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Abstract

Seaweed and seagrass communities in the northeast Atlantic have been pro-

foundly impacted by humans, and the rate of change is accelerating rapidly

due to runaway CO2 emissions and mounting pressures on coastlines associ-

ated with human population growth and increased consumption of finite

resources. Here, we predict how rapid warming and acidification are likely

to affect benthic flora and coastal ecosystems of the northeast Atlantic in

this century, based on global evidence from the literature as interpreted by

the collective knowledge of the authorship. We predict that warming will kill

off kelp forests in the south and that ocean acidification will remove maerl

habitat in the north. Seagrasses will proliferate, and associated epiphytes

switch from calcified algae to diatoms and filamentous species. Invasive

species will thrive in niches liberated by loss of native species and spread

via exponential development of artificial marine structures. Combined

impacts of seawater warming, ocean acidification, and increased storminess

may replace structurally diverse seaweed canopies, with associated calcified
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and noncalcified flora, with simple habitats dominated by noncalcified, turf-

forming seaweeds.

Introduction

Seaweed and seagrass communities in the northeast

Atlantic have been profoundly impacted by humans, and

the rate of change is accelerating rapidly due to runaway

CO2 emissions, mounting pressures on coastlines associ-

ated with human population growth and increased con-

sumption of finite resources. Global reviews of the known

effects of global warming and ocean acidification (i.e.,

falling pH and carbonate levels combined with rising CO2

and bicarbonate levels) make it clear that although some

taxa will benefit, others will be adversely impacted (Har-

ley et al. 2012; Koch et al. 2013). Benthic phototrophs,

that is, fleshy and calcified macroalgae, seagrasses, and

microphytobenthos (MPBs), contribute significantly to

coastal primary production, facilitate export of carbon

from high to low productivity systems, and fuel entire

food webs (Steneck et al. 2002). They also produce vari-

ous volatiles, notably dimethyl sulfide (DMS) involved in

algal physiology and defense (Stefels et al. 2007) that

affect atmospheric chemistry and climate (Ayers and

Cainey 2007; Carpenter et al. 2012). Species distributions

are affected by a multitude of factors, but the major driv-

ers of change are considered to be acidification and

warming (Harley et al. 2012; Bijma et al. 2013). Some

benthic algae and seagrasses are expected to thrive at

higher CO2 levels, whilst others might be negatively

impacted (Koch et al. 2013; Kroeker et al. 2013). High-

latitude calcifying algae are at particular risk as surface

waters are becoming more corrosive to their skeletons

(Kamenos et al. 2013). Additionally, surface water warm-

ing is shifting the distributions of many species polewards

(Poloczanska et al. 2013). The success of any photoauto-

troph in a high CO2 world will be a balance between its

competitive ability for resources, resistance to herbivores,

and tolerance to the environmental conditions (Connell

et al. 2013).

Here, we make predictions as to how rapid warming

and acidification (Feely et al. 2008; Steinacher et al. 2009)

are likely to affect benthic flora and coastal ecosystems of

the northeast Atlantic in this century based on global evi-

dence from the literature as interpreted by the collective

knowledge of the authorship. There has been considerable

progress in our understanding of how primary producers

are affected by changes in ocean temperature and acidifi-

cation, but it is still unclear how this will affect ecosys-

tems at the regional scale. Here, we focus on the

northeast Atlantic as its long history of study provides a

unique baseline from which to assess change (Brodie

et al. 2009). The region supports a rich benthic flora

including habitats formed by brown algae (e.g., kelp

forests), coralline algae (e.g., carbonate deposits), and

seagrass beds.

Over the last century, human activities have had more

impact on the coastal zone than climate change but whilst

such human activities continue to increase (Nicholls et al.

2007 and refs therein) this is expected to change as sea

surface isotherms are moving polewards rapidly in the

northeast Atlantic whilst waters corrosive to carbonate are

now present in shallow Arctic waters and are spreading

south (Fig. 1).

In this study, we review evidence and make predictions

about the combined effect of warming and acidification

on the following major groups of organisms: fleshy, inva-

sive and calcified macroalgae, seagrasses, and MPBs. We

capture the combined predictions in Figures 1 and 2 and,

at the end, provide an outline of research that we

consider needs to be undertaken. Our overall objective is

to illustrate how these changes will affect the diverse and

well-studied benthic marine flora of the northeast Atlantic

and the impact on ecosystem structure and function. This

should serve as a template to stimulate further discussion

and work.

