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ABSTRACT 

In this study, an experimental and analytical study on adsorption and adsorption kinetics 

of organic matters in titanium oxide (TiO2, Degussa P25) with synthetic wastewater was 

investigated. In order to understand the removal of different organic sizes in detail 

molecular weight (MW) distribution of organics matters was examined in terms of 

number and weight-average MW. The large MW (33950 dalton) of synthetic organic 

matters (SOMs) was significantly removed by TiO2 adsorption and the slight decrease of 

the small MW (970 dalton) occurred with time. A characterization method was applied to 

evaluate the composition of SOMs in terms of adsorbability by adsorption of TiO2. 

Several adsorption equilibrium and batch kinetics experiments were conducted with 

different initial concentrations of SOMs and different amounts of adsorbent. A binomial 

distribution(s) of SOM fraction with the Freundlich coefficient (k) was obtained. The 

synthetic wastewater was explained by a finite number of pseudospecies (N) identified 

with a Freundlich isotherm constant (k) value. These parameters were determined by the 

characterization procedure, together with ideal adsorbed solution theory (IAST) with the 

pseudospecies number method. Prediction of adsorption isotherm and kinetics derived 

from a binomial concentration distribution of the characterization procedure were in good 

agreement with experimental data conducted.  
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INTRODUCTION 
 
The composition of organic matter in wastewater is a combination of those of natural 

organic matter (NOM), soluble microbial products and trace harmful chemicals. Most of 

the NOM originates from drinking water, which is one of major components in 

wastewater, while soluble microbial products come from biological treatment with the 

wastewater treatment plant and non-biodegradable organic matter. Of particular interest 

are recalcitrant organic chemicals which are resistant to biodegradation, and thus 

challenging to remove during typical wastewater treatment. Some micro-contaminants 

associated with wastewater effluent may cause adverse impacts to aquatic and human 

health if the compounds are present in recycled water. Some of the compounds of 

concern include disinfection by-products, N-nitrosodimethylamines, pesticides, 

herbicides, pharmaceuticals and endocrine disrupting chemicals [1]. As such, it is 

important to remove organic matter from wastewater. 

 

In sewage treatment process organic matter in wastewater is reduced by physical, 

chemical, and biological means [2]. Treatment methods where the application of physical 

force predominates are known as physical unit operations. Physical treatments include 

screening, sedimentation and filtration. Chemical treatment involves the removal or 

conversion of contaminants by the addition of chemicals or by indirect chemical reactions. 

Flocculation, adsorption, ion exchange, and disinfection are the most common chemical 

treatment methods. Biological treatment using microbes to biodegrade organic matter is 

important to select an appropriate treatment to remove specific compounds found in 

organic matter. In order to remove these compounds, it is necessary to understand the 

roles and mechanisms of different treatment processes.  

 

Application of photocatalysis in removing organic matter in wastewater has increasingly 

been of major concern [3-5]. It is well known that photocatalysis with TiO2 can significantly 

remove organic matter [6-10]. It was reported that organic removal by a photocatalysis 

hybrid system was similar to that by nanofiltration [11]. Although adsorption phase of 

organic matter on TiO2 is a determining stage in the process of photodegradation [12-14], a 

few researches are studied in the adsorption of TiO2 [14-15]. It is thus important to 
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evaluate the performance of TiO2 in terms of the better understanding of the adsorption 

phenomenon.  

 

Adsorption technology has been used for removal of organic contaminants from wastwater. 

In applying adsorption technology on TiO2 in treating organic matters in wastewater, the 

identities and concentrations of organic substances to be removed by TiO2 adsorption are 

unknown since wastewater has a series of unidentified organic matters [16-21]. A few 

pseudospecies to handle such a mixture according to the multi-component adsorption 

calculation method for unknown species in wastewater can be determined. It is a 

fundamental approach to characterize the solution before any adsorption process is applied 

to the system. Information on adsorption equilibrium of organic matters helps design and 

simulation of the adsorption system in removing those contaminants from wastewater [17-

20]. The most common approach for characterization of unknown solutions is to group 

several components together with a single pseudospecies according to similarity of their 

physical and chemical properties because a single surrogate quantity such as biological 

oxygen demand, dissolved organic carbon, or total organic carbon (TOC) has been used in 

representing the total contaminant in the target solution [22-24]. The presence of a variety of 

substances with adsorption affinity in an aqueous solution also requires that the competitive 

interaction among them after characterizing the solution into several pseudospecies should 

be considered.  

