝑧21
1 , 𝑧22

1  and the set of 

adjacent vertices 𝑊1 =   0,2,1.5,3,2,3 ,  1.5,0.5,1.5,3,1,3 , (1.5,0.5,1.5,3,2,2.5) , 
𝑇 =  (1.5,0.5,1.5,3,2,3) ,𝑊 = { 0,2,1.5,3,2,3 ,  1.5,0.5,1.5,3,1,3 , (1.5,0.5,1.5, 

3,2,2.5)}. Go to Step 5. 

Step 5: Set 𝑘 = 2 and choose  𝑥2, 𝑦2, 𝑧11
2 , 𝑧12

2 , 𝑧21
2 , 𝑧22

2  =  (0,2,1.5,3,2,3) and 

go to Step 2. This step means that iteration 1 has stopped and we cannot obtain an 

optimal solution through the iteration. The next iteration will be then executed. 

In this way, we ultimately achieve the optimal solution through seven iterations. 

The searched vertices and the detailed computing process of iterations 2-7 are 

shown as Table 6.2. 
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Table 6.2 The detailed computing process of the TLMF Kth-Best algorithm 

Iteration 

k 

(𝑥𝑘 , 𝑦𝑘 , 𝑧11
𝑘 , 

𝑧12
𝑘 , 𝑧21

𝑘 , 𝑧22
𝑘 ) 

𝑊𝑘  T W 

2 (0,2,1.5,3,2,3) {(0,2,1.5,3,1,3),         

  (0,2,1.5,3,2,2.5)} 

{(1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,3)} 

{(1.5,0.5,1.5,3,1,3),    

  (1.5,0.5,1.5,3,2,2.5),   

  (0,2,1.5,3,1,3),   

  (0,2,1.5,3,2,2.5)} 

3 (1.5,0.5,1.5,3,2,2.5) {(1.5,0.5,1.5,3,1,2.5)} {(1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,3), 

  (1.5,0.5,1.5,3,2,2.5)} 

{(1.5,0.5,1.5,3,1,3),  

  (0,2,1.5,3,1,3),  

  (0,2,1.5,3,2,2.5),  

  (1.5,0.5,1.5,3,1,2.5)} 

4 (1.5,0.5,1.5,3,1,3) ∅ {(1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,3), 

  (1.5,0.5,1.5,3,2,2.5),      

  (1.5,0.5,1.5,3,1,3)} 

{(0,2,1.5,3,1,3),  

  (0,2,1.5,3,2,2.5),  

  (1.5,0.5,1.5,3,1,2.5)} 

5 (0,2,1.5,3,2,2.5) {(0,2,1.5,3,1,2.5)} {(1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,3), 

  (1.5,0.5,1.5,3,2,2.5),    

  (1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,2.5)} 

{(0,2,1.5,3,1,3),  

  (1.5,0.5,1.5,3,1,2.5),  

  (0,2,1.5,3,1,2.5)} 

6 (0,2,1.5,3,1,3) ∅ {(1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,3), 

  (1.5,0.5,1.5,3,2,2.5),    

  (1.5,0.5,1.5,3,1,3), 

  (0,2,1.5,3,2,2.5), 

  (0,2,1.5,3,1,3)} 

{(1.5,0.5,1.5,3,1,2.5),  

  (0,2,1.5,3,1,2.5)} 

7 (1.5,0.5,1.5,3,1,2.5)    

 

In iteration 7,  𝑥7, 𝑦7, 𝑧11
7 , 𝑧12

7 , 𝑧21
7 , 𝑧22

7  = (1.5,0.5,1.5,3,1,2.5)  is the optimal 

solution to the TLMF decision problem and the objective function values of all 

decision entities are 𝑓 1 = −1.5, 𝑓1
 2 = 6.5, 𝑓2

 2 = 10.5, 𝑓11
 3 = 6.5, 𝑓12

 3 = 8, 

𝑓21
 3 = 4, 𝑓22

 3 = 4.5. 

It is worthwhile to note that 𝑊4 = ∅ and 𝑊6 = ∅ in Table 1 do not mean that 

adjacent vertices of  𝑥4, 𝑦4, 𝑧11
4 , 𝑧12

4 , 𝑧21
4 , 𝑧22

4   and  𝑥6, 𝑦6, 𝑧11
6 , 𝑧12

6 , 𝑧21
6 , 𝑧22

6   do not 

exist but may imply that their adjacent vertices have been found in previous 

iterations and have been involved in W. 

The results show that the TLMF Kth-Best algorithm provides a practical way of 

solving the proposed TLMF decision problem. However, the computational load 

of the algorithm may grow steeply with the number of variables and constraints. 

Therefore, the execution efficiency of the TLMF Kth-Best algorithm is needed to 

explore sufficient numeric experiments. 
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6.8 Summary 

In a hierarchical organization, interactive decision entities exist within a 

predominantly hierarchical structure and the execution of decisions is sequential, 

from the top to the middle and then to the bottom levels. Each entity 

independently maximizes its own objective, but is affected by the actions of other 

entities at the same or different levels through externalities. Multiple followers 

commonly appear in both middle and bottom levels and have various relationships 

with each other, which results in the complication of this problem. 

This chapter presents four main issues in the area: (1) it establishes a TLMF 

decision framework which identifies64 standard situations and their possible 

combinations of TLMF decision problems; (2) it develops a DERD approach to 

effectively model various TLMF decision problems; (3) it gives a general and 

standard set of models using both DERD and programming modeling approaches, 

as well as hybrid TLMF decision models; (4) it presents solution concepts, 

theoretical properties and related algorithms for a TLMF decision problem. 