Fleshy Algae

In the northeast Atlantic, kelp forests (Laminariales)

dominate algal biomass in the subtidal and fucoids

(Fucales) in the intertidal. Kelp beds are amongst the

most productive habitats on Earth (Mann 1973, 2000;

Reed et al. 2008) and are a major source of primary pro-

duction in coastal zones of temperate and polar oceans

worldwide (Steneck et al. 2002). Other fleshy algae, such

as the large fucoids that dominate many intertidal habi-

tats (e.g., Ascophyllum nodosum), are also highly produc-

tive and play a key role in carbon capture and transfer in

coastal ecosystems (Goll�ety et al. 2008). In the Atlantic,

primary production can be 1000 g C m�2 year�1 for

Laminariales and in excess of 500 g C m�2 year�1 for

fucoids (Mann 1973, 2000; Vadas et al. 2004); this
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productivity represents a major component of coastal

food webs. Whilst some macroalgal biomass is consumed

directly by herbivorous fish and invertebrates, most bio-

mass is processed as detritus or dissolved organic matter.

Detrital biomass is then processed by microbes and may

be consumed by suspension feeders, detrital grazers, and

general consumers of organic material in soft sediments

(deposit feeders), thereby transferring energy to higher

trophic levels.

It is predicted, based on the relatively limited data

available, that rising temperatures and ocean acidificat-

ion will combine to profoundly alter fleshy algal species

composition, abundance, and productivity worldwide

(Harley et al. 2012; Krumhansl and Scheibling 2012;

Koch et al. 2013). With continued warming, some spe-

cies and populations will become chronically (gradual

warming) or acutely (extreme events) stressed as temper-

atures exceed physiological thresholds. If physiological

processes cannot be maintained, primary productivity

will decrease and, ultimately, widespread mortality may

ensue (Smale and Wernberg 2013), as evidenced by the

retraction of kelp beds at their low latitudinal limits

(Tuya et al. 2012; Wernberg et al. 2013). On the other

hand, where waters remain cool enough, assemblages

of fleshy macroalgae are expected to benefit from high

CO2 conditions as increased inorganic carbon availability

may enhance the growth and reproduction of fleshy

macroalgae (reviewed in Harley et al. 2012; Koch et al.

2013; Kroeker et al. 2013). In Figure 2, we show exam-

ples of how such changes are predicted to affect the

northeast Atlantic where the flora is dominated by kelps

(Laminariales) in the subtidal and fucoids (Fucales) in

the intertidal.

Such predictions are needed as kelp forests are amongst

the most productive habitats on Earth and together with

fucoids underpin the ecology of northeast Atlantic coastal

ecosystems (Mann 1973; Smale et al. 2013). Algal com-

munities are expected to increase in biomass, abundance,

and detrital production in Boreal and Arctic waters in

response to increased inorganic carbon availability as they

lack calcified skeletons and so are immune to corrosion

by acidified waters. We predict that North Pacific sea-

weeds, such as Alaria marginata, may colonize cooler

regions of the northeast Atlantic (Fig. 2) due to warming

and the opening of Arctic shipping routes. Species such

as Nereocystis luetkeana are less likely to spread to the

Atlantic as they are light limited at high latitudes and less

easily spread via shipping. As kelps and fucoids are cool

water adapted and stressed by high temperatures (Steneck

et al. 2002), we predict that they will undergo significant

changes in their distribution; there have already been

widespread northeast Atlantic losses of the kelps Saccha-

rina latissima (Moy and Christie 2012), Saccorhiza polysc-

hides, Laminaria ochroleuca (Fern�andez 2011), Laminaria

hyperborea (Tuya et al. 2012), Laminaria digitata (Yesson

et al., unpublished manuscript), and Alaria esculenta

(Simkanin et al. 2005; Mieszkowska et al. 2006; Merzouk

and Johnson 2011) attributed to ocean warming in con-

junction with other stressors. Of note, Bartsch et al.