 

Characteristic distribution of Langmuir coefficient was applied for a useful concept to 

describe adsorption equilibrium of wastewater in which many unknown species exist [25]. 

The wastewater encountered can then be characterized by its concentration frequency 

function, assuming that the number of pseudospecies is infinite. While conceptually simple 

and elegant, it is difficult to implement this concentration frequency function in simulating 

batch kinetics adsorption systems. Considering this point, some researchers proposed a 

characterization procedure with a finite number of pseudospecies based on the concept of 

species grouping. They assumed that all the pseudospecies are fitted with the Freundlich 

expression and the ideal adsorbed solution theory (IAST) can describe multi-component 

adsorption equilibrium. [26, 27] 
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To understand the phenomenon of adsorption in detail, it is necessary to know the range of 

molecular weight (MW) distribution of organic matter removed from the wastewater [28]. A 

polydisperse composition of organic matter present in natural surface water was 

investigated in terms of MW and activated carbon adsorbabilities [17]. The fictive 

component method was used to analyze the activated carbon adsorbabilities [17-21]. 

Recently, a simple procedure for the characterization was devised using a binomial 

distribution of composition in characterizing variable, namely adsorption constants [29,30]. 

This characterization procedure was convenient and suitable for wastewater treatments 

using adsorption equilibrium, batch kinetics adsorption systems because finite number of 

pseudospecies can be systematically assigned by a binomial concentration distribution 

function.  

 

In this study, the effect of fundamental adsorption on TiO2 was investigated in terms of 

TOC and MW distribution of organic matters from synthetic wastewater. The experimental 

adsorption and the adsorption kinetics of organic matters by TiO2 in wastewater were 

also investigated. The simple characterization procedure was used for SOMs in which 

organic and inorganic compounds existed together.  

 

EXPERIMENTAL 

 

Synthetic wastewater 

The composition of the synthetic wastewater used in this study is presented in Table 1. 

This synthetic wastewater represents effluent organic matter generally found in the 

biologically treated sewage effluent [31]. Tannic acid, sodium lignin sulfornate, sodium 

lauryle sulfate peptone and arabic acid contributed to the large MW size organic matter, 

while the natural organic matter from tap water, peptone, beef extract and humic acid 

consisted of the small MW organic matters. The MW of the mixed synthetic wastewater 

ranged from 970 dalton to about 33950 with the highest fraction at 970 dalton.  
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Titanium oxide 

The photocatalyst, TiO2, used in this study was Degussa P25, ca. surface area 50 m2/g, 

6.9 nm mean pore size obtained from Degussa Company (Germany). Table 2 shows the 

characteristics of TiO2 used.  

 

Batch test procedure 

Batch adsorption experiments were performed at 100 rpm with TiO2 adsorbents. The 

batch reactors were 1 L conical glass flask. In each flask, a known concentration of 

wastewater was mixed with the known amount of adsorbent. The purpose of these 

experiments is to investigate the SOM removal with time and to find the equilibrium 

TOC concentration. All experiments were carried out at a temperature of 25 ºC. The 

adsorbed amount ( q ) and removal efficiency ( RE ) of SOMs were calculated by 

following equation. 
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Where q  is the adsorbed amount (mg/g), V  is the volume (L) of solution, iC  is the initial 

TOC concentration of SOMs (mg/L), eC  is the equilibrium TOC concentration (mg/L), M  

is the amount of adsorbent TiO2 (g) and RE  is the removal efficiency of SOMs (%). 

 

Analytical methods to measure organic matter  

  

Total organic carbon (TOC) 

 

TOC was measured by using the UV-persulphate TOC analyzer. All samples were 

filtered through 0.45 µm membrane prior to the TOC measurement.  

 

Molecular weight (MW) distribution 
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The synthetic wastewater was subjected to MW distribution measurement. High pressure 

size exclusion chromatography (HPSEC, Shimadzu, Corp., Japan) with a SEC column 

(Protein-pak 125, Waters, Milford, USA) was used to determine the MW distributions of 

organic matter. Standards of MW of various polystyrene sulfonates (PSS: 210, 1800, 

4600, 8000, and 18000 daltons) were used to calibrate the equipment. The details on the 

measurement methodology are given elsewhere [32]. The MW can be classified into 

three groups: i) number-average molecular weight, ii) weight-average molecular weight, 

and iii) polydipersity. The number-average MW ( nM ) called “median”, can be calculated 

as follows: 
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The weight-average MW ( nM ) and polydispersity (P), can be calculated from the 

following equation: 

∑∑
==

=
n

i
ii

n

i
iiw MNMNM

11

2 )(/)(      (4) 

nw MMP /=         (5) 

where Ni is the number of molecules having a molecular weight Mi and i is an 

incrementing index over all molecular weight present.  