(2013) have highlighted that the main determinant in

survival of Laminaria digitata from Helgoland was

restricted temperature windows for sporogenesis due to

sea surface temperature warming. Warming in the Boreal

region is expected to replace Laminaria hyperborea with

L. ochroleuca; this may have limited ecological impact, as

Figure 1. Present distribution of habitat-forming species in the

northeast Atlantic, and an estimate of environmental change by

2100. SST anomaly (change from the present) is based on annual

mean from an A1B scenario ensemble as Jueterbock et al. (2013).

Many species’ ranges such as the kelp L. hyperborea are thought

to be limited by summer and winter thermoclines (van den Hoek

1982; Dieck 1993). Temperature changes are expected to impact

distributions as species’ ranges track these limits (Harley et al. 2012).

Maerl are calcifying species utilizing high magnesium calcite, which

has a similar saturation state to aragonite in the northeast Atlantic

(Andersson et al. 2008). Most maerl are currently found in locations

supersaturated for aragonite (Ω > 2). Predictions of the saturation

state for 2100 (Steinacher et al. 2009) suggest that most of the

northeast Atlantic will be outside this range.
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(A)

(B)

(C)

Figure 2. Predicted change in northeast Atlantic benthic marine flora if CO2 emissions continue unabated. (A) Arctic region: warming will be

detrimental to cold-adapted species, and acidification will corrode maerl (M.). Pacific species, for example, Alaria marginata (Am), will invade as

polar ice melts, competing with native species such as Laminaria hyperborea (Lh) and Alaria esculenta (Ae). Fleshy invasives, for example,

Sargassum muticum (Sm), will move north competing with fucoids, for example, Fucus distichus (Fd), in the intertidal. Acidification will corrode

epiphytic calcified algae, for example, Titanoderma pustulatum (Tp), and increased CO2 levels will stimulate growth of diatoms (D.) (magnified

circles) and seagrasses such as Zostera marina (Zm). (B) Boreal region: Laminaria hyperborea (Lh) forests will be increasingly dominated by

Laminaria ochroleuca (Lo), with the loss of Alaria esculenta (Ae) and fucoids, for example, Fucus vesiculosus (Fv) and the continued spread of

invasive Undaria pinnatifida (Up), Sargassum muticum (Sm), and Grateloupia turuturu (Gt). As in the Arctic, maerl beds will be corroded,

seagrasses will thrive, but epiphytic calcified algae will be reduced or replaced with diatoms and filamentous seaweeds (magnified circles). (C)

Lusitanian region: kelps will be replaced by smaller, fleshy algae and invasive species, for example, Caulerpa taxifolia (Ct) will proliferate. Fucoids

will be replaced by invasives such as Asparagopsis armata (Aa). Seagrasses will thrive, and it is expected that maerl and epiphytic calcified algae

will be retained (magnified circles).
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these kelps are similar both structurally and functionally,

although subtle differences in kelp structure can influence

their associated communities (Blight and Thompson

2008).

There is considerable evidence of change in fucoid dis-

tribution in the northeast Atlantic. Range expansion in

F. vesiculosus and no apparent change in distribution of

F. serratus in Portugal (Lima et al. 2007) are countered

by depleted genetic diversity in the latter species (Pearson

et al. 2009; Jueterbock et al. 2013) and evidence of a sig-

nificant decline for both species in the UK (Yesson et al.,

unpublished manuscript). Further evidence of decline in

some regions includes Ascophyllum nodosum (Simkanin

et al. 2005; Davies et al. 2007), Pelvetia canaliculata (Lima

et al. 2007), Chorda filum (Eriksson et al. 2002), and

Himanthalia elongata (Fern�andez and Niell 1982; Lima

et al. 2007). We predict that there will be declines in the

fucoids Ascophyllum nodosum, Fucus serratus, F. vesiculosus

(Fig. 2), Pelvetia canaliculata, and the other large, com-

mon brown algae Chorda filum and Himanthalia elongata

(Yesson et al., unpublished manuscript). We also predict

that Fucus distichus will decline based on evidence of loss

from its southern limit in the UK (Brodie et al. 2009).

In parallel, an increase in the relative abundance of

fast-growing “annuals”, such as Saccorhiza polyschides and

Undaria pinnatifida, is expected to have major implica-

tions for kelp forest structure and functioning, as stable

perennial habitats become more “boom and bust” in nat-

ure (Smale et al. 2013). Whether or not a species is

replaced by a functional equivalent could be key in future

ecosystem functioning. For example, replacement of

Laminaria hyperborea with Laminaria ochroleuca, which

are similar both structurally and functionally, may have

less impact, although L. ochroleuca does not support the

diversity of stipe epiflora and fauna associated with

L. hyperborea, and subtle differences in kelp species traits

influence local biodiversity patterns (Blight and Thomp-

son 2008).

In contrast, warming is expected to cause losses of

the cool-temperate species Alaria esculenta in the Boreal

region (Fredersdorf et al. 2009) which will alter ecosys-

tems as it is the dominant species on very exposed

shores and an important mid-successional species

in more sheltered locations (Hawkins and Harkin

1985), yet there is no warm water equivalent to take

its place.

As the northeast Atlantic continues to warm and acid-

ify, we predict that kelp forests will die out in the Lusita-

nian region (Fig. 2). This shift from highly productive,

large, structural kelp species to smaller fleshy or filamen-

tous species is expected to decrease macrophyte biomass

and detrital input to coastal food webs (Krumhansl and

Scheibling 2012) with wide-ranging consequences for

community structure and ecosystem functioning (Smale

et al. 2013).

Both direct and indirect effects of changing water

chemistry are likely to affect grazers and alter food webs

(Alsterberg et al. 2013; Asnaghi et al. 2013; Borell et al.

2013; Falkenberg et al. 2013). Differences in algal defen-

sive chemistry, structural properties, and nutritional

quality in response to ocean acidification are likely to be

manifest at both intra- and interspecific levels as resource

allocation patterns (see Arnold and Targett 2003) and

assemblages (see Kroeker et al. 2013) respond to reduced

alkalinity; indeed, evidence already exists for the direct

effects of acidification upon defenses and structure (e.g.,

Borell et al. 2013; Kamenos et al. 2013). Phaeophytes may

be particularly implicated in cascading effects resulting

from altered biochemistry in response to acidification as

their carbon-dense phlorotannins, which can constitute

15% of algal dry mass (Targett et al. 1992), have reduced

energetic production costs (see Arnold and Targett 2003)

but are known to significantly influence both primary

consumer and detritivore exploitation of algal tissues.

Thus, both intrabenthic and benthic-pelagic trophic link-

ages are dependent upon the consumption of live and

decaying seaweeds by primary consumers, processes

mediated by acidity-sensitive algal characteristics (Hay

et al. 1994).

Invasive Species

The rate of recorded introductions of non-native algae

and the spread of invasive algae are increasing in the

northeast Atlantic (Arenas et al. 2006; Sorte et al. 2010),

although direct evidence to indicate non-native benthic

algae cause extinctions in communities is lacking (Reid

et al. 2009). Approximately 44 species of non-native ben-

thic macroalgae are reported for the northeast Atlantic

(Guiry 2012) including large brown species such as Sar-

gassum muticum and Undaria pinnatifida.

As with native species, those opportunistic invasive

fleshy algae that are tolerant of warming and low carbon-

ate saturation are likely to benefit from increased carbon

availability (Weltzin et al. 2003). There is also evidence

from a study of the invasive red seaweed Neosiphonia

harveyi where the effects of low temperatures on photo-

synthesis were alleviated by increased pCO2 (Olischl€ager

and Wiencke 2013) that suggests warmer water species

will be able to move into cooler areas where calcareous

algae and fleshy species such as the kelps and fucoids

have been lost. At Mediterranean CO2 vents, invasive gen-

era such as Sargassum, Caulerpa, and Asparagopsis thrive

where native coralline algae are excluded by acidified

waters (Hall-Spencer et al. 2008). Warming is expected to

facilitate the spread of Caulerpa taxifolia into Lusitanian
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waters (Fig. 2), whilst northward range shifts of native

fleshy species are expected to provide opportunities for

invasive macroalgae to colonize. In Lusitanian regions,

the die back of kelp forests due to increased temperatures

may increase rates of macroalgal invasions by such species

as Asparagopsis armata which is expected to proliferate

alongside cooler water invasive species such as Sargassum

muticum, Undaria pinnatifida, and Grateloupia turuturu

in the Boreal region (Fig. 2).