 

THEORETICAL APPROACH 

The main modification in the characterization procedure proposed was to assume a 

simple discrete distribution function to represent a number of pseudospecies with the 

same Freundlich exponent [29, 30]. Similar to the continuous function [33], the initial 

concentration of each pseudospecies was assigned by a binomial function in terms of 

Freundlich constant. The competitive adsorption between species was estimated by a 

conventional equilibrium theory, namely the ideal adsorbed solution theory (IAST).  

When a quantity of adsorbent of mass M , initially free of any adsorbates, is added to a 

volume of solution V  containing pseudospecies species N , the solution and adsorbed phase 

concentration iC  and iq  of the i-th species at equilibrium are related by the following mass 

balance equation [34]. 
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The initial concentrations are given by 

Toioio CxC = , Ni ,,2,1,0 ⋅⋅⋅=       (7) 

Where ToC  is the total TOC concentration of the solution and iox  is the initial TOC fraction 

of the i-th species. The species, i=0, means a non-adsorbable species in the solution. If the 

multi-component equilibrium can be described by the IAST, the relationships among 

concentrations are given by the following set of equations: 
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Where iz  is the mole fraction of the i-th species in the adsorbed phase and o
iC  is the 

concentration of the i-th species in its single-species state, corresponding to the spreading 

pressure ( iπ ) at the equilibrium. o
iq  is the equilibrium concentration corresponding to o

iC . 

The restriction of the mole fraction is also provided in the system of equations: 
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At equilibrium, the spreading pressure iπ  of each species should be equal. 

Nππππ =⋅⋅⋅=== 21       (13) 

To simply the subsequent computation work required in both the characterization and the 

adsorption calculations, one may assume that all the pseudospecies adsorption isotherm 

obey the Freundlich expression with a constant exponent, 1/n, as follows. In general, a 

Freundlich exponential value n  of < 1.0 means unfavorable adsorption. 
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The following relationships are obtained from Eqs. (14) and (15). 
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The following relationship is obtained by substituting Eq. (16) into Eq. (10). 
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Eq. (19) represents that the total adsorption amount is equal to the adsorption amount of 

individual species at the single-species state. Substituting Eqs. (8), (9), (16) and (18) into the 

material balance equation yields the mole fraction in the adsorbed phase as follows: 
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The following relationship is obtained from Eq. (12). 
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Since the spreading pressure (Π ) should be the same for all species at equilibrium, it 

should be evaluated at a given equilibrium condition using the Newton iteration method 

[35,36]. Once the spreading pressure for the mixture is known, the equilibrium values iC  

and iq for the multi-component can be calculated from the set of equations above. 

 

The adsorption affinity of a specified species depends on both Freundlich constants. 

However, in this study, only the Freundlich coefficient was used to identify a couple of 

pseudospecies as a matter of convenience. Therefore one has a freedom to assign an 

arbitrary value to the Freundlich exponent( n ) regardless of species. This value can be 

determined by taking an average value from preliminary results obtained by an 

optimization-search procedure. Once the exponent value is properly assigned for a given 

system, the characterization can be straightforwardly carried out on a binomial 

distribution. The value of s  in Eq. (21) determines the skewness of the pseudo species 

concentration distribution and is within the range 0.10 << s , with 5.0=s  corresponding 

to a normal distribution type. Then the TOC fraction of the jth species in the original 

solution is represented as follows: 
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Here each species( j ) is specified by a Freundlich coefficient, jk , which is assigned by 

the following equation: 
2jkk sj =         (22) 

where sk  is the scale factor which represents the order of magnitude of the lowest k  

value for the solution in question.  

 

One can use a proper optimization technique to obtain optimum results can be used in 

carrying out the characterization of a given solution. In this study, a simple program was 

used to determine characterization results from equilibrium data obtained from different 

initial concentrations by minimizing its corresponding object function. The objective 

function ( F ) is defined as Eq. (23). 
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where the superscripts “exp” and “calc” are the experimental and calculated values and 

ND  is the total number of experimental data point. 

 

The mass transfer rate between liquid and solid phases represented by the LDFA model, 

assuming that overall mass transfer coefficient unchanged during experiments is the 

following Eq. (24). 
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where R  = radius of adsorbent (m), fk  = overall mass transfer coefficient (m/s), pρ  = 

density of particle (kg/m3), mk = mass transfer coefficient (1/s). 

The adsorption rate of adsorbate by a TiO2 particle is linearly proportional to a driving 

force using the LDFA model, defined as the difference between the surface concentration 

and the average adsorbed-phase concentration [37-39]. 
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RESULTS AND DISCUSSION 

 

Molecular weight (MW) distribution of organic matter by adsorption 

 

Synthetic wastewater has a number of known compounds at a known concentration. The 

MW distribution of each component in SOMs of synthetic wastewater can be found 

elsewhere [40]. The MW of the mixed synthetic wastewater ranged from 970 dalton to 

33950 with the highest fraction of 970 dalton. MW distribution of SOMs after TiO2 

adsorption isotherm was investigated in the range of 0.01 to 2 g/L of TiO2 at initial 

concentration of 11.04 mg/L in synthetic wastewater. Figure 1 shows removal of different 

organic sizes. At lower concentration of TiO2, the large (33950) and small (970) MWs of 

SOMs still remained. However, the majority of the large MW of SOMs was removed from 

0.5 g/L of TiO2. Table 3 shows MW values after TiO2 adsorption in terms of number-

averaged MW and weight-averaged MW. The initial weight-averaged MW was 33200 

dalton. The weight-averaged MW was similar to that at lower concentration of TiO2. On 

contrary, the weight-averaged MW from more than 0.5 g/L of TiO2 was significantly 

decreased up to 1200 dalton. This can be concluded that TiO2 adsorption preferentially 

removed the large MW.  

 

Effect of initial TOC concentration in adsorption equilibrium 

 

Figure 2 shows three sets of removal efficiency and overall adsorption equilibrium data 

of the SOMs. Each set of data was obtained with a known initial TOC concentration of 

5.25, 11.04 and 16.55 mg/L using different concentrations of TiO2. The results indicated 

unfavorable tendency at low concentration ranges. However, it shows that the adsorption 

is quite possible over certain concentration levels. The interesting result was that three 

different sets of data did not match together. This implies that there was strong 

competitive adsorption between adsorbing components on TiO2. The similar equilibrium 

behavior can be expected from mutual interactions between various species of organic 

matters in the wastewater depending on the nature and sources of wastewater such as 

domestic wastewater. The equilibrium data of a mixture showed a unfavorable case 



 11

below a concentration and then dramatically changed to a favorable case over that 

concentration. This may be due to the change in adsorption affinity depending on the 

concentration with the concept of mutual competition between adsorbing species on the 

TiO2 surface. For these reasons, a characterization procedure depending on different 

concentrations to interpret the adsorption equilibrium data and adsorption kinetics was 

explored. The simple characterization procedure and technique were investigated for the 

adsorption of SOMs on TiO2.  

 

Concentration distribution of wastewater 

 

Figure 3 shows the distribution of TOC fraction with different pseudospecies number N 

and various TOC concentrations. All the distributions were nearly identical for a 

binomial concentration distribution with ks = 1.0 depending on pseudospecies number. 

Table 4 shows the characterized results of synthetic wastewater with TiO2 adsorption in 

terms of the number of pseudospecies (N). As the number of pseudospecies number (N) 

increased, the values of n were in the range of 0.61 ~ 0.63, while that of s decreased. The 

values of F were nearly the same regardless of the number of pseudospecies and TOC 

concentrations. This indicated that there was a compensational effect between two 

characterization parameters in representing the solution. Since the TOC fraction with 

higher k values increased with the increase of the skewness parameter(s), the 

corresponding n value decreased for the same adsorption equilibrium data to give the 

same magnitude of affinity. It should be noted that the assigned number of pseudospecies 

could not improve the object function, F, or the average percent deviation in Table 4.  

 

This result was confirmed by the characterization results shown in Figure 2. 

Characterization results obtained from different experimental sets were similar and 

pseudospecies assigned by k values more than 11 did not contribute to the binomial  

distribution function as shown in Table 5. The average concentration distribution was 

used in order to apply the results to adsorption simulation. The interesting result in Figure 

3 was that a nonadsorable species existed with ca. 0.25 fraction of TOC in case of 

Freundlich constant k1/2 = 0, major components number for adsorption was around 5. 
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This nonadsorable portion of TOC fratcion was related to extremely unfavorable 

tendency at lower concentration.  