Indirect changes associated with a high CO2 world will

also likely impact the future dynamics of macroalgal inva-

sions in the northeast Atlantic. As we switch to reliance

on offshore renewable energy capture (Breton and Moe

2009), associated increases in new and artificial marine

structures will likely provide important, competitor free,

bare substrata, facilitating the spread, and establishment

of non-natives (Nyberg and Wallentius 2005). Melting of

the polar ice cap will also open up new invasion corridors

between the Pacific and Atlantic Oceans in the form of

both natural dispersion and introduction associated with

polar shipping routes (Reid et al. 2007).

On the whole, we predict that under a high CO2 world,

macroalgal invasions in the northeast Atlantic will

increase, aided by increased carbon availability, increased

stress imposed on native (especially calcareous) macroal-

gal species, loss of key habitat-forming kelps at their

southerly limits, and indirect factors facilitating dis-

persal, transportation, and establishment of non-native

populations.

Calcified algae

There are a wide range of calcified taxa in the northeast

Atlantic, including the red calcifying coralline algae, the

green algal genus Acetabularia, and the brown algal genus

Padina. The coralline algae include crustose coralline

algae (CCA), free-living coralline algae (rhodolith/maerl),

and geniculate (articulated) turfing algae. These form a

cosmopolitan group of marine flora, ubiquitous in inter-

tidal and shallow subtidal habitats, where they act as

important ecosystem engineers (Kamenos et al. 2004; Nel-

son 2009).

As with fleshy algae, each calcified alga has a thermal

optimum, so their distributions are probably already

changing due to global warming and are expected to shift

significantly as global sea surface temperatures continue

to rise. Furthermore, calcified algae may not benefit from

the increasing availability of inorganic carbon for photo-

synthesis as ocean acidification also increases the meta-

bolic costs of calcification and can corrode their skeletons

when carbonate becomes undersaturated (Nelson 2009).

We predict that one of the largest impacts of sustained

CO2 emissions will likely be the dissolution of areas of

dead maerl and to a lesser extent live maerl habitat in the

northeast Atlantic. Surface water that is corrosive to algal

carbonate is already expanding southwards in the Arctic

(Steinacher et al. 2009). Although there is conflicting lab-

oratory evidence over the vulnerability of live maerl to

future conditions (Noisette et al. 2013), field observations

show that maerl beds mainly form in waters with high

carbonate saturation (Hall-Spencer et al. 2010). Although

some coralline algae sustain calcification over long peri-

ods of exposure to elevated pCO2, a loss of structural

integrity is inherent (Ragazzola et al. 2012; Kamenos et al.

2013; Martin et al. 2013), which presumably comes with

an energetic cost to growth (Bradassi et al. 2013). Those

species that require stable conditions at high carbonate

saturation states are likely to be negatively impacted

(B€udenbender et al. 2011). We expect that maerl habitat

will be lost at high latitudes as aragonite saturation falls

(Fig. 1), although Lusitanian maerl will persist (Fig. 2).

As thin epiphytic coralline algae dissolve easily (Martin

et al. 2008), they are expected to decline in areas where

seawater becomes corrosive to their skeletons. Those spe-

cies that tolerate widely fluctuating levels of CO2, such as

intertidal Corallina and Ellisolandia species, will be more

resilient to ocean acidification (Egilsdottir et al. 2013).

However, competition from fleshy algal species that bene-

fit from high CO2 may indirectly lead to loss of calcified

species (Kroeker et al. 2013). Similarly, persistence of spe-

cies in decalcified forms under high CO2 may contribute

to phase shifts from calcified dominated assemblages to

fleshy algae (Johnson et al. 2012).

Northeast Atlantic coralline algal habitats are reported

to contain more than double the annual open-ocean

average of dissolved DMS concentration (Burdett 2013);

thus, loss of calcified algae, in combination with biogeo-

graphic shifts and species invasions, may alter habitat

taxonomic composition to low-DMSP-producing fleshy

algae (Fig. 2). The loss of structural integrity of coralline

algal skeletons under high CO2 conditions may also facili-

tate the release of DMSP into the surrounding water

column, stimulating the microbial consumption of DMSP

and production of DMS (Burdett et al. 2012).