 

Effect of initial TOC concentration in batch kinetics 

 

Figure 4 shows the kinetics of adsorption at different initial concentrations of SOMs. The 

rate of adsorption was rapid in the initial minutes of solution–adsorbent contact and after 

∼20 min it became equilibrium state. The amount of SOMs adsorbed increases with 

increased initial concentration. The necessary time of equilibrium increased with 

increased initial concentration of SOMs. It was successfully predicted in various 

concentrations of SOMs by LDFA kinetic equation, assuming that overall mass transfer 

value of each component in wastewater had the same value. From 3.0 × 10-4 m/s to 7.0 × 

10-4 m/s of mass transfer coefficients from batch experimental data was obtained to 

predict the kinetics data. It can be concluded that characterization predictions were in 

good agreement with experimental data. 

 

Effect of pseudospecies number and adsorbent loading in batch kinetics 

 

Figure 5 shows the kinetics simulation based on the characterization procedure with the 

pseudospecies number. As the pseudospecies number increased, adsorption capacity of 

SOMs decreased. The amount of SOMs adsorbed increased with decreased pseudospecies 

number. This suggested that there was competitive adsorption in multi-component SOMs as 

the pseudospecies number increased. The necessary time of equilibrium increased with 

increased pseudospecies number.  

 

Figure 6 shows predicted curves in various TiO2 loading by LDFA kinetics equation. The 

necessary time of equilibrium increased with increased TiO2 loading. The amount of 

SOMs adsorbed increased with increased TiO2 loading. This may be due to the increase 

in adsorbent surface area of the sorbent. 
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CONCLUSIONS 

In this study, the removal of SOMs by TiO2 adsorption was experimentally and 

analytically investigated. A detailed characterization of SOMs was made in terms of the 

TOC removal, MW distribution and adsorption characterization model. The results 

obtained led to the following conclusions. 

 The weight-averaged MW (33200 dalton) of initial synthetic wastewater was similar 

to that at lower concentration of TiO2. However, the weight-averaged MW from more 

than 0.5 g/L of TiO2 was significantly decreased up to 1200 dalton. As such, TiO2 

adsorption preferentially removed the majority of large MW. 

 The characterization results obtained from different sets of equilibrium data were 

similar regardless of initial TOC concentration. The characterization procedure was 

suitable for the synthetic wastewater to provide information on the concentration 

distribution of TOC fraction.  

 A non-adsorable species existed with ca. 0.25 fraction of TOC and major components 

number for adsorption was around 5 from characterization procedure. This non-

adsorable portion of TOC fraction is likely to relate unfavorable tendency at low 

concentration levels.  

 Batch kinetics results were successfully predicted in various concentrations of SOMs 

by the LDFA kinetic equation with a binomial concentration distribution in 

characterization procedure. 

 As the pseudospecies number increased, adsorption capacity of SOMs decreased. The 

amount of SOMs adsorbed increased with decreased pseudospecies number. This 

suggested that there was competitive adsorption in multi-component in SOMs as the 

pseudospecies number increased.  
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Table 1. Constituents of SOMs in wastewater used in this study 

Compounds 
Concentration 

(mg/L) 

Concentration 

(TOC, mg/L) 
Fraction by TOC 

Beef extract 1.8 0.2204 0.065 

Peptone 2.7 0.4688 0.138 

Humic acid 4.2 0.2777 0.082 

Tannic acid 4.2 0.8042 0.237 

Sodium lignin 
sulfonate 

2.4 0.2266 0.067 

Sodium lauryle 
sulphate 

0.94 0.1438 0.042 

Arabic gum 
powder 

4.7 0.7233 0.213 

Arabic acid 5.0 0.5300 0.156 

(NH4)2SO4 7.1 0 0 

K2HPO4 7.0 0 0 

NH4HCO3 19.8 0 0 

MgSO4•7H2O 0.71 0 0 
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Table 2. Characteristics of Degussa P25 photocatalytic powdered used 

Specification Degussa P25 TiO2 photocatalyst 

Structure Non-porous 

Components 
65% anatase, 25% rutile, 0.2% SiO2, 0.3% 

Al2O3, 0.3% HCl, 0.01% Fe2O3 

Average aggregate particle diameter  Non-porous 

Primary crystal size 3 µm 

Mean pore diameter  6.9 nm 

Band gap 3.03 (from 500 to 300 nm) with UV-Vis 

Apparent density  130 kg/m3 

Surface area  42.32 ± 0.18 m2 / g 

Type Powdered 

Product code Degussa P25, Frankfurt am Main, Germany  
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Table 3. MW values of organic matter after adsorption isotherm by TiO2 