Overall, we predict there may be significant loss of

primarily dead but also living calcified macroalgae in the

northeast Atlantic by 2100, beginning at high latitudes

and spreading further south over the century. Monitoring

is required to assess the impact of these changes given the

importance of calcified algae to fisheries and ecosystem

function (Kamenos et al. 2013).

Seagrasses

Extensive seagrass beds are found in the northeast

Atlantic (Fig. 1). They sequester carbon through photo-
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synthesis and store large quantities in both the plants, but

more importantly, in the sediment below them (Mcleod

et al. 2011; Fourqurean et al. 2012). Unlike rainforests

where the carbon captured remains for decades or centu-

ries, the carbon captured by sediments from seagrasses

can remain stored for millennia (Mateo et al. 1997).

At present, seagrasses are carbon limited and are thus

expected to benefit from ocean acidification due to

increased available substrate for photosynthesis. Therefore,

considering the carbon sequestration ability of seagrasses

and predicted increases in inorganic carbon utilization

due to ocean acidification (Koch et al. 2013), we predict

that in a high CO2 world the below-ground carbon

pool associated with northeast Atlantic seagrass beds

will increase. Paleoreconstruction of sediments underlying

old seagrass meadows may reveal the long-term carbon

sequestration patterns of northeast Atlantic seagrass

species (Mateo et al. 2010) and allow future predictions.

Although loss of seagrass’ calcareous epiphytes may be

beneficial through removal of associated oxidative stress,

under high CO2, nutrients and temperature, we predict

that non-calcareous epiphytes such as filamentous algae

and diatoms will increase (Alsterberg et al. 2013). This

may lead to shifts in the epiphyte community structure

from less palatable calcareous, to more palatable algae.

Additionally, decreased production of grazing deterrent

phenolics by seagrasses under high CO2 (Arnold et al.

2012) may increase the palatability of seagrass leaves for a

number of invertebrate and fish grazers, maintaining or

increasing grazing rates of seagrass blades, depending on

food preferences of grazers and the availability of other

food sources.

Positive effects of increased CO2 on seagrass physiology

may help to ameliorate negative effects of other environ-

mental stressors known to impact seagrass growth and

survival. If seagrasses are afforded the protection they

need from damage by fishing gear, dredging, and both

organic and nutrient pollution, we predict these habitats

will proliferate in a high CO2 northeast Atlantic, albeit

with the loss of certain calcified organisms and the

increasing spread of invasive macroalgae within seagrass

habitats (Fig. 2).

Microphytobenthos

The microphytobenthos (MPBs) are benthic microscopic

algae including cyanobacteria, diatoms, benthic dinofla-

gellates, and diminutive life-history stages of macroalgae.

They are the base of many food webs, sustaining thou-

sands of species of grazing and deposit feeding inverte-

brates in the northeast Atlantic, and they form biofilms

that affect the colonization of rocky substrata, the biogeo-

chemistry of sediments, and stabilize coastal mud flats.

Some MPBs effectively exist via symbiotic relationships

with invertebrates such as anemones and corals whilst

other MPBs live within shellfish and can be severely toxic

to humans.

We predict that there will be an increasing abundance

of diatoms in northeast Atlantic MPB, based on evidence

from studies conducted at CO2 vent sites in the Mediter-

ranean Sea where most insight into the potential impacts

of high CO2 on the MPB come from. In these vent

systems, diatom- and cyanobacteria-dominated biofilms

predominate, and broad scale analysis of microeukaryote

diversity has shown that MPB communities in high CO2

water are substantially modified compared with ambient

conditions (Lidbury et al. 2012). Responses to elevated

CO2 are, however, variable between different diatom and

cyanobacteria groups (Raven et al. 2012; Johnson et al.

2013). The response of toxic dinoflagellates to high CO2

conditions should also be considered in the northeast

Atlantic, given previous switches to toxic bloom states

observed in paleo/fossil records (Sluijs et al. 2007),

evidence of shift toward less toxic variants under high

CO2 (Eberlein et al. 2012), and the potential for enhanced

production of toxins during high CO2 conditions (Fu

et al. 2010).

Due to potential increased carbon uptake by MPB, it is

also possible to predict an increased export of organic

carbon and subsequent production of an extracellular bio-

film matrix, as has been observed under high CO2 condi-

tions at the Volcano vents (Lidbury et al. 2012), and in

analogous planktonic systems (Borchard and Engel 2012).