 Mn (dalton) Mw (dalton) P 

Initial 12800 33200 2.6 

After 0.01 g/L TiO2 adsorption 12300 32000 2.6 

After 0.05 g/L TiO2 adsorption 11900 30600 2.6 

After 0.1 g/L TiO2 adsorption 11500 28300 2.5 

After 0.5 g/L TiO2 adsorption 1090 1200 1.1 

After 1.0 g/L TiO2 adsorption 1090 1200 1.1 

After 2.0 g/L TiO2 adsorption 1000 1100 1.1 
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Table 4. Characterization results of synthetic wastewater on TiO2. 

 

Characterization results with 5.25 mg/L TOC 

ks N n s F(%) 

1.0 8 0.62 0.17 7.50 

 10 0.61 0.14 6.20 

 12 0.60 0.12 5.09 

 

Characterization results with 11.04 mg/L TOC 

ks N n s F(%) 

1.0 8 0.62 0.17 6.39 

 10 0.61 0.13 6.23 

 12 0.60 0.11 5.98 

 

Characterization results with 16.55 mg/L TOC 

ks N n s F(%) 

1.0 8 0.62 0.14 6.69 

 10 0.61 0.13 4.90 

 12 0.60 0.11 4.50 
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Table 5. Concentration distribution results of wastewater on the characterization procedure 

depending on pseudospecies number in TOC = 11.04 mg/L 

Xi Pseudospecies 

number (N) 
ki 

N = 8 N = 10 N = 12 

Average 

(X) 

0 0 0.225034 0.248167 0.246691 0.239964 

1 1 0.368965 0.371119 0.366215 0.368766 

2 4 0.264668 0.249744 0.249173 0.254528 

3 9 0.108487 0.099594 0.10275 0.103610 

4 16 0.027793 0.026064 0.02860 0.027486 

5 25 4.56E-03 4.68E-03 5.66E-03 4.97E-03 

6 36 4.67E-04 5.83E-04 8.17E-04 6.22E-04 

7 49 2.73E-05 4.98E-05 8.66E-05 5.46E-05 

8 64 7.0E-07 2.8E-06 6.7E-06 3.4E-06 

9 81  9.0E-08 3.7E-07 2.3E-07 

10 100  1.0E-08 1.0E-08 6.7E-09 

11 121   0 0 

12 144   0 0 

F(%)  6.39 6.23 5.98 6.20 

 

 

 

 



 22

Elution time (second)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e 
(m

V
)

0

1

2

3

4

5

Initial
0.01 g/L TiO2

0.05 g/L TiO2

0.1 g/L TiO2

MW: 970

MW: 33950

 
(a) 

Elution time (second)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e 
(m

V)

0

1

2

3

4

5

Initial
0.5 g/L TiO2

1 g/L TiO2

2 g/L TiO2

MW: 33950

MW: 970

 
(b) 

Figure 1. MW distribution after TiO2 adsorption isotherm by P25 TiO2 in batch reactor in 

range of (a) 0.01 – 0.1 g/L and (b) 0.5 - 2 g/L at initial concentration of 11.04 mg/L. 

(temperature = 25 °C; mixing speed = 100 rpm)  
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(b) 

Figure 2. Removal efficiency depending on (a) the amount of adsorbent and (b) overall 

adsorption isotherms of SOMs on TiO2. (initial concentration of SOMs =5.25, 11.04, 16.55 

mg/L) 
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Figure 3. A binomial concentration distribution depending on (a) pseudospecies number 

and (b) TOC concentration on TiO2 ((a) N = 8, 10, 12, TOC = 11.04 mg/L (b) TOC = 5.25, 

11.04 and 16.55 mg/L) 
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Figure 4.  Effect of initial SOM concentration on kinetics of TiO2 adsorption by TiO2 at 

25.0 ◦C (mixing speed = 100 rpm, adsorbent amount = 1 g/L, concentrations of SOMs = 

5.25, 11.04 and 16.55 mg/L) 
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Figure 5. Effect of pseudospecies number on kinetics of TiO2 adsorption.  

(concentration of SOMs =11.04 mg/L, adsorbent amount = 1 g/L, mixing speed = 100 rpm) 
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Figure 6. Effect of TiO2 loading on kinetics of TiO2 adsorption at 25.0 ◦C.  

(concentration of SOMs =13.20 mg/L, mixing speed = 100 rpm) 

 

 