Given that MPBs, with seagrasses, determine sediment

organic matter composition (Hardison et al. 2013),

increased carbon export by CO2-stimulated MPB could

significantly alter carbon cycling processes across north-

east Atlantic sediment ecosystems. However, OA also

increases degradation of polysaccharides by bacterial

extracellular enzymes (Piontek et al. 2010), indicating that

OA-controlled feedback mechanisms will occur.

To allow further predictions, we require a deeper

understanding of the mechanistic effects of high CO2 on

key MPB groups. This will require research into dissolved

inorganic carbon (DIC) uptake-mechanisms and intracel-

lular pH regulatory mechanisms. The production of CO2

internally from active uptake of HCO�
3 or externally via

carbonic anhydrase activity will be strongly influenced by

intracellular and cell surface pH (Taylor et al. 2011; Flynn

et al. 2012). Additionally, cell size, shape, and biofilm

formation can have profound effects on cell surface pH

relations and consequent DIC speciation. pH at the sur-

face of larger cells or aggregates is influenced significantly

more by metabolic membrane H+ fluxes, with substantial

cell surface pH fluctuation in relation to photosynthetic

metabolism observed for large diatom cells (K€uhn and
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Raven 2008; Flynn et al. 2012). Under elevated CO2,

larger cells are likely to experience substantially larger

diurnal pH fluctuations than smaller cells (Flynn et al.

2012). A deeper understanding of the direct effects on

physiology will be critical in order to model impacts of

elevated CO2 on MPB.

In addition, MPB responses to high CO2 need to be

understood at the ecosystem level. For example, biogeo-

chemical impacts of CO2 enhanced MPB communities

may be modulated by heterotrophic components of the

same community (Witt et al. 2011), or increased MPB

biomass may be mediated by grazing pressure (Alsterberg

et al. 2013). In the northeast Atlantic, the impacts of OA

on MPB community diversity could further modify, or be

modified by, other impacts such as increased temperature

and eutrophication.

Conclusions

Carbon dioxide emissions are causing rates of global

warming and ocean acidification that will profoundly affect

marine flora worldwide (P€ortner et al. 2014). We have

illustrated how these changes will affect the diverse and

well-studied benthic marine flora of the northeast Atlantic

(Figs. 1 and 2), and how these changes will likely affect

ecosystem structure and function. It is clear that unless

CO2 emissions are curbed, there will be far-reaching

consequences for regional biodiversity patterns, trophic

linkages, nutrient cycling, and habitat provision for socio-

economically important marine organisms. Warming will

kill off kelp forests in the south, and ocean acidification

will remove maerl habitat in the north. Seagrasses will pro-

liferate, and associated epiphytes switch from calcified

algae to diatoms and filamentous species. Invasive species

will thrive in niches liberated by loss of native species and

spread via exponential development of artificial marine

structures. Thus, combined impacts of seawater warming,

ocean acidification, and increased storminess may replace

structurally diverse seaweed canopies with associated

calcified and noncalcified flora with simple habitats

dominated by noncalcified, turf-forming seaweeds.

Over the longer term, the ability and rate of species/

populations to evolve will be crucial (Sunday et al. 2014).

Evolutionary change may lead to adaptation, but it still

may not be enough to prevent extinctions due to warm-

ing and acidification (Lohbeck et al. 2012). It will be vital

to understand and measure predictors of evolution, such

as genetic variability within and between populations, and

to understand how knowledge of plastic responses can be

leveraged to predict the evolutionary and/or adaptive

potential of populations. A much greater effort is needed

to develop real time maps of the key populations and

their genetic diversity.

Future research must also address the impact that loss

of the calcified and fleshy algae and their habitats will

have on other benthic flora groups, and benthic, pelagic,

and terrestrial fauna that are dependent on such resources.

The responses of MPB assemblages, and species-specific

information for DMSP and DMS production in algae and

seagrasses that will form the benthic floral assemblages

under increased CO2, are required. Underpinning this is a

need to quantify natural variability in carbonate chemistry

in the northeast Atlantic to gain a complete understanding

of the carbonate chemistry environment experienced by

species.

Finally, unless we take action, we will sleepwalk

through radical ecological changes to the phycology of

our coasts.
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